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Abstract. This study explores the application of artificial intelligence (AI) and 

deep learning (DL) technologies in graduate education to promote the inheritance 

and development of the scientist spirit. This study employs a Long Short-Term 

Memory (LSTM) network to predict students' learning paths. Meanwhile, it 

constructs a DL-based personalized learning path and resource recommendation 

model by integrating a hybrid recommendation mechanism combining 

collaborative filtering and content-based filtering. The model inputs students' 

historical learning data and utilizes LSTM to capture long-term dependencies for 

predicting future learning activities. At the same time, it dynamically adjusts the 

learning rate through a reinforcement learning mechanism to optimize model 

performance. Additionally, this study introduces the Local Interpretable Model-

Agnostic Explanations (LIME) algorithm to enhance the model's interpretability, 

ensuring that educators can understand the model's decision-making logic. Model 

training employs cross-validation techniques, and Principal Component Analysis 

(PCA) is used for dimensionality reduction and feature selection to improve data 

processing efficiency. Experimental results demonstrate that the DL model 

significantly outperforms traditional models in personalized learning path 

prediction, resource matching efficiency, and student performance prediction. 

Particularly, the DL model has an accuracy of 92.5%, an F1 score of 91.8%, an 

Area Under the Receiver Operating Characteristic Curve value of 0.95, a user 

satisfaction rate of 89.2%, and a prediction bias of only -0.75%. Furthermore, 

through user satisfaction surveys and expert reviews, this study qualitatively 

analyzes the impact of AI and DL technologies on educational practices. This 

confirms their value in enhancing education quality and fostering a scientist spirit. 

The study concludes that AI and DL technologies can effectively optimize 

graduate education models and promote the inheritance of the scientist spirit. 

Moreover, these technologies can cultivate innovative capabilities and provide 

theoretical support and practical guidance for intelligent educational reform. 

Keywords: Artificial Intelligence, Deep Learning, Scientist Spirit, Graduate 

Education. 
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1. Introduction 

Against the backdrop of accelerating globalization and informatization, graduate 

education is undergoing profound transformations. It cultivates students' professional 

skills while shaping their research literacy and innovative capabilities. However, 

traditional graduate education models often emphasize systematic knowledge 

transmission while neglecting the cultivation of the scientist spirit. The scientist spirit 

encompasses not only a rigorous and truth-seeking research attitude but also a mindset 

of exploring the unknown, questioning authority, and daring to innovate [1-3]. 

Nevertheless, existing graduate training systems still exhibit shortcomings in fostering 

independent research capabilities, interdisciplinary integration, and the stimulation of 

innovative thinking. These lead to difficulties for some graduate students in initiating 

original research and independently solving complex problems [4, 5]. Hence, how to 

leverage modern technologies to optimize graduate education models and promote the 

effective inheritance of the scientist spirit has become a critical issue to address.. 

In recent years, the rise of artificial intelligence (AI) and deep learning (DL) 

technologies has provided new possibilities for personalized learning path 

recommendations, intelligent resource matching, and research capability assessment [6-

8]. AI technologies can optimize the allocation of educational resources based on big 

data analysis, enabling tailored teaching; DL technologies demonstrate exceptional 

capabilities in pattern recognition, text understanding, and intelligent decision-making 

[9-12]. However, despite the initial applications of AI and DL in education, current 

research still exhibits some gaps. First, existing studies primarily focus on the 

application of AI in knowledge transmission and intelligent assessment, overlooking its 

role in fostering a scientist spirit. Second, the effectiveness of personalized learning path 

recommendations in graduate education lacks systematic validation. Additionally, the 

mechanisms underlying AI-driven research capability prediction and the cultivation of 

scientific literacy remain unclear. 

This study proposes an intelligent education model based on AI and DL to address 

these research gaps. It aims to enhance graduate students' self-directed learning abilities 

and research literacy, accurately match high-quality learning and research resources, and 

optimize the efficiency of educational resource allocation. To achieve these objectives, 

this study trains and evaluates various DL models' performance based on a large-scale 

dataset of graduate student learning behaviors and validates the personalized path 

recommendations' effectiveness through experiments. Furthermore, by combining user 

satisfaction surveys and expert reviews, this study conducts quantitative and qualitative 

analyses of the impact of AI and DL technologies on educational practices. 

Experimental results demonstrate that, compared to traditional teaching models, the 

proposed AI-driven approach significantly outperforms baseline models in personalized 

learning path planning, resource matching efficiency optimization, and research 

capability prediction. Thus, it effectively enhances graduate students' research literacy 

and promotes the cultivation of a scientist spirit. 

