
Computer Science and Information Systems 22(3):1011–1046 https://doi.org/10.2298/CSIS241024034B

Extending Hybrid SQL/NoSQL Database by Introducing
Statement Rewriting Component

Srd̄a Bjeladinović

University of Belgrade, Faculty of Organizational Sciences
Jove Ilića 154, Beograd, 11000, Belgrade, Serbia

{srdja.bjeladinovic}@fon.bg.ac.rs

Abstract. Contemporary organisations often include different business subdomains,
for which it is neither easy nor optimal to decide on using an exclusive database
type. The hybrid SQL/NoSQL databases encompass various types of databases uni-
fied into a unique logical database. At the same time, they provide the usage benefits
of working with the SQL and the NoSQL databases simultaneously. Recently, there
has been an increase in research that deals with the challenges of hybrid databases’
query optimisation, especially query rewriting. This trend opened up possibilities
for analysing the influence of applying different statement rewriting techniques to
other data manipulation statements besides queries (i.e. INSERT, UPDATE and
DELETE) and its impact on the average execution times. In this paper, a process
model for applying automatic hybrid statements’ rewriting was designed, and the
architecture for the hybrid database was extended with the newly developed State-
ment Rewriting Component (SRC). The tested use cases were conducted on the
example of Oracle/MongoDB/Cassandra hybrid before and after introducing SRC.
The tests have shown particular decreases in the average execution times of the
system with the SRC.

Keywords: Hybrid database; SQL; NoSQL; statement rewriting; database architec-
ture.

1. Introduction

Since the beginning of the 90s of the last century, it has been identified that individual
systems cannot always satisfy all business needs and that it is often necessary to design,
manage and maintain systems made up of several other systems. The development of
complex systems, whose components are intensive software systems, usually developed
by different manufacturers, was significantly influenced by the rapid growth of society
and industry [1]. The constant increase of the business processes complexity, the expan-
sion of the portfolio of products and services, the diversification of business between
companies and the expansion of software specialised for specific domains of business
or industrial branches have further promoted the development of systems that integrate
other, independent, systems. Individual and independent systems cannot always achieve
a higher business mission. Still, their collaboration and integration into complex systems
enable the realisation of missions beyond their capabilities [2]. These systems are some-
times referred to as Component-Based Software [3] or Systems-of-Systems (SoS) [4].
Today, large and complex systems that contain other constituent systems [5] are repre-
sented in many fields [6][2][7], such as transportation networks, smart energy grids, space,

1012 Srd̄a Bjeladinović

aeronautics, e-commerce applications, medical assistance, emergency management, and
databases.

To eliminate possible terminological ambiguities, the interpretations of common terms
used in this paper are defined before the term hybrid database. Generally speaking, two
main aspects of databases are data model and DataBase Management System (DBMS). As
defined by ANSI [8], “DBMSs can be categorised in terms of the data model which is sup-
ported and the data language provided for interacting with this data model. A data model
defines the acceptable types of data structures.” So, data models, from the DBMS point
of view, represent an appropriate structure for storing and managing data. The authors [9]
define a data model as a theoretical approach that determines the way of specifying and
designing a specific database, while a DBMS is a particular data processing technology,
i.e. a software system, which allows management of large amount of data and implements
a specific data model. Further, data model instances can belong to one of three types:

– Conceptual data model - Corresponds to the conceptual schema of the entire sys-
tem and describes the domain semantics without technological and implementation
specifics;

– Logical data model - Describes the semantics in the context of a specific technol-
ogy for data manipulation, i.e. specific structures suitable for system development
(tables and columns, JSON documents, graphs, etc.). It represents the result of map-
ping the conceptual data model (conceptual schema) into the schema of a data model
supported by a specific DBMS [10];

– Physical data model - A data model corresponds to the design of the internal, physical
structure of the database based on the logical model and the specification of all non-
functional requirements [9].

A hybrid is a unique logical database designed over a single conceptual data model.
The conceptual data model is translated into the logical data models of the particular
DBMSs, which are chosen for building the hybrid’s components. A hybrid database in-
tegrates all logical data models of its components into a unique logical unit via unified
processes of designing and administrating hybrid and its components, as well as using an
integrated meta-repository.

Depending on the types of integrated DBMSs, logical models contained in a hybrid
SQL/NoSQL database can describe tables and columns that implement the relational
model, JSON document and its fields, ordered key-value pairs, column families, or graph
nodes and their relationships. The hybrid SQL/NoSQL databases provide the benefits of
working with the SQL and the NoSQL databases simultaneously. Through the hybrid,
each component (DBMS) participates in achieving the broader business mission of the
company, which could not be satisfied as an isolated DBMS.

Hybrid databases have been developed to satisfy the growing need of contemporary
businesses for storage, access and processing of data, regardless of the source and de-
gree of data structuredness. This approach in developing data-intensive systems enables
the use of suitable DBMS representatives for each business domain or, more precisely,
for each business subdomain. Contemporary organisations often unify business functions
that use strict and, in advance, defined data structures with other business functions that
use highly flexible data structures. Apart from the simultaneous use of data with different
levels of structuredness, various criteria may have higher or lower importance, depending

Extending Hybrid SQL/NoSQL Database by Introducing... 1013

on the business needs. For example, we can observe the information system of a mar-
keting company, which entails monitoring and executing financial transactions (with the
banks, business partners, employees, etc.) and marketing promotions on social media. We
use different potential criteria for the successful execution measurement of each func-
tion. Regarding financial transactions, it is necessary to provide data integrity, i.e. to use
more structured data with the highest level of consistency. In the case of social media
promotion, data integrity and structuredness are often secondary-significant to the data
availability and fast analytical processing.

Before the emergence of hybrid databases, the challenge of using data with different
levels of structuredness was solved in one of the following two approaches: 1) limiting or-
ganisations to using an exclusive database type for all subsystems; 2) using different types
of databases for each of the subsystems (or similar subsystems). In the previous example
of a marketing company, as in many other examples of business, it is not always easy nor
optimal to choose a single database type. The usage of exclusive database type gives the
organisation benefits for some specific subsystems. At the same time, other subsystems of
that company have the limitations of using a non-suitable or non-optimal database type.
Because of that, the first legacy approach cannot resolve all specific demands raised by
the necessity of using different types of databases.

The second approach to the problem, using different types of databases (with varying
data models) whose operation is not fluidly represented as the unique logical database,
implies additional expenses of connections, integration and unified administration. Com-
pared to the two prior approaches (single database and multiple databases over multiple
models), a hybrid system of databases enables integration and concurrent use of different
technologies. Hybrid database users benefit from using the best functionalities of different
database types. Users of hybrid do not have to worry about their integration since differ-
ent types of databases represent the components of the unique logical (hybrid) database,
which uses a single data model. Hybrid database usage enables the engagement of suit-
able data storage and management technology for every business subdomain. The most
common and comprehensive representatives of the hybrids are the hybrid SQL/NoSQL
databases.

Even though, in recent years, there has been a noticeable increase in the number of
works and research on hybrid database optimisation and statement rewriting, additional
space for research has emerged. For the optimisation of databases, in general, different
approaches can be used, such as logical optimisation, physical optimisation (e.g. hori-
zontal and vertical partitioning), various ways to access data (e.g. via tables, indexes,
materialised views) and reformulating the way statements are written. The latter contains
a potential not fully explored in existing papers.

This manuscript is a continuation of research and expansion of the hybrid SQL/NoSQL
database and its architecture presented in previous works [11][12]. This paper aims to give
answers to the following research questions which have arisen during the continuation of
the research:

– Research question 1: How do we specify the automatic usage of statement rewriting
techniques in a hybrid SQL/NoSQL database?

– Research question 2: Is it feasible to develop a new dedicated component for state-
ment rewriting and integrate it into the existing architecture for hybrid SQL/ NoSQL
databases?

1014 Srd̄a Bjeladinović

– Research question 3: How do the applied statement rewriting techniques influence the
duration of the statement execution, based on the example of the Oracle/MongoDB/
Cassandra hybrid database?

The answer to the first research question covers the extension of the existing hybrid
database design methodology [11], and it introduces the designed process model and ac-
tivities for rewriting entered statements (particularly INSERT, UPDATE and DELETE).
Automatic statement rewriting is one of the powerful optimisation techniques, and it aims
to reduce statements’ average execution time of the initial architecture of SQL/NoSQL
database [12] by introducing a newly developed Statement Rewriting Component (SRC).
The second question of this paper deals with how to implement SRC on the existing archi-
tecture for a hybrid SQL/NoSQL database and how to seamlessly integrate SRC with the
execution of other components of a hybrid. The third question aims to quantify conducted
practical tests of the selected use cases and compare the achieved results of the existing
SQL/NoSQL architecture (without SRC) and extended SQL/NoSQL architecture (with
newly developed SRC component).

However, there are some limitations in this paper. The current architecture version of
the hybrid SQL/NoSQL database is still a prototype, and not all functionalities are entirely
implemented. The SELECT statement is out of the scope of this paper for several reasons.
The first one is that the initial architecture version for SQL/NoSQL databases (without
SRC) already contains some built-in mechanisms, but only the basic ones, like indexing
and partitioning. We acknowledge that query optimisation is thoroughly researched in
the analysed papers. Because of that, in this paper, we focus on one particular optimis-
ing technique (statement rewriting) of the other data manipulation statements (INSERT,
UPDATE and DELETE), which is, to our knowledge, not researched enough. The main
limitation of this paper is that we focus exclusively on providing automatic statement
rewriting as one of many techniques for statement optimisation, but at the same time, it
is a very promising technique considering its potential effect on the statement’s average
execution time. However, the Optimisation Rules Repository, created and introduced in
this paper together with SRC, present a useful base for integration and support not only
with the new SRC component but also with future components of the hybrid.

In order to present the existing research in the field and the original results obtained
in the process of answering the research questions, the paper has the following organi-
sation. Section 2 overviews the existing directions of hybrid databases’ design and use.
Section 3 deals with the first research question by presenting the process model designed
for automatically applying statement rewriting techniques in hybrid databases. Section 4
describes the architecture extension, with a newly created component for statement rewrit-
ing. A description of the SRC component’s role in the architecture and an explanation of
its functioning aims to answer the second research question. Section 5 lists the use cases
chosen for testing and comparing the average statements’ execution times for the hy-
brid SQL/NoSQL databases without the SRC component and for the hybrid SQL/NoSQL
databases with the newly created SRC. The Oracle/MongoDB/Cassandra hybrid database
was used as the test environment. Section 6 contains experimental results. Section 7 con-
sists of conclusions and gives directions for future research.

Extending Hybrid SQL/NoSQL Database by Introducing... 1015

2. Related Work

In general, hybrid databases can be defined as integrated data systems comprised of
multiple autonomous databases [13] or as databases that incorporate different types of
databases into a unique logical database [11]. By reviewing their presence on the market
[14], it can be concluded that the dominant databases are still relational (also commonly
called SQL databases after the standardised query language they use). However, NoSQL
databases, suitable for working with large amounts of data, are increasingly being used
[15]. For years, big companies such as Facebook, Amazon and Google have been using
SQL and NoSQL databases to complement each other [16]. Recent research on how four
representatives of NoSQL handle a variety of data is presented in the paper [17]. The
hybrid SQL/NoSQL databases unify the use benefits of the SQL and NoSQL databases
for the purposes they are designed for by overcoming individual limitations typical for
particular database types [18]. At times in literature, the NoSQL databases are called
non-relational [19][20][21]. However, non-relational databases can be generally treated
as a broader term, including other types of databases [22]. The increased popularity of
the NoSQL databases directly affected the focus of databases’ hybridisation in recent
years. The focus has shifted towards integrating NoSQL and SQL databases into the hy-
brid SQL/NoSQL database [23]. Therefore, the authors [19] state that hybrid databases
aim to use data from relational and non-relational databases and to provide conjoint re-
sults in a single output. The paper [24] defines the term hybrid database or just the hybrid
as “systems where there are several databases implemented that can be relational and/or
NoSQL.” Based on all of the covered definitions, it is very important to highlight the
common trait of a hybrid. Each hybrid database, no matter how many different types
of databases it includes, is created over just a single data model and thus is designed and
maintained as a unique logical database. Various parts (components) of a hybrid’s concep-
tual data model are implemented in different DBMSs, which can represent very different
database types. However, users always access and interact with a hybrid database as with
a single database (which implements the entire data model and its necessary logic), no
matter which particular hybrid component, e.g., a specific DBMS, stores searched data.

