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Abstract. In response to the growing demand for intelligent solutions in urban 

planning, this study constructs a deep learning-based framework for generating 

intelligent urban morphology, effectively addressing pressing real-world 

challenges. At the outset, the study explores the core concepts of green and 

ecological principles within the evolution of contemporary urban forms, 

establishing a robust theoretical foundation for subsequent investigations. The 

study provides a detailed explanation of the practical application paradigms of 

deep learning, encompassing meticulously selected technical methodologies, 

carefully designed algorithmic structures, and an optimized parameter 

configuration system. Together, these elements form a comprehensive 

technological application framework. An innovative application of convolutional 

neural networks is introduced for the in-depth analysis and processing of urban 

street imagery. This advancement enables critical urban planning functions, 

including road network design, detailed analysis of building distributions, 

optimization of public facility layouts, and dynamic traffic flow analysis. These 

capabilities address the key limitations of traditional planning methods by 

enhancing intelligent analysis and precise decision-making. To evaluate the 

model's performance quantitatively, a systematic testing scheme is developed and 

implemented, covering various scenarios, including daytime and nighttime 

conditions. This approach ensures a comprehensive assessment of the precision 

and effectiveness of each functionality. The core significance and contributions of 

this study are encapsulated in its empirical findings. The proposed model achieves 

accuracy and fit metrics exceeding 93% across all testing dimensions, 

representing a significant advancement that provides robust and targeted support 

for urban planning practices. By integrating deep learning technologies into the 

intelligent urban morphology generation framework, the study successfully 

implements critical functions such as efficient road network planning and 

scientific analysis of building distributions. Furthermore, the study introduces 

cutting-edge technological tools and innovative methodologies to the urban 

planning discipline, advancing the development of intelligent urban planning. Its 

contributions are of profound value in both theoretical innovation and practical 

application, offering transformative potential for the field. 
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1. Introduction 

With the rapid development of Artificial Intelligence (AI) technology, Deep Learning 

(DL) has made significant achievements in various fields, particularly in image 

recognition and natural language processing [1]. The acceleration of urbanization has 

brought increasingly complex challenges to urban planning and design. How to utilize 

advanced technologies to achieve more scientific, efficient, and sustainable urban 

development has become an important research topic. Against this backdrop, DL, with 

its exceptional capabilities in data analysis and pattern recognition, has gradually gained 

widespread attention in the field of urban planning. However, applying DL to the 

intelligent generation of urban forms remains a relatively novel and exploratory 

research direction. Although research in this area is still in its early stages globally, 

some noteworthy preliminary results have been achieved [2]. For example, several 

studies have used DL technology to process and analyze urban datasets, extract valuable 

features, and generate urban forms that adhere to specific design principles [3]. These 

exploratory studies provide valuable experience and a foundation for further 

applications of DL in the intelligent generation of urban forms. 

Despite its potential in this field, DL faces many challenges and limitations in this 

field [4]. First, the acquisition and processing of urban data presents significant 

difficulties. Urban data spans multiple disciplines and fields, and its accuracy and 

completeness profoundly impact the quality of generated urban scenarios [5]. 

Additionally, the implementation of DL methods requires specialized knowledge and is 

highly dependent on high-performance computing resources [6]. Furthermore, the 

decision-making process of DL models often lacks transparency, making it difficult to 

interpret the generated urban forms [7]. Lastly, the intelligent generation of urban forms 

also involves ethical and privacy concerns, necessitating greater attention to data 

security and user privacy protection [8]. To address the challenges in intelligent urban 

form generation, this study explores the application of DL technology and analyzes its 

advantages, challenges, and future development prospects. A key feature of this study is 

the introduction of a new algorithm. Compared to existing advanced algorithms, this 

algorithm can not only process one-dimensional urban data analysis but also effectively 

tackle complex urban scenarios. Specifically, the proposed algorithm integrates various 

advanced technologies, showing stronger adaptability and accuracy when handling 

heterogeneous urban data, and performs excellently in dynamic urban environments. 

Through a comprehensive study of DL applications in urban form generation, this study 

aims to provide innovative tools and methods for urban planners and designers, thereby 

promoting the digital transformation and innovative development of urban planning. 

Against the backdrop of accelerating urbanization and the increasingly complex and 

diverse demands of urban planning and design, this study is committed to addressing 

the key issue of how to effectively apply DL technology to achieve intelligent urban 

form generation. It analyzes the numerous advantages, primary challenges, and future 

development trends of DL in practical applications, aiming to provide valuable insights 

and contributions to the field. The specific objectives of this study are as follows: 
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(1) Comprehensive analysis of DL principles and application mechanisms: This 

study thoroughly analyzes the principles and application mechanisms of DL technology 

in urban form generation. It details the core algorithms and model architectures, laying a 

theoretical foundation for future research. 

(2) Systematic summary of key insights and effective methods: Although the 

application of DL technology in urban planning is still in the exploratory phase, this 

study systematically reviews relevant application cases, and summarizes common 

patterns and effective methods for driving urban form generation using DL. 

(3) Filling theoretical gaps: By integrating and analyzing existing research outcomes, 

this study aims to fill the theoretical gaps in the application of DL in urban planning and 

provide new research directions and theoretical support for the academic community. 

(4) Empowering urban planning practices: The findings of this study not only make 

theoretical contributions but also provide urban planners with scientific evidence and 

innovative strategies, supporting the digital and sustainable transformation of urban 

development. 

By achieving these objectives, this study aims to promote the deep integration of DL 

in urban form generation, foster innovation in urban planning practices, and enrich the 

theoretical and practical dimensions of the field. A major contribution of this research is 

the introduction of an innovative approach that has significant advantages over existing 

advanced algorithms. Current mainstream algorithms typically follow a single technical 

path, which struggles to handle the complexity of urban data and the variability of 

dynamic scenarios. For instance, some algorithms excel at processing structured data 

but perform poorly with unstructured data, while others excel in static scene analysis but 

struggle to adapt to rapidly changing urban environments. In contrast, the approach 

proposed integrates multi-source heterogeneous data processing techniques, dynamic 

adaptive learning strategies, and cross-domain knowledge fusion models. This enables it 

to break through data type barriers and uncover potential relationships between different 

data sources. Whether processing geographic spatial information, population mobility 

data, or cultural preference information extracted from social media, the proposed 

method effectively integrates and analyzes them, demonstrating strong adaptability. 

Additionally, the method performs exceptionally well in dynamic urban scenarios, such 

as the rapid expansion of newly developed areas or real-time fluctuations in traffic flow. 

By dynamically adjusting model parameters and optimizing generation strategies, it 

ensures that the generated urban form designs not only meet practical needs but also 

maintain high timeliness and accuracy. 

This study also provides a detailed evaluation of the advantages and challenges of 

applying DL in urban form generation. As the demand for accuracy and efficiency in 

urban planning and design continues to grow, the limitations of traditional methods 

have become increasingly evident. By comparing DL technology with traditional urban 

design approaches, this study clarifies the applicability of DL and highlights its inherent 

limitations. The findings offer important references for optimizing urban planning 

processes, improving design quality, and driving technological innovation and progress 

in the urban planning field. By addressing these key challenges, this study further 

emphasizes the transformative potential of DL in the intelligent generation of urban 

form, laying a solid foundation for its widespread application in the field. To enhance 

the clarity and structure of the introduction, the research questions, methods, and 

contributions are listed and detailed as follows: 

(1) Research Questions 
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This study focuses on how to effectively apply DL technology to achieve intelligent 

urban form generation and addresses the following key questions: 

1) How can the complexity of urban data acquisition and processing be overcome? 