The contributions of this study are as follows: 

 It proposes a personalized learning path prediction and resource 

recommendation method based on AI and DL to fill the research gap in 

cultivating a scientist spirit in graduate education. 
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 This study develops the prediction mechanism of scientific research ability and 

provides quantitative analysis tools for colleges and universities to optimize the 

talent training program. 

 Through experimental verification and user feedback, this study systematically 

evaluates the application value of AI and DL technology in graduate education, 

providing theoretical support and practical guidance for intelligent education 

reform. 

2. Literature Review 

2.1. Application Status of AI and DL in Graduate Education 

In recent years, the application of AI and DL in higher education has attracted 

widespread attention. AI technologies have been utilized in the intelligent tutoring 

system (ITS), adaptive learning platforms, and academic behavior analysis, among other 

areas [13-15]. Among these, DL technology, due to its powerful data processing 

capabilities, demonstrates significant potential in personalized learning path 

recommendation, learning resource matching, and the assessment of students' research 

capabilities. Guettala et al. (2024) explored the application of generative AI in education 

and proposed an AI-based adaptive personalized learning system. Their research 

revealed that generative AI could optimize course design and learning paths in graduate 

education, enhancing the adaptability of teaching and the autonomy of learners [16]. 

Pratama et al. (2023) analyzed the role of AI in personalized learning, emphasizing AI-

driven real-time learning analytics and intelligent feedback mechanisms. Their study 

showed that DL models could dynamically adjust teaching strategies, enhancing the 

individualized experience in graduate education and improving learning efficiency and 

outcomes [17]. Yılmaz (2024) investigated the application of AI in personalized 

learning for science education, reviewed current technological advancements, and 

outlined future trends. Their research indicated that AI-supported intelligent 

recommendation systems and adaptive assessments could optimize graduate education 

content, improve learning outcomes, and promote the development of intelligent 

education [18]. 

2.2. Research Status of Personalized Learning and Intelligent Resource 

Recommendation (IRR) 

Personalized Learning Path Prediction (PLPP) aims to construct optimal learning paths 

based on students' learning behavior data to enhance learning efficiency and research 

capabilities. Traditional methods primarily rely on rule-based matching or collaborative 

filtering (CF) approaches. For example, Tang et al. (2020) proposed a CF-based 

personalized recommendation system that could predict optimal courses based on 

students' historical learning behaviors [19]. However, these methods exhibited 
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limitations when handling high-dimensional and dynamically changing data. Over the 

years, DL methods have been widely applied in PLPP. Tapalova et al. (2022) studied 

the application of AI in personalized learning paths and proposed an intelligent 

recommendation system based on AI education (AIEd). Their research demonstrated 

that DL algorithms could dynamically adjust learning content, improve the accuracy of 

path prediction, and enhance learner experience and learning outcomes [20]. Essa et al. 

(2023) systematically reviewed machine learning-based personalized adaptive learning 

technologies, focusing on the analysis of different learning style recognition methods. 

Their study found that DL models could optimize learning path prediction, improve 

teaching adaptability, and effectively enhance learner engagement and outcomes [21]. 

Kanchon et al. (2024) explored AI-driven personalized learning models and proposed a 

DL-based learning style recognition and content adaptive optimization strategy. Their 

research demonstrated that AI could accurately identify learner needs and dynamically 

adjust learning paths, improving the intelligence and precision of personalized education 

[22]. 

IRR is a key technology for enhancing learning experiences and research efficiency, 

and numerous scholars have conducted related research. Gm et al. (2024) reviewed the 

development of personalized learning recommendation systems and discussed the 

application of AI in online education. Their research demonstrated that DL-driven 

resource recommendation systems could dynamically adjust learning materials based on 

learner behaviors and preferences, improving learning efficiency, adaptability, and 

personalized learning experiences [23]. Lokare et al. (2024) proposed an AI-based 

learning style prediction model that utilized DL to analyze learner characteristics and 

optimize intelligent learning resource recommendations. Their study showed that the 

model could effectively match individual learning needs, improve recommendation 

accuracy, and provide more intelligent support for personalized teaching [24]. 

2.3. Research Gaps and Innovations 

In summary, although AI and DL technologies exhibit great potential in graduate 

education, current research still faces the following shortcomings. (1) Existing PLPP 

methods lack optimization for cultivating graduate students' research capabilities, 

making it difficult to effectively support the development of scientist spirit; (2) IRR 

systems lack sufficient personalization, hindering precise adaptation to different research 

backgrounds and resulting in low efficiency in learning resource matching; (3) Research 

capability prediction methods still face bottlenecks in cross-disciplinary adaptability and 

long-term predictive abilities, making it challenging to meet the individualized 

development needs of graduate students. To address these challenges, this study 

proposes an AI- and DL-based PLPP model to optimize graduate education models and 

enhance the cultivation of a scientist spirit. 
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3. Research model 

3.1. Theoretical Analysis of DL Models 

DL models have demonstrated significant advantages and potential in graduate 

education, particularly in personalized learning path prediction and intelligent resource 

recommendation systems [25-27]. This section provides a theoretical analysis of DL 

models, emphasizing their architecture, learning capabilities, and generalization 

potential. Figure 1 illustrates the architecture of a DL model. 

