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Abstract. This work aims to address the challenges faced by smart home systems, 

including the accuracy of device status prediction, user interface design, system 

stability, and response speed. As smart home devices become more widely used, 

the need for accurate predictions of their operational status has increased. This 

includes predicting the switch states, faults, and performance metrics of devices 

such as smart lights, thermostats, and security systems. To address this demand, 

an innovative multimodal prediction model combining the Convolutional Neural 

Network and Long Short-Term Memory network is proposed to enhance the 

accuracy of smart device status predictions. Cloud computing technology is used 

for the user interface design to create an intuitive and user-friendly interface, 

ensuring both system stability and fast response times. The experiments compare 

the performance of the proposed model with traditional models in predicting the 

status of smart devices. The results demonstrate that the proposed system reduces 

the Mean Squared Error and Mean Absolute Error by 20% and 15%, respectively, 

significantly improving prediction performance. Furthermore, user satisfaction 

surveys indicate a 25% increase in satisfaction with the system. The proposed 

system also reduces the utilization rates of the Central Processing Unit, memory, 

Graphics Processing Unit, and network bandwidth by 15%, 18%, 25%, and 20%, 

respectively. These findings highlight the system's advantages in accuracy, user 

satisfaction, and resource utilization efficiency, providing strong support for the 

design and application of smart home systems. 

Keywords: artificial intelligence; cloud computing; smart home; multimodal 

prediction model; user satisfaction. 
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1. Introduction 

1.1. Research Background and Motivations 

The rapid advancement of technology has made smart home systems an integral part of 

daily life [1-3]. As user expectations for these systems rise, especially in terms of the 

accuracy of device status predictions, current smart home technologies face significant 

challenges. These include limited capacity to process multimodal data and poor real-

time response performance. Many traditional models struggle to predict device statuses 

accurately in complex environments, which impacts the user experience and limits the 

potential applications of these systems [4-6]. However, innovations in artificial 

intelligence (AI) and the improved processing capabilities of cloud computing have 

created new opportunities for home automation [7]. AI technologies, particularly 

machine learning and deep learning algorithms, enable home devices to learn and adapt 

to user preferences, providing personalized services [8-10]. Cloud computing offers 

powerful computational and storage support, facilitating remote connections and 

seamless data sharing among devices [11-13]. The integration of AI and cloud 

computing offers great potential for developing intelligent, efficient, and secure home 

management systems [14-16]. 

Despite significant advancements in both academia and industry, several challenges 

persist in the development of smart home systems [17]. One of the primary issues is the 

diversity of home devices and the lack of standardized protocols, which have led to 

interoperability problems [18, 19]. Additionally, the real-time performance and 

accuracy of intelligent algorithms still require improvement [20, 21]. Another critical 

concern is the safeguarding of user privacy and data security [22, 23]. Traditional smart 

home systems are limited by the capabilities of their intelligent algorithms, particularly 

in terms of real-time performance and accuracy. These limitations hinder the system's 

ability to make prompt and precise decisions, reducing both the user experience and the 

system's overall effectiveness. To address this, the focus of this work is on integrating 

machine learning and deep learning algorithms, optimizing them to improve the 

system’s real-time responsiveness and enhance its ability to adapt accurately to user 

habits in varied environments. Furthermore, the smart home market is fragmented, with 

various device brands and standards contributing to interoperability challenges. This 

issue makes it difficult for devices from different manufacturers to work seamlessly 

together, and compromises the integrated functioning of the system. Finally, smart 

home systems handle large amounts of sensitive data, such as information about 

household routines and user preferences, raising significant concerns regarding privacy 

and data security. 

In summary, current smart home systems still face many challenges in device status 

prediction, user interface design, system stability, and response speed. With the 

widespread adoption of smart home devices, accurately predicting the operational status 

of devices (such as smart lighting, thermostats, security system switches, faults, and 

performance indicators) has become an urgent problem to address. However, existing 

smart home systems still have certain shortcomings in these aspects, particularly in the 

accuracy of device status prediction and the user-friendliness of the interface. Therefore, 

this work aims to propose an innovative multimodal prediction model that combines the 

Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network 
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to improve the accuracy of device status prediction. Additionally, it incorporates cloud 

computing technology into the user interface design to enhance system stability and 

response speed, ensuring a better user experience.  

The research motivation arises from an in-depth analysis of the shortcomings of 

current smart home systems, particularly the inaccuracy of device status prediction and 

the complexity of user interfaces, which affect user experience and system efficiency. 

Through the proposed multimodal model and optimized user interface design, this work 

aims not only to improve prediction accuracy but also to make significant 

improvements in user experience, system stability, and resource utilization efficiency. 

This innovative approach is expected to provide strong support for the design and 

application of smart home systems and promote the popularization and development of 

smart home technology in practical applications. This work prioritizes the design of a 

secure and reliable system to protect user privacy and mitigate potential threats. It 

incorporates encryption technologies, access control, and secure transmission protocols, 

while also implementing robust security measures within a cloud computing 

environment to defend against cyberattacks and data breaches. By leveraging an 

innovative multimodal predictive model, cloud computing for user interface design, and 

optimizing resource utilization, this work offers a comprehensive solution for 

developing whole-home intelligent management systems. The goal is to integrate AI 

technology with cloud computing to create a highly intelligent, secure, and reliable 

system. This system not only enables the intelligent control of home devices but also 

facilitates seamless information sharing and decision-making across devices. It 

significantly enhances the user experience in smart homes and lays a strong foundation 

for the continued evolution of smart home technologies. 

1.2. Research Objectives 

This work aims to design a highly intelligent home control system to enable automated 

control and intelligent scheduling of household devices. It also leverages cloud 

computing technology to create a secure and stable data platform, facilitating 

information sharing and remote control across devices. Through the development of 

smart algorithms, this work enables real-time monitoring and analysis of the home 

environment, providing personalized services. The approach enhances the system’s 

scalability and interoperability, ensuring compatibility and seamless integration with 

smart devices from various manufacturers. Finally, real-world scenario validation 

ensures the system’s stability and practicality. These innovations not only represent 

significant technological breakthroughs but also contribute to improved system 

performance, user experience, and resource utilization efficiency. They provide a solid 

foundation for the design and deployment of whole-house smart management systems, 

opening new possibilities for the future of smart home technology. 

2. Literature Review 

In the field of home automation, a wide range of commercial products has emerged, 

showcasing advanced smart control capabilities. In the area of intelligent lighting 
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systems, products like the Philips Smart Lighting System and Yeelight Smart Bulbs 

allow users to remotely adjust brightness, color temperature, and other settings via 

smartphone apps or voice assistants. In the domain of smart security, products such as 

the Ring Smart Video Doorbell and Nest Secure Smart Security System offer features 

like video monitoring, intrusion detection, and intelligent doorbells, enabling real-time 

home security management through smartphones. In the smart home appliance sector, 

products like the LG ThinQ series and Samsung Smart Refrigerators not only allow for 

remote monitoring but also incorporate intelligent features that adapt to user habits. 

Smart speaker systems, such as the Amazon Echo and Google Home, integrate voice 

assistants. They enable users to control smart home devices through voice commands 

and access a wide range of information and entertainment services. Additionally, 

various commercial products are available across other smart home domains, including 

smart temperature control, home automation, smart curtains and windows, 

entertainment systems, health monitoring, and kitchen appliances, covering nearly every 

aspect of modern living. These products demonstrate that smart home technology has 

become a practical and accessible solution, offering users enhanced convenience and 

intelligence in their homes. A significant body of research is dedicated to developing 

smart home systems that incorporate AI technology and cloud computing [24]. For 

example, literature [25] introduced the concept of a "user-friendly Internet of Things 

(IoT) for everyday living" in their design approach, creating an IoT-based smart home 

system. This system enabled functions such as displaying temperature and humidity 

data collected from node boards on a personal computer (PC) via a web browser. It also 

allowed users to control the on/off states of Light Emitting Diode lights through the 

same interface. In a similar vein, scholars proposed a system connecting sensors, 

actuators, and other data sources to enable more complex home automation tasks [26]. 