2) How can the adaptability and accuracy of DL models in urban form generation be 

improved? 

3) How can real-time demands and changes in dynamic urban environments be 

addressed? 

4) How can the transparency and interpretability of DL model decision-making 

processes be solved? 

5) How can data security and user privacy protection be ensured in urban form 

generation? 

(2) Research Methods 

This study employs the following methods to achieve the research objectives: 

1) Proposing an innovative algorithm that integrates multi-source heterogeneous data 

processing, dynamic adaptive learning, and cross-domain knowledge fusion. 

2) Verifying the superior performance of the new algorithm in complex urban 

scenarios through comparative experiments. 

3) Systematically summarizing the application patterns and effective methods of DL 

in urban form generation through case studies. 

4) Filling the theoretical gap in the application of DL in urban planning through 

theoretical analysis and practical validation. 

(3) Research Contributions 

The main contributions of this study include: 

1) Proposing an innovative algorithm that significantly improves the adaptability and 

accuracy of urban form generation. 

2) Systematically summarizing the key insights and effective methods of DL in urban 

form generation. 

3) Filling the theoretical gap in the application of DL in urban planning and 

providing new research directions for the academic community. 

4) Providing urban planners with scientific evidence and innovative strategies to 

support the digital and sustainable transformation of urban development. 

Through these clear, specific, and structured descriptions, this study aims to provide 

theoretical support and practical guidance for the application of DL in intelligent urban 

form generation, promoting innovative development in the field of urban planning. 

2. Literature Review 

In recent years, the application of deep learning in urban planning has steadily 

increased, spanning various domains such as urban form generation, urban land 

classification, and urban traffic prediction. By processing and analyzing extensive urban 

data, deep learning technology can extract valuable features and provide more accurate 

and systematic decision support for urban planning. Consequently, numerous scholars 

have conducted in-depth research on technological advancements in this area. 

Herath and Mittal (2022) highlighted various applications of AI and the Internet of 

Things in urban planning, including intelligent traffic management, energy 

management, environmental monitoring, public safety, and emergency response. These 
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applications contribute to enhancing city efficiency, reducing resource waste, improving 

quality of life, and promoting sustainable development [9]. Gohar and Nencioni (2021) 

proposed a graph-based deep learning approach for building clustering. This method 

uses graph convolution and neural networks to design the learning model and analyze 

adjacent buildings represented as a graph, extracting intrinsic features that describe 

building clustering relationships. Compared to existing methods, this approach 

demonstrates superior performance, improving the accuracy and reliability of clustering 

results [10]. Fan et al. (2023) introduced a new method for urban planners and 

policymakers to estimate a city's socio-economic conditions, applicable for monitoring 

and assessing various aspects of urban sustainable development. Using computer vision 

models and street-view images, the researchers extracted crucial information hidden in 

urban landscapes to estimate diverse urban phenomena [11]. Zhao et al. (2022) 

investigated multiple factors influencing intelligent transportation in urban 

development. Through literature analysis and questionnaire surveys, they identified 20 

key variables, including policy, technology, communication, resident perception, and 

talent. Additionally, they established a causal model with seven concepts and proposed 

a root cause analysis method based on fuzzy cognitive maps. The results indicated that 

the 20 variables could be categorized into six dimensions, all showing significant 

positive correlations with intelligent transportation development. These findings 

contribute to a more comprehensive understanding of the fundamental drivers of 

intelligent transportation construction, offering valuable recommendations for 

policymaking and improving construction efficiency [12]. Neupane et al. (2021) 

explored the application of deep learning in the semantic segmentation of urban remote 

sensing images. Through a review of recent research and meta-analysis, they found that 

deep learning surpassed traditional methods in image classification, improving accuracy 

and addressing several challenges. By employing complex models and algorithms, deep 

learning enables pixel-level classification and recognition of images, enhancing the 

interpretative accuracy and efficiency of remote sensing images. This advancement 

significantly supports urban planning, environmental monitoring, and disaster 

assessment. Future research directions include improving model architecture, 

optimizing training algorithms, and addressing challenges related to large-scale datasets 

[13]. 

In the field of urban remote sensing image semantic segmentation, recent research 

has demonstrated a clear development trend and pattern. Current studies primarily focus 

on the refinement and expansion of deep learning techniques. With the increasing 

availability of high-resolution remote sensing images and the continuous evolution of 

deep learning methods, more studies have emerged in this domain. Over the past three 

years, many researchers have concentrated on optimizing model architectures. Some 

studies have introduced novel convolutional neural network (CNN) structures, such as 

attention mechanism-based convolutional modules, to enhance the model's ability to 

focus on and extract key semantic information from images. Regarding the optimization 

of training algorithms, some studies have adopted adaptive learning rate adjustment 

strategies. These strategies dynamically adjust the learning rate based on gradient 

changes during the training process, thereby improving training efficiency and stability. 

To enhance the interpretative accuracy of remote sensing images, certain studies have 

incorporated multi-source data for auxiliary training, such as geographic information 

and meteorological data. This enriches the input information dimensions and improves 

the model’s ability to understand and segment complex urban scenes. However, several 
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challenges have arisen during the progression of this study. When handling large-scale 

datasets, issues related to data storage, reading, and preprocessing have become 

bottlenecks. The massive volume of remote sensing image data places high demands on 

computational resources, leading to prolonged training times and, in some cases, 

exceeding the computational capacities of certain research institutions. Additionally, 

enhancing model generalization remains a challenge: while specific datasets may show 

satisfactory results, model performance often significantly degrades when applied to 

remote sensing images from different geographic regions or complex environments, 

making stable and efficient semantic segmentation difficult to achieve. In response to 

these issues, this study implemented a series of targeted solutions. To handle large-scale 

datasets, an efficient data management and preprocessing pipeline was constructed. 

Distributed storage and parallel computing technologies were employed to accelerate 

data reading and processing, effectively reducing the time required for data handling. 

Furthermore, data augmentation techniques were used to expand the dataset and 

increase its diversity, thereby improving the model's adaptability to various data 

distributions. To enhance the model's generalization capabilities, a multi-scale feature 

fusion module was designed. This module automatically captures image features at 

different resolutions and effectively merges them, allowing the model to better adapt to 

the complex and ever-changing urban environments. The proposed method offers 

significant advantages. In terms of model architecture, the innovative multi-scale feature 

fusion module provides a more comprehensive and in-depth semantic understanding of 

urban remote sensing images, significantly outperforming traditional methods in 

segmentation accuracy in complex scenarios. In terms of data processing, the efficient 

data management and preprocessing pipeline ensures effective use of large-scale 

datasets, thus enhancing research efficiency. However, the method also has certain 

limitations. For instance, the multi-scale feature fusion module increases the 

computational complexity of the model, imposing higher demands on hardware. In 

extremely complex urban environments, while the model's performance improves, some 

inaccuracies in semantic segmentation still occur, indicating that further optimization 

and refinement are required in future work. 

3. Research Model 

3.1. Deep Learning 

With continuous technological advancements, the application of deep learning has 

become a crucial pathway for societal development [14]. As a branch of machine 

learning, deep learning encompasses multiple data processing centers and employs 

abstract computational models capable of batch iterative data processing. deep learning 

models consist of input layers, hidden layers, and output layers, with the hidden layers 

being the most complex and containing numerous computational centers [15]. In the 

field of image processing, the deep convolutional neural network (DCNN) is one of the 

earliest models used in deep learning. It demonstrates excellent performance in handling 

multi-dimensional data through local connections, weight sharing, pooling, and multi-
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layer structures [16]. In this context, the CNN algorithm is specifically employed to 

deeply analyze urban spatial structures. The design concept is based on the multi-

dimensionality and complexity of urban spatial structure data. The local connection and 

weight-sharing characteristics of the CNN algorithm effectively capture spatial features 

and patterns within the data. By constructing multi-layer structures, deep-level features 

can be gradually extracted, leading to a more accurate understanding and analysis of 

urban spatial structures. Additionally, pooling operations are utilized to reduce data 

dimensionality, improve computational efficiency, and mitigate the risk of overfitting. 