The review in the field of hybrid databases identified four groups of papers of in-
terest. Papers in the first group explain similarities but also crucial differences between
hybrid databases and other contemporary databases, which contain multiple systems sim-
ilar to the SoS. The second group comprises the articles that contribute towards setting
hybrid databases’ general principles (i.e. design, integration, uniform use). This group
of papers set the foundations for hybrid databases. The articles whose research focus is
on different aspects of performance measurements and optimisation of various database
types represent the third group of research papers. In addition, the significance of these
papers is reflected in the fact that different database types can be components of the hy-
brid. Finally, the fourth group of analysed papers directly discusses the hybrid database’s
statements optimisation and rewriting.

2.1. Similar but Different: Alternatives for Hybrid Databases

In recent years, significant progress has been made in the directions that have a tangential
research question with hybrids, which is the integration of different systems of databases,
i.e. different types of databases. However, due to noticeable differences in the way of

1016 Srd̄a Bjeladinović

solving the mentioned problem, as well as obvious distinctions in these approaches, it
would be risky, even indescribable, to equate them. However, because of their popularity,
some of these approaches will be briefly mentioned here. These approaches are polystores,
polyglot persistence, multi-model databases, and Object-NoSQL Data Mapper (ONDM)
frameworks. Table 1 shows the taxonomy of the approaches from the first group, their
key characteristics, similarities and differences compared to a hybrid database.

Table 1. Taxonomy of the approaches dealing with the SQL and NoSQL integration
(alternatives to the hybrid databases)

Approach Key characteristics Similarities to hybrid
DB

Differences to hybrid DB

Polystores Orchestration of differ-
ent models and improv-
ing the usage of a uni-
form language on multi-
ple databases

Simultaneous use of
several different types
of databases;

Single query lan-
guage

Numerous isolated data
models, which are subse-
quently linked;

Not the unique logical
database

Polyglot
persistence

Using different types of
databases to solve con-
flicting requests

Use “the best” type of
database for the con-
crete requests

Absence of a unique lan-
guage for accessing all
databases;

Not the unique logical
database

Multi-
model
databases

Ease of use of different
models within a single
database

Using different mod-
els for different
requirements;

Using one logical
database

Only one DBMS;

Number of different data
models limited by particular
DBMS

ONDM Object model instead of
an approach for integrat-
ing SQL and NoSQL

A sense of using one
logical database

Only one data model (ob-
ject) instead of a variety of
different ones;

List similarities with
the hybrid databases

Polystores is an approach that deals with the simultaneous use of several different
types of databases. They don’t have one common data model for the entire logical database,
but instead numerous isolated data models, which are subsequently linked. The principles
of polystores are described in detail in the paper [25], in which the authors emphasise the
importance of using a uniform language over multiple data models. They have presented a
BigDAWG prototype composed of SciDB, Accumulo, Postgres and S-Store DBMS. The
research mentioned above was extended in subsequent works [26][27][28][29], while the
authors [30] have developed purpose-built modelling tool, named TyphonML, which au-
tomatically generates CRUD API for polystores. The consequence of the simultaneous,
not necessarily related, design and the use of multiple data models is reflected in the ploy-

Extending Hybrid SQL/NoSQL Database by Introducing... 1017

stores’ inability to provide a unique administration process for all databases in use, which
implies an additional difficulty in controlling and reducing unwanted data redundancy ef-
fectively. The maiden authors of polystores [25] mentioned this as a direction for further
research. In addition to the above, synchronisation and simplicity of system expansion,
as two of the indicators of integration and usability [31], are aggravating in the case of
polystores architecture.

Polyglot persistence represents one of the approaches of using different types of
databases to solve conflicting requests, in which only one database cannot solve all tasks.
A detailed description of this approach and its specific variants are given in the paper [32].
The authors of the mentioned work identify the following subcategories, which differ in
the realisation of the polyglot persistence approach: (I) Application-coordinated Poly-
glot Persistence (ACPP); (II) Service-oriented Polyglot Persistence (SOPP); (III) Poly-
glot Persistence as a Service (PPS). Polyglot persistence defines four types of cardinal-
ities between application modules and DBMS: One-to-one, Many-to-one, One-to-many
and Many-to-many. The first two cardinalities (1-1; M-1) eliminate the possibility of us-
ing different types of databases because they have only one destination database type.
The other two cardinalities (1-M; M-M) imply using different types of databases but with
the parallel use of multiple query languages, which the authors clearly emphasised in
their work [32]. Polyglot persistence with cardinalities 1-1 and M-1 is not of interest to
this paper because, with these cardinalities, clients are limited to using only one type
of database. On the other hand, cardinalities 1-M and M-M in polyglot persistence ap-
proaches, with all their variants (ACPP, SOPP and PPS), allow the use of several different
types of databases but require the simultaneous knowledge and use of several query lan-
guages. Consequently, the used databases cannot be treated as unique logical databases
because it is necessary to separate the data by database types, which results in additional
difficulties of integration and reduction of redundancy.

Multi-model databases were created to offer ease of use of different models within a
single database. For example, Redis, which is primarily a key-value database, supports
document-oriented and graph models, while Elasticsearch supports search engine and
document-oriented types of databases [14]. A detailed review of multi-model databases
was given by the authors [33]. Authors Lu and Holubová investigated the multi-model
database from several aspects: the way of handling a variety of data [34] and the com-
parison with polystores [35]. Some authors recently compared multi-model databases
with polyglot persistence [36][37]. Elaborate analysis of the evolution of multi-model
databases and directions for further development are detailed in the paper [38]. The au-
thors Lajam and Mohammed [32] state that despite the support for multiple models in
one database, multi-model databases still cannot adequately compete with polystores, i.e.
systems made up of several different types of databases, primarily in terms of satisfying
non-functional requirements such as scalability and performance. Apart from those men-
tioned above, a significant limiting factor in comparisson to hybrids is the closedness of
each individual DBMS. Although certain DBMSs support several different models, the
extension of the set of supported models is strictly locked and completely dependent on
the DBMS manufacturer. Vendor lock-in can lead to a model not being implemented in
the observed DBMS in the future, either. Those mentioned above noticeably limit the pos-
sibilities of designers to compose a database of several models and maintain and expand
the set of models used by the user.

1018 Srd̄a Bjeladinović

ONDM research focuses on mapping and integrating object and NoSQL models and
extends the functionalities introduced by Object-relational mapping (ORM) frameworks
[39]. However, the primary focus of these frameworks is not the direct integration of SQL
and NoSQL types of databases. Instead, to a certain extent, they achieve it via an object
model.

Table 2. Pros and cons of the analysed approaches

Approach Pros Cons
Polystores Simultaneous use of different

types of databases;

Usage of a uniform lan-
guage

The inability to provide a unique administration
process for all databases;

Difficulty in controlling and reducing data
redundancy;

Synchronisation and simplicity of system
expansion

Polyglot
persistence

The use of several different
types of databases

Use of several query languages;

Difficulties of integration and reduction of
redundancy

Multi-
model
databases

Suported diferrent models;

One logical database;

The convenience of ac-
cessing and managing only
one DBMS

Limitations of (broaden) usage of different
models in a single DBMS;

Vendor lock-in and closedness of each indi-
vidual DBMS;

It is harder to achieve non-functional re-
quirements such as scalability and performance

ONDM A single data model (object)
tries to “fit all”

Not many authors treat this approach as a genuine
alternative to a hybrid;

Only one data model (object) with its limi-
tations instead of a variety of different ones

Table 2 summarises the pros and cons of the four analysed approaches. The conclu-
sion that can be drawn is that each approach, of course, has advantages and disadvantages,
the same as the hybrid databases. Nevertheless, it can be unequivocally concluded that,
despite their benefits, the four analysed approaches cannot be treated as adequate alterna-
tives to hybrid databases. The reason is either because of the problem they are trying to
solve or because of the way they approach the solution. In particular, although polystores
support the parallel use of different types of databases using a unique language, the ab-
sence of the possibility of designing the entire database as a unique logical whole without
unwanted redundancy makes it impossible to equalise polystores and hybrids. The main
difference between the polyglot persistence approach and the hybrids is reflected in not
supporting a single language for working with all types of databases. Individual multi-
model databases and ONDM show significant disadvantages compared to the hybrids,

Extending Hybrid SQL/NoSQL Database by Introducing... 1019

which result from the limits of a single DBMS usage, i.e. single data model usage (object
model).

2.2. General Principles of Hybrid Databases

The second group of papers deals with hybrid databases’ general principles. The authors
[40][41][42] performed a trend review of the contemporary databases’ designs, including
common, current and future development directions. The hybrid design and use chal-
lenges originate from the heterogeneous characteristics of different database types inte-
grated into the unique logical entity. The authors [43] dealt with developing dedicated
design methodologies for hybrid databases. The authors [44] analysed software test tech-
niques for the hybrid databases. The authors [23] highlighted the use benefits of the hy-
brid SQL/NoSQL databases and presented dedicated concepts of the extended ER model.
These components are useful while modelling hybrid databases. Primarily, theoretical in-
tegration possibilities of the relational (MySQL) and graph database (Neo4j) are discussed
in the papers [13][45]. In their paper [46], the authors focused on the diversity of NoSQL
models (key-value, document-oriented, column family, graph). They highlighted that re-
lational databases’ traditional design approaches cannot be directly applied to NoSQL de-
sign. They presented the Mortadelo framework based on the model-driven transformation
process. It transforms the generic data model into the intermediate logical model (spe-
cific for some of the four NoSQL models). The latter should then be transformed into the
implementation code of the particular DBMS. The authors [47] presented the migration
approach from the SQL into the hybrid SQL/NoSQL database using ontology to define
data schema. In their paper, the authors [48] presented how a conceptual data model could
describe Big Data stored in the NoSQL database. Unlike the Mortadelo framework that
uses specific logical models for each NoSQL database type, the authors [48] created a
generic logical layer suitable for work with three types of NoSQL databases (document-
oriented, column family, and graph). By applying the QVT (Query-View-Transformation)
rules, this layer enables efficient transformation execution into the physical model, de-
creasing the influence of the destination NoSQL database’s technical specifications. The
authors [43] analysed the metamodel integration possibilities of different database types.
Through the application of the lightweight extension approach, this paper describes the
way of adding new elements and constraints to the existing metamodels. By applying
one conceptual, one logical and one physical data model, this approach enables the in-
tegration of different types of databases. The authors depicted this in the example of the
system comprising one relational database and two document-orientated databases. Some
authors [49] approached the topic of hybrid databases from the aspect of domain-specific
language (DSL). The limitation of the domain-specific languages is the lower prevalence
than of the standardised SQL, supported by leading manufacturers or relational databases.
Also, authors [50][51] researched some of the challenges of working with heterogeneous
databases. The authors [50] have emphasised differences in the consistency and transac-
tion limitations between SQL and NoSQL DBMS.

Furthermore, they have developed a comprehensive approach for managing distributed
transactions with guaranteed ACID in heterogeneous data store environments, regardless
of whether the individual data stores support ACID. The authors [51] focused on the chal-
lenge of mapping syntactically and semantically related attributes among schemas. The

1020 Srd̄a Bjeladinović

heterogeneous data stores used as the target databases can also be useful for this research
because they can present the components of the hybrid databases.