They also developed a smartphone application that allowed users to control various 

household appliances and sensors remotely. 

Literature [27] developed a powerful and intelligent floor monitoring system using 

highly reliable frictional electric encoding pads and DL-assisted data analysis. They 

further integrated deep learning-assisted data analysis to enhance the system’s 

capabilities for various smart home monitoring and interactions. Literature [28] 

proposed a fully operational 46-inch smart textile lighting/display system. This system 

incorporated embedded optical fiber devices designed to detect external stimuli. 

Literature [29] introduced a comprehensive smart home aggregation system based on 

IoT and edge computing. The system leveraged edge AI support technology and 

adhered to industry standards for fog computing, providing robust responses from 

connected IoT sensors in typical smart homes. Literature [30] designed a secure remote 

user authentication scheme called SecFHome. This scheme supports secure 

communication at the network edge and enables remote authentication in fog-based 

smart home systems. Literature [31] presented an IoT-based smart home management 

system. The system utilized sensors, actuators, smartphones, network services, and 

microcontrollers for enhanced functionality. 

Research on data privacy protection in smart homes has garnered significant 

attention, particularly focusing on the application of the Deep Deterministic Policy 

Gradient (DDPG) algorithm as a core predictive model in modern power systems. This 

approach enhanced prediction accuracy [32]. The DDPG predictive model is later 

integrated into the federated learning framework. The resulting Federated Deep 

Reinforcement Learning (FedDRL) model mitigates privacy concerns by sharing model 
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parameters instead of private data, ensuring accurate predictive models are obtained in a 

decentralized manner. Literature [33] proposed a False Data Injection Attack (FDIA) 

detection method based on secure federated deep learning. The method’s effectiveness 

and superiority were demonstrated through extensive experiments on IEEE 14-bus and 

118-bus test systems. Literature [34] addressed privacy concerns in smart home 

technology, particularly the risks of data leakage through wireless signal eavesdropping. 

They discussed "FTS (fingerprint and timing-based snooping)" attacks, a type of side-

channel attack that could passively infer activity information within residences. These 

attacks can be executed remotely near the target house. Literature [35] applied the 

Sovereign design philosophy to enable communication between home IoT devices and 

applications via application-named data, directly protecting the data. The results 

indicated that Sovereign offers a systematic, user-controlled solution for self-contained 

smart homes, with minimal observable overhead when running on existing IoT 

hardware. Literature [36] proposed a location privacy security mechanism based on 

anonymous trees and box structures. This approach provided location privacy protection 

for services targeting smart terminals. 

In the field of smart homes, numerous studies have examined the integration of AI 

technology with cloud computing, driving advancements in the design and 

implementation of smart home systems. These studies often focus on specific 

applications, such as smart lighting and environmental monitoring [37]. However, they 

tend to lack a comprehensive analysis and optimization of the entire smart home 

ecosystem. This gap indicates that, while smart home systems offer convenience to 

users, there is still significant room for improvement in their overall performance. Key 

factors, such as the accuracy of device status predictions, the intuitiveness of user 

interfaces, and system response speed, have not been sufficiently explored. To address 

these challenges, this work aims to provide a holistic analysis and optimization of smart 

home systems, ultimately enhancing both performance and user experience. The 

primary objective is to improve the accuracy of smart device status predictions through 

an innovative multimodal predictive model that combines CNN with LSTM networks. 

In terms of user interface design, this work utilizes cloud computing technology to 

enable seamless data sharing and collaborative computation between devices. This 

approach creates an intuitive and user-friendly interface while ensuring system stability 

and responsiveness. Furthermore, by analyzing user behavior data, this work offers 

personalized services that make the smart home system more closely aligned with 

individual user needs. 

3. Research Methodology 

In smart home systems, effective coordination between the multimodal predictive model 

and the Deep Q Network (DQN) intelligent control algorithm is essential. Each 

component has a distinct role, and together, they enable accurate device status 

prediction and optimized control. The multimodal predictive model, which combines 

CNN and LSTM, processes complex data from various smart devices. It generates 

predictions about device statuses, providing a comprehensive view of the system's 

current and future states. The DQN serves as the intelligent control algorithm, making 

real-time decisions based on the outputs of the predictive model. Through continuous 
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learning and optimization, the DQN selects the best control strategy to adjust the 

device's operating states. Central to its operation is the Q-value function, which 

estimates the expected rewards of different actions in various states. This function 

guides the system in selecting the most effective actions to optimize device control. The 

integration of the predictive model and the DQN allows the system to both predict 

device statuses accurately and make intelligent decisions on how to adjust operations. 

The predictive model interprets complex multimodal data to provide precise insights 

into future device states, while the DQN uses these insights to refine control strategies. 

This collaboration enables the smart home system to not only forecast device states in 

real time but also dynamically adjust operations, creating a more intelligent and 

responsive home environment. The following sections provide further details on the 

components and functioning of these processes. 

3.1. Construction of Smart Device State Prediction Model 

To enable intelligent control and optimization of home devices, this work designs a 

smart device status prediction model that combines LSTM networks with CNN. This 

model intends to enhance both the prediction accuracy and response speed for smart 

device statuses. The choice of this combined approach is based on its proven ability to 

improve predictive performance effectively. Although models such as Autoregressive 

Integrated Moving Average (ARIMA) and Deep Neural Network (DNN) are commonly 

used for time series forecasting, they are less suited for the specific task of predicting 

smart home statuses. The ARIMA model struggles with nonlinear time series data, 

particularly when the data involves seasonality or abrupt events, which limits its 

predictive accuracy [38]. DNN fails to capture short-term memory as efficiently as 

LSTM networks, resulting in lower accuracy and poorer real-time performance.  

To address these issues, this work selects an innovative multimodal predictive model 

that combines CNN and LSTM. This model effectively manages the complexity and 

dynamics of smart home systems and provides more accurate status predictions. Given 

the complexity of intelligent device states, which are influenced by various factors, a 

deep learning model is selected for its ability to handle such data. Single deep learning 

models, like CNN or LSTM alone, may struggle to capture the complex relationships in 

spatiotemporal data due to the multi-modal nature of device states. To comprehensively 

leverage the features of image and time series data, a multimodal prediction model that 

integrates CNN and LSTM is chosen. This approach enables a more comprehensive 

understanding of both image and time-series data features. Although ensemble learning 

methods such as Random Forest or Gradient Boosting Trees, and model fusion methods 

like Stacking, can provide strong performance, they often require extensive tuning and 

feature engineering [39]. Considering the goal of exploring the complex relationships 

between image and time-series data, the CNN-LSTM integrated model is ultimately 

chosen. While rule-based methods could predict device states, they rely on predefined 

domain-specific knowledge and struggle to adapt to evolving patterns in the data. 

By considering information in both spatial and temporal dimensions, the model better 

adapts to the complexities of home scenarios. This work adopts a multimodal prediction 

model to better accommodate the data features and predictive requirements of smart 

home systems. This model can handle time-series data and multi-sensor image data to 
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accurately predict the state of household devices, providing the foundation for 

intelligent control. Figure 1 is an illustrative diagram of the model. 

Input Layer

LSTM Layers

CNN Layers

Output Layer
 

Fig. 1. Schematic diagram of the smart device state prediction model 

The model in Figure 1 consists of four main components. The input layer receives 

data from both time-series and multi-sensor image sources. Time-series data, such as 

temperature and humidity, are processed through the LSTM network. Meanwhile, 

image data, such as infrared images, are processed by the CNN. The LSTM layer 

handles time-series data, focusing on the sequential nature of the information and 

capturing long-term dependencies. The CNN layer processes the image data, extracting 

spatial features from the multi-sensor images to enhance the prediction of device states. 

Finally, the output layer generates predictions for the smart device states. 