Input layer Hidden layer

LSTM unit

Input gate

Forgotten gate

Output gate

Update memory cells

Update memory cells

Update hidden state

Output layer

 

Fig. 1. Architecture of a DL model 

1) Model Architecture: The core strength of DL models lies in their hierarchical 

architecture, which enables them to automatically learn complex feature representations 

from raw data. In the context of graduate education applications, the model typically 

comprises an input layer, multiple hidden layers, and an output layer [28]. The input 

layer processes various types of learning data from students, including course grades, 

study duration, and interaction records. The hidden layers perform sophisticated data 

transformations through the connections between neurons, extracting high-level abstract 

features. For example, in personalized learning path prediction, Long Short-Term 

Memory (LSTM) networks can capture temporal dependencies and understand the 

dynamic evolution of student learning behaviors. In intelligent recommendation systems, 

Convolutional Neural Networks (CNNs) can process image or text data to uncover 

intrinsic relationships within course materials [29-31]. 

2) Learning Capabilities: DL models exhibit powerful learning capabilities, 

enabling them to process large-scale datasets and autonomously identify patterns and 

regularities within the data. This ability arises from the model's nonlinear 

transformations, which allow it to approximate complex function mappings and solve 

classification and regression problems in high-dimensional spaces. In graduate 

education, DL models can discern individual differences in students' learning histories, 

facilitating the customization of learning plans for each student. Additionally, these 

models can predict students' future academic performance, assisting educators with early 

intervention and the optimization of teaching strategies [32-35]. 

3) Generalization: The generalization ability of DL models refers to their capacity 

to maintain high performance on unseen data. To enhance generalization, it is essential 
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to avoid overfitting, where the model performs well on training data but struggles with 

new, unseen data. In the context of graduate education, generalization can be effectively 

improved through techniques such as regularization (such as L1/L2 regularization), 

Dropout, data augmentation, and thoughtful model architecture design. These methods 

ensure that the model can accurately predict the learning behaviors of new students or 

make appropriate recommendations for unfamiliar course resources [36-38]. 

3.2. Model Design 

The LSTM network is employed to predict students' learning paths and facilitate the 

development of personalized learning plans. A DL-based recommendation engine is 

created, utilizing a hybrid approach that combines CF and content-based (CB) filtering 

to recommend the most suitable educational resources for students. The model is trained 

using cross-validation techniques, with hyperparameters optimized to enhance 

performance. Several evaluation metrics, including accuracy, recall, F1 score, and Mean 

Squared Error (MSE), are employed to assess the model's predictive capabilities and the 

precision of the recommendation system. 

Feedback from both students and instructors is collected through surveys and user 

testing to continually refine and enhance the model and system. Figure 2 illustrates the 

detailed computational process of the DL model. 

LSTM unit
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Information 

flow control

Information 

flow control

Information 
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Predictive learning activity

Collaborative 
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Content based 
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Forgotten gate

Output gate
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Fig. 2. Specific computational flow of the DL model 

The specific computational process of the DL model is as follows: 

Input Layer: Receives the student's learning history, encoded as time-series data [39]. 

Hidden Layer: The LSTM unit captures long-term dependencies. Each unit consists 

of an input gate, a forget gate, and an output gate, which regulate the flow of information 

[40]. 

Output Layer: Predicts the next course or learning activity that the student is most 

likely to select [41]. 
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Let the learning behavior dataset be  1 2, , , tX x x x L , where xi represents the feature 

vector of the ith student. The study uses Principal Component Analysis (PCA) for 

dimensionality reduction, which can be expressed as equation (1): 

Z XW  (1) 

  represents the dataset after dimensionality reduction through PCA, and W is the 

feature vector matrix. The top k eigenvectors corresponding to the largest eigenvalues 

are obtained using Singular Value Decomposition (SVD) to enhance data 

interpretability. 