2.3. Database Optimisation and Performance Measurement

The third group of papers deals with different aspects of performance measurements and
optimisation of different database types. The authors [52][53] compared query execution
in relational and non-relational databases. The paper [53] compared the three DBMS’s
login and usage performances (PostgreSQL, MongoDB and Cassandra), while the article
[52] analysed in detail query execution of the three most common SQL database repre-
sentatives (Oracle, MySQL and MS SQL Server) and four representatives of the NoSQL
databases (MongoDB, Redis, Cassandra and GraphQL). The authors have developed and
used a data model of train stations and stops. They have concluded that for Slovakia, it is
justified to use an SQL database for storing and managing data. In contrast, for countries
with a larger amount of train data, such as the Netherlands or Germany, it was suggested
the usage of a NoSQL database. The authors [54] have decreased the performance gap be-
tween the SQL and NoSQL databases by introducing a dedicated binary format for JSON.
The applicability of this solution is reflected in the hybrid databases whose components
support JSON format. However, this also results in usage limitations on the hybrids that
contain NoSQL databases without JSON support. Detailed analysis of the evolution of us-
ing different JSON functionalities, in both native and binary formats, and their influence
on the performance of Oracle DBMSs was given in the paper [55]. The authors Kem-
per and Neumann [56] approached the optimisation of different databases in use from
the aspect of the gap elimination that emerges while using traditional OLTP and OLAP
systems. They suggested the creation of a hybrid OLTP & OLAP system that would con-
tain data versioning. As stated by the authors, introducing data versioning would enable
the separation of data manipulation from query execution while using a hybrid system’s
database for both purposes. This solution allows for the execution of the BI queries “on an
arbitrarily current database snapshot system” while eliminating the consumption of the
resources derived from the additional activities necessary for data adjustment and transfer
from the traditional OLTP systems into the OLAP systems [56]. From the theoretical as-
pect, the authors [57] dealt with optimising a large amount of data with a different degree
of structuredness. In addition to the presented mathematical model, the authors showed
postulates of the DSL, which is based on the unification concept with the aim of easier
information search.

The author [58] researched the hybrid database design directions. These were inspired
by finding a solution to the challenge of hardware components’ optimisation and their
specificity use with the aim of offloading database operators. The author has been using
parsing and rewriting components of the existing DBMS (the paper mentions PostgreSQL
as a potential candidate) and optimiser (whose main part is cost optimiser that calculates
operations’ expense based on the data from the dictionary). With those components, the
author optimised the execution plan considering different execution engine types. Also,
the paper focuses on the execution plan adjustment to the hardware components with-
out considering hybrid SQL/NoSQL database optimisation specificities. The authors [59]
dealt with the optimisation of the hybrid databases’ hardware components, with a focus
on CPU/FPGA, while the priority on CPU/GPU was given in the papers by the authors

Extending Hybrid SQL/NoSQL Database by Introducing... 1021

[60][61][62]. Even though, in general, the mentioned papers [60][61][62] discuss the op-
timisation of hybrid systems and hybrid databases, they will not be further analysed in
this paper, given their focus on the hardware optimisation.

2.4. Hybrid Database’s Statements Optimisation and Rewriting

The fourth group of papers deals with hybrid database statements optimisation and rewrit-
ing. The authors [63] dealt with hybrid optimisation of “classical” databases and MapRe-
duce. They analysed the advantages and limitations of databases and the MapReduce
systems and highlighted the benefits of using hybrids made up of the mentioned types
of repositories. Finally, they presented a dedicated and improved version of the query
optimiser named AquaPlus. The purpose of the presented optimiser is to use database
features as much as possible (like index and partitioning), intending to reduce the amount
of data needed to be processed by the MapReduce hybrid component. The authors [64]
had a compatible approach. In their paper, they researched the effect of physical optimi-
sation, predominantly partitioning, on the average time of query execution in the SQL
database (Oracle DBMS). After that, the authors compared the SQL database’s improved
performance with the graph database (Neo4j). They concluded that the gap was decreased
primarily in the complex queries (subqueries and JOINs). A noticeable step towards im-
proving query optimisation in a system made of heterogeneous databases was achieved
by the authors [65]. Even though they do not explicitly use the term “hybrid databases”
but “virtual data source” instead, they have focused their research on the hybrid domain,
whose components are relational and NoSQL databases. The authors suggested the intro-
duction of the mediation component, whose aim is to optimise queries for efficient exe-
cution over multiple databases of different types. They used a joint schema to describe all
data sources in the system. In addition, they enabled parallel execution over data sources
and optimal plan generation by using dynamic programming. However, these authors fo-
cused solely on queries, and they did not deal with other statements. Li and Gu [66])
developed a useful solution to the nested query optimisation problem over the hybrid
operation. In the mentioned paper, they solved the integration problem of MySQL, Mon-
goDB, and Redis as the hybrid database components and simultaneous query execution
over the relational and NoSQL databases. They presented the Multiple Sources Integration
architecture (MSI) that supports databases’ integration. Also, they graphically presented
the communication between components for optimisation with the SQL parser on one and
the SQL router on the other side. In addition to explaining the algorithm logic that was
used for the nested query optimisation, the authors state that “the expression of the query
conditions must be carried out according to the distributive law, which also needs to be
simplified based on the Espresso algorithm. . . and it is planned to be discussed in another
paper”[66]. Even though it is stated that the presented architecture supports optimisation,
the article focuses only on one optimisation segment, and that is the nested queries.

The analysed papers contributed to the purposefulness of further research on the state-
ment rewriting in hybrid databases and its following effects on the architecture changes.
It opened up possibilities for and motivated authors to expand further the research of
statement rewriting not on queries (because they have been too frequently researched) but
on other statements (INSERT, UPDATE and DELETE) in the hybrid databases, which,
according to our knowledge, are not explored in detail so far.

1022 Srd̄a Bjeladinović

3. Process Model for Statement Rewriting of Hybrid SQL/NoSQL
Database

Given that the authors of the presented papers took into consideration queries only, addi-
tional opportunities emerged for the research of other statements enhancing (INSERT,
UPDATE and DELETE), and especially for researching the effects of the statements
rewriting on the average execution time of a hybrid SQL/NoSQL database.

All leading manufacturers of Relational DataBase Management Systems (RDBMS)
support the standardised SQL language. SQL is a declarative query language which en-
ables uniform usage of data manipulation statements, creation and update of different
types of objects of a relational scheme, as well as control of transaction execution. The
procedural extensions of SQL language are not standardised. The manufacturers use spe-
cific extensions (i.e. Oracle use PL/SQL, and Microsoft use T-SQL) instead. Unlike the
SQL databases, the NoSQL databases do not have a standardised query language, not
even for CRUD operations. The complexity of the challenge is that in addition to the
lack of unified language for all NoSQL databases, there is no agreement about the lan-
guage of particular NoSQL databases’ subtypes (key-value, document-oriented, column
family, graph databases). Therefore, none of the NoSQL database subtypes have their
unique language. The absence of the NoSQL database standardised language made it dif-
ficult to uniform statements, which are executed in the NoSQL components of the hybrid
SQL/NoSQL databases. Also, the lack of NoSQL language standardisation limited the
scope of possible solutions. Further language unification by the NoSQL databases’ manu-
facturers will open possibilities for additional extension and improvement of the solution
suggested by this paper.

With the aim of introducing the automatic application of statement rewriting (as an
optimisation support technique) for all three statements mentioned above, a dedicated
process model was designed. Figure 1 depicts the UML activity diagram for the statement
rewriting process. The designed activity diagram starts with the statement input, followed
by its decomposition and analysis.

Some of the hybrid database’s main strengths are the integrated conceptual data model
(common for all hybrid components), and the user disburden of knowing what component
stores needed data. Given the scenario in which the input statement is executed over mul-
tiple target components, i.e. different DBMSs of the hybrid SQL/NoSQL database, the
next activity is statement decomposition on its integral parts. The approach presented
in this paper, as well as the mentioned approach it extends, uses exclusive language for
the statement input over the hybrid database, and that language is the standardised SQL.
SQL language, popular among users, and the supported architecture eliminate the need
to know or use other domain-specific languages for each particular hybrid component.
The user can access all the data as if stored in a single relational database. The user uses
only the SQL syntax, regardless of whether the destination of the input statement is the
SQL component, NoSQL component or both. A detailed description of the architecture
with the newly developed component for the statement rewriting, which enables the stated
operation, is given in Section 4.

The preparation activity of a statement rewriting starts after analysing and decom-
posing the entered statement and its integral parts. Depending on the input statement
(SELECT, INSERT, UPDATE, DELETE), the process execution transfers to the appro-
priate branch following the decision node in the activity diagram. The decision node is

Extending Hybrid SQL/NoSQL Database by Introducing... 1023

used for exclusive branching depending on the input statement type. Exclusive branching
is present since the execution of different types of nested statements (i.e. UPDATE with
subquery or DELETE with subquery) is not supported by the current version of the archi-
tecture. These are the limitations of the current version, as well as the direction for future
work.

Fig. 1. The UML activity diagram for automatically applying recommendations for state-
ment rewriting on the SQL and NoSQL components of the hybrid SQL/NoSQL database

The statement rewriting recommendations for all hybrid DBMSs that use SQL lan-
guage are given within one activity of a single branch, marked with [SQL DBMS]. It is
the uniformity of SQL language that made this possible. Each statement type will have a
single [SQL DBMS] branch.

A different situation is observed with the NoSQL components. Given the absence of a
standardised NoSQL language, it is necessary to give specific recommendations for each
exact NoSQL DBMS, which is depicted in Figure 1 through the appropriate flows with
conditions ([Mongo DBMS]. . . [N DBMS]). Each of these flows gives specific recommen-
dations for a particular NoSQL DBMS in the syntax it supports. A “three-dot” symbol on
the diagram suggests that the hybrid database can consist of an arbitrary number of dif-
ferent NoSQL components, and N DBMS represents the Nth NoSQL DBMS. The fork
node enables parallel rewriting of different parts of the input statement. These parts could
be executed into various destination components of the hybrid database.

Branch flows with accepted recommendations meet in the join nodes for each state-
ment type. Next, all flows from all statements meet in the merge node. After merging
flows, statement transformation takes place. It follows the identified recommendations for

1024 Srd̄a Bjeladinović

statement rewriting. If necessary, the keywords of the entered SQL statement are mapped
according to the language of the destination database, i.e. the hybrid component. Syntax
transformation does not take place if the destination database is SQL, given that the input
statement is already in SQL language. Thus, a prepared and (according to the accepted
recommendations) rewritten statement is then executed. Statement execution represents
the last activity on the diagram depicted in Figure 1.

The presented diagram displays the generic logic of introducing the statement rewrit-
ing over different components of a hybrid database. A hybrid Oracle/MongoDB/Cassandra
database is the chosen representative to depict some of the supported statement rewriting
use cases enabled by this approach. As the name suggests, this hybrid consists of three
components: Oracle DBMS, the representative of the relational DBMS; MongoDB, the
representative of the document-oriented DBMS; and Apache Cassandra, the representa-
tive of the wide-column DBMS. The selection was made based on the popularity rankings
of these DBMSs. At the time of writing this paper, Oracle was the most popular SQL sys-
tem [67], MongoDB was the most popular document-oriented and NoSQL system overall
[68], while Apache Cassandra was the most popular wide-column DBMS and the third
most popular NoSQL system [69]. Although, from the technical point of view, there is a
possibility to have multiple SQL components, the core idea behind a hybrid is to use the
most suitable database type (i.e. hybrid component) for a particular organisational sub-
domain and a particular set of business requests. Because of that, we don’t find it appro-
priate to introduce more than one SQL DBMS but intentionally use the chosen one SQL
DBMS for all requests that the SQL database type should cover. However, the possibility
of switching to another SQL system is supported. That scenario boils down to the migra-
tion process from one database to another (for example, from Oracle to SQL Server, from
MySQL to PostgreSQL, etc.). However, the migration between different SQL databases
is not in the scope of this paper.

On the other hand, to demonstrate the usage of different NoSQL subtypes (particu-
larly document-oriented and wide-column), two NoSQL components are present in the
hybrid database, which was developed to practically test the architecture before and after
introducing SRC. Expanding the test database with even more additional subtypes would
be useful, but that is planned for upcoming research. The main reasons for that are the ex-
isting limitations of the test environment and the complexity of the parallel introduction of
additional components on the old architecture without SRC and the improved architecture
with SRC, which exceeds the extent of the conducted research.