In processing image data, CNN extracts spatial features through convolution 

operations. It is assumed that the input image data are denoted by X. H is the height of 

the image, W is the width, and C is the number of channels (such as three channels for 

RGB images, C = 3). The convolutional layer operates on the image using a convolution 

kernel (filter) to generate a feature map. The mathematical equation for the convolution 

operation is as follows: 

        
      

                 (1) 

In this process,      represents the element of the output feature map, which indicates 

the value after the convolution operation. X is the input image, K is the convolution kernel, 

and M and N are the size of the kernel; i and j are the indices of the feature map. The 

convolution operation is used to extract local spatial features, with the convolution kernel 

performing a dot product with the input image through a sliding window, generating a 

new feature map. These feature maps capture basic structures of objects in the image, such 
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as edges and corner points. After the convolution operation, a pooling operation is usually 

applied to further reduce the size of the feature map while retaining important spatial 

information. The pooling operation can be performed using either MaxPooling or 

AveragePooling, with the corresponding equation as follows: 

                       (2) 

In this process, k represents the size of the pooling window, and              denotes the 

local region extracted from the input image. Pooling operations help reduce 

dimensionality and computational load, while also preventing overfitting. Through 

multiple layers of convolution and pooling operations, CNN can progressively extract 

more complex spatial features, such as the shape and position of objects. Ultimately, these 

features are aggregated in the fully connected layer and used for decision-making in 

device state prediction. 

The outputs from both the LSTM and CNN are integrated to provide a comprehensive 

analysis of device states. This integration allows the model to collect information from 

multiple data sources, and improves both prediction accuracy and precision. By utilizing 

multi-layered and multi-source data, the smart device state prediction model offers a more 

accurate forecast of household device statuses. This, in turn, provides a reliable foundation 

for intelligent home system control. 

The input for the LSTM model is based on time-series data from smart devices. These 

data include the device's historical status, sensor readings (such as temperature, humidity, 

and brightness), and other relevant features. To ensure the LSTM can effectively learn 

from these inputs, the raw data are organized and structured so that each time step 

corresponds to the appropriate sensor information and historical status. Specifically, data 

from the previous 10 time steps are selected for each point in time, and a sliding window 

method is used to generate training samples. These samples are then fed into the LSTM 

model for status prediction. The LSTM, a type of recurrent neural network with memory 

units, is designed to remember long-term dependencies [40-42]. In this case, it processes 

time-series data, such as device status information like temperature and humidity. The 

LSTM's architecture includes input, forget, and output gates, which enable it to capture 

long-term dependencies within the time-series data [43]. The mathematical expression is 

as follows: 

                      (3) 

                      (4) 

                           (5) 

                  (6) 

                      (7) 

                (8) 

   represents the input data,    is the current time-step hidden state, and    is the 

current time-step cell state.   ,   , and    are the outputs of the forget gate, input gate, and 

output gate, respectively. W and b denote the weight and bias.   is the sigmoid activation 
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function, and      is the hyperbolic tangent activation function. In the smart home system 

context, this work uses CNN to process multi-sensor image data, such as infrared images. 

The CNN network's structure includes convolutional layers, pooling layers, and fully 

connected layers. These components work together to effectively extract spatial features 

from the images [44-46]. The expression reads: 

              (9) 

               (10) 

   is the i-th region of the input image, and    is the feature representation of that 

region.   represents the convolutional kernel, and b is the bias.   is the ReLU activation 

function,   denotes the convolution operation, and the softmax function is used for multi-

class output. 

3.2. Selection and Optimization of Intelligent Control Algorithms 

Next, this work explores the selection and optimization of intelligent control algorithms. 

This section conducts an in-depth analysis of how to choose the most suitable control 

algorithm for smart home environments and optimize control strategies using 

reinforcement learning techniques. By working in synergy with the predictive model, 

the control algorithm can respond in real-time to changes in device status and make 

optimal decisions. This can effectively improve the operational efficiency and user 

experience of the smart home system. This work selects the DQN algorithm from deep 

reinforcement learning as the intelligent control algorithm for the smart home system. 

DQN is known for its strong generalization and learning capabilities, making it well-

suited for handling large-scale, high-dimensional state spaces [47-49]. The core idea 

behind DQN is to construct a Q-value function that represents the value of taking a 

specific action in a given state. A neural network is then used to approximate this Q-

value function, which is essential for action prediction and selection [50]. The 

mathematical expression is as follows: 

                                          (11) 

       is the Q-value for taking action a in state s,   represents the learning rate,   is 

the immediate reward, and   is the discount factor.    is the next state, and    is the best 

action in the state   . To improve the efficiency and performance of the control algorithm, 

this work deploys it on cloud computing resources and leverages big data for optimization. 

The high-performance cloud infrastructure ensures real-time algorithm capabilities, while 

big data analysis uncovers additional control patterns and optimization strategies. Figure 2 

depicts the structure of the DQN algorithm. 
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Reward

Environment

State

Q-Network

Action Selection

 

Fig. 2. Schematic diagram of the DQN algorithm structure. 

In Figure 2, the State represents the current environmental states of the smart home 

system, including sensor data and device statuses. The Q-Network is a neural network 

used to estimate Q-values for specific actions in a given state. The network takes the 

current state as input and outputs Q-values for possible actions. "Action Selection" 

chooses the next action based on the Q-values using an "ε-greedy" strategy, where, with a 

certain probability (ε), actions are randomly selected to increase exploration. With a 

probability of 1-ε, the action with the highest Q-value is chosen to enhance exploitation. 

Environment represents the physical environment of the smart home system, including 

various sensor data and device statuses. The Reward is the immediate reward signal 

obtained by the smart home system based on the actions taken by the intelligent control 

algorithm. This structure allows the DQN algorithm to learn the optimal control strategy 

through continuous interaction with the environment. 

3.3. Design of an AI and Cloud Computing-Based Smart Home Management 

System 

This section demonstrates how to integrate the previously discussed predictive model 

with intelligent control algorithms into a complete system. The system not only 

performs device status prediction and intelligent control but also leverages cloud 

computing technology to store, process, and analyze data, providing more efficient and 

flexible management and services. Cloud computing technology is primarily utilized to 

enhance the flexibility and responsiveness of the system interface. By offloading data 

processing and storage to the cloud, the burden on local devices is reduced. This allows 

the smart home system to provide faster information access and a smoother user 

experience. Cloud computing also supports real-time collaborative computation among 
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different smart devices, enhancing their interoperability and coordination. Moreover, it 

enables users to remotely access and control home devices, further improving system 

operability and user satisfaction. Overall, the implementation of cloud computing 

technology makes smart home systems more resilient, scalable, and collaborative. It 

enhances the intuitiveness and user-friendliness of the interface, which directly boosts 

the user experience [51]. These improvements can be measured through methods such 

as user satisfaction surveys and interface interaction analysis. This work presents a 

smart home management system based on AI and cloud computing, as illustrated in 

Figure 3. 

Intelligent device access

Data transmission layer

Cloud computing and data processing layer

User interface layer

Data storage, analysis, 

and processing Run intelligent algorithms

 

Fig. 3. Framework of the smart home management system 

Figure 3 illustrates the overall architecture of the management system, which consists 

of several key components. The intelligent device access layer communicates with 

various smart devices, such as sensors and actuators, to collect real-time data. The data 

transmission layer ensures the timely and reliable transfer of these data to the cloud 

computing and data processing layer. This layer handles tasks like data storage, 

analysis, and processing, running intelligent algorithms to support decision-making. The 

user interface layer provides a platform for users to interact with the system, allowing 

them to monitor and control household devices via mobile apps, web interfaces, and 

other means. With this structural composition, the work can achieve the following 

functions: 

1) Intelligent device access and management: it facilitates communication and access 

to various smart devices, ensuring they operate properly. 

2) Real-time data transmission and processing: sensor data are transmitted to the 

cloud in real-time. The cloud processes the data through cleaning and feature extraction. 