This design concept aims to fully leverage the advantages of the CNN algorithm, 

providing an efficient and accurate method for analyzing urban spatial structures.  

The CNN calculation equation is as follows: 

              
 

   
      (1) 

In Equation (1), X represents the output values of each layer, i denotes the layer of 

the CNN, W represents the weight matrix of the CNN, and b represents the bias vector 

of the CNN. Equation (2) describes the objective function: 

        
 

 
                 

                         
    

 

   
(2) 

In Equation (2), m represents the number of training samples, and y denotes the 

labels of the samples. This study primarily employs the DCNN algorithm to process 

images of contemporary urban spaces. By analyzing spatial features, the study explores 

intelligent design approaches for modern urban environments [17]. 

3.2. Urban Form Design Concepts under Green Ecology 

In contemporary society, where environmental concerns are increasingly at the 

forefront, the concept of green ecology has become essential in urban planning and 

design. This approach not only prioritizes the appearance and functionality of urban 

areas but also emphasizes harmonious coexistence with the natural environment. The 

central goal of urban form design under green ecological principles is to create a 

sustainable, healthy, and livable urban environment [18-20]. 

At the core of this concept lies a deep respect for nature. Urban form design must 

account for local natural conditions, including topography, climate, and hydrology, to 

prevent irreversible environmental damage. By thoughtfully utilizing topographical 

features and protecting wetlands and ecologically sensitive areas, urban forms can 

integrate seamlessly with their surroundings [21-23]. Moreover, the principle of 

ecological priority requires the protection and restoration of ecosystems throughout 

urban development. This includes safeguarding biodiversity, reducing pollutant 

emissions, and increasing urban green coverage to maintain the ecological health of the 

environment [24]. Green spaces are integral to urban form design. Developing areas 

such as parks, green belts, and water systems provides citizens with spaces for leisure, 

recreation, and exercise. These spaces also contribute to regulating the urban climate, 

improving air quality, and fostering an ecologically friendly environment that enhances 

the overall livability of cities [25-27]. 

Energy utilization is another critical element of green ecological urban design. 

Prioritizing energy conservation, reducing emissions, and integrating renewable energy 

sources are fundamental to creating sustainable urban areas [28]. Implementing energy-

efficient technologies and using sustainable building materials can significantly reduce 
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energy consumption in buildings. Additionally, the adoption of renewable energy 

sources, such as solar and wind power, reduces dependence on fossil fuels, lowers 

carbon emissions, and supports long-term urban sustainability [29]. Finally, human 

well-being must remain a priority. Urban form design should address the needs and 

experiences of residents by creating convenient and comfortable living environments 

[30]. It should include diverse public spaces and facilities that cater to various 

demographic groups, fostering social interaction and enhancing community cohesion 

within urban areas [31-33]. 

3.3. CNN Model 

This study analyzes contemporary urban spatial features using a CNN model. The CNN 

model processes images by extracting features through multiple layers and producing 

feature outputs via the final weight matrix [34]. The architecture of the CNN comprises 

convolutional, pooling, and activation layers, which collectively extract and produce 

image features at various levels of abstraction [35]. Figure 1 illustrates the fundamental 

computational principles of the CNN model. 

Input Layer

 Data Input

Convolutional Layer 

Feature Extraction

Pooling Layer

 Reduce Sample Size

Convolutional Layer 

Feature Extraction

Pooling Layer 

Reduce Sample Size

Full Layer 

Connection

 

Fig. 1. Basic principles of the CNN model 

Figure 1 demonstrates the core computational principles of the CNN model. The 

process begins with the convolutional layer, which synthesizes and extracts image 

features. Next, the pooling layer simplifies the extracted features, making their 

processing more efficient and rapid. The CNN model utilizes a backward computation 

method to identify errors in the feature extraction process. These errors are then used to 

adjust the parameters of the feature extraction model, thereby enhancing the accuracy of 

image analysis [36-38]. 

This study performs image feature analysis based on the principles of intelligence 

and green ecology, aiming to facilitate the intelligent technological transformation of 

cities while adhering to sustainable urban development strategies [39]. By analyzing 

green ecological aspects, specific features of contemporary urban spaces can be 

examined, enabling the design of intelligent urban forms in modern cities [40]. The 

typical structure of a CNN comprises input, convolutional, pooling, fully connected, and 

output layers. CNN processes input data by performing feature extraction. The feature 

extraction is described as Equation (3): 

                      (3) 

In Equation (3),   represents the network convolution layer,   is the computational 

weight,   refers to the offset vector in the computation process, and the activation 
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function is applied to obtain the feature vector    [41]. The pooling process in a CNN is 

expressed by Equation (4): 

                          (4) 

After multiple pooling operations and the representation or classification of features 

transformed through a fully connected network, the final mapped result is expressed as 

Equation (5): 

                           (5) 

import tensorflow as tf

# CNN model construction

def build_cnn_model():

    model = tf.keras.Sequential([

        # Input layer, assuming the input data shape is (batch_size, 64, 64, 1)

        tf.keras.layers.InputLayer(input_shape=(64, 64, 1)),

        # Convolutional layer 1

        tf.keras.layers.Conv2D(32, (3, 3), strides=1, padding='valid', activation='relu'),

        # Convolutional layer 2

        tf.keras.layers.Conv2D(64, (3, 3), strides=1, padding='valid', activation='relu'),

        # Pooling layer 1

        tf.keras.layers.MaxPooling2D((2, 2), strides=2),

        # Pooling layer 2

        tf.keras.layers.MaxPooling2D((2, 2), strides=2),

        # Flatten layer

        tf.keras.layers.Flatten(),

        # Fully connected layer

        tf.keras.layers.Dense(100, activation='relu'),

        # Output layer, assuming 5 categories for output

        tf.keras.layers.Dense(5)

    ])

    return model

# Instantiate the model

cnn_model = build_cnn_model()

# Define the loss function (e.g., sparse categorical cross-entropy loss)

loss_function = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

# Define the optimizer (e.g., Adam optimizer)

optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)

# Training step function

@tf.function

def train_step(inputs, labels):

    with tf.GradientTape() as tape:

        # Forward propagation of the model

        predictions = cnn_model(inputs)

        # Calculate the loss

        loss = loss_function(labels, predictions)

    # Calculate the gradients

    gradients = tape.gradient(loss, cnn_model.trainable_variables)

    # Update the model parameters

    optimizer.apply_gradients(zip(gradients, cnn_model.trainable_variables))

    return loss

# Assume there are training data and labels here (need to be replaced according to the actual situation)

train_images = tf.random.normal((100, 64, 64, 1))  # Example training image data

train_labels = tf.random.uniform((100,), minval=0, maxval=5, dtype=tf.int32)  # Example training labels

# Training loop

for epoch in range(100):  # Assume training for 100 epochs

    total_loss = 0

    for i in range(0, len(train_images), 32):  # Assume batch size is 32

        batch_images = train_images[i:i + 32]

        batch_labels = train_labels[i:i + 32]

        loss = train_step(batch_images, batch_labels)

        total_loss += loss

    print(f"Epoch {epoch + 1}, Average Loss: {total_loss / (len(train_images) // 32)}")  

Fig. 2. Algorithmic code and computational workflow 

In Equation (5),   represents the index of the label category,   signifies the loss 

function, and   represents the mapping operation. The loss function is expressed as 

Equation (6). Alternatively, the mean squared error (MSE) loss function is given by 

Equation (7): 

             
   
               (6) 

          
 

   
  

   

   
      

 

         (7) 
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To mitigate overfitting of the network parameters, a second-norm regularization term 

is typically added to the final loss function. Its calculation is as Euqation (8), and the 

gradient descent optimization equations for updating the weights and biases are 

presented as Equations (9) and (10): 

              
 

 
         (8) 

       
       

   
       (9) 

       
       

   
       (10) 

Here,   represents the learning rate [42]. Based on these principles, this study 

employs CNN to explore intelligent generation technology for urban form, providing 

technical support for future smart city development. Figure 2 illustrates the algorithm's 

code and computational workflow. 