Section 6 consists of the average execution time for each tested use case. The sup-
ported recommendations for certain statements rewriting, classified into Oracle/ Mon-
goDB/Cassandra hybrid database components, are given in Table 3. These recommenda-
tions represent supported statement transformation techniques in the current version of
the system. The list of the supported rewriting rules is extendible and will be expanded in
future research.

The process model in Figure 1 is comprehensive, and it depicts rewriting techniques’
application activities for all DML statements. Even the first version of the hybrid SQL/
NoSQL database incorporated basic optimisation techniques for the SELECT statement
(query writing syntax, indexes, partitioning, etc.). The optimised SELECT is already
shown through the test queries’ execution results in earlier papers [11][12]. For this rea-
son, the focus of this paper is on the rewriting of other DML statements (INSERT, UP-

Extending Hybrid SQL/NoSQL Database by Introducing... 1025

DATE, DELETE) through the application of the newly developed SRC component, as
well as on the effects of stated rules usage on chosen use cases.

Table 3. Supported statement rewriting techniques for the hybrid Ora-
cle/MongoDB/Cassandra database

Type of
statement

Statement
scenario

Recommendations for
statement rewriting:
SQL component -
Oracle

Recommendations for
statement rewriting:
NoSQL component -
MongoDB

Recommendations for
statement rewriting:
NoSQL component - Cas-
sandra

INSERT Inserting
multiple
rows

INSERT ALL syntax;

The decrease in
the number of calls
to the database,
compared with the
execution of multiple
but individual INSERT
statements

BULK INSERT syntax;

The decrease in the
number of calls to the
database, compared with
the multiple calls of the
insertOne() method

BATCH INSERT syntax;

The decrease in the
number of calls to the
database, compared with
the multiple calls of the
individual INSERT method

UPDATE Updating
multiple
rows

PARALLEL update;

Under certain condi-
tions, hint PARALLEL
enables the rewriting
via parallel execu-
tion of the UPDATE
statements instead of
the default sequential
execution

updateMany() method;

Update multiple doc-
uments that satisfy the
filter specified as the
first argument instead
of executing individual
updateOne() methods
numerous times

BATCH UPDATE syntax;

The decrease in the number
of calls to the database,
compared with the multiple
calls of the individual
UPDATE method

DELETE Deleting
all rows
(DELETE
without a
WHERE
clause)

TRUNCATE state-
ment;

Using the men-
tioned DDL statement
gives the benefits of
quickly deleting a
large amount of data
while preserving the
table structure

drop() method;

The drop() method
enables the quick dele-
tion of all data, as well
as the collection. Due to
its structure flexibility,
the new record insertion
automatically recreates
the collection and thus
does not represent a
significant resource cost
for INSERT

TRUNCATE statement;

Using the TRUNCATE
statement gives the benefits
of quickly deleting a large
amount of data while pre-
serving the table structure.
It is a similar method to the
SQL component (Oracle)

For the rewriting of the INSERT statement, supported syntaxes are INSERT ALL (for
the Oracle SQL component), BULK INSERT (for the MongoDB component) and BATCH
INSERT (for the Cassandra component). The principle is the same, and the expected ben-
efit is in the shortened average execution time of the rewritten statement due to the one
call to the database, compared to the multiple calls for the execution of many individual

1026 Srd̄a Bjeladinović

INSERT statements (before rewriting). This principle represents the essence of the en-
hancement regardless of whether INSERT ALL (Oracle), BULK INSERT (MongoDB) or
BATCH INSERT (Cassandra) are used.

The UPDATE statement rewriting rules contain a recommendation for parallel exe-
cution by using the PARALLEL hint for the SQL component. For the MongoDB com-
ponent, using the dedicated updateMany() method instead of the multiple updateOne()
method should provide better results. The limitations of Cassandra’s UPDATE statement
are reflected in the obligatory WHERE clause, which must contain all the primary key
fields. Besides, the IN operator usage is not supported in conjunction with the primary
key fields. As a result, Cassandra does not support multiple target row selection within
a single UPDATE statement. For the Cassandra component of a hybrid, the applied rec-
ommendation is BATCH UPDATE. The BATCH syntax is not much more complex than
multiple UPDATE execution, but it reduces the number of calls to the database (one ver-
sus numerous). Each input statement should satisfy preconditions for the rewriting rule to
be applicable. A detailed description of these preconditions is in Section 4.

Even though the DELETE statement supports parallel execution, as INSERT and UP-
DATE in SQL database, Table 3 shows a more efficient technique. However, its appli-
cation scope is noticeably smaller. When the deletion of all table records is needed (the
DELETE statement without the WHERE clause), the TRUNCATE statement can be exe-
cuted while preserving the table itself, its structure and its constraints. The expected ben-
efits of the average execution duration are reflected in the more efficient realisation of the
DDL statement (TRUNCATE belongs to this category) instead of the multiple DELETE
statement execution. The limitation of using TRUNCATE is that rollback is not accessi-
ble, given that auto-commit follows TRUNCATE by default (as well as other DDL state-
ments). The TRUNCATE recommendation applies to Oracle and Cassandra components
of the used test hybrid database. Applying the TRUNCATE statement is additionally pow-
erful with the Cassandra NoSQL component. In Cassandra, it is not feasible to execute
delete from a table without the WHERE clause (in contrast to SQL databases). Because
the WHERE clause with the primary key is mandatory, every deletion of all records re-
quires a preceding SELECT statement to get the IDs of all records. In contrast to that, the
TRUNCATE statement is executed without preceding SELECT. In the described case of
data deletion in MongoDB, the drop() method can be used. Although this action implies
collection deletion, during new document input into the non-existent collection, the stated
collection is automatically created and thus does not represent a significant resource cost
for INSERT. The other option would be the use of the remove() operation.

Table 3 shows implemented suggestions for specific statement rewriting within the
identified use cases for working with multiple records at once. The presented recommen-
dations are specified in the syntax of three components of a prototype hybrid database
(Oracle/MongoDB/Cassandra), purposely built to test the new architecture. The list of
recommendations cannot be treated as final. Table 3 presents the rules implemented so far
for the syntax optimisation of the entered statements using the rewriting technique, which
is automatically performed by the SRC component of the new architecture. Besides that,
the scenario of using different SQL DBMS as the SQL component of a hybrid requires
additional effort to specify and implement recommendations syntactically adapted to the
chosen DBMS. For instance, although the TRUNCATE command is supported by other

Extending Hybrid SQL/NoSQL Database by Introducing... 1027

popular SQL DBMS systems (such as MS SQL Server, PostgreSQL, MySQL, etc.), we
are aware that this is not the case with all the recommendations given.

Another example is that the MS SQL Server does not support the syntax of BULK/
BATCH INSERT, unlike Oracle and Cassandra. Instead, it allows specifying values of
the multiple new records in parentheses after the VALUES clause. Similarly, although
PostgreSQL does not explicitly support the BULK/BATCH UPDATE syntax, it adds a
FROM clause to the UPDATE statement to achieve the same effect.

It is important to note that the supported statement rewriting techniques cannot always
apply. The focus is on statements whose execution affects “multiple” records (for insert,
update or delete statements). Therefore, the term recommendation is on the activity dia-
gram. At the same time, the recommendation represents the crucial part of each rewriting
rule, as shown in Table 4.

Whether the recommendation will be applied depends on the statement type and fulfil-
ment of the specific preconditions. Despite all syntax preconditions fulfilling (the number
of statements, the existence of particular clauses and similar), sometimes additional con-
ditions must be met. For example, in the selected SQL component (Oracle) for applying
PARALLEL onto the UPDATE statement (same for INSERT or DELETE), it is neces-
sary to enable parallel execution of the DML statements on the system or session level
by running the command (alter system/session enable parallel dml). Preconditions such
as this can affect the application outcome of the given recommendation (similar to how
statistical data of statement execution and calculated cost of accessing the data in alterna-
tive ways affect the index application in the query). Therefore, specific rules come down
to the recommendation, and it is impossible to give generic enough and for the execution
engine an utterly binding way of applying these recommendations. On the other hand, the
absence of PARALLEL hint usage due to the unsupported parallel statement execution
does not affect the success of the statement realisation. As in the case of stating the hint
for inadequate and non-optimal indexes during query execution, the stated PARALLEL
hint gets neglected, and the statement is executed without an error occurring due to the
forwarded hint.

To a certain extent, decision-making is automated (for supported techniques) through
the hybrid database dedicated architecture that supports the presented process model and
new statement rewriting component. Regardless, statement optimisation is a complex pro-
cess. It is often limited by adjustment options as well as the influence on the way the op-
timiser and execution engine of the DBMS work. The hybrid database extension with the
newly created SRC component uses the optimisation advantages of particular DBMSs,
with limitations within those DBMSs. The described condition is evident when individual
DBMSs are observed, especially within hybrid databases. If the provided hint in the SQL
database has a higher execution cost value than its alternatives, the execution engine will
not use it. The same principle follows a hybrid database because the stated derives from
the execution engine of the specific component.

At this time, creating a fully comprehensive solution for optimising all types of databases
that a single hybrid can encompass is extremely challenging. It is not an easy task to de-
termine the number of domain-specific languages used by all NoSQL databases currently
available on the market. Even if there were an estimate, without the language standardis-
ation by the leading NoSQL manufacturers, there would not be a comprehensive solution
for implementing the rewriting techniques for the entire hybrid database.

1028 Srd̄a Bjeladinović

Therefore, this paper aims to demonstrate the feasibility of extending the dedicated
architecture for work with a hybrid database by introducing the newly developed SRC
components that operate under the process model presented in this Section to improve
performance.

4. Extending Hybrid SQL/NoSQL Database with Statement
Rewriting Component (SRC)

The architecture presented in the paper [12] was taken as the starting point of the system
that uses the hybrid database. This architecture enables integration and uniform use of all
hybrid database components. It gives the user benefits of using different technologies, as
well as the convenience of working with a unique logical database. The limiting factor of
the initial architecture, which also represents the direction for further research, is the lack
of support for the statement optimisation, more precisely, statement rewriting. This paper
presents the extension of the initial architecture with the design of the SRC component.
Figure 2 shows the extended SQL/NoSQL database architecture with the SRC component,
which implements the principles of the newly introduced process model in Figure 1.

Fig. 2. The SQL/NoSQL database architecture extended with the newly developed com-
ponent for the statement rewriting (SRC)

Extending Hybrid SQL/NoSQL Database by Introducing... 1029

Pictured architecture represents the extension of the traditional three-tier architecture.
Without going into the details of user interface organisation and implementation (graphi-
cal interface, statement input console and similar), the purpose of its presentation layer is
to display data and to enable statement input and execution by the user. The middle layer
is represented through the Wrapper, and it contains earlier established components nec-
essary for providing support with the hybrid database. SQL language was chosen for the
entire hybrid database and all types of databases that constitute its components, regard-
less of whether a particular database type supports SQL language. The motivation was to
provide the comfort of using a single query language and to free the user from thinking
about which component has requested data.

SQL API is in charge of communication to the presentation layer. The Wrapper man-
ages all middle-layer components, including SQL API. Following the acceptance of the
SQL statement, it is necessary to analyse, decompose, optionally map and forward the
statement or its parts for execution to the hybrid destination components (i.e. specific
DBMSs unified by the hybrid). This activity is in the jurisdiction of the Entered Statement
Processing Component (ESP), the central communication component of the Wrapper. To
achieve this, ESP communicates with other Wrapper components, sends them requests,
processes their return values and manages the whole process from the reception of the
SQL statement to its execution and display of the returned results to the users. From the
function description, in the most general sense, the ESP component is most similar to
the traditional three-tier architecture controller. The components ESP communicates with
are (present in the initial architecture) Key Words Search Component (KWS), Constraint
Controller (CC), Statement Mapper (SM), and Integration Controller (IC), as well as, in
this paper introduced, the newly developed Statement Rewriting Component (SRC).