3) Intelligent control and optimization: cloud computing’s high-performance 

computing capabilities are used to run algorithms that control and optimize household 

devices, improving energy efficiency. 
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4) Data storage and analysis: processed data are stored in a cloud-based database for 

further analysis, mining, and visual representation. 

5) Remote monitoring and operation: users can remotely monitor device status and 

perform operations through mobile applications or web interfaces. 

This work introduces the Generative Adversarial Network (GAN) to enable 

continuous learning and adaptability of the predictive model to respond to changes in 

new data and user behavior. Specifically, GAN consists of two main components: the 

generator and the discriminator. The generator's task is to generate data based on actual 

user behavior patterns, while the discriminator is responsible for evaluating the 

similarity between the generated data and real data. In the initial stage, the generator 

learns the patterns in user behavior data to generate preliminary behavior data, while the 

discriminator learns to distinguish between generated and real data. This process helps 

the model understand and capture the basic patterns of user behavior. Figure 4 displays 

the specific process. 

  User Data

(Real Behavior) 

Generated Data

(Predicted)  

Generator  

(Generate Data)

Discriminator

 (Distinguish Real vs Fake) 

  Feedback 

Evaluate

User Feedback

(Interface & Settings) 

 Model Update

(Incremental Learning) 

Real-time User 

 System State

(Behavior Data)

 Model State   

(Periodic Save)

Feedback Data  

Adjustments   

(Personalized 

Data)   

 

Fig. 4. GAN structure and workflow 

During the system's operation, real-time incoming user behavior data are used for 

incremental learning. The generator and discriminator will continuously update to adapt 

to new data characteristics. This continuous learning mechanism ensures that the model 

can timely acquire information from new data and adjust according to changing user 

behavior. By dynamically optimizing the GAN parameters, the model can flexibly 

respond to these changes, ensuring the accuracy of predictions. Furthermore, the system 

employs a real-time feedback mechanism to further optimize the generated data. User 

feedback, such as interface ratings and the selection of personalized settings, is used to 

guide the model in adjusting the generated data, making it more aligned with the users' 

actual needs and preferences. This mechanism ensures the timeliness and precision of 

the generated data, enhancing the adaptability and accuracy of the predictive model. In 

short, the role of GAN here is to assist the predictive model in continuously learning, 

adapting to new data, and adjusting in real time to respond to changes in user behavior 
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through generating and evaluating data. In this way, GAN effectively strengthens the 

intelligent home system's adaptability to user needs and the accuracy of predictions. 

The incremental learning strategy enables the GAN to integrate new knowledge 

dynamically during the learning process. The model's state is saved periodically, 

allowing for rollback or recovery when needed, ensuring system stability. To evaluate 

performance, the system regularly compares generated data to real data and considers 

user satisfaction metrics. User feedback plays a crucial role in assessing system 

performance, helping identify areas for improvement and model adjustments. By 

analyzing user behavior patterns, the system detects both short-term and long-term 

trends, which helps predict user needs and adjust the status of smart devices 

accordingly. The system uses a personalized learning model to tailor predictions based 

on each user's unique behavior and preferences. Real-time data from sensors and 

devices are collected regularly to update the knowledge base, reflecting the current 

environment and user behavior. This combination of mechanisms allows the system to 

continuously learn and improve its understanding of user behavior, delivering more 

intelligent and personalized home management services. Its dynamic adaptability 

ensures high performance, even during long operational periods. 

To clearly illustrate the operation process of the intelligent home system proposed, an 

example of a smart lighting system within a smart home environment is presented. It is 

assumed that the system needs to predict the state of the light (on or off) and make 

corresponding control decisions. In this scenario, the smart home system first collects 

data from multiple sensors, including indoor light intensity, temperature, user activity 

data, and the historical on/off status of the lights. These data are processed through a 

multimodal predictive model. CNN is responsible for extracting spatial features from 

the environmental data, and LSTM networks handle the time-series data, capturing the 

usage patterns and historical dependencies of the lights. By combining both approaches, 

the system can accurately predict the state of the light for the upcoming period. For 

example, based on the data from the past hour, the predictive model might conclude that 

the light will remain on in the near future. 

Next, the DQN intelligent control algorithm utilizes these predictions to make control 

decisions. The system's state space includes the current state of the light, environmental 

lighting conditions, temperature, and user activity status. Based on this information, 

DQN will choose the most appropriate action, such as "turn on" or "turn off" the light. 

The selection of each action is determined by a reward function, which not only 

considers the current state of the light but also scores based on user needs and system 

energy efficiency. For instance, if it is predicted that a user is entering the room, the 

system will select the "turn on" action because it enhances the user's experience and 

results in a higher reward. 

Through continuous reinforcement learning, DQN can optimize its control strategy. 

If the system finds that a certain control strategy (such as delayed light-off) performs 

excellently in terms of energy saving, DQN will adjust its decisions based on 

accumulated rewards, thus improving the overall system performance. This 

collaborative approach enables the predictive model and control algorithm to 

dynamically adjust and optimize the device's state. It can ensure optimal performance of 

the smart home system in terms of response speed, energy efficiency, and user 

experience. This specific example provides a clearer understanding of how the proposed 

approach effectively collaborates within a smart home system. It also offers a more 
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intuitive grasp of how the predictive model and DQN intelligent control algorithm work 

together to optimize device management. 

4. Experimental Design and Performance Evaluation 

4.1. Datasets Collection and Data Preprocessing 

To validate the performance of the proposed smart home system, various types of 

environmental data and sensor information are systematically collected from multiple 

rooms in a residential community. These rooms include the living room, kitchen, 

bedroom, bathroom, and study/office area, covering the main living scenarios within a 

household. Environmental data are collected in real time using temperature, humidity, 

and light sensors, with a recording frequency of once per minute. Specifically, the 

sensor data cover the following environmental factors. Temperature sensors are 

deployed in each room to monitor indoor temperature changes in real time, recording 

data once per minute to capture rapid temperature fluctuations. Humidity sensors are 

placed in various locations to record changes in indoor humidity, particularly in areas 

with significant humidity variations, such as the kitchen and bathroom. Light sensors 

are used to monitor indoor light intensity, especially in the living room and bedroom, to 

assist in controlling the smart lighting system. In addition, multi-sensor image data are 

collected through internal cameras and infrared sensors, including object distribution 

information. The data provide insights into the placement of furniture and equipment 

within the home, helping the model understand the spatial layout. Human activity 

monitoring: The data track the activity patterns of household members, identifying 

specific behaviors (such as entering or leaving a room, and using devices), which serve 

as the basis for intelligent control. These sensor data, collected through embedded 

devices, ensure high-frequency recording and provide detailed temporal information. 

Figure 5 illustrates the data collection process and preprocessing steps. 

Data collection

Temperature sensor

Humidity sensor

Light sensor

Infrared sensor

Camera

Data preprocessing

Missing value 

processing (mean 

filling)

Data standardization 

(mean=0, 

variance=1)

Sliding window 

method (past 10 

steps)

Prepared data for model 

training

 

Fig. 5. Data collection and preprocessing flow 
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In Figure 5, during the data collection phase, the system collects real-time 

environmental data through temperature sensors, humidity sensors, light sensors, 

infrared sensors, and cameras. These data include temperature, humidity, light intensity, 

object distribution, and human activity data recorded every minute. The real-time data 

from these sensors provide comprehensive environmental information for the smart 

home system. Next, in the data preprocessing phase, to ensure data quality, missing 

values are first handled using mean imputation to maintain data completeness. Then, all 

sensor data are standardized and transformed into a standard normal distribution with a 

mean of 0 and a variance of 1. This can eliminate scale differences between different 

sensor data and enhance the stability of data training. Finally, a sliding window method 

is used to generate training samples from data collected over the past 10 time steps, 

providing rich contextual information for the subsequent LSTM model. The processed 

data ultimately form a prepared dataset for model training, ensuring consistency and 

quality of the data. 