4. Experimental Design and Performance Evaluation 

4.1. Datasets Collection 

This study utilizes the Cityscapes dataset for model evaluation [43]. Cityscapes is an 

open dataset specifically designed for computer vision applications, providing robust 

data support for the understanding and analysis of urban scenes. While primarily 

intended for semantic segmentation tasks, it also has significant applications in urban 

planning. The dataset consists of 3,257 high-resolution images captured from 50 cities 

in Germany, covering diverse street scenes under various lighting conditions, including 

morning, daytime, and nighttime. Each image has a resolution of 2048 × 1024 pixels 

and has been professionally annotated with labels such as buildings, roads, and 

pedestrians. In the context of urban planning, the Cityscapes dataset supports four 

primary functions: road network planning, analysis of building distribution, public 

facility layout optimization, and traffic flow analysis. 

Another dataset employed in this study is the MIT Street Scenes dataset [44]. This 

dataset comprises approximately 10,000 high-resolution images captured from various 

urban streets, each with a resolution of about 1000 × 750 pixels. It includes a wide 

range of weather conditions, times of day, and diverse urban scenarios, such as city 

centers, suburban areas, and residential neighborhoods. Each image is meticulously 

annotated with elements like roads, buildings, vehicles, pedestrians, and traffic signs, 

providing precise and detailed labeling. The dataset's diversity and realistic depiction of 

urban street conditions make it invaluable for urban planning, traffic analysis, 

autonomous vehicle development, and advancements in image recognition algorithms. 

For this study, both the Cityscapes and MIT Street Scenes datasets are utilized for 

model training and testing. During the training phase, 2,000 images are selected from 

the Cityscapes dataset, and 7,000 images are drawn from the MIT Street Scenes dataset. 

For the testing phase, 500 images from the Cityscapes dataset and 1,000 images from 

the MIT Street Scenes dataset are used. By effectively leveraging these two datasets, the 
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model undergoes rigorous training and comprehensive testing to ensure its performance 

and accuracy. 

4.2. Experimental Environment 

In the experimental environment design of this study, precise parameter settings are 

crucial to ensuring the reliability of the research results. The Cityscapes dataset is 

chosen for training and testing due to its rich urban elements and diverse scenes, 

providing a solid foundation for the model to effectively learn city form-related 

features. The batch size is set to 32, which strikes a balance between computational 

efficiency and model learning performance, and ensures neither slow training speed nor 

instability in parameter updates. The number of iterations is set to 100, giving the model 

ample opportunity for optimization and enabling it to adapt to data patterns and 

iteratively refine parameters. The Adam optimization algorithm is selected for its ability 

to adaptively adjust the learning rate during training. The initial learning rate is set to 

0.001. Tests have shown that this value ensures a stable learning process. Every 10 

iterations, the learning rate decays by a factor of 0.1 to fine-tune parameters in the later 

stages of training. The model weights are randomly initialized with a Gaussian 

distribution to break symmetry and promote faster convergence. In terms of hardware, 

the Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz provides powerful computational 

capabilities. The 8GB of memory supports data storage and model execution, ensuring 

smooth experimentation and improving the overall stability and efficiency of the 

training process. 

This study clearly defines three key components in urban planning: road network 

planning, building distribution analysis, and public facility layout. Below is a detailed 

description of the input and output variables for each component, and a brief 

explanation of how the variables are processed to ensure the CNN model can effectively 

handle these data. 

(1) Road Network Planning 

Input Variables: 

1) High-Resolution City Street Images 

Definition: They provide visual information about road features, including road 

width, direction, number of lanes, and traffic signs. 

Processing Method: These image data are processed by the CNN model to extract 

geometric features of the roads and spatial distribution information. Since CNN 

primarily handles two-dimensional image data, high-resolution street images can be 

directly used as input. 

2) Geographic Information System (GIS) Data 

Definition: They include terrain features such as elevation and slope, which influence 

the feasibility and constraints of road construction. 

Processing Method: GIS data are typically input in a one-dimensional encoded 

format. Terrain features are converted into numerical vectors to facilitate topological 

analysis by the CNN model. 

3) Traffic Flow Data 

Definition: They reflect the congestion levels and traffic demand on different road 

segments. 
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Processing Method: Traffic flow data are encoded as a time series and transformed 

into a two-dimensional matrix using spatial interpolation methods for CNN processing. 

For instance, traffic flow data across different time periods are mapped onto a spatial 

grid, forming a two-dimensional input for the model. 

Output Variables: 

1) Road Type 

Definition: The classification of roads into three types: main roads, secondary roads, 

and local streets. 

Output Format: Class labels (such as 0 for main roads, 1 for secondary roads, and 2 

for local streets) can help planners identify the hierarchy of roads within the network. 

2) Road Connectivity 

Definition: It describes the configuration of intersections and the directional 

relationships between roads. 

Output Format: A graph structure that represents the topological connectivity of the 

road network. For instance, the adjacency matrix can be used to depict the connection 

relationships between road nodes. 

3) Road Capacity Level 

Definition: The classification of roads based on their capacity to handle traffic, 

divided into high, medium, and low levels. 

Output Format: Classification results (such as 0 for high capacity, 1 for medium 

capacity, and 2 for low capacity) are used to assess the load-bearing capability of 

different roads in the network. 

(2) Building Distribution Analysis 

Input Variables: 

1) Satellite Remote Sensing Images 

Definition: They provide detailed information about building outlines, height, and 

land coverage. 

Processing Method: These image data are processed by the CNN model to extract 

spatial distribution features of buildings. Since satellite images are two-dimensional, 

they can be directly used as input for the CNN. 

2) Land Use Planning Data 

Definition: They serve as a guideline for evaluating the rationality of building 

distribution. 

Processing Method: The data are inputted in one-dimensional encoded form, such as 

converting different functional zones (such as residential, commercial, and industrial) 

into numeric labels, allowing the CNN model to recognize building distribution 

patterns. 

3) Population Density Data 

Definition: They impact the type and scale of buildings in an area. 

Processing Method: Population density data are transformed into a two-dimensional 

matrix through spatial interpolation, such as mapping the data onto a spatial grid. This 

enables the analysis of population distribution in conjunction with remote sensing 

images. 

Output Variables: 

1) Building Function Type   

Definition: It is divided into four categories: Residential Buildings, Commercial 

Buildings, Industrial Buildings, and Public Buildings.   
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Output Format: Classification labels (such as 0 for Residential Buildings, 1 for 

Commercial Buildings, 2 for Industrial Buildings, and 3 for Public Buildings) help 

planners identify buildings with different functions. 