After analysing the SQL statement entered by a user, the ESP component commu-
nicates with the KWS component by sending the objects’ names (read from the appro-
priate clause). It receives metadata about the objects as a response from the KWS com-
ponent. The metadata contains the object type (table, column, key-value pair, etc.) and
the database type the object belongs to (SQL, document-oriented NoSQL, column family
NoSQL, etc.). It also contains the specific DBMS in which the object is implemented (Or-
acle, MongoDB, Cassandra, etc.). Here, it is necessary to highlight one of the essential
characteristics of the hybrid database: the whole hybrid database, with all its components,
represents the unique logical database. Given that all hybrid objects, regardless of what
component they belong to, are integrated with the joint data model, a hybrid can’t con-
tain two objects with the same name but of a different type. Therefore, for every object
name forwarded to the KWS, the ESP receives a single object type, a single database type
it belongs to and one specific destination DBMS. Based on the return values, the ESP
component will decide if it is necessary to execute statement mapping. When an entered
statement or part of that statement has a destination in a database type that doesn’t sup-
port SQL language, a mapping will occur. In contrast, when the entered statement and
its integral parts have a destination in a database that supports SQL language, a mapping
doesn’t happen.

The next component the ESP addresses in the communication chain is the CC. The
CC is in charge of centralised management of all hybrid components’ integrity rules.
Since SQL databases provide a higher degree of constraint control [70], it is the SQL
databases’ integrity rules (that encompass entity integrity rules and referential integrity

1030 Srd̄a Bjeladinović

rules) that are implemented as common characteristics for the whole hybrid database. The
lack of NoSQL support for the mentioned rules is overcome by the integrated placement
of constraints in the dedicated hybrid’s SQL component for storing integrity rules (named
Integrity Rules). It contains the rules of entity integrity, i.e. it takes care of the primary key
of each object (columns or fields, depending on the type of database) and its complexity
(whether it contains one or more columns or fields). In addition to the entity rules, the
Integrity Rules repository contains the referential integrity rules (i.e. foreign keys). It
keeps data about referenced and referencing columns (or fields), regardless of which types
of database objects participate in the referencing. This functionality overcomes the lack of
integrity rules support in the NoSQL databases. It enables fluid referencing between the
SQL and NoSQL database objects, as well as between different types of NoSQL objects.

Metadata, Integrity Rules, Mapping Rules and the newly added Optimisation Rules
Repository represent dedicated SQL databases for metadata storage. These should not be
confused with databases that are part of the hybrid database and contain user data. The
reason for choosing the SQL databases for metadata storage is based on the strict ACID
properties’ support, which is imminent for the consistent use of metadata.

In the earlier version of the hybrid architecture, after obtaining the integrity rules
from the CC component, the ESP component communicated with the SM component by
sending the entered statement and metadata of its objects.

The extension of the improved architecture operating logic enables the communica-
tion of the ESP component with the newly developed SRC component. The earlier version
didn’t contain the SRC component. Instead, when needed and after receiving the integrity
rules from the CC component, the ESP component sent the request to the SM component
to perform statement mapping into the domain-specific language. In the extended archi-
tecture, the ESP component communicates with the newly developed SRC component
before interacting with the SM component. The ESP component sends the statement type
and metadata of destination objects to the SRC component. The SRC component accesses
the newly introduced Optimisation Rules Repository. The Optimisation Rules Repository
contains necessary preconditions, recommendations and application rules of specific op-
timisation techniques for particular statements (in this case, for statement rewriting).

Table 4 shows the structure of the Optimisation Rules Repository. This table contains
selected examples of the statement rewriting rules for INSERT, UPDATE and DELETE
of the hybrid Oracle/MongoDB/Cassandra database.

If the need for introducing new rules occurs, the new record will be added to the Opti-
misation Rules Repository. One record will be added for each statement type of each ex-
isting database. Additionally, if the hybrid database expends to the additional components
(databases), new rules, in the form of new records in the Optimisation Rules Repository,
will be added for each statement type of each new database. The stated repository, in addi-
tion to the specific optimisation recommendation (Recommendation column), contains a
statement type (Stat_type column), a component type (Comp_type column) and columns
with preconditions. Each precondition corresponds to a column of the same name. In
Table 4, optimisation rules, in this case rewriting rules examples, have depicted precon-
ditions in two columns (Multi_rows and WHERE_clause columns), and other rules can
have additional preconditions (marked with ‘. . . ’). Only essential columns for the cho-
sen examples are shown in Table 4. Columns whose headings are preconditions’ names
represent a specific optimisation technique known at Oracle under Hard-coded values.

Extending Hybrid SQL/NoSQL Database by Introducing... 1031

In the Hard-coded values column, the CHECK constraint defines the range of valid val-
ues. It contains the value ‘YES’ for preconditions for which fulfilment is obligatory, while
the value ‘NO’ is for preconditions in which fulfilment must not be satisfied. The value
‘YES/NO’ is for optional preconditions, i.e. that precondition doesn’t influence the use of
the particular rule, and the value ‘N/A’ is for preconditions not applicable to the observed
rule.

Table 4. Example of an Optimisation Rules Repository

Rule_ID Stat_type Comp_type Multi_rows WHERE_clause ... Recommendation
101 INSERT SQL YES N/A INSERT_ALL
102 INSERT NoSQL/MongoDB YES N/A BULK_INSERT
103 INSERT NoSQL/Cassandra YES N/A BATCH_INSERT
...
201 UPDATE SQL YES YES/NO PARALLEL
202 UPDATE NoSQL/MongoDB YES YES/NO UPDATE_MANY
203 UPDATE NoSQL/Cassandra YES YES/NO BATCH_UPDATE
...
301 DELETE SQL YES NO TRUNCATE
302 DELETE NoSQL/MongoDB YES NO DROP
303 DELETE NoSQL/Cassandra YES NO TRUNCATE
...

Selected examples from the table will be described. For instance, for the specific IN-
SERT_ALL rule to be applied, the precondition of inserting multiple rows must be fulfilled
(column Multi_rows has a ‘YES’ value). In contrast, the prerequisite WHERE_clause does
not apply to this rule (WHERE_clause has the value ‘N/A’) because the INSERT syntax
does not support the WHERE clause. Similarly, the same precondition needs to be fulfilled
(Multi_rows) for the insert of multiple rows into the MongoDB component and Cassandra
component, while, once again, WHERE_clause is not applicable.

TRUNCATE, DROP and TRUNCATE are respective rewriting rules for the SQL, Mon-
goDB and Cassandra DELETE statements for deleting all rows without filtering the records.
That is why, for the observed DELETE rules, column Multi_rows has a ’YES’ value, and
WHERE_clause has a ‘NO’ value.

The rewriting rules for the UPDATE statement of Oracle, MongoDB and Cassandra
components of the observed Oracle/MongoDB/Cassandra hybrid are PARALLEL, UP-
DATE_MANY, and BATCH_UPDATE, respectively. All three mentioned rules are appli-
cable for multiple rows updates (column Multi_rows has a ‘YES’ value) and can be applied
regardless of whether all records are updated or just filtered data (column WHERE_clause
has a ‘YES/NO’ value).

Based on forwarded metadata, the SRC component determines if it can perform state-
ment rewriting and how. The SRC component reads applicable optimisation rules of the
input statement from the Optimisation Rules Repository and forwards them to the ESP
component. After receiving the return values from the SRC component, the statement
execution flow of the new hybrid with SRC is equivalent to the process in the earlier
architecture version. The ESP component sends statements for mapping to the SM com-

1032 Srd̄a Bjeladinović

ponent. By reading the rules from the Mapping Rules repository, it maps statements into
the domain-specific languages and returns them to the ESP. The ESP component sends
mapped statements to the IC component. The IC component has the role of managing
and controlling the execution of the statements in one or more components. The IC sends
the statement execution results and feedback to the ESP component. The ESP component
then adjusts the results format to be user-friendly and forwards it to the presentation layer,
i.e. to the appropriate user interface. The described activities encompass the whole pro-
cess from the SQL statement input, analysis, decomposition, rewriting, optional mapping,
statement execution in the hybrid’s destination component and user notification.

5. The Use of the Hybrid Database with SRC on
Oracle/MongoDB/Cassandra Example

The data model, Figure 3, was developed to demonstrate the usage of the current ver-
sion of the hybrid SQL/NoSQL database with the new SRC component. The UML Class
diagram depicts the created model. The hybrid Oracle/MongoDB/Cassandra database se-
lected for testing implements the shown model.

Fig. 3. UML Class diagram for tested domain

The domain of the model is online search and product payment. Figure 3 repre-
sents only a part of the model which was needed to realise the use cases chosen for
testing (for example, the ordering process was not necessary to show). The model con-
sists of the following classes: User, User_status, Payments, Searches, Archived_payments,

Extending Hybrid SQL/NoSQL Database by Introducing... 1033

Archived_searches, and User_product_group, and it is implemented in two versions of the
system: the previous hybrid Oracle/MongoDB/Cassandra database without SRC and the
current hybrid Oracle/MongoDB/Cassandra database with SRC.

Table 5. Tested use cases for INSERT

Use
case
id

Statement type
and hybrid
component

Statement
description

Statement before
rewriting

Statement after
rewriting

UC_1 INSERT into
SQL compo-
nent

INSERT rows
into archived_
payments

INSERT INTO
archived_payments
VALUES. . .
. . .
INSERT INTO
archived_payments
VALUES. . .

INSERT ALL
INTO
archived_payments. . .
. . .
INTO
archived_payments. . .

UC_2 INSERT
into NoSQL
component
(MongoDB)

Insert rows into
archived_
searches

db. archived_
searches.insertOne(. . .)
. . .
db. archived_
searches.insertOne(. . .)

var bulk = db.archived_
searches.initialize
OrderedBulkOp();

bulk.insert(. . .);
. . .
bulk.insert(. . .);
bulk.execute();

UC_3 INSERT
into NoSQL
component
(Cassandra)

Insert rows into
user_product_
group

INSERT INTO
user_product_group
(. . .)
VALUES
. . .
INSERT INTO
user_product_group
(. . .)
VALUES . . .

BEGIN BATCH
INSERT INTO
user_product_group(. . .)
VALUES . . .
. . .
INSERT INTO
user_product_group(. . .)
VALUES . . .
APPLY BATCH,

The unconditional consistency of sensitive data, information about users, their sta-
tuses, and payments requires storing them in the SQL component of the hybrid. For users’
searches, availability and fast reporting have a higher level of importance than the nec-
essary consistency, so the mentioned part of the system (Searches) is implemented in
the NoSQL component of the hybrid system (precisely in the MongoDB component). To
demonstrate the functioning of the test hybrid SQL/NoSQL database with more than one
NoSQL component, an additional Cassandra component was introduced. Cassandra com-
ponent implements the table User_product_group, which contains data of the products
group (searched products, bought products, etc.) in correlation with a particular user.

1034 Srd̄a Bjeladinović

Table 6. Tested use cases for UPDATE

Use
case
id

Statement type
and hybrid
component

Statement
description

Statement before
rewriting

Statement after
rewriting

UC_4 UPDATE
SQL
component

Users with the
status_id = 1
update to
status_id = 2

UPDATE user
SET status_id = 2
WHERE status_id = 1

UPDATE
/*+ PARALLEL(4)*/
user SET status_id = 2
WHERE status_id = 1

UC_5 UPDATE
NoSQL
component
(MongoDB)

All searches with
the status
“Accepted”
update to
values “Done”

db.searches.updateOne
({Status: “Accepted”},
{$set: {Status: “Done”}})
. . .
db.searches.updateOne
({Status: “Accepted”},
{$set: {Status: “Done”}})

db.searches.updateMany
({Status:“Accepted”},
{$set: {Status: “Done”}})

UC_6 UPDATE
NoSQL
component
(Cassandra)

All products’
status of the
user with
id = 5
updates to
value
‘Searched’

SELECT distinct
product_group_id FROM
user_product_group
where user_id = 5
. . .
UPDATE
user_product_group
SET status = ‘Searched’
WHERE user_id = 5
and product_group_id=. . .
. . .
UPDATE
user_product_group
SET status = ‘Searched’
WHERE user_id = 5
and product_group_id=. . .