The diversity of data allows the model to adapt better to different environments and 

usage scenarios, improving its generalization ability. With several terabytes of data, the 

model can cover a wide range of scenarios and changes, making it more adaptable. By 

processing a large number of samples, the model can identify latent patterns between 

smart device states and the environment, improving its predictive accuracy. 

Additionally, the richness of multimodal data plays a key role in enhancing the model's 

robustness. Sensors such as temperature, humidity, and light provide diverse 

information, while image data offers a visual complement. This diversity allows the 

model to learn from different dimensions, and gain a comprehensive understanding of 

the relationship between smart device states and the environment. As a result, the model 

becomes more adaptable to complex situations. Overall, large-scale and diverse datasets 

offer a strong foundation for training, enhancing the model's robustness and 

performance in real-world smart home scenarios. 

Before inputting the sensor data into the model, a systematic preprocessing process 

ensures data quality and consistency. First, missing values in the raw data from all 

sensors are handled using mean imputation to ensure completeness. Next, the data from 

different sensors are standardized to have a mean of 0 and a variance of 1, which 

eliminates dimensional effects between features and improves model stability during 

training. Finally, the sliding window technique is used to construct training samples, 

ensuring each sample contains data from the previous 10 time steps. This provides rich 

contextual information for the LSTM model's learning process. 

4.2. Experimental Environment 

Experiments are conducted on multiple high-performance servers equipped with Intel 

Xeon Gold 6226R processors (2.9 GHz, 16 cores) and 128 GB DDR4 RAM. These 

servers offer the computational power needed to handle the complex data processing 

requirements of the smart home system. To speed up the training of deep learning 

models, the system uses an NVIDIA Tesla V100 GPU (32 GB VRAM), which supports 

efficient parallel computing. The experiments are deployed on a cloud computing 

platform using AWS EC2 instances (p3.16xlarge type), providing scalable computing 

resources to meet the dynamic demands of various data processing tasks. Through cloud 

services, the system can elastically scale based on workload, ensuring efficient 
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operation during data processing at different scales. Additionally, the experimental 

environment integrates a distributed storage system based on Amazon S3 to securely 

store large-scale data. This system ensures high reliability and scalability, protecting 

data during processing while supporting real-time access and sharing of big data. The 

software environment runs on the Ubuntu 20.04 LTS operating system, with deep 

learning frameworks TensorFlow 2.10 and PyTorch 1.12. GPU acceleration is provided 

by the NVIDIA CUDA 11.4 toolkit. During model training, the Adam optimizer and an 

adaptive learning rate adjustment strategy are used. Training progress is monitored via 

TensorBoard to ensure continuous optimization of the model. This experimental setup 

not only offers robust hardware support for developing and testing the smart home 

system, but also enables effective handling of large-scale data and multi-task computing 

demands. 

4.3. Parameters Setting 

To ensure the system's stability and performance, the parameters of different models are 

carefully set during the experiment, as shown in Tables 1-4. The CNN and LSTM 

models undergo systematic experimentation and tuning to optimize their 

hyperparameters. For the CNN model, the initial learning rate is set to 0.001, with a 

batch size of 32. It includes three convolutional layers, each containing 64 filters of size 

3×3. The depth of the convolutional layers and the number of filters are adjusted, and 

cross-validation is used to select the best combination for maximum predictive 

performance. For the LSTM model, the hyperparameters include a learning rate of 

0.001, a time step of 10, and 50 hidden units in the layers. A grid search is conducted to 

find the optimal configuration, improving the model’s accuracy and robustness. These 

tables not only apply to the proposed method but also include the parameter 

configurations for comparison models, such as CNN, LSTM, and DNN. 

These tables not only apply to the proposed method but also include the parameter 

configurations for comparison models (CNN, LSTM, and DNN). 

Table 1. Parameter settings of the proposed model. 

Parameters Range of Values 

Number of neural network layers 3 

Number of LSTM layers 2 

Number of CNN layers 1 

Number of neural network nodes 128 (Each hidden layer) 

LSTM hidden layer units 64 

CNN filter size 3x3 

CNN kernel number 32 

CNN stride 1x1 

Learning rate 0.001 

Discount factor 0.9 

The ε value for ε-greedy strategy 0.1 

Maximum training steps 100,000 

Optimizer Adam optimizer 

Batch size 64 

Loss function Mean Squared Error (MSE) loss  

Proportion of training dataset 80% training data, 20% validation data 
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In the table, based on the structure of the hybrid model combining LSTM and CNN, 

the number of layers and relevant parameters for both LSTM and CNN are specified. 

The LSTM section includes two hidden layers, each containing 64 units. The CNN 

section consists of one convolutional layer, using a 3x3 filter, with 32 convolutional 

kernels and a stride of 1x1. Other parameters such as learning rate, optimizer, and others 

are also listed in detail. These settings can aid the model in effective learning and 

optimization during the training process. 

Table 2. Parameter settings of CNN. 

Parameters Range of Values 

Number of convolutional layers 5 

Number of filters per layer 32-256 

Filter size 3×3, 5×5 

Activation function ReLU 

Pooling layer type Max pooling 

Batch size 64 

Optimizer Adam optimizer   

Loss function Cross-entropy loss 

Table 3. Parameter settings of the LSTM model. 

Parameters Range of Values 

The number of LSTM units 128 

Sequence length 30 

Learning rate 0.001 

Optimizer Adam optimizer   

Batch size 64 

Loss function MSE loss 

Table 4. Parameter settings of DNN. 

Parameters Range of Values 

Number of neural network layers 4 

Number of nodes per layer in the neural network 64-256 

Learning rate 0.001 

Activation function Tanh or Sigmoid 

Batch size 64 

Optimizer Adam optimizer   

Loss function MSE loss 

4.4. Performance Evaluation 

This work uses MSE and Mean Absolute Error (MAE) as performance evaluation metrics. 

MSE measures the sum of squared errors, while MAE calculates the mean of absolute 

errors. Both metrics are sensitive to larger error values. In smart home systems, where 
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critical state predictions like temperature and humidity are essential, the focus is on the 

model's accuracy in predicting real values. These metrics effectively highlight the impact 

of larger errors on performance. MSE and MAE are widely used in regression tasks across 

various domains. Their simplicity and ease of understanding make them ideal for 

evaluating model performance in different prediction tasks. This interpretability allows 

researchers and practitioners to quickly comprehend the model's performance in smart 

home systems. MSE assigns higher weights to larger errors, providing a better reflection 

of the model's performance in critical predictions. In contrast, MAE maintains a linear 

relationship with error magnitude, sometimes offering a clearer view of overall average 

performance. The mathematical properties of MSE and MAE also simplify their use in 

optimization problems. During the training of deep learning models, minimizing these 

metrics through algorithms like gradient descent is straightforward, allowing for better 

adjustment of model parameters. In summary, MSE and MAE are classical metrics that 

provide a comprehensive and intuitive assessment of model's predictive performance, 

especially in predicting smart device states. Their use here contributes to a deeper 

understanding of the accuracy and overall performance of the model concerning smart 

device states. In the experiment, the evaluation indicator MSE is adopted to assess the 

predictive accuracy of the smart device state prediction model. The equation for 

calculating MSE is as follows: 

    
 

 
  

 

   

        
  

(12) 

   is the actual value,     is the model's predicted value, and n is the number of samples. 

MAE is similar to MSE and is applied to assess the difference between predicted values 

and actual values. The calculation equation is as follows: 
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R-Squared is a commonly used metric to measure the goodness of fit of a regression 

model. The equation is as follows: 

     
   

           
 

   
           

 
(14) 

   is the actual observed value,     is the predicted value,    is the mean of the actual 

observed values, and n is the number of samples. The value of R-Squared ranges from 0 to 

1, with values closer to 1 indicating better model fit. This equation is described in detail 

here to better showcase the predictive performance of the model. 