PLPP employs a dual-layer LSTM structure, where the first layer captures students' 

short-term learning preferences and the second layer models long-term trends. 

hi refers to the hidden state at time t; xi represents the input vector. The calculation of 

LSTM is as follows: 

 1t i t i t ii W x U h b     (2) 

 1t f t f t ff W x U h b     
(3) 

 1t o t o t oo W x U h b     (4) 

 1 1tanht t t t c t c t cc f c i W x U h b    e  (5) 

 tanht t th o c e  (6) 

it, ft, ot, ct, and ht represent the input gate, forget gate, output gate, cell state, and 

hidden state, respectively. σ means the sigmoid activation function; W and U are the 

weight matrices; b is the bias term; tanh refers to the hyperbolic tangent activation 

function; ⊙ denotes the element multiplication (Hadamard product). 

Subsequently, the final hidden state  is used as input to predict the next learning 

activity. A fully connected layer and an activation function (softmax) are then applied to 

generate a probability distribution for predicting the next learning activity. This process 

enables the model to learn patterns in student learning behavior, facilitating personalized 

learning path recommendations. 

To optimize the training process of the model, a reinforcement learning (RL) 

mechanism is introduced, and the learning rate is adjusted through the policy gradient 

method. If the parameters of the policy network are θ and the policy function is 

 |t ta s
, then the goal is to maximize the expected return  J  , which can be 

written as equation (7): 

 
1

T

t

t

J E R





 
  

 
  

(7) 



1236           Peixia Li and Zhiyong Ding 

 

 

Rt refers to the reward of time step t. Gradient updating follows the policy gradient 

theorem, as shown in equation (8): 

   
1

log |
T

t t t

t

J E a s R   


 
   

 
  

(8) 

By continuously adjusting the learning rate, RL strategies can dynamically optimize 

the learning rate based on the training state, improving the model's convergence speed 

and performance. 

In terms of enhancing model interpretability, the Local Interpretable Model-Agnostic 

Explanations (LIME) algorithm is used to improve the transparency of the DL model. 

LIME explains model prediction by performing linear approximation within local 

neighborhoods, and its optimization objective Q  is as follows: 

( ) ( )argmin , , x
g G

Q L f g g


   (9) 

f refers to the original model; g means the local explanatory model; G represents the 

space of all possible linear models; L denotes the model fitting loss function; 
x

 is the 

local neighborhood weight; Ω(g) indicates the model complexity regularization term. 

Through LIME, educators can understand the decision-making logic of the model and 

increase trust in personalized learning path recommendations. Additionally, 

regularization techniques and cross-validation are integrated into the model design. 

Regularization methods are applied during the training process to prevent overfitting 

and enhance the model's generalization ability on unseen data. Cross-validation and 

hyperparameter optimization techniques are further utilized to ensure stable model 

performance across diverse datasets. This approach builds educators' trust in the model's 

recommendations, which is crucial for achieving personalized learning and improving 

educational quality. 

Furthermore, recognizing the impact of different disciplines and educational levels on 

the model's effectiveness—particularly given that some fields may prioritize quantitative 

analysis while others may emphasize qualitative approaches—the model is designed to 

be modular and configurable. This design provides flexibility, allowing educators to 

adjust and optimize the model according to the specific needs of their disciplines. A set 

of pluggable feature extraction and processing components is developed, enabling 

educators to select or create components that align with their teaching objectives and 

subject characteristics. Moreover, the model's hyperparameters and algorithm 

configurations can be tailored based on disciplinary characteristics to achieve optimal 

personalized learning path recommendations. This adaptability ensures that the model 

can meet the analytical needs of various disciplines, adjusting to diverse learning 

objectives and motivations across different educational levels, thus providing effective 

personalized learning support in varied educational environments. 

In the practical application of the model, consider a graduate student named Tom, 

whose objective is to enhance his research capabilities in the field of machine learning. 

The model will create a personalized learning path for Tom, leveraging multi-source 

data that includes his historical learning behaviors, course grades, participation in 

research projects, forum post content, and conference attendance records. Initially, 
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Tom's learning data undergoes cleaning and standardization, including the removal of 

erroneous or inconsistent records, addressing missing values, and converting textual data 

into Term Frequency-Inverse Document Frequency (TF-IDF) representations. To 

mitigate class imbalance issues, diversity enhancement techniques are applied, ensuring 

that the model effectively learns the features of all categories. The input layer then 

processes Tom's historical learning behavior data, which includes previously enrolled 

courses, completed assignments, and discussions participated in. The LSTM layer 

captures the temporal characteristics of this data to predict the next learning activities 

Tom is likely to engage in. For example, if Tom has recently interacted with papers and 

courses related to deep learning, the model may predict that his next area of interest will 

be reinforcement learning. After predicting Tom's potential learning path, the hybrid 

recommendation engine combines CF and CB filtering methods to suggest the most 

relevant educational resources. The CF component considers resources chosen by 

students with similar learning behaviors, while the CB filtering component selects 

materials from the resource repository based on Tom's learning interests and goals. 