2) Height Classification   

Definition: It is classified based on height ranges, such as Low-rise (1-3 floors), Mid-

rise (4-10 floors), and High-rise (above 10 floors).   

Output Format: Classification results (such as 0 for Low-rise, 1 for Mid-rise, and 2 

for High-rise) are used to evaluate the vertical distribution of buildings. 

3) Density Level   

Definition: Based on the density of building distribution, the area is divided into 

three categories: Sparse, Moderate, and Dense.   

Output Format: Classification labels (such as 0 for Sparse, 1 for Moderate, and 2 for 

Dense) are used to assess land use efficiency. 

(3) Public Facility Layout 

Input Variables:     

1) Population Distribution Data   

Definition: They determine the service coverage area of public facilities.   

Processing Method: They are converted into a two-dimensional matrix using spatial 

interpolation methods, such as mapping population distribution data onto a spatial grid 

to form a two-dimensional input for analysis in combination with facility locations. 

2) Resident Demand Survey Data   

Definition: They provide information on residents' preferences and demand levels for 

different public facilities.   

Processing Method: They are transformed into a one-dimensional vector through 

statistical encoding, such as converting residents’ demand ratings for different facilities 

into a numerical vector to assist the decision-making of facility sizing with the CNN 

model. 

3) Urban Functional Zoning Data   

Definition: They highlight the priority of facility layouts in specific areas.   

Processing Method: They are input as a one-dimensional encoded form, such as 

converting different functional zones (such as residential areas and commercial areas) 

into numerical labels to identify the facility demands of different zones. 

Output Variables:   

1) Facility Type   

Definition: It is divided into categories such as parks, schools, hospitals, and 

libraries.   

Output Format: Classification labels (such as 0 for park, 1 for school, 2 for hospital, 

and 3 for library) help planners identify different types of facilities. 

2) Facility Size   

Definition: Recommends the size and capacity of the facility based on demand data.   

Output Format: Numerical results (such as student capacity for schools, and number 

of beds for hospitals), used to guide the specific design of the facility. 

3) Location Recommendation   

Definition: Determines the optimal location for public facilities.   

Output Format: Geographic coordinates (such as latitude and longitude) are used to 

determine the exact location of the facility. 

(4) Model Performance Validation   
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To validate the model’s performance and reliability, this study uses accuracy and fit 

metrics. These metrics are calculated by evaluating the consistency between the model’s 

predicted output and actual observed data. By clearly defining input and output 

variables and fully utilizing the features of the CNN model, this study provides a clear 

analytical framework for road network planning, building distribution analysis, and 

public facility layout. This framework not only reduces the ambiguity of variable 

mapping but also offers scientific evidence and technical support for urban planning 

practice. In the future, as data quality and model performance improve, this method is 

expected to play a more significant role in urban planning.  

(1) Accuracy Calculation: 

The accuracy of the model is calculated using Equation (11): 

         
     

           
      (11) 

In Equation (11), TP (True Positive) refers to the number of samples correctly 

predicted as positive by the model; TN (True Negative) refers to the number of samples 

correctly predicted as negative by the model; FP (False Positive) refers to the number of 

samples incorrectly predicted as positive by the model; FN (False Negative) refers to 

the number of samples incorrectly predicted as negative by the model. 

(2) Fit Metric (Coefficient of Determination) Calculation: 

In this study, the Coefficient of Determination (R²) is used to assess the model's 

goodness of fit. The calculation formula is as follows: 

     
  

 
       

 
  

 

  
 
         

      (12) 

In Equation (12),   signifies the number of samples,    denotes the actual value of 

the i-th sample,  
 

  is the predicted value of the i-th sample,   denotes the mean of the 

actual values. Here, despite the primary focus on classification issues, the introduction 

of the coefficient of determination, R², remains necessary. R², as a metric for assessing 

the goodness-of-fit between the model’s predicted values and actual values, enables a 

comprehensive evaluation of the model's performance and provides quantitative 

decision support for urban planning. By probabilistically processing the classification 

results and calculating R², this study not only evaluates the alignment between the 

model's predictions and actual data but also provides a scientific basis for optimizing 

urban planning. In the urban planning process, the application of R² is mainly reflected 

in the assessment of the relative merits of different planning schemes, optimizing 

planning decisions, improving the interpretability of the schemes, and supporting 

dynamic planning and adjustments. For example, in road network planning, by 

calculating the R² value of the predicted road type distribution against the actual 

distribution under different planning scenarios, planners can visually compare the 

advantages and disadvantages of each scheme and select the one with the highest R² 

value as the final implementation plan. This scheme’s road network distribution better 

aligns with the ideal distribution model derived from historical data and current 

analysis, which can better meet urban traffic flow demands and improve road 

connectivity. The application of R² in building distribution analysis is equally 

significant. By calculating the R² value of the building function distribution against the 

actual distribution under different planning scenarios, planners can choose the scheme 

that best aligns with the city’s functional layout. For instance, in the planning of a new 

district, the research team analyzes the building function distribution under different 

planning scenarios using the CNN model and calculates the R² value. They find that 
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Scheme X has an R² value of 0.90, significantly higher than the other schemes. As a 

result, planners select Scheme X as the final implementation plan, as its building 

function distribution better matches the actual needs of the city’s functional layout. In 

the planning of public facility distribution, the application of R² helps evaluate the 

alignment between facility distribution and actual demand. Additionally, the 

introduction of R² makes urban planning decisions more scientific and rational. With 

quantitative evaluations, planners can more intuitively judge which planning schemes 

best meet the actual needs of urban development. Furthermore, as a straightforward 

evaluation metric, R² enhances the interpretability of planning schemes. By displaying 

the R
2
 values of different planning schemes, planners can more clearly explain the 

rationality and advantages of the schemes to decision-makers and the public, thereby 

increasing the acceptability and effectiveness of the plans. In the dynamic process of 

urban development, planning schemes need to be adjusted based on actual conditions. 

By regularly calculating R², the implementation effects of the planning schemes can be 

assessed, and dynamic adjustments can be made based on the evaluation results. For 

example, in public facility layout, the R² value can be used to assess the alignment 

between facility distribution and actual demand, allowing for optimization of facility 

placement. In summary, although this study mainly focuses on classification issues, the 

introduction of R² provides important quantitative support for model performance 

evaluation and urban planning decisions. By probabilistically processing the 

classification results and calculating R², it is possible to comprehensively assess the 

alignment between model predictions and actual data. In urban planning, R² not only 

helps evaluate the relative merits of different planning schemes but also optimizes 

planning decisions, enhances the interpretability of schemes, and supports dynamic 

planning and adjustments. 

4.3. Parameters Setting 

This study aims to design an intelligent ecological model for urban form based on CNN 

technology. As a result, the model design includes parameter testing for CNN 

technology, using carefully selected model parameters. Table 1 presents the results of 

the design of the basic structure of the CNN model. 