SELECT distinct
product_group_id
FROM
user_product_group
where user_id = 5;

BEGIN BATCH

UPDATE
user_product_group
SET status= ‘Searched’
WHERE user_id = 5
and product_group_id=. . .
. . .
UPDATE
user_product_group
SET status= ‘Searched’
WHERE user_id = 5 and
product_group_id = . . .
APPLY BATCH;

Payments and Searches are identifiable and existentially dependent on the entity User.
In the diagram, they make a possessive Composition relationship with the User class.
Archived_payments is a table inside the SQL component, while Archived_searches rep-
resent documents in the MongoDB component of the hybrid database. A large amount
of data is cyclical, in certain time intervals, being input into Archived_payments and
Archived_searches from Payments and Searches, respectively. This is how two use cases
are profiled, one for data insertion (usually several dozens of thousands of records) into
the SQL component (table Archived_payments) and the other one for the entry of, once
again, a large amount of data into the NoSQL component (Archived_searches structure).
After realising the mentioned use cases, records are deleted from Payments and Searches,
which represent use cases for deleting all records from the SQL (Oracle) and NoSQL
(MongoDB) components, respectively. For the SQL and NoSQL (MongoDB) compo-

Extending Hybrid SQL/NoSQL Database by Introducing... 1035

nents’ update, the chosen use cases were the user status change (foreign key) in the User
table (the SQL component) as well as the performed searches update (the NoSQL com-
ponent). Three use cases represent insert, update and delete in the Cassandra component
as well. Table 5, Table 6 and Table 7 show the snapshot of use cases chosen for testing
based on the hybrid Oracle/MongoDB/Cassandra components.

For every use case, Table 5, Table 6 and Table 7 display the use case ID, a statement
type, a destination component of the hybrid, a statement description and a statement syn-
tax before and after applying the supported rules. The statement rewriting rules, shown in
Table 4 and described in Section 4, were applied to nine chosen use cases. All nine se-
lected use cases were executed over the previous version of the hybrid architecture without
the SRC component and, after that, over the extended version of the hybrid architecture,
which contains the SRC component.

Tests were carried out on the PC with an Intel i7 CPU, with a 2.9 GHz speed, 16 GB
RAM and SSD hard disk. The testing system has Windows OS, Oracle DBMS version
19c for the SQL component and MongoDB version 3.6 for the NoSQL component of the
hybrid. The average statement execution time was taken as the performance indicator.

NetBeans IDE was used for statement inputs, executions and time measurements.
Each test had 12 iterations. In order to eliminate the outliners, tests with the shortest and
the longest execution times for each statement were discarded. The average time contains
the execution times of the remaining ten iterations.

Table 7. Tested use cases for DELETE

Use
case
id

Statement type
and hybrid
component

Statement
description

Statement before
rewriting

Statement after
rewriting

UC_7 DELETE
from SQL
component

Delete all rows
from payments

DELETE FROM pay-
ments

TRUNCATE TABLE pay-
ments

UC_8 DELETE
from NoSQL
component
(MongoDB)

Delete all rows
from searches

db.searches.deleteMany() db.searches.drop()

UC_9 DELETE
from NoSQL
component
(Cassandra)

Delete all rows
from
user_product_
group

SELECT distinct
user_id
FROM
user_product_group. . .
DELETE FROM
user_product_group
WHERE user_id IN . . .

TRUNCATE
user_product_group

Measurements of use cases UC_1, UC_2, UC_3, UC_7, UC_8 and UC_9 were con-
ducted on datasets of 5,000, 10,000, 30,000, 50,000, 75,000 and 100,000 records. The IN-
SERT and DELETE use cases for SQL (UC_1 and UC_7), NoSQL – MongoDB (UC_2
and UC_8) and NoSQL – Cassandra (UC_3 and UC_9) components were performed over
the same amount of records. Use cases UC_4, UC_5 and UC_6 were tested over 100,000,

1036 Srd̄a Bjeladinović

300,000, 500,000, 750,000 and 1,000,000 records. Increasing the dataset relative to the
remaining statements was chosen due to the nature of the described model. Since archived
tables are periodically filled (INSERT), and operational tables are emptied (DELETE), a
larger amount of records was selected for UPDATE to cover the amount of data that can
be moved in several cycles. What follows is the display and the analysis of the average
execution times of the use cases chosen for testing, focusing on the execution times before
and after the statement rewriting rules usage.

6. Experimental Results

The average measured execution times of the use cases chosen for testing are shown in
Figure 4, Figure 5 and Figure 6. The X-axis of the diagrams shows the number of records
affected by the particular statement execution. The Y-axis shows the average statement
execution time in seconds. In addition, every chart has three parts. The first part of the di-
agram, marked as (a), shows the duration of the statement execution in the SQL (Oracle)
hybrid component before and after optimisation, more precisely, statement rewriting. The
second part of the diagram, marked as (b), shows the average duration of the observed
statement execution in the NoSQL (MongoDB) hybrid component before and after state-
ment rewriting, while the third part, labelled as (c), represents the average execution time
in the second NoSQL component (Cassandra), also before and after statement rewriting.
Before applying statement rewriting, the use case is executed in a hybrid database with-
out SRC (previous architecture), and the after statement rewriting presents the statement
execution in a hybrid database with SRC (extended architecture). Although we acknowl-
edge that the statement rewriting represents one of many optimisation techniques, for the
easiness of presenting and analysing the following results, by “before/after optimisation”,
we will mean “before/after applying particular statement rewriting rule”.

Figure 4 shows the average execution time of the INSERT statement. In the SQL
(Oracle) component, the average execution times of the INSERT statement before opti-
misation were 14.836 (5,000 records), 25.543 (10,000 records), 61.547 (30,000 records),
83.721 (50,000 records), 119.236 (75,000 records) and 196.008 (100,000 records) sec-
onds. Following the optimisation, INSERT in the Oracle component lasted on average
3.018 (5,000 records), 7.123 (10,000 records), 18.856 (30,000 records), 28.641 (50,000
records), 43.378 (75,000 records) and 71.23 (100,000 records) seconds. The average
times for data insertion into the MongoDB component before optimisation were 1.414
(5,000 records), 3.655 (10,000 records), 6.295 (30,000 records), 8.527 (50,000 records),
11.885 (75,000 records) and 15.697 (100,000 records) seconds. However, after optimisa-
tion, it took 0.529 (5,000 records), 0.601 (10,000 records), 0.735 (30,000 records), 1.147
(50,000 records), 1.473 (75,000 records) and 1.739 (100,000 records) seconds. In the
Cassandra component, the values before applying the optimisation recommendation were
5.75 (5,000 records), 7.729 (10,000 records), 14.815 (30,000 records), 22.281 (50,000
records), 30.937 (75,000 records) and 39.995 (100,000 records) seconds. After SRC ex-
ecuted statement rewriting, the average execution times were significantly decreased to
0.869 (5,000 records), 1.257 (10,000 records), 1.746 (30,000 records), 2.345 (50,000
records), 2.981 (75,000 records) and 3.374 (100,000 records) seconds.

Extending Hybrid SQL/NoSQL Database by Introducing... 1037

Fig. 4. The average measured execution times of use cases UC_1 (a), UC_2 (b) and UC_3
(c)

The optimised (rewritten) INSERT statement uses INSERT ALL and BULK INSERT
for the SQL and NoSQL components, respectively, and achieves shorter execution times
over a hybrid without SRC, as expected. In addition, the average data insertion time in
the NoSQL component is noticeably shorter than in the SQL component on a compara-
ble number of records. The explanation is that records in the SQL components have a
strict schema structure and additional constraints to satisfy. Cassandra is representative
of the wide-column NoSQL databases. As shown by the achieved results, concerning the
schema structure strictness and consistency, Cassandra is between MongoDB and Ora-
cle but closer to Oracle. That can be concluded by achieving a noticeably higher aver-

1038 Srd̄a Bjeladinović

age execution time than MongoDB, especially for the non-optimised statements. On the
other hand, Cassandra still manages shorter execution times than Oracle, benefiting from
the wide-column principle of storing data. Cassandra achieved a shorter pre-optimised
execution time (on 100,000 records than Oracle on 30,000), which became even more
emphasized with the rewritten statements (quicker on 100,000 records than Oracle on
10,000).

It is important to point out that the INSERT statement with SQL optimisation rec-
ommendations has undergone a slight syntax adjustment. The INSERT ALL statement
is generally created by concatenating the INTO table_name clause to the one INSERT
statement. That way, multiple uses of the INSERT statement are eliminated. Although
this approach has a fixed cost in concatenating the INTO clauses before executing the
statement, the concatenation itself does not require much time. However, the limitations
of this technique are the significant increase in the number of statement characters, which
was visible in the average execution time even with only 1,000 inserted records. Not
to discredit the mentioned rule through numerous characters concatenation, the syntax
has been adapted by dividing the INSERT ALL into 1,000 records chunks. An INSERT
ALL was performed every 1,000 records in as many iterations as needed to insert all
records. Because of that, the mentioned fixed cost of statement concatenation was multi-
plied. However, the average execution time over a larger amount of data highlighted the
benefits of executing one INSERT ALL over 1,000 records.

Figure 5 shows the average UC_4, UC_5 and UC_6 use cases’ execution times. The
UPDATE statement before optimisation in the destination SQL component averaged the
following durations: 0.981 (100,000 records), 2.679 (300,000 records), 4.849 (500,000
records), 8.032 (750,000 records) and 10.835 (1,000,000 records), expressed in seconds.
In the hybrid with SRC, the performance was as follows: 0.843 (100,000 records), 2.156
(300,000 records), 2.766 (500,000 records), 3.513 (750,000 records) and 4.519 (1,000,000
records). The limitation of applying the PARALLEL hint is the inability to guarantee its
usage. However, tested UC_4 was using the PARALLEL hint. Even though the slight
advantage of using PARALLEL was detected even on 100,000 records, the benefit of
the parallel record update was more noticeable on 500,000 records. With the increase
in the number of records, the average execution time has decreased compared to the
non-optimised execution. This time saving occurred as the consequence of the paral-
lel, instead of sequential, statement execution. Before optimisation, UC_5, on the hy-
brid without SRC, was executed in 18.649 (100,000 records), 65.005 (300,000 records),
94.751 (500,000 records), 142.677 (750,000 records) and 188.009 (1,000,000 records)
seconds. Following the optimisation, UC_5 achieved drastically decreased average exe-
cution times. The average times for UC_5 after optimisation are 1.473 (100,000 records),
3.381 (300,000 records), 5.054 (500,000 records), 7.907 (750,000 records) and 10.035
(1,000,000 records) in seconds. By far, the greatest absolute and relative savings in av-
erage execution time was achieved by the optimised UC_5. The reason for that is the
powerful updateMany() mechanism, which significantly comes to the fore in contrast to a
million executions of the updateOne() method.

Extending Hybrid SQL/NoSQL Database by Introducing... 1039

Fig. 5. The average measured execution times of use cases UC_4 (a), UC_5 (b) and UC_6
(c)

After the optimisation, a significant decrease in average execution time also occurred
within the Cassandra component. UPDATE statement in the Cassandra component, in-
side the architecture without SRC, achieved 80.766 (100,000 records), 118.905 (300,000
records), 185.432 (500,000 records), 284.124 (750,000 records) and 354.174 (1,000,000
records) seconds. In comparison, the rewritten statement in Cassandra inside the new ar-
chitecture with SRC achieved 4.343 (100,000 records), 11.172 (300,000 records), 19.781
(500,000 records), 29.7 (750,000 records) and 37.211 (1,000,000 records) seconds. Be-
cause in the tested version of Cassandra and its driver, BATCH UPDATE was successfully

1040 Srd̄a Bjeladinović

executed with no more than 300,000, four calls of this syntax (for 1,000,000 records) were
executed. Still, they were noticeably quicker than the non-optimised multiple UPDATE,
which has an obligatory WHERE clause with all primary key fields and without the sup-
port of IN.