Ultimately, the model generates a personalized learning plan for Tom, comprising a 

range of resources, including courses, research papers, and projects. 

4. Experimental Design and Performance Evaluation 

4.1. Dataset Collection 

This study meticulously constructs a comprehensive and multi-dimensional graduate 

education dataset to support the training and validation of DL models. The dataset's 

collection and preprocessing are critical initial steps that directly influence the reliability 

and validity of subsequent experiments. The data in this study are primarily sourced 

from the following three channels during the period from September 2023 to July 2024: 

1) Online learning platform records: These include students' login times, course 

viewing frequencies, assignment submission records, forum interactions, and quiz 

scores. These data reflect students' learning behaviors and engagement levels. 

2) Academic performance records: These encompass graduate students' 

publication histories, participation in research projects, and conference attendance 

records. These records provide a basis for assessing students' research capabilities and 

academic achievements. 

3) Personal background information: These involve students' basic demographic 

information, academic backgrounds, and research interest areas. These data are used to 

build student profiles, serving as the foundation for personalized learning path 

recommendations. 

By collecting the above-structured and unstructured data, the dataset is enriched. 

Structured data, such as grades, login times, and the number of publications, are easily 

quantifiable and convenient for model processing. Unstructured data include text data 

from student forum posts, course reviews, and paper abstracts, as well as multimedia 

data such as conference presentation videos and course recordings. These unstructured 
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data require additional preprocessing to convert them into formats suitable for model 

processing. The implementation process of data preprocessing is detailed in Table 1: 

Table 1. The implementation process of data preprocessing 

Data 

preprocessing 

phase 

Specific activity Objectives 

Data cleaning 

Removing or correcting inconsistent or 

erroneous records 

Ensuring the accuracy and consistency of 

data 

Handling missing values 
Avoiding the impact of missing values on 

model training 

Data balancing 
Applying oversampling and 

undersampling techniques 

Addressing the issue of class imbalance and 

improving the model's generalization ability 

Data augmentation 

Adding noise or applying 

transformations to generate new data 

points 

Simulating learning modes under different 

student backgrounds and educational 

environments 

Feature 

engineering 

Converting text data to TF-IDF 

representation 

Converting text data into a numerical format 

suitable for model processing 

Converting time series data to sliding 

window format 

Making time series data suitable for model 

processing such as LSTM 

Tag encoding 
Converting categorical data into 

numerical codes 

Making classification data suitable for 

model processing 

Data 

standardization 

Using Z-score standardization or 

minimum maximum scaling 

Ensuring that all features are on the same 

scale to avoid feature bias 

Feature selection 
Selecting the most relevant features for 

learning path prediction 

Reducing noise and irrelevant features to 

improve model performance 

Feature 

dimensionality 

reduction 

Using PCA and other methods to 

reduce feature dimensionality 

Reducing computational complexity and 

improving model training efficiency 

Outlier handling Identify and handle outliers 
Preventing the impact of outliers on model 

training and prediction results 

Finally, the dataset is partitioned into training, validation, and testing sets, with 70%, 

15%, and 15% of the data allocated to each, respectively. This partitioning ensures 

proper training and performance evaluation of the model. In terms of data privacy and 

ethics, anonymization processing, obtaining consent for data use, and implementing data 

security measures should be strictly observed to protect student privacy and ensure 

research compliance. 

4.2. Experimental Environment and Parameters Setting 

To ensure the reproducibility of the experiments and the validity of the results, this 

section provides a comprehensive overview of the experimental setup, including 

hardware configuration and key parameter settings. The aim is to offer a clear and 

transparent reference framework for future research. The experiments were developed 

using Python 3.8, primarily leveraging TensorFlow 2.5 and the Keras library. The 

LSTM units included 128 hidden units, with a dropout rate of 0.2 to mitigate the risk of 

overfitting. During model training, the Adam optimizer was employed with an initial 

learning rate of 0.001. 

Table 2 shows the hardware configuration. 
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Table 2. Hardware configuration 

Configuration Name Description 

Central Processing Unit 

(CPU) 

Intel Xeon E5-2690 v4 @ 2.60GHz x 24, providing robust computational 

power to accelerate data processing and model training. 

Graphics Processing Unit 

(GPU) 

NVIDIA Tesla V100-SXM2-16GB, equipped with high-bandwidth memory 

and numerous CUDA cores, enabling efficient parallel computations for DL 

algorithms. 

Memory (RAM) 
128GB DDR4 ECC, ensuring rapid read and write operations and efficient 

caching for large datasets. 

Storage 
2TB NVMe SSD, offering high-speed data access for storing raw datasets 

and intermediate processing results. 

Table 3 displays the parameter settings. 