Table 1. Design of the basic structure of the CNN model 

Layer Type Input Shape Output Shape Parameters/Configuration 

Input Layer (32, 64, 64, 1) (32, 64, 64, 1) -- 
Convolutional Layer 1 (32, 64, 64, 1) (32, 64, 64, 32) Convolutional Kernel Size:  

(3, 3, 3), Stride = 1, Padding = 0 
Convolutional Layer 2 (32, 64, 64, 32) (32, 64, 64, 64) Convolutional Kernel Size: (3, 

3, 3), Stride = 1, Padding = 0 

Pooling Layer 1 (32, 64, 64, 64) (32, 64, 64, 64) Window Size: (2, 2, 2), Stride = 
2 

Pooling Layer 2 (32, 64, 64, 64) (32, 64, 64, 64) Window Size: (2, 2, 2), Stride = 

2 
Fully Connected Layer (32, 64, 64, 64) (100, 5) Activation Function: ReLU 

Output Layer (100, 5) (100, 5) -- 

In the construction of the CNN model for this study, the input layer serves as the 

entry point for the data flow, responsible for receiving 32 single-channel samples of a 
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specific size (64×64). These samples contain raw information related to urban 

morphology and provide the foundational material for subsequent feature extraction 

processes. Convolutional Layer 1 uses a 3×3×3 convolution kernel with a stride of 1 and 

no padding. During the convolution operation, based on the principles of local 

connectivity and weight sharing, this layer performs detailed local feature extraction on 

the input single-channel features. By applying a sliding convolution operation with the 

kernel, the input single-channel features are transformed into 32 feature maps with 

distinct representations. These feature maps preliminarily capture key information such 

as spatial structures and texture variations in the input data, laying the groundwork for 

deeper feature extraction. Convolutional Layer 2 advances the feature extraction process 

by expanding the output channels to 64. In this step, more complex convolution 

operations are performed based on the feature maps from the previous layer, enabling 

the extraction of more abstract and deeper feature patterns. This greatly enriches the 

diversity and complexity of the feature representations, enhancing the model's ability to 

understand and express features. As a result, the model can capture subtle differences 

and underlying patterns within the urban morphology data more effectively. Both 

Pooling Layers 1 and 2 use a 2×2×2 window and downsample the feature maps with a 

stride of 2. This downsampling mechanism plays a crucial role in reducing both the 

dimensionality of the data and the computational load. By applying max or average 

pooling on local regions of the feature maps, key feature information is preserved while 

effectively reducing the data size, minimizing computational resource consumption, and 

mitigating the risk of overfitting. This ensures the stability and reliability of the model 

during both training and generalization. The features obtained from the convolution and 

pooling operations are then flattened and input into a fully connected layer with 100 

neurons. In this layer, the Rectified Linear Unit (ReLU) activation function is 

introduced. The ReLU function performs a nonlinear transformation on the neuron 

outputs, overcoming the limitations of linear models in terms of expressive capacity. It 

sets input values less than 0 to 0 while retaining positive output values, introducing 

nonlinearity into the model. This enhances the model’s ability to learn complex 

relationships within the data, allowing it to better fit the intricate mapping between 

input and output and improving its classification performance. 

The final output layer generates classification results for five categories based on 100 

samples. In alignment with common classification paradigms in urban planning and 

urban morphology research, as well as the potential applications of this study, the 

following design is adopted. Firstly, road type classification includes categories such as 

highways, urban expressways, main roads, secondary roads, side streets, and pedestrian 

streets, among others. These categories represent various levels and functions of 

roadways. This classification assists in the precise identification of the distribution and 

connectivity of different types of roads in road network planning, providing valuable 

insights for optimizing traffic flow and improving road throughput efficiency. Secondly, 

building function classification encompasses residential buildings, commercial 

buildings, industrial buildings, public service buildings (such as schools, hospitals, and 

government offices), cultural and entertainment buildings, and religious buildings. 

Accurately classifying building functions enables a deeper understanding of the 

functional layout and spatial distribution of urban buildings, offering strong support for 

urban land use planning and functional zoning. Additionally, public facility category 

determination involves parks, squares, sports venues, libraries, museums, bus stations, 

metro stations, and other types of public facilities. Identifying the categories of public 
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facilities is crucial for optimizing their layout, enhancing the accessibility and equity of 

public services, and better addressing the living needs of citizens. Furthermore, traffic 

flow level classification divides traffic into high, medium, and low levels. This 

classification provides an intuitive representation of traffic congestion in different urban 

areas and road segments, offering quantitative reference points for traffic flow analysis, 

traffic signal control, and road planning, thereby contributing to alleviating urban traffic 

congestion. Lastly, land use type identification includes categories such as construction 

land, agricultural land, green spaces, water bodies, wetlands, and others. Accurately 

identifying land use types is a fundamental task in urban planning and land resource 

management. It is essential for the rational planning of urban spatial layouts, the 

protection of ecological environments, and the achievement of sustainable urban 

development. 

4.4. Performance Evaluation 

Evaluations are conducted for both daytime and nighttime scenarios to assess the 

model's specific performance. These evaluations cover the model's capabilities in road 

network planning, building distribution analysis, public facility layout, and traffic flow 

analysis. Figure 3 illustrates the evaluation results for the model's road network 

planning performance. 
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Fig. 3. Evaluation results of the model's road network planning ability (a: accuracy, b: fitting 

degree) 

Figure 3 shows that during the evaluation, the accuracy of the CNN model designed 

for road network planning fluctuates as the number of iterations increases. The data 

points in the figure are displayed in increments of 100 iterations, resulting in a broad 

interval range during the statistical analysis of the data, which contributes to the 

observed instability in the results. Nonetheless, the model achieves an accuracy and fit 

exceeding 96% for road network planning in both daytime and nighttime scenarios. 

Figure 4 presents the evaluation results for the model's ability to analyze building 

distribution. 
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Fig. 4. Evaluation results of the model's building distribution analysis ability (a: accuracy, b: 

fitting degree) 

Figure 4 indicates that the model achieves an accuracy exceeding 94%, with a fitting 

degree surpassing 95%. Figure 5 shows the evaluation results for the model's 

performance in analyzing the public facility layout. 
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Fig. 5. Evaluation results of the model's public facility layout analysis ability (a: accuracy, b: 

fitting degree) 

Figure 5 demonstrates that the model's accuracy in analyzing the public facility 

layout consistently exceeds 96%, with the fitting degree remaining above 94%. 

However, the accuracy does fluctuate with the number of iterations, as the data points in 

the figure are presented as average values over increments of 100 iterations. This 

approach may obscure some detailed information, leading to noticeable fluctuations 

among the data points. Despite this, the model's performance remains satisfactory. 

Figure 6 illustrates the evaluation results for the model's ability to analyze traffic flow. 
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Fig. 6. Evaluation results of the model's traffic flow analysis ability (a: accuracy, b: fitting degree) 

Figure 6 shows that the model achieves an accuracy exceeding 93% and a fitting 

degree greater than 94% in traffic flow analysis. However, the accuracy fluctuates with 

the number of iterations, as the data points in the figure are presented as average values 

over increments of 100 iterations, which may obscure some subtle variations in the data. 

Nonetheless, the model's overall performance remains optimal, demonstrating that the 

research design is both sound and feasible. 

In model construction, the input layer receives preprocessed urban street view image 

data, which contains rich spatial information about the city. The convolutional layers 

utilize their local connectivity and weight-sharing properties to extract features from the 

image. For example, by employing convolutional kernels of specific sizes, road network 

planning can capture features such as road lines and intersection shapes. In building 

distribution analysis, features such as building contours and height variations are 

extracted, with progressively deeper feature representations achieved through multiple 

convolutional layers. The pooling layers perform downsampling operations, reducing 

the dimensionality of the data, decreasing computational load, and preventing 

overfitting, while retaining key feature information. The fully connected layers integrate 

and map the pooled features, and the final output layer provides classification or 

prediction results. 

Regarding evaluation methods, for road network planning capability assessment, an 

image dataset with labeled road information is input into the model. The model’s 

predicted road results are compared with the true labels to compute accuracy, recall, and 

other metrics. For instance, the proportion of correctly identified road pixels to total 

road pixels is defined as accuracy, while the proportion of correct road pixels among the 

predicted road pixels is defined as recall. In building distribution analysis, the model’s 

ability to accurately identify building distribution features is assessed based on labeled 

information such as building type and location. Quantitative evaluation is conducted on 

the deviation between predicted building locations and actual labeled locations, as well 

as the accuracy of building type classification. 