Fig. 6. The average measured execution times of use cases UC_7 (a), UC_8 (b) and UC_9
(c)

Figure 6 depicts the optimisation effects of UC_7, UC_8 and UC_9 on the aver-
age statement execution times. The deletion of all records in the SQL component was
carried out in 0.031 (5,000 records), 0.061 (10,000 records), 0.125 (30,000 records),
0.234 (50,000 records), 0.312 (75,000 records) and 0.391 (100,000 records) seconds. The

Extending Hybrid SQL/NoSQL Database by Introducing... 1041

optimised statement has achieved 0.031 (5,000 records), 0.047 (10,000 records), 0.062
(30,000 records), 0.109 (50,000 records), 0.125 (75,000 records) and 0.138 (100,000
records) seconds. The identical average time of record deletion, before and after optimi-
sation, over the dataset of 5,000 records showed the efficiency of the DELETE statement
when the WHERE clause was not forwarded. However, with the increase in the number
of records for deletion, especially over 30,000 records and more, the advantage of using
the DDL statement, which does not go through individual rows, came into the spotlight.

The deleteMany() operation, which already represents an improvement over the basic
deleteOne() method, needed 0.291 (5,000 records), 0.428 (10,000 records), 0.677 (30,000
records), 0.874 (50,000 records), 0.929 (75,000 records) and 1.192 (100,000 records) sec-
onds and it represents the UC_8 performance before optimisation. The optimised UC_8
took, on average, 0.176 (5,000 records), 0.181 (10,000 records), 0.219 (30,000 records),
0.271 (50,000 records), 0.309 (75,000 records) and 0.421 (100,000 records) seconds.
Even though less drastically, the optimised drop() over the MongoDB component also
led to performance improvement, expressed through the average execution times.

Using the TRUNCATE statement in the Cassandra component decreased the average
execution time in the architecture with the SRC. Old architecture without SRC achieved
average of 2.032 (5,000 records), 2.433 (10,000 records), 3.109 (30,000 records), 3.823
(50,000 records), 4.616 (75,000 records) and 5.656 (100,000 records) seconds, while
the new one, with SRC, achieved 1.965 (5,000 records), 2.081 (10,000 records), 2.137
(30,000 records), 2.191 (50,000 records), 2.225 (75,000 records) and 2.25 (100,000 records)
seconds. Although the recommendation for the DELETE statement wasn’t as dominant
as the BATCH technique for INSERT or DELETE, it still managed time decrease. It is
noticeable that with the smaller datasets (for example, 5,000 records), there is nothing to
separate DELETE FROM and TRUNCATE. Still, with the increased dataset volume, a
slight advantage is on the rewritten statement side.

7. Conclusions and Future Work

The findings presented in this paper represent the continuation of the hybrid SQL/NoSQL
databases research. The motivation was to give answers to the research questions which
emerged during the previous phase of research. The main goal was to explore the fea-
sibility and justification of extending the hybrid SQL/NoSQL database by creating new
Statement Rewriting Component and Optimisation Rules Repository components and in-
tegrating them into the well-proven hybrid’s architecture. As support for applying rewrit-
ing techniques, a process model (in the UML notation) was developed.

Without striving to cover all possible optimisation rules for all types of databases,
which would be an almost impossible task at the moment, selected statement rewriting
rules were chosen for INSERT, UPDATE and DELETE statements. Test use cases demon-
strate the average statement duration over the hybrid database with and without SRC. In
some use cases, over certain records, a hybrid database with the SRC component didn’t
necessarily achieve a shorter execution time (i.e. UC_7 over 5,000 records). However, the
observed trend was that the hybrid database with the SRC component required less time
for execution when the number of records was increased compared to the hybrid without
SRC.

1042 Srd̄a Bjeladinović

The conclusion that arises is that with the smaller number of records, a hybrid with
SRC cannot always necessarily achieve a decrease in the average execution time in com-
parison to the hybrid without SRC. However, when working with a larger amount of
data (several tens or hundreds of thousands of records), experimental tests indicated a
significant decrease in the average execution times for the selected use cases of the pre-
sented domain. These results were gathered on a particular Oracle/MongoDB/Cassandra
hybrid, which was chosen for simulating execution in the architecture with and without
the SRC component. However, we acknowledge that these results present one instance
of outcomes and that the architecture extended with the SRC is still in the prototype
phase. Nevertheless, the results showed the purposes of the introduced extension and the
expected performance-gaining trend of using a hybrid with SRC.

There are several identified directions of future work to overcome the limitations of
the current version of hybrid SQL/NoSQL databases. The first one is to implement addi-
tional functionalities into the current prototype architecture. That will enable expansion
of for-now supported basic optimisation techniques for SELECT and their combining
with other DML statements (i.e. SELECT with complex subquery, but also UPDATE and
DELETE with subquery). The current version doesn’t support DDL statements, and in-
corporating these functionalities would enable users to easily create and alter all types
of database objects, no matter what component of a hybrid would store it, instead of
just manipulating with data in the existing objects. An important direction of future re-
search and advancing the presented approach would be expanding the number of differ-
ent components inside the hybrid while introducing particular implementations for the
other subtypes of databases (for example, key-value and graph) and the syntax support
for other SQL DBMS (for example, PostgreSQL, MS SQL Server etc.) as well as other
NoSQL systems. Additional enhancement of the present architecture could include broad-
ening optimisation techniques in the Optimisation Rules Repository because the number
of statement optimisation rules is not final and can be extended. In the end, expanding test-
ing Oracle/MongoDB/Cassandra hybrid database to a more complex system with multiple
components of many other types of databases is planned for the future.

References

1. C. A. Lana, M. Guessi, P. O. Antonino, D. Rombach, and E. Y. Nakagawa. A systematic iden-
tification of formal and semi-formal languages and techniques for software-intensive systems-
of-systems requirements modeling. IEEE Systems Journal, 13(3):2201–2212, 2019.

2. V. de Oliveira Neves, A. Bertolino, G. De Angelis, and L. Garcés. Do we need new strategies
for testing systems-of-systems? In Proceedings of the SESoS’18: SESoS’18:IEEE/ACM 6th
International Workshop on Software Engineering for Systems-of-Systems, pages 29–32, New
York, NY, USA, 2018. ACM.

3. A. Bertolino and R. Mirandola. Software performance engineering of component-based sys-
tems. In Proceedings of the Fourth International Workshop on Software and Performance,
WOSP 2004, pages 238–24, Redwood Shores, California, USA, 2004. Association for Com-
puting Machinery, NY, United States.

4. A. Bertolino, G. De Angelis, and F. Lonetti. Governing regression testing in systems of systems.
In Proceedings of 2019 IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW), pages 144–148, Berlin, Germany, 2019. IEEE.

Extending Hybrid SQL/NoSQL Database by Introducing... 1043

5. S. Park, Y. Shin, S. Hyun, and D. Bae. Simva-sos: Simulation-based verification and analy-
sis for system-of-systems. In Proceedings of the 15th International Conference of System of
Systems Engineering (SoSE), pages 575–580, Budapest, Hungary, 2020. IEEE.

6. M.A. Olivero, A. Bertolino, F.J. Dominguez-Mayo, M.J. Escalona, and I. Matteucci. Ad-
dressing security properties in systems of systems: Challenges and ideas. In R. Calinescu
and F. Di Giandomenico, editors, Software Engineering for Resilient Systems - SERENE 2019,
volume 11732 of Lecture Notes in Computer Science, pages 138–146. Springer, Cham, 2019.

7. H. Cadavid, V. Andrikopoulos, and P. Avgeriou. Improving hardware/software interface man-
agement in systems of systems through documentation as code. Empirical Software Engineer-
ing, 28, 2023.

8. ANSI. Ansi/x3 /sparc dbms framework. Report of the Study Group on Database Management
Systems, 1977.

9. B. Lazarević, Z. Marjanović, N. Aničić, and S. Babarogić. Baze podataka. FON, Belgrade,
Serbia, 2006.

10. A. Borgida, M. Casanova, and A. H. F. Laender. Logical database design: from conceptual to
logical schema. In L. LIU and T. ÖZSU, editors, Encyclopedia of Database Systems, pages
1645–1649. Springer, Boston, MA, US, 2009.

11. S. Bjeladinovic. A fresh approach for hybrid sql/nosql database design based on data struc-
turedness. Enterprise Information Systems, 12(8-9):1202–1220, 2018.

12. S. Bjeladinovic, Z. Marjanovic, and S. Babarogic. A proposal of architecture for integration
and uniform use of hybrid sql/nosql database components. Journal of Systems and Software,
168:110633, 2020.

13. H.R. Vyawahare, P.P. Karde, and V.M. Thakare. A hybrid database approach using graph and
relational database. In Proceedings of the 2018 IEEE International Conference on Research in
Intelligent and Computing in Engineering, pages 2555—-2564, Univ Don Bosco, San Salvador,
EL SALVADOR, 2018. IEEE.

14. SolidIT. Db-engines ranking. Web site: DB-engines ranking, 2024. [Online]. Available on:
https://db-engines.com/en/ranking (Retrieved: January 2024).

15. K. Sudhakar. Difference between sql and nosql databases. International Journal of Manage-
ment, IT and Engineering, 8(6):444–452, 2018.

16. A. Faraj, B. Rashid, and T. Shareef. Comparative study of relational and nonrelations database
performances using oracle and mongodb systems. International Journal of Computer Engi-
neering Technology (IJCET), 5(11):11–22, 2014.

17. A. Vágner. How do nosql databases handle variety of big data? In XS. Yang, S. Sherratt,
and Joshi A. Dey, N., editors, Proceedings of Ninth International Congress on Information
and Communication Technology ICICT 2024, volume 1012 of Lecture Notes in Networks and
Systems, pages 459–469. Springer, Singapore, 2024.

18. L. Zhang, K. Pang, J. Xu, and B. Niu. Json-based control model for sql and nosql data conver-
sion in hybrid cloud database. Journal of Cloud Computing, 11(23), 2022.

19. S. Goyal, P.P. Srivastava, and A. Kumar. An overview of hybrid databases. In Proceedings
of the 2015 International Conference on Green Computing and Internet of Things (ICGCIoT),
pages 285–288, Greater Noida, India, 2015.

20. C. Gyorodi, R. Gyorodi, and R. Sotoc. A comparative study of relational and nonrelational
database models in a web-based application. International Journal of Advanced Computer
Science and Applications, 6(10):78–83, 2015.

21. B. James and P.O. Asagba. Hybrid database system for big data storage and management. Inter-
national Journal of Computer Science, Engineering and Applications (IJCSEA), 7(3/4):15–27,
2017.

22. N. Jatana, S. Puri, M. Ahuja, I. Kathuria, and D Gosain. A survey and comparison of rela-
tional and non-relational database. International Journal of Engineering Research Technology,
1(6):1–5, 2012.

1044 Srd̄a Bjeladinović

23. M. Villari, A. Celesti, M. Giacobbe, and M. Fazio. Enriched e-r model to design hybrid
database for big data solutions. In Proceedings of the 2016 IEEE Symposium on Computers
and Communication (ISCC), pages 163–166, Messina, Italy, 2016. IEEE.

24. D. Martinez-Mosquera, R. Navarrete, and S. Lujan-Mora. Modeling and management big data
in databases—a systematic literature review. Sustainability, 12(2):634, 2020.

25. J. Duggan, A. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson, and S. Zdonik. The bigdawg polystore system. ACM SIGMOD Record,
44(2):11–16, 2015.

26. E. Kharlamov, T. Mailis, K. Bereta, D. Bilidas, S. Brandt, E. Jimenez-Ruiz, S. Lamparter,
C. Neuenstadt, O. Özçep, A. Soylu, C. Svingos, G. Xiao, D. Zheleznyakov, D. Calvanese,
I. Horrocks, M. Giese, Y. Ioannidis, Y. Kotidis, R. Moller, and A. Waaler. A semantic approach
to polystores. In Proceedings of the 2016 IEEE International Conference on Big Data, pages
2565–2573, Washington, DC, USA, 2016. IEEE.