Table 3. Parameter settings 

Parameter Description 

Model Architecture 

Parameters 

The LSTM layer comprises 128 units, with a dropout rate of 0.2 to reduce 

overfitting. 

Optimizer Parameters 
The Adam optimizer is utilized with a learning rate of 0.001. Beta values are set 

to β₁ = 0.9, β₂ = 0.999, and epsilon = 1e-08. 

Training Parameters 

The batch size is set to 32, with a maximum of 100 epochs. Early stopping is 

applied based on validation set loss, halting training after 10 consecutive epochs 

with no improvement. 

Regularization 

Parameters 

The L2 regularization coefficient is set to 0.0001 to penalize weight matrix size 

and prevent excessive model complexity. 

4.3. Performance Evaluation 

A) Model Performance Evaluation. 

The performance of the constructed model is evaluated using multiple metrics. Figure 3 

illustrates the results. 
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Fig. 3. Model performance evaluation 

The evaluation demonstrates that the DL model consistently outperforms the baseline 

model across nearly all metrics, including accuracy, F1 score, and Area Under the 

Receiver Operating Characteristic Curve (AUC-ROC). These findings highlight the 

clear superiority of the DL model in predicting personalized learning paths and 

providing intelligent resource recommendations for graduate education. 

B) User Satisfaction Analysis for Personalized Learning Path Recommendations 

User satisfaction with the personalized learning path recommendations is also 

analyzed, with results depicted in Figure 4. 
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Fig. 4. User satisfaction analysis for personalized learning path recommendations 

The analysis reveals that the baseline model exhibits relatively low user satisfaction, 

as indicated by a substantial proportion of users reporting "neutral" or lower satisfaction 

levels. This suggests that the baseline model may not effectively address user needs. 

Conversely, the DL model demonstrates a significant enhancement in user satisfaction, 
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with the majority of users indicating they are "very satisfied" or "satisfied." This 

improvement reflects the model's ability to deliver a higher level of personalization in its 

recommendations, ultimately leading to a more positive user experience. 

C) Comparison of Model Predictions with Actual Student Performance 

A comparison between the model's predictions and students' actual performance is 

presented in Figure 5. 
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Fig. 5. Comparison of model predictions with actual student performance 

The results indicate that the average predicted score generated by the model is 79.2, 

while the average actual score is 79.8. This suggests that the model slightly 

underestimates students' actual performance, with an average percentage difference of -

0.75%. Although the model demonstrates a minor negative bias, the small magnitude of 

the discrepancy highlights its high accuracy in predicting student performance. 

D) Performance Metrics of the DL Model Across Different Disciplines 

The performance metrics of the proposed DL model across various academic 

disciplines are depicted in Figure 6. 
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Fig. 6. Performance metrics of the DL model across different disciplines 

The analysis reveals that the model achieves its best performance in mathematics, 

likely due to the well-structured and less ambiguous nature of mathematical data, which 

facilitates the model's learning process. In contrast, the model's performance in social 

sciences is slightly lower, potentially reflecting the inherent complexity and variability 

of data in this field. The performance in biology and physics is similar but slightly lower 

than in mathematics, possibly due to the intricate concepts and data uncertainties 

characteristic of these disciplines. For all disciplines, the F1 score is closely aligned with 

accuracy and recall, indicating a balanced performance in classification tasks. 

E) Trend of Model Prediction Accuracy Over Time 

The trend of prediction accuracy for the proposed DL model over time is illustrated 

in Figure 7. 

The results in Figure 7 reveal a consistent improvement in the accuracy of the DL 

model over successive time periods, while the baseline model demonstrates a slower rate 

of progress. This trend underscores the advantages of the DL model in leveraging 

additional data and feedback for continuous optimization. The percentage increase in 

performance for the DL model grows progressively each semester, which can be 

attributed to its ability to capture and learn from long-term trends and patterns in student 

performance. This gradual enhancement reflects the model's capacity to adapt and 

improve as more data becomes available, further validating its robustness and 

scalability. 
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Fig. 7. Trend of model prediction Accuracy over time 

4.4. Discussion 

The experimental findings underscore the transformative potential of DL technology in 

graduate education while fostering a critical examination of current educational theories 

and practices. Through a comparative analysis of the DL model's performance with 

traditional approaches documented in prior research, several important insights have 

emerged: 

1) Effectiveness of Personalized Learning Pathways: 

The DL model's high accuracy and user satisfaction in predicting personalized 

learning pathways highlight its ability to effectively identify students' learning needs and 

preferences, enabling more precise educational resource recommendations. This result 

aligns with the work of Ginja et al. (2020) in educational psychology, which emphasizes 

the importance of differentiated instruction tailored to the unique characteristics of each 

student [42]. However, the proposed method in this study demonstrates a superior 

capacity for capturing individual differences and specific learning requirements, thereby 

surpassing conventional techniques. 