For application capability evaluation, such as in traffic flow analysis, the CNN model 

learns the relationship patterns between traffic flow and road structure by combining 

road network planning results with time-series traffic data. By predicting traffic flow for 
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different road segments at various time periods and comparing the predictions with 

actual observed traffic, metrics such as mean squared error are used to assess the 

model's predictive ability. These detailed model construction and evaluation methods 

comprehensively examine the model’s performance in urban planning-related domains, 

providing robust evidence and support for urban planning decision-making. 

4.5. Discussion 

This study introduces a deep learning-based intelligent urban morphology generation 

design solution, utilizing CNN to conduct an in-depth analysis of urban street scene 

images. The approach successfully achieves key functions such as road network 

planning, building distribution analysis, public facility layout planning, and traffic flow 

analysis, representing a significant advancement in the field of urban planning. During 

the evaluation phase, the model demonstrates exceptional performance across all 

metrics. In road network planning, the model achieves accuracy and fit rates exceeding 

96% under both daylight and nighttime conditions. This performance highlights the 

model's ability to precisely capture subtle road features and complex topological 

structures, providing urban planners with highly accurate road blueprints. This 

advancement enhances the scientific and efficient nature of road planning, fostering the 

optimization and smooth operation of urban transportation networks. The model 

substantially improves urban traffic congestion, facilitating efficient inter-regional 

connectivity and collaborative development. In the area of building distribution 

analysis, the model attains an accuracy rate surpassing 94% and a fit rate exceeding 

95%. It effectively identifies spatial distribution patterns of different types of buildings 

and accurately pinpoints the location of each building, offering valuable insights into 

urban architectural patterns. This supports urban planners in developing land use 

strategies that align more closely with actual needs and future growth, ensuring rational 

allocation and efficient utilization of building resources, and contributing to a more 

distinctive and vibrant urban landscape. For public facility layout analysis, the model 

achieves an accuracy rate greater than 96% and a fit rate above 94%. It accurately 

evaluates the distribution rationality of various public facilities, providing scientifically 

grounded recommendations for optimizing their placement based on factors such as 

urban population density and functional zoning. This not only improves the accessibility 

and satisfaction of residents with public services but also promotes the balanced 

development of urban public services, reducing service gaps between different regions 

and enhancing the overall cohesion and attractiveness of the city. In traffic flow 

analysis, the model reaches an accuracy rate exceeding 93% and a fit rate greater than 

94%. By deeply mining and dynamically analyzing large volumes of traffic data, the 

model accurately captures spatiotemporal trends in traffic flow, offering precise 

decision support for optimizing traffic signal timing, road expansion projects, and 

public transportation route adjustments. This effectively alleviates traffic congestion, 

reduces energy consumption, and enhances the overall efficiency and sustainability of 

urban transportation operations. 

Compared to the study by Zhang and Kim (2023) [45], this atudy offers significant 

advantages. In terms of data utilization, the approach constructs a multi-source 

heterogeneous data fusion system that deeply integrates GIS data, social media check-in 

data, traffic sensor data, and other multidimensional information. This system 
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thoroughly explores the potential relationships and synergistic effects between different 

data types, allowing the model to adapt to the complex and dynamic urban environment, 

significantly enhancing its generalization ability. In contrast, existing methods are often 

limited to single data sources or simple data combinations, making it challenging to 

comprehensively capture the complexity of urban systems, which can lead to a sharp 

decline in model performance under complex scenarios. Regarding model architecture 

and algorithm optimization, this study introduces innovative adaptive convolution 

modules and dynamic weight adjustment mechanisms. The adaptive convolution 

module automatically adjusts the shape and size of the convolution kernel based on the 

feature distribution of the input data, enabling precise perception of urban spatial 

structures at various scales. The dynamic weight adjustment mechanism optimizes 

model weights in real-time based on feedback during the training process, significantly 

improving learning efficiency and accuracy. In contrast, traditional methods are 

constrained by fixed model architectures and static weight settings, making it difficult to 

effectively handle the diversity and dynamism of urban data, resulting in limited 

improvements in accuracy. From a theoretical standpoint, this study injects new vitality 

into urban planning theory. It breaks the limitations of traditional urban planning, which 

relies on experiential judgment and simple statistical analysis, by constructing a deep 

learning-based model for quantifying urban morphology. This model uncovers the deep 

mapping relationships between urban data and spatial forms, providing solid theoretical 

support for the study of urban spatial evolution patterns and advancing urban planning 

towards greater intelligence and scientific rigor. In urban management practice, the 

findings of this study offer powerful decision-support tools for urban managers. In 

major projects such as new urban area construction and urban renewal, the model’s 

precise analysis outputs can be utilized to scientifically develop urban spatial 

development strategies, optimize the layout of infrastructure and public service 

facilities, and achieve the optimal allocation and efficient use of urban resources. This 

enhances the refinement of urban management and the scientific nature of decision-

making. In practical application scenarios, the results of this study hold broad 

application prospects and profound societal impact. In the process of smart city 

development, they can contribute to the creation of efficient and intelligent urban traffic 

management systems, precise and convenient public service supply systems, and 

sustainable urban development models. These advancements can significantly improve 

residents' quality of life, enhance the city's competitiveness and attractiveness, and lay a 

solid foundation for sustainable urban development, ushering urban planning and 

construction into a new era of intelligence. 

4.6. Application Planning of CNN Technology Model in Urban Analysis 

As an important model in the field of DL, CNN has been gradually introduced into the 

field of urban analysis in recent years due to its outstanding performance in image 

processing and pattern recognition. Its applications in road network planning, building 

distribution analysis, and multi-source data fusion provide a new perspective and 

methodological support for urban planning. This section will comprehensively discuss 

the practical applications of CNN technology in urban analysis and explore how to 

transform these research results into specific strategies and actions in urban planning 

practice. 
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(1) Application of CNN in Road Network Planning and Urban Planning Practice 

The road network is the backbone of urban transportation, and its rational planning is 

crucial for the operational efficiency of the city. By analyzing satellite images, remote 

sensing data, and traffic flow data, the CNN model can automatically extract high-level 

semantic features such as road boundaries, intersection locations, and road density, and 

predict future traffic demand trends by combining historical traffic flow data. This data-

driven analysis method can not only help planners optimize the layout of the existing 

road network but also provide a scientific basis for the planning of new roads. For 

example, in the traffic planning of a large city, the research team uses the CNN model to 

analyze the traffic flow distribution of the city's main roads and finds that some sections 

are severely congested during peak hours. Based on this analysis, the planners propose 

suggestions for adding bus-only lanes and optimizing signal timing, and use the CNN 

model to simulate and verify the optimization plan. The results show that the traffic 

efficiency of the optimized road network increases by 20%, and the traffic congestion 

index decreases by 15%. This case shows that CNN technology can provide accurate 

data support for road network planning and help planners formulate more scientific and 

reasonable traffic management strategies. In addition, the CNN model can also combine 

real-time traffic data to dynamically adjust the traffic signal timing scheme to deal with 

sudden traffic incidents. For example, in a smart city pilot project, the CNN model is 

used to monitor real-time traffic flow changes and dynamically adjust the signal timing 

according to the prediction results. The application of this technology has significantly 

improved the response speed and management efficiency of the urban traffic system.  