The following are the comprehensive evaluation results of system performance, 

including comparisons with specific models. Figure 6 represents the performance of smart 

device state prediction: 



 Smart Home Management Based on Deep Learning...           1215 

 

 

Our system CNN model LSTM

model

Deep neural

network

model

0.08

0.09

0.10

0.11

Model

 MAE  MSE

 R-Squared

0.012

0.014

0.016

0.018

0.84

0.86

0.88

0.90

0.92

 

Fig. 6. Performance of smart device state prediction 
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Fig. 7. User satisfaction survey results 

Figure 6 demonstrates the system's strong performance in predicting smart device 

states. Specifically, it achieves values of 0.0125 for MSE and 0.08 for MAE, both lower 

than those of other models. This indicates that the proposed system predicts smart 

device states more accurately. Its MSE and MAE are 0.0026 and 0.01 lower than the 

CNN model, 0.0047 and 0.03 lower than the LSTM model, and 0.0038 and 0.02 lower 

than the DNN model. Reducing prediction errors results in a more reliable smart home 

experience for users. The system incorporates a multimodal fusion model that combines 

the feature extraction capability of CNN, the time-series data handling of LSTM, and 

the deep learning power of DNN to optimize prediction accuracy. This improvement not 

only enhances data processing but also strengthens the model's generalization ability, 

allowing it to handle complex state changes across different devices more effectively. 
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The system's enhanced predictive ability makes the smart home more stable and 

responsive, reducing abnormal situations in device state management.  

Appendix A contains the user satisfaction survey form. Figure 7 presents the results 

of the survey. 

Figure 7 shows that the user satisfaction survey results further highlight the system's 

outstanding performance. In terms of user interface friendliness, system stability, 

response speed, and feature completeness, the system receives ratings of 4.5, 4.3, 4.6, 

and 4.4, respectively. In comparison, other models receive ratings of 4.2, 4.1, 4.4, and 

4.2 in these areas. The user interface design is crucial to the overall user experience. The 

system scores 4.5 for interface friendliness, which is significantly higher than the other 

models' score of 4.2. This difference reflects the system’s optimized interface design, 

with an intuitive layout and clear interaction flow. Users can easily navigate the 

system’s functions, reducing confusion and operational errors. Feedback also indicates 

that the system's interface adapts well to different devices. Whether on a mobile phone, 

tablet, or smart home control panel, the interface operates smoothly across all platforms, 

greatly enhancing user comfort. 

System stability is vital in smart home applications, especially when managing 

multiple devices and tasks simultaneously. The system scores 4.3 for stability, an 

improvement over the 4.1 score of other models. This enhancement is due to 

optimizations in the system architecture, particularly for real-time processing of 

multisensor data and device coordination. User feedback suggests that the system 

maintains high efficiency and stability over time, avoiding the crashes and functionality 

failures seen in other models. The system's stable performance when handling large 

volumes of real-time data has built user trust, further boosting satisfaction. 

Response speed is a key factor in the user experience of a smart home system. The 

system's response speed is rated 4.6, higher than the 4.4 rating for other models. Users 

report that the system responds almost instantly, with no noticeable delay when 

operating devices. Whether adjusting the temperature, turning lights on and off, or 

switching smart scenes, the system provides feedback in milliseconds (ms), offering a 

seamless experience. In comparison, other models often show slight delays in their 

operations, affecting both the timeliness of actions and user satisfaction. 

Functional completeness evaluates how well the system meets diverse user needs, 

including smart control, personalized settings, and scene switching. The system receives 

a high score of 4.4 for functional completeness, surpassing the 4.2 score of other 

models. This score difference reflects the system's broad functionality. It supports 

seamless connection and management of multiple smart devices and can automatically 

adjust the home environment based on user preferences. Additionally, it offers 

personalized settings and custom scene options, allowing users to tailor the system to 

their needs. Users report that the variety of features and the system's flexibility have 

increased both their reliance on and satisfaction with the system. 

When comparing the system's interface design to other models, such as CNN, LSTM, 

and DNN, these models often have limitations in terms of user interface intuitiveness, 

response speed, and functional completeness. The CNN model often requires users to 

manually adjust numerous hyperparameters, while LSTM models can complicate the 

interface when processing time-series data, raising the learning curve for users. In 

contrast, the developed system optimizes the interface layout and user interaction flow, 

significantly improving ease of use. It ensures faster response speeds through efficient 

computational resources. Moreover, the proposed system integrates rich functional 
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modules, such as real-time data visualization and smart feedback, which make it easier 

for users to perform complex tasks. This design has greatly improved user satisfaction, 

especially in terms of ease of use and functionality. Figure 8 displays the system's 

resource utilization. 
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Fig. 8. Comparison of system resource utilization 

Figure 8 shows that the proposed system excels in resource utilization. It uses less 

CPU, memory, GPU, and network bandwidth compared to other models. Specifically, 

the system's utilization rates are 35% for CPU, 45% for memory, 70% for GPU, and 

60% for network bandwidth. In comparison, the CNN model uses 40%, 50%, 75%, and 

65%; the LSTM model uses 38%, 48%, 72%, and 62%; and the DNN model uses 42%, 

52%, 78%, and 68% for the same categories. This demonstrates that the proposed 

system operates more efficiently, saving computational resources and offering a more 

cost-effective smart home management solution. Further analysis of the data in Figure 7 

highlights that the improvement in resource efficiency is mainly due to the optimized 

design of the model architecture. By leveraging cloud computing technology and 

efficient parameter tuning, the system achieves high performance while reducing 

resource consumption. This makes the system suitable for single-home scenarios and 

scalable for large-scale smart home deployments. It reduces hardware requirements and 

enhances system performance when managing multiple devices and data streams. This 

optimization lays a solid foundation for the widespread adoption and promotion of 

smart home systems. 

This work observes that there are differences in system resource utilization among 

the four models. The reasons for these differences are analyzed from the following 

aspects: 

1) Model Complexity and Computational Requirements: Different models have 

varying complexities and computational demands. For instance, CNN and DNN 

typically require more computational resources, especially in image processing and 

training deep networks with multiple layers. In contrast, LSTM networks, although 

designed for time-series data, are relatively more efficient in computation, especially 

when there is no need for extensive parallel computing. The proposed hybrid model 
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combines the advantages of LSTM and CNN, better balancing computational resource 

usage during multi-modal data processing. It prevents excessive consumption of CPU, 

memory, and GPU resources. 

2) Application of Cloud Computing: The system leverages cloud computing for 

distributed computing, which effectively reduces the computational burden on 

individual hardware devices. Through elastic resource management on the cloud 

platform, the model can dynamically allocate computational resources based on demand 

and avoid resource wastage. This is one of the reasons why the proposed system 

performs exceptionally well in resource utilization. Cloud computing not only improves 

computational efficiency but also reduces the dependence on local hardware and 

decreases the high-load demands on CPUs and GPUs. 

3) Parameter Optimization and Network Bandwidth Management: Through efficient 

parameter tuning, the system optimizes resource allocation during training. The 

relatively low network bandwidth utilization (60%) indicates that the system has 

optimized data transmission, reducing bottlenecks caused by frequent data exchanges. 

This is significant for a smart home system that needs to handle large amounts of multi-

modal data (such as temperature, humidity, and images) and real-time feedback. 

4) Algorithm Efficiency: The proposed system uses a hybrid architecture of LSTM 

and CNN, which improves computational efficiency while ensuring prediction 

accuracy. The LSTM model effectively captures long-term dependencies when 

processing time-series data and reduces unnecessary computations. The CNN model 

efficiently extracts spatial features from image data. Through this architectural 

optimization, the system maintains high performance while significantly reducing 

computational resource requirements. 

Overall, the differences in resource utilization among the four models mainly stem 

from their respective architectural features, computational demands, and optimization 

strategies. Compared to other traditional models (such as CNN and DNN), the proposed 

hybrid model demonstrates superior performance in optimizing resource usage and 

reducing computational demands. This enables the system to maintain efficient and 

stable performance while processing multiple devices and data streams. 

Next, this work compares the performance of the proposed smart home system with 

CNN, LSTM, and DNN in terms of latency and computation time. Table 5 displays the 

results. 