27. S. Dasgupta, K. Coakley, and A. Gupta. Analytics-driven data ingestion and derivation in the
awesome polystore. In Proceedinsg of the 2016 IEEE International Conference on Big Data,
pages 2555–2564, Washington, DC, USA, 2016. IEEE.

28. A. Maccioni, E. Basili, and R. Torlone. Quepa: Querying and exploring a polystore by augmen-
tation. In Proceedings of the 2016 International Conference on Management of Data, pages
2133–2136, San Francisco, California, USA, 2016. Sigmod.

29. J. McHugh, P.E. Cuddihy, J.W. Williams, K.S. Aggour, V.S. Kumar, and V. Mulwad. Integrated
access to big data polystores through a knowledge-driven framework. In Proceedings of the
2017 IEEE International Conference on Big Data, pages 1494–1503, Boston, MA, USA, 2017.
IEEE.

30. F. Basciani, J. Di Rocco, L. Iovino, and A. Pierantonio. Typhonml: Tool support for hybrid
polystor. Science of Computer Programming, 232:103044, 2023.

31. N. Niu, L. D. Xu, and Z. Bi. Enterprise information systems architecture - analysis and evalu-
ation. IEEE Transactions On Industrial Informatics, 9(4):2147–2154, 2013.

32. O. Lajam and S. Mohammed. Revisiting polyglot persistence: From principles to practice.
International Journal of Advanced Computer Science and Applications (IJACSA), 13(5):872–
882, 2022.

33. E. Płuciennik and K. Zgorzałek. The multi-model databases – a review. In S. Koziel-
ski, D. Mrozek, P. Kasprowski, B. Małysiak-Mrozek, and D. Kostrzewa, editors, Beyond
Databases, Architectures and Structures. Towards Efficient Solutions for Data Analysis and
Knowledge Representation. BDAS 2017., volume 716 of Communications in Computer and
Information Science, pages 141–152. Springer, Cham, 2017.

34. J. Lu and I. Holubová. Multi-model databases. ACM Computing Surveys, 52(3):1–38, 2019.
35. J. Lu, I. Holubová, and B. Cautis. Multi-model databases and tightly integrated polystores. In

Proceedings of the 27th ACM International Conference on Information and Knowledge Man-
agement, pages 2301–2302, New York, NY, USA, 2018. Association for Computing Machin-
ery.

36. F. Ye, X. Sheng, N. Nedjah, J. Sun, and P. Zhang. A benchmark for performance evaluation of a
multi-model database vs. polyglot persistence. Journal of Database Management, 34(3):1–20,
2023.

37. D. Van Landuyt, J. Benaouda, V. Reniers, A. Rafique, and W. Joosen. A comparative perfor-
mance evaluation of multi-model nosql databases and polyglot persistence. In Proceedings of
the 37th ACM/SIGAPP Symposium on Applied Computing, pages 286—-293, New York, NY,
USA, 2023. Association for Computing Machinery.

38. I. Holubová, M. Vavrek, and S. Scherzinger. Evolution management in multi-model databases.
Data Knowledge Engineering, 136:101932, 2021.

39. Van Landuyt D. Rafique A. Joosen W. Reniers, V. Object to nosql database mappers (ondm):
A systematic survey and comparison of frameworks. Information Systems, 85:1–20, 2019.

Extending Hybrid SQL/NoSQL Database by Introducing... 1045

40. N. Roy-Hubara and A. Sturm. Design methods for the new database era: a systematic literature
review. Software and Systems Modeling, 19:297–312, 2020.

41. A. Kalayda. Promising directions for the development of modern databases. Journal of Physics:
Conference Series, 2131(022087):1–6, 2021.

42. B. Bender, C. Bertheau, T. Kǒrppen, H. Lauppe, and N Gronau. A proposal for future data or-
ganisation in enterprise systems—an analysis of established database approaches. Information
Systems and e-Business Management, 20:441––494, 2022.

43. I. Zečević, P. Bjeljac, B. Perišić, S. Stankovski, D. Venus, and G. Ostojić. Model driven devel-
opment of hybrid databases using lightweight metamodel extensions. Enterprise Information
Systems, 12(8-9):1221–1238, 2018.

44. H.N. Aleem, M.M. Baig, and M.M. Khan. Efficient software testing technique based on hybrid
database approach. International Journal of Advanced Computer Science and Applications,
10(7):349—-356, 2019.

45. H.R. Vyawahare, P.P. Karde, and V.M. Thakare. Hybrid database model for efficient perfor-
mance. Procedia Computer Science, 152(8-9):172–178, 2019.

46. A. de la Vega, D. García-Saiz, C. Blanco, M. Zorrilla, and P. Sánchez. Mortadelo: A model-
driven framework for nosql database design. In E. Abdelwahed, L. Bellatreche, M. Golfarelli,
D. Méry, and C. Ordonez, editors, Model and Data Engineering (MEDI 2018), volume 11163
of Lecture Notes in Computer Science, pages 41–57. Springer, Cham, 2018.

47. M. Sokolova, F. Gómezb, and L. Borisoglebskayaa. Migration from an sql to a hybrid sql/nosql
data model. Journal of Management Analytics, 7(1):1–11, 2019.

48. F. Abdelhedi, A.A. Brahim, F. Atigui, and G. Zurfluh. Logical unified modeling for nosql
databases. In Proceedings of the 19th International Conference on Enterprise Information
Systems (ICEIS 2017), pages 249–256, Porto, Portugal, 2017. HAL Science.

49. K. Mershad and A. Hamieh. Sdms: smart database management system for accessing hetero-
geneous databases. International Journal of Intelligent Information and Database Systems,
14(2):115–152, 2021.

50. L. Nikolic, V. Dimitrieski, and M. Celikovic. An approach for supporting transparent acid
transactions over heterogeneous data stores in microservice architectures. Computer Science
and Information Systems, 21(1):167—-202, 2024.

51. O. Mehdi, H. Ibrahim, S. Affendey, E. Pardede, and J. Cao. Exploring instances for matching
heterogeneous database schemas utilizing google similarity and regular expression. Computer
Science and Information Systems, 15(2):295–320, 2018.

52. R. Čerešňák and M. Kvet. Comparison of query performance in relational a non-relation
databases. Transportation Research Procedia, 40:170–177, 2019.

53. K. Fraczek and M. Plechawska-Wojcik. Comparative analysis of relational and non-relational
databases in the context of performance in web applications. In S. Kozielski, D. Mrozek,
P. Kasprowski, B. Małysiak-Mrozek, and D. Kostrzewa, editors, Beyond Databases, Architec-
tures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Represen-
tation. BDAS 2017., volume 716 of Communications in Computer and Information Science,
pages 153–164. Springer, Cham, 2017.

54. Z.H. Liu, B. Hammerschmidt, D. McMahon, Y. Liu, and H.J. Chang. Closing the functional and
performance gap between sql and nosql. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ‘16), pages 227–238, San Francisco, USA, 2016. Sigmod.

55. S. Bjeladinović, M. Škembarević, O. Jejić, and M. Asanović. An analysis of using binary json
versus native json on the example of oracle dbms. IPSI Transactions on Internet Research,
19(2):92–103, 2023.

56. A. Kemper and T. Neumann. One size fits all, again! the architecture of the hybrid oltpolap
database management system hyper. In M. Castellanos, U. Dayal, and V. Markl, editors, En-
abling Real-Time Business Intelligence (BIRTE 2010), volume 84 of Lecture Notes in Business
Information Processing, pages 7–23. Springer, Berlin, Heidelberg, 2011.

1046 Srd̄a Bjeladinović

57. L. Thiry, H. Zhao, and M. Hassenforder. Categories for (big) data models and optimisation.
Journal of Big Data, 5(21), 2018.

58. B. Scheuermann. Design of a reconfigurable hybrid database system. In Proceedings of the 18th
IEEE Annual International Symposium on Field-Programmable Custom Computing Machines,
pages 247–250, Charlotte, NC, USA, 2010. IEEE.

59. M. Owaida, D. Sidler, K. Kara, and G. Alonso. Centaur: A framework for hybrid cpu-fpga
databases. In Proceedings of the 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM 2017), pages 211–218, Napa, CA, USA, 2017. IEEE.

60. S. Breß, E. Schallehn, and I. Geist. Towards optimization of hybrid CPU/GPU query plans in
database systems. In M. Pechenizkiy and M. Wojciechowski, editors, Advances in Intelligent
Systems and Computing, volume 185 of Advances in intelligent systems and computing, pages
27–35. Springer Berlin Heidelberg, 2013.

61. S. Cremer, M. Bagein, S. Mahmoudi, and P. Manneback. Improving performances of an em-
bedded relational database management system with a hybrid cpu/gpu processing engine. In
C. Francalanci and M. Helfert, editors, Data Management Technologies and Applications.
DATA 2016, volume 737 of Communications in Computer and Information Science, pages
160–177. Springer, Cham, 2017.

62. M. Gowanlock, B. Karsin, Z. Fink, and J. Wright. Accelerating the unacceleratable: Hybrid
cpu/gpu algorithms for memory-bound database. In Proceedings of the 15th International
Workshop on Data Management on New HardwareJuly (DaMoN’19), pages 1–11, Amsterdam
Netherlands, 2019. ACM.

63. Z. Pang, S. Wu, H. Huang, Z. Hong, and Y. Xie. Aqua+: Query optimisation for hybrid
database-mapreduce system. Knowledge and Information Systems, 63:905––938, 2021.

64. W. Khan, W. Ahmad, B. Luo, and E. Ahmed. Sql database with physical database tuning
technique and nosql graph database comparisons. In Proceedings of the 3rd Information Tech-
nology, Networking, Electronic and Automation Control Conference (ITNEC 2019), pages 110–
116, Chengdu, China, 2019. IEEE.

65. R. Sellami and B. Defude. Complex queries optimisation and evaluation over relational and
nosql data stores in cloud environments. IEEE Transactions on Big Data, 4(2):217–230, 2018.

66. C. Li and J. Gu. An integration approach of hybrid databases based on sql in cloud computing
environment. Software: Practice and Experience, 49(3):11–16, 2018.

67. SolidIT. Db-engines ranking – relational dbms. Web site: DB-engines ranking, 2024. [Online].
Available on: https://db-engines.com/en/ranking/relational+dbms (Retrieved: January 2024).

68. SolidIT. Db-engines ranking – document store dbms. Web site: DB-engines ranking, 2024.
[Online]. Available on: https://db-engines.com/en/ranking/document+store (Retrieved: January
2024).

69. SolidIT. Db-engines ranking – wide-column store dbms. Web site: DB-engines ranking,
2024. [Online]. Available on: https://db-engines.com/en/article/Wide+Column+Stores (Re-
trieved: December 2024).

70. C. Nance, T. Losser, R. Iype, and G. Harmon. Nosql vs rdbms - why there is room for both. In
Proceedings of the Southern Association for Information Systems Conference, pages 111–116,
2013.

Srd̄a Bjeladinović is an Assistant Professor at Faculty of Organizational Sciences, Uni-
versity of Belgrade. He received his M.Sc. and Ph.D. degrees in Information Systems
from University of Belgrade. His research interests are databases, information systems
development methodologies, integrated software solutions and ERPs. In recent years he
has been researching NoSQL and hybrid databases.

Received: October 24, 2024; Accepted: February 20, 2025.

	Introduction
	Related Work
	Similar but Different: Alternatives for Hybrid Databases
	General Principles of Hybrid Databases
	Database Optimisation and Performance Measurement
	Hybrid Database’s Statements Optimisation and Rewriting

	Process Model for Statement Rewriting of Hybrid SQL/NoSQL Database
	Extending Hybrid SQL/NoSQL Database with Statement Rewriting Component (SRC)
	The Use of the Hybrid Database with SRC on Oracle/MongoDB/Cassandra Example
	Experimental Results
	Conclusions and Future Work