2) Insights into Disciplinary Variations: 

The analysis of model performance across various disciplines revealed that the DL 

model performs best in mathematics, with relatively lower performance in social 

sciences. This observation resonates with the findings of English (2022), who explored 

the intrinsic characteristics of academic disciplines [43]. Quantitative fields like 

mathematics, characterized by well-structured and organized data, are inherently more 

conducive to model learning. Conversely, qualitative disciplines such as social sciences 

present challenges due to their inherent complexity and subjectivity. 

3) Improvements in Time Series Analysis: 

The gradual enhancement in the model's predictive accuracy over time underscores 

the advantages of DL techniques in analyzing time series data. This observation is 
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consistent with the trends discussed by Okewu et al. (2021) in the context of educational 

data mining, which highlight the capability of DL models to improve predictions 

through iterative learning and optimization [44]. Compared to traditional approaches, 

the method proposed in this study demonstrates superior efficiency in filtering and 

recommending educational resources tailored to students' evolving needs. 

Thus, the primary distinction between the algorithm proposed in this study and other 

state-of-the-art algorithms lies in its integration of the dual advantages of DL and RL. 

Meanwhile, the LIME algorithm is introduced to achieve higher precision, adaptability, 

and interpretability in PLPP and resource recommendation. Compared to traditional CF 

or rule-based methods, the proposed algorithm captures long-term dependencies in 

students' learning behaviors through an LSTM network. This algorithm enables a more 

accurate prediction of students' learning paths with an accuracy of 92.5%, significantly 

outperforming existing methods. Furthermore, traditional educational models struggle to 

precisely match students' learning needs with research resources, leading to low learning 

efficiency. In contrast, this study captures long-term dependencies in students' learning 

behaviors through an LSTM network and combines it with a hybrid recommendation 

mechanism of CF and CB filtering. This remarkably improves the precision of resource 

matching, with a resource recommendation accuracy of 93.4%, addressing the issue of 

uneven resource allocation. Compared to algorithms relying solely on DL, this study 

dynamically adjusts the learning rate through RL, optimizing the model's convergence 

speed and prediction performance, with a prediction bias of -0.75%, outperforming 

other algorithms. More importantly, this study enhances the model's interpretability 

through the LIME algorithm. This enables educators to understand the model's decision-

making logic and address the trust issues associated with traditional "black-box" models 

in educational applications. Consequently, the proposed algorithm outperforms existing 

methods in performance. Also, it exhibits significant advantages in cross-disciplinary 

adaptability, long-term prediction capabilities, and interpretability, offering a more 

intelligent and transparent solution for graduate education. 

The potential long-term impacts of the proposed model's algorithm on students' career 

development and research skills highlight its capacity to align learning experiences with 

individual academic and career objectives. By providing personalized learning pathways 

and resource recommendations, the DL model enables students to acquire skills more 

effectively, improving both learning efficiency and satisfaction. This tailored 

educational approach offers students clearer career guidance by identifying their 

interests and strengths at an early stage. Additionally, the model's accurate predictions of 

academic performance provide educators with actionable insights, facilitating timely 

interventions to address academic challenges. Such support enhances students' research 

capabilities and problem-solving skills. Over time, this data-driven, personalized 

education methodology may significantly influence students' career trajectories, bolster 

their innovation capabilities, and increase their competitiveness in research fields. These 

findings offer empirical evidence supporting personalized education and valuable 

guidance for educators and policymakers seeking to leverage DL technologies to 

promote holistic student development. 

While the study primarily focuses on student outcomes, it also underscores the 

essential role educators play in the educational process. The insights generated by the 

model enable educators to better understand students' learning behaviors and needs, 

allowing for more targeted and effective instructional decisions. The predictive and 
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analytical capabilities of the model assist in monitoring student progress, identifying 

those who may require additional support, and enhancing the overall efficiency of 

instruction. Furthermore, these tools facilitate the optimized allocation of resources to 

meet diverse learning needs. As educators become more familiar with and trust DL 

models, they can utilize these technologies to refine their instructional strategies in a 

data-driven manner, thereby improving educational quality. This study not only 

transforms the learning experience for students but also provides educators with a 

platform to integrate advanced educational technologies into their teaching practices. By 

offering new perspectives and tools for professional development, the study emphasizes 

the dual impact of DL models: enhancing student learning outcomes and advancing 

educators' instructional methods and professional growth. 