Table 5. Comparison of performance in latency and computation time for different models 

Model Type Latency (ms) Computation Time (ms) 

The proposed model 85 120 

CNN 120 180 

LSTM 110 160 

DNN  130 190 

Table 5 shows that the proposed model performs best in terms of latency, with a 

value of only 85 ms. It outperforms the CNN (120 ms), LSTM (110 ms), and DNN (130 

ms) models. Low latency is crucial for real-time applications, particularly in smart home 

systems where quick responses to user commands and adjustments to device statuses 

are essential. The proposed model's low latency allows it to respond faster to user 

demands, significantly improving the user experience. In terms of computation time, the 

proposed system also leads with 120 ms, followed by LSTM (160 ms), CNN (180 ms), 
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and DNN (190 ms). Short computation time is especially important for real-time 

systems that process large amounts of data quickly, such as those in smart home 

management. The proposed system can efficiently perform predictions and updates, 

supporting smoother real-time operations. It is clear that the proposed model 

outperforms CNN, LSTM, and DNN in both latency and computation time. This makes 

it better suited for real-time applications in smart home systems. Its fast and efficient 

data processing ensures system responsiveness, offering a more seamless and efficient 

user experience. As such, the proposed model provides a clear advantage in smart home 

systems requiring high performance and short response time.  

To evaluate the significance of performance differences between the models, an 

independent sample t-test is conducted to assess mean differences. For comparisons 

involving multiple models, a one-way analysis of variance (ANOVA) is performed. The 

ANOVA analysis helps determine whether the performance differences among the 

models across multiple dimensions are statistically significant. Table 6 presents the 

significant test statistics results for different models in the whole-house smart home 

management system. 

Table 6. The significant test statistics results for different models in the whole-house smart home 

management system 

Model Comparison MSE (Lower is Better) MAE (Lower is Better) p-value 

Multi-modal vs. CNN 0.012 (↓20%) 0.008 (↓15%) < 0.05 

Multi-modal vs. LSTM 0.015 (↓25%) 0.010 (↓18%) < 0.05 

Multi-modal vs. DNN 0.018 (↓30%) 0.012 (↓25%) < 0.05 

 

Table 6 shows that the multimodal prediction model significantly outperforms the 

single-modal CNN, LSTM, and DNN models in terms of MSE and MAE, with 

reductions of 20%, 25%, and 30%, respectively. This highlights the clear advantage of 

the multimodal model in accurately predicting smart device states. The improved 

performance provides the system with more reliable and precise management 

capabilities, allowing users to better understand the home environment. Compared to 

traditional single-modal models, the multimodal model captures the complex 

relationships between smart device states and the environment more comprehensively. 

This enhances the overall performance of the system and reinforces the innovation and 

superiority of the multimodal prediction model proposed in this work for whole-house 

smart home management. Table 7 compares the response speed and load ratings of this 

system with various smart home subsystems, including intelligent lighting, smart 

security, home appliances, audio systems, temperature control, automation, curtains, 

entertainment, health monitoring, and kitchen systems. The system in this work 

achieves the highest response speed score, reaching 9 points. This exceptional 

performance is due to the efficient utilization of CPU, memory, GPU, and network 

bandwidth, ensuring high performance even in high-demand scenarios. As a result, the 

system avoids crashes or delays caused by insufficient resources. Moreover, this 

system, along with smart home appliances, ranks highest in response speed. In high-

demand scenarios, the system reduces latency through optimized data processing and 

transmission, enabling users to quickly access device status information and improving 

real-time performance. 
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Table 7. The significant test statistics results for different models in the whole-house smart home 

management system 

Intelligent 

system type 

Response speed 

score (1-10) 

Load rating (1-

10) 

Function Scene Technical 

Implementation 

Intelligent 

Management 

System for 

Whole House 

Home 

Furnishings 

9 9 Centralized 

management of 

all smart devices. 

Data 

synchronization 

and 

communication 

based on the 

cloud platform. 

Intelligent 

lighting system 

7 6 Automated home 

lighting. 

Smart bulbs and 

sensors with Wi-

Fi connectivity. 

Intelligent 

security system 

8 7 Surveillance and 

alarms for 

security. 

Cameras, motion 

sensors, and 

central control 

unit. 

Intelligent home 

appliance 

system 

9 9 Manage and 

control household 

appliances. 

IoT protocols and 

mobile app 

control. 

Intelligent audio 

system 

6 5 Control home 

audio 

environment. 

Wireless speakers 

and voice 

assistants. 

Intelligent 

temperature 

control system 

8 7 Adjust the HVAC 

system. 

Smart thermostats 

and self-learning 

adjustment. 

Home 

automation 

system 

7 8 Automate various 

home functions. 

The central 

control unit 

coordinating 

devices. 

Intelligent 

curtain and 

window system 

6 6 Automated 

curtain operation. 

Electric tracks 

and light sensors. 

Intelligent 

entertainment 

system 

8 7 Unified control of 

entertainment 

devices. 

Smart TVs and 

media streaming 

devices. 

Intelligent 

Health 

Monitoring 

System 

9 8 Monitor health 

and vital signs. 

Wearable devices 

and home 

sensors. 

Intelligent 

Kitchen System 

7 7 Automate kitchen 

processes. 

Communication 

between smart 

kitchen 

appliances. 

 

This work further compares the proposed model with similar research in recent 

literature. Beheshtikhoo et al. (2023) [52] proposed an intelligent home energy 

management system based on a type-2 fuzzy logic controller. The system integrated 

renewable energy and electric vehicles. The model was primarily applied to smart home 

energy management, and it optimized energy scheduling for home appliances using the 

type-2 fuzzy controller, which could handle uncertainty and dynamic changes in the 

system. Huy et al. (2023) [53] introduced a real-time energy scheduling method based 
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on supervised learning strategies for home energy management systems. The system 

integrated energy storage systems and electric vehicles. This method used supervised 

learning models to manage household energy demand in real time, and optimized power 

consumption and energy storage management. Below is a comparison of the methods in 

[52] and [53] with the proposed LSTM+CNN hybrid model across various aspects. 

Table 8 aims to highlight the advantages of the proposed model in multi-dimensional 

data fusion, real-time prediction, and computational resource consumption. 

Table 8. Comparison of performance across different models. 

Evaluation Metric Literature [52] 

(Type-2 FLC) 

Literature [53] 

(Supervised 

Learning) 

The proposed model 

(LSTM+CNN) 

Prediction Accuracy 74.6% 77.8% 91.3% 

Computational Resource 

Consumption (CPU %) 

14.8% 29.3% 11.2% 

Computational Resource 

Consumption (Memory %) 

9.5% 19.7% 7.8% 

Multimodal Data Processing 

Ability (Time Series Prediction 

Accuracy %) 

65.3% 72.4% 97.5% 

Multimodal Data Processing 

Ability (Image Data Recognition 

Accuracy %) 

62.4% 68.9% 83.7% 

Real-time Adaptability (Response 

Latency, ms) 

492 ms 208 ms 46.7 ms 

Model Complexity (Number of 

Parameters) 

10,05 49,94 98,50 

Data Requirements (Amount of 

Data Handled) 

<1000 Data 

Points 

<5000 Data Points >10000 Data Points 

 

According to the data in Table 8, the proposed LSTM+CNN hybrid model 

demonstrates significant advantages in multiple aspects, particularly in multimodal data 

processing, prediction accuracy, and computational resource consumption. First, in 

terms of prediction accuracy, the proposed model achieves 91.3%, far surpassing the 

74.6% in reference [52] and 77.8% in reference [53]. This difference reflects the 

model’s advantage in handling the fusion of time series and image data, enabling it to 

more accurately capture and predict the states of smart home devices. Regarding 

computational resource consumption, the proposed model performs exceptionally well, 

with CPU and memory consumption at 11.2% and 7.8%, respectively. In comparison, 

reference [52] shows 14.8% and 9.5%, and reference [53] shows 29.3% and 19.7%. The 

significantly lower resource consumption suggests that the proposed model can 

maintain high prediction accuracy while efficiently utilizing computational resources, 

making it suitable for large-scale smart home system deployment.  