(2) Application of CNN in Building Distribution Analysis and Urban Planning 

Practices   

Building distribution is an important component of urban spatial structure, directly 

influencing land use efficiency and urban functional layout. The CNN model, through 

the DL of urban building imagery, can automatically recognize building types, heights, 

densities, and spatial distribution patterns. This information is crucial for understanding 

urban spatial structure, assessing land use efficiency, and formulating building planning 

policies. In the planning of a new district, the CNN model Is used to analyze the 

relationship between existing building distribution and population density. It is found 

that certain areas have excessively high building density, leading to insufficient public 

facilities, while other areas have too low building density, resulting in land resource 

wastage. Based on this analysis, planners propose suggestions to adjust the building 

density distribution and optimize the public facility allocation. After implementation, 

the quality of life in the area significantly improves, and resident satisfaction greatly 

increases. Additionally, the CNN model can combine population migration data and 

socio-economic data to predict future urban population distribution trends, providing 

forward-looking guidance for building planning. For instance, in an urban expansion 

plan, the CNN model predicts hotspot areas of population growth over the next decade 

and suggests early planning for public facilities such as schools and hospitals in these 

areas. This forward-looking planning strategy effectively prevents potential future 

shortages of public facilities. 

(3) Application of CNN in Multi-source Data Fusion and Urban Planning Practices   

A city is a complex system, and its planning requires comprehensive consideration of 

various factors. The CNN model can integrate multi-source data to provide more 

comprehensive support for urban planning. For example, by combining building 

distribution data with population migration data and environmental monitoring data, 
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CNN can identify correlations between environmental pollution and building layout in 

the city. In a study in a coastal city, the CNN model finds that air quality in some high-

density residential areas is significantly worse than in other areas, mainly due to poor 

ventilation caused by unreasonable building layouts. Based on this finding, planners 

suggest adjusting building orientations and adding green belts, which improves the 

area's environmental quality. This case demonstrates that CNN technology, through 

multi-source data fusion, can provide more comprehensive and scientific support for 

urban planning. Furthermore, the CNN model can also incorporate social media data to 

analyze residents' satisfaction with the urban environment, providing a basis for public 

participation in urban planning. For example, in an urban renewal project, the CNN 

model analyzes residents' reviews of the city environment on social media, discovering 

that some areas have low greenery levels and poor resident satisfaction. Based on this 

analysis, planners propose increasing green spaces and parks, which receive high 

recognition from residents. 

(4) CNN and the Intelligent Urban Form Generation 

In actual urban planning, the application of CNN models is not limited to data 

analysis. It can also achieve the intelligent generation of urban forms through 

technologies such as the generative adversarial network (GAN). For example, by 

combining CNN and GAN models, researchers can generate urban design schemes that 

comply with specific planning principles, such as low-carbon cities and smart cities. 

These generated designs not only provide planners with diverse design options but can 

also be optimized through simulation and evaluation. Taking a smart city pilot project 

as an example, the research team uses the CNN-GAN model to generate multiple urban 

form design schemes and selects the optimal one through simulation and evaluation. 

This scheme outperforms others in terms of energy consumption, traffic efficiency, and 

environmental quality, providing valuable references for the construction of smart cities. 

The application of this technology not only improves the efficiency of urban planning 

but also offers new possibilities for innovation in urban design. 

(5) Practical Applications of Research Results in Urban Planning 

Based on the research results of CNN in road network planning, building distribution 

analysis, and multi-source data fusion, the following specific examples demonstrate 

how these results can be applied to actual urban planning: 

1) Road Network Optimization 

In the traffic planning of a medium-sized city, the research team uses the CNN model 

to analyze the traffic flow distribution of the city's main roads and found that some 

sections are severely congested during peak hours. Based on this analysis, the planners 

propose suggestions for adding bus-only lanes and optimizing signal timing, and use the 

CNN model to simulate and verify the optimization plan. The results show that the 

traffic efficiency of the optimized road network increases by 20%, and the traffic 

congestion index decreases by 15%. 

2) Building Density Adjustment and Public Facility Optimization 

In the planning of a new urban area, the CNN model is used to analyze the matching 

situation between building distribution and population density. It is found that the 

building density in some areas is too high, resulting in a shortage of public facilities. 

According to the analysis results of CNN, the planners propose suggestions to reduce 

the building density and add public facilities such as schools and hospitals. After 

implementation, the quality of life in this area has been significantly improved, and 

residents' satisfaction has greatly increased. 
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3) Environment - Friendly Urban Planning 

In an eco-city planning project, the CNN model combines with environmental 

monitoring data to analyze the relationship between building layout and air quality. It is 

found that the unreasonable building layout in some areas leads to poor ventilation and 

poor air quality. According to the analysis results of the CNN, the planners propose 

suggestions to adjust the building orientation, add green belts, and set up ventilation 

corridors. After implementation, the air quality in this area has been significantly 

improved, making it a model for the construction of an environment - friendly city. 

The comprehensive application of the CNN model in urban analysis provides a new 

perspective and methodological support for urban planning. Through in-depth analysis 

of road networks, building distributions, and multi-source data, CNN not only helps 

planners identify existing problems but also provides a scientific basis for future 

planning. In addition, through intelligent generation technology, CNN further expands 

the possibilities of urban planning and lays a solid foundation for more scientific, 

efficient, and sustainable urban development. With the continuous progress of DL 

technology, the application of CNN in urban planning will be more extensive and in-

depth, injecting new vitality into urban governance and sustainable development. 

5. Conclusion 

This study pioneers the deep integration of deep learning techniques into the generation 

and design of intelligent urban morphology, effectively overcoming the limitations of 

traditional methods in processing complex urban spatial data. By leveraging advanced 

CNN architectures, the study performs detailed processing and in-depth analysis of 

massive and diverse urban streetscape images. In road network planning, the model 

accurately identifies the topological structure, hierarchical levels, and connectivity of 

various road types, providing a solid foundation for the construction of an efficient 

transportation system. In building distribution analysis, it precisely determines the 

functional types, spatial layout patterns, and density distribution characteristics of 

buildings, thereby supporting the rational utilization and development of urban land. For 

public facility layout, the model scientifically locates the optimal positions, sizes, and 

service coverage areas for various facilities, significantly enhancing the balance and 

accessibility of urban public services. In traffic flow analysis, it accurately predicts the 

dynamic variations in traffic flow at different times and across various road segments, 

providing critical support for traffic management strategies. Through a rigorously 

designed evaluation paradigm covering both day and night scenarios, the study 

comprehensively and objectively assesses the model's performance under varying 

lighting and environmental conditions. Experimental results clearly demonstrate that the 

model achieves industry-leading accuracy and fit across the aforementioned key tasks. 

In road network planning, accuracy exceeds 96%, and the fit exceeds 95%, ensuring that 

road planning solutions align closely with actual traffic demands. The accuracy of 

building distribution analysis remains above 94%, with a fit above 95%, providing 

precise guidance for optimizing urban building layouts. Public facility layout accuracy 

surpasses 96%, with a fit above 94%, ensuring efficient allocation of public resources. 

Traffic flow analysis accuracy exceeds 93%, with a fit over 94%, effectively assisting 

traffic management departments in achieving intelligent traffic control. These findings 
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inject new vitality into urban planning theory and practice, significantly enriching the 

technical methods and decision-making foundations for urban spatial analysis. They 

strongly promote the advancement of urban planning towards intelligence, precision, 

and scientific rigor. Although there is room for further improvement in the current 

study, it has already made a critical breakthrough in the field of intelligent urban 

morphology generation. This lays a solid foundation for subsequent research and holds 

the potential to spark profound transformations and innovative development within the 

urban planning field. 
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