Although this study focuses on the student experience, it acknowledges the vital role 

of educators in the educational process. Educators can utilize the insights provided by 

the model to gain a deeper understanding of students' learning behaviors and needs, 

facilitating more targeted instructional decisions. Furthermore, the model's predictive 

and analytical tools support educators in tracking student progress and promptly 

identifying those requiring additional assistance. This enhancement improves 

instructional efficiency and enables more effective allocation of resources to meet 

students' specific learning needs. As educators become increasingly familiar with and 

confident in the use of DL models, these tools can be employed to optimize instructional 

strategies in a data-driven manner, ultimately elevating educational quality. This study 

provides educators with a platform to integrate advanced educational technologies, 

offering new perspectives and tools for professional development and teaching practices. 

Consequently, DL models not only transform the learning experiences of students but 

also positively influence educators' teaching methods and professional growth. 

When integrating AI technologies into education, several critical considerations must 

be addressed to ensure their effective and ethical application. First, regarding the 

potential dependency of students on the system, it is crucial to position educational 

technology as a complementary tool that enhances, rather than replaces, students' active 

learning and independent thinking. To mitigate the risk of over-reliance, educators 

should design curricula and activities that encourage students to critically evaluate and 

thoughtfully apply the model's recommendations. Educators should also guide students 

in understanding the limitations of AI-driven tools, fostering the ability to discern when 

and how to effectively utilize these suggestions within their learning contexts. Second, 

the current DL model evaluates student performance primarily based on academic data. 

Future iterations should expand to include additional data types, such as student 

engagement metrics, feedback, and self-assessments, to develop a more comprehensive 

learning profile. Incorporating these elements will better address students' personalized 

needs and provide a holistic understanding of their learning journeys. Concurrently, 

educators must acknowledge the importance of these non-academic factors and 

proactively provide interventions and support to facilitate students' overall development. 

Third, achieving a balance between quantitative and qualitative indicators is essential. 

An excessive focus on quantitative metrics risks overlooking critical qualitative 

dimensions of learning, such as creativity, emotional intelligence, and interpersonal 

skills, which are fundamental to students' holistic development yet challenging to 

quantify. Future evaluations of learning outcomes should adopt a multidimensional 

approach, combining quantitative indicators with qualitative measures, including student 
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self-reports, peer evaluations, and educator observations. Such an approach will provide 

richer insights into students' personal and social competencies, enabling a more nuanced 

understanding of their growth and achievements. By adopting this comprehensive 

assessment framework, educational practices can better support the multifaceted 

development of students, fostering their academic success, personal growth, and social 

adaptability in an increasingly complex and interconnected world. 

Graduate education typically prioritizes the development of independent research and 

innovation skills, while undergraduate education focuses on building foundational 

knowledge and exploring academic interests. Despite the distinct learning and research 

objectives at these two educational levels, the findings of this study offer valuable 

insights for enhancing undergraduate education. The application of DL models in 

designing personalized learning pathways and resource recommendations has significant 

potential to boost undergraduate students' motivation, support them in identifying and 

exploring their academic interests, and establish a solid foundation for their future 

academic and career trajectories. Adapting the model to the specific characteristics of 

undergraduate education is essential to achieve these outcomes. Methodologies and 

insights from this study can effectively support the modernization and personalization of 

undergraduate education through targeted customization and further investigation. 

Future research will focus on tailoring the proposed framework and tools to align with 

the learning needs and objectives of undergraduate students. Additionally, the 

effectiveness of these adaptations will be evaluated with respect to various learning 

motivations and educational goals, ensuring that the approach provides meaningful and 

impactful support for undergraduate learners. 

5. Conclusion 

5.1. Research Contribution 

This study highlights the innovative application of DL technology in graduate education, 

demonstrating its significant effectiveness in personalized teaching, student performance 

prediction, and intelligent resource recommendation. By integrating advanced DL 

techniques, particularly LSTM networks and CNNs, the accuracy of personalized 

learning path predictions is notably enhanced, and the quality of educational resource 

recommendations is significantly improved. More importantly, this approach not only 

optimizes students' learning efficiency but also fosters the development of their 

innovative abilities. As such, the study provides new perspectives and tools for the 

modernization of graduate education, offering tangible benefits for both educators and 

students. 
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5.2. Future Works and Research Limitations 

Looking ahead, further exploration of the potential of DL technology in interdisciplinary 

education is recommended, with a focus on evaluating its impact on the long-term career 

development of graduate students. Additionally, addressing data ethics and privacy 

protection concerns is crucial to ensure that technological advancements align with 

educational fairness and respect for student rights. Despite its contributions, this study 

acknowledges several limitations, including data bias, the "black box" nature of certain 

models, and the high computational costs involved. Future research should aim to 

improve model transparency, resource efficiency, and data representativeness, with the 

goal of fostering a more equitable, efficient, and responsible educational technology 

ecosystem. 
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