Furthermore, the proposed model exhibits strong capabilities in multimodal data 

processing. For time series data prediction, the model achieves an accuracy of 97.5%, 

compared to 65.3% and 72.4% in references [52] and [53], respectively. In image data 

recognition, the model also outperforms the others, with an accuracy of 83.7%, 

significantly higher than the 62.4% and 68.9% in references [52] and [53]. These results 

demonstrate that the proposed LSTM+CNN hybrid model can more effectively 
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integrate different types of data, and improve the overall performance of smart home 

systems. In terms of real-time adaptability, the proposed model also shows a clear 

advantage, with a response delay of just 46.7 milliseconds, much lower than 492 

milliseconds in reference [52] and 208 milliseconds in reference [53]. This advantage 

allows the model to better handle real-time data processing requirements, and adapts to 

dynamic changes in smart home environments.  

Finally, the proposed model has relatively high model complexity and computational 

complexity, with a parameter count of 9,850. However, its powerful data processing 

capabilities and high-precision predictions make it highly applicable in complex, large-

scale smart home systems. Overall, the proposed LSTM+CNN hybrid model excels in 

both performance and resource consumption. This makes it ideal for large-scale 

deployment in smart home environments and meets the system’s needs for high 

precision, multimodal data fusion, and real-time processing. 

4.5. Discussion 

The research results highlight the system’s effectiveness, showing its superiority over 

existing models in several key areas. In practical applications, these results have 

significant real-world implications. First, the system leverages AI algorithms to improve 

efficiency, allowing it to predict the status of smart devices with greater accuracy. This 

results in a more intelligent and personalized home management experience for users. 

Then, the system's user-friendly interface design and high responsiveness further 

enhance the user experience, making it more enjoyable and practical. Additionally, the 

system’s low resource utilization allows it to operate efficiently in a variety of 

environments. This makes it particularly suitable for resource-constrained scenarios and 

increases its appeal for practical use. Overall, the system excels at predicting smart 

device states and demonstrates the potential for further development in smart home 

technology. It improves both user experience and resource efficiency, offering strong 

support for the future growth and adoption of smart home systems. 

This aligns with the findings of the Literature [54], emphasizing the importance of AI 

algorithms in smart home applications. The system’s high user satisfaction scores 

underscore the importance of user experience in smart home technology. The intuitive 

and user-friendly interface, along with the system's fast response time, can be attributed 

to the use of cloud computing. This supports the conclusions in Literature [55], which 

also highlight the consistent impact of seamless interaction on user satisfaction. 

Integrating AI-driven personalized technologies could further enhance user engagement 

and satisfaction, representing a promising direction for future research. Efficient 

resource utilization is fundamental for sustainable smart home solutions. The system 

excels in minimizing CPU, memory, GPU, and network bandwidth usage, 

demonstrating its effectiveness in resource-limited environments. This approach aligns 

with the growing trend of edge computing, where data processing is performed closer to 

the data source, reducing latency and optimizing resource usage. These findings mirror 

those in Literature [56]. Overall, the system excels in key areas such as accuracy in 

predicting smart device states, user satisfaction, and efficient system resource 

utilization. 

In real-world scenarios, these results have significant practical implications. First, AI 

algorithms play a crucial role in improving system efficiency, allowing the system to 
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predict the status of smart devices with greater accuracy. This leads to a more intelligent 

and personalized home management experience. Besides, key factors such as an 

intuitive, user-friendly interface and fast response time contribute to a more enjoyable 

user experience, enhancing the system’s overall practicality. Additionally, the system's 

low resource utilization enables it to operate efficiently across various environments, 

making it well-suited for resource-constrained situations. These strengths make the 

system highly attractive for practical applications, and offer strong support for the 

widespread adoption of smart home technology. 

Although the system has significantly improved in terms of accuracy and user 

satisfaction, there may be trade-offs between computational load and prediction 

accuracy, especially when handling large-scale data in resource-limited environments. 

In practical applications, such as managing large volumes of sensor and user behavior 

data, the LSTM-CNN model may encounter challenges due to insufficient 

computational resources. This increased burden on the system may result in slower 

response time, which could affect the user experience. While the model excels at 

improving prediction accuracy, devices with limited resources, particularly low-power 

ones, may require a balance between accuracy and resource consumption. Therefore, 

optimizing the model to ensure both low latency and high accuracy remains an 

important direction for future research. 

5. Conclusion 

5.1. Research Contribution 

This work designs and implements a smart home management system using cloud 

computing and AI technology. By combining CNN and LSTM, the system excels at 

predicting smart device states and optimizing both user satisfaction and resource 

utilization. The multimodal prediction model improves the accuracy of smart device 

state predictions, and provides a solid foundation for the stability and user experience of 

smart home systems. Additionally, the system incorporates an intuitive, user-friendly 

interface built with cloud computing technology. This ensures system stability and 

responsiveness, while also enhancing user satisfaction. The central role of user 

experience is emphasized throughout the design. Compared to traditional models, the 

system demonstrates significantly lower CPU, memory, and network bandwidth usage. 

It fully capitalizes on cloud computing’s strengths in resource optimization, and offers 

reliable support for the long-term stability of smart home systems. 

This work has had a profound impact on the field of smart home technology. First, it 

introduces an innovative multimodal prediction model that combines CNN and LSTM 

networks. This model improves the accuracy of smart device state predictions, enhances 

the intelligence of smart home systems and provides users with a more personalized and 

intuitive experience. Moreover, the extensive use of cloud computing in user interface 

design has led to the creation of highly intuitive and user-friendly interfaces. These 

designs ensure system stability and responsiveness, while emphasizing the importance 

of user experience in smart home technology. This offers valuable insights for future 

system development. Additionally, the work highlights the efficient use of system 
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resources and demonstrates its practicality in resource-constrained environments by 

reducing CPU, memory, GPU, and network bandwidth usage. This contributes to a 

more sustainable and adaptable direction for smart home technology. Overall, this work 

supports the advancement of smart home technology by improving system intelligence, 

user experience, and resource efficiency. Its impact is seen in the broader adoption of 

smart home systems, and promotes the sustainable growth and evolution of the industry. 

5.2. Future Works and Research Limitations 

The experimental results presented here are based on specific environments and 

datasets, which may limit their generalizability to other contexts. Furthermore, the 

performance of the predictive model may be affected by the quality and quantity of the 

data, necessitating the use of larger and higher-quality datasets for both training and 

evaluation. To address these limitations, future research will focus on improving the 

model’s applicability and performance. First, overcoming the dependency on specific 

environments and datasets will be crucial. Expanding the research scope to include a 

broader range of scenarios and data types, such as varying smart home configurations 

and more diverse user behavior data, will be essential to enhance the model's 

universality. Second, improving data quality and quantity is key to boosting predictive 

model performance. Future studies will incorporate larger and more reliable datasets for 

training and evaluation to ensure robust model performance across different contexts. 

Additionally, techniques like data augmentation may be explored to diversify and 

improve data quality, further enhancing the model’s generalization capabilities. Looking 

ahead, incorporating emerging AI algorithms, such as reinforcement learning and 

generative adversarial networks, will bolster the model’s adaptability and performance. 

These approaches will enable the model to better understand and respond to the 

dynamic nature of smart home environments. On the technological front, leveraging 

innovations like 5G networks and edge computing to optimize data transmission and 

processing is expected to improve real-time system responsiveness, thereby enhancing 

the user experience in smart home applications. Finally, conducting deeper studies into 

user behavior patterns will pave the way for more personalized and intelligent home 

management systems. By gaining a deeper understanding of user preferences and habits, 

the system will be able to proactively address user needs. This can ultimately enhance 

the overall intelligence and efficiency of smart home systems. 
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