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Abstract. Owing to the widespread application of machine learning, increasing
attention has been focused on extensive data collection for learning model con-
struction. Recently, with growing concerns about data privacy, private information
protection has significantly increased the operation cost and difficulty of boosting
model performance. The Federated Learning (FL) technique has been introduced to
address this issue by keeping data on client devices and reducing the need to handle
sensitive data directly. However, several challenging issues may arise when apply-
ing FL, such as data heterogeneity, efficient feature transmission, and additional
computational demands. In this study, a novel FL model, Elastic-Trust Hybrid Fed-
erated Learning (ET-FL), is introduced with a dual federated learning framework.
ET-FL incorporates the trust mechanism and differential aggregation strategy for
model optimization and computation reduction. In addition, the proposed model is
applied on real-world datasets to show the performance and practicability of promis-
ing results.

Keywords: machine learning, federated learning, decentralization, hybrid federated
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1. Introduction

Over recent decades, machine learning has emerged as a prominent field characterized by
rapid advancements and widespread adoption across various industries. Several machine
learning techniques have transformed how businesses progress, empowering them to har-
ness large volumes of data to gain insights and inform decision-making. Breakthroughs
in algorithms and computational power have resulted in significant enhancements in areas
such as predictive analytics, natural language processing, and computer vision, to name
a few. The expansion of machine learning has also catalyzed the development of new
applications, ranging from personalized recommendations in e-commerce to advanced
diagnostics in healthcare.

Recently, with the growing concerns of data privacy regulations, safeguarding per-
sonal information and empowering individuals with more authority over private data have
become important issues. These regulations, enforced by governments, necessitate busi-
nesses to be open about their privacy practices, and to adopt stringent security measures
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to protect their clients’ data. Consequently, users are increasingly mindful of how organi-
zations handle their sensitive information, leading to a heightened focus on data privacy
and security. The shift in power dynamics, where individuals have more control over their
data, has instilled a sense of security in the digital realm.

However, in traditional machine learning, data are centralized on a single server for
training. Without any doubt, larger datasets typically improve model performance. In gen-
eral, organizations aim to gather extensive data, which requires substantial storage and
a high-performance server, making the process resource-intensive and time-consuming.
Securing these centralized data, especially when sensitive user information is involved,
adds further cost due to the necessary security measures. For example, in healthcare, pa-
tient data must be anonymized and encrypted, adding complexity and computation cost.
Likewise, the financial sector must implement strict protocols to protect transaction data.
Obviously, these measures are essential for preventing breaches and ensuring privacy, but
also increase the cost and complexity of traditional machine learning operations.

Federated Learning (FL) is a promising solution to these problems. FL keeps the pri-
vate data on each device, also called a client, thus removing the burden of implementing
security measurements for organizations. Furthermore, while moving the data to each
client, the training process could be done in parallel with each client, with less computing
power and time. In this situation, the server orchestrates the training process across clients
and maintains the consensus model. We use an application to show the significance of FL.
Gboard [12] is a keyboard application installed on Android, one of the major operating
systems used on mobile devices. It provides a wide range of input languages and has ex-
ceeded 1 billion installations. One of the main features of Gboard is that it suggests the
next word according to the context that the user has typed in. To improve the recall of sug-
gestions while protecting user privacy, Google has adopted an FL methodology, FedAvg
[34], to complete the task successfully.

Nevertheless, transitioning from a single-server setup to a system with multiple in-
stances may suffer several challenging issues when applying FL. These challenges mainly
include data heterogeneity, feature transmission efficiency, and extra computing resource
consumption. Data heterogeneity manifests as statistical imbalances, with individual clients
possessing varying data distributions. In the context of FL, the model on the server acts as
a collective representation of the entire system. While the system generally performs ad-
equately in the presence of statistical imbalances, the performance of specific clients may
suffer. Furthermore, feature transmission efficiency in decentralized FL encounters trade-
offs between communication efficiency and cost, with various structures such as line, ring,
and mesh necessitating considerations about the optimal balance between communication
efficiency and cost when spreading features to all clients. Finally, undoubtedly, the cus-
tomized approach for adapting a shared model or weights requires additional computing
resources to effectively complete the task at hand.

In this study, a novel hybrid framework, Elastic-Trust Hybrid Federated Learning (ab-
breviated as ET-FL), is proposed to tackle the aforementioned obstacles when applying
FL in practical domains. We introduce a two-layer hierarchy including local and global
tiers. The node in the local tier includes one server and multiple clients. The clients who
have similar statistical distributions will be grouped into one node. With the hierarchy of
each node (i.e., one server and multiple clients) in the local tier, we could directly ap-
ply the state-of-the-art centralized FL methodologies to learn the model and store in each
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server. In the global tier, all servers in local nodes are extracted for further processing,
using a decentralized approach. We introduce a novel elastic trust mechanism within the
global tier to facilitate peer selection, and a merging weight concept to aggregate con-
sensus models from other servers. The weights can be adjusted iteratively, allowing for
precise calibration to extract specific features from various nodes at different iterations.
Furthermore, we adopt a differential aggregation strategy on global iterations and local
rounds to leverage global feature aggregation and resource consumption.

The contributions of this study are as follows:

• To the best of our knowledge, prior studies excluded emphasis on the integration of
different FL methodologies. In this study, we developed a novel framework, ET-FL, a
sophisticated two-layer architecture which comprises local and global tiers. The local
tier learns models using the centralized FL approach, while the global tier utilizes the
decentralized FL approach to integrate the learned models.

• Generally, the problem of performance downgrade in clients is mainly attributed to
the presence of diverse and heterogeneous data. To address this challenging issue, we
propose a strategy to organize clients with similar characteristics into groups. This
contribution ensures that the system can maintain a high degree of personalized FL
and also efficiently reduce the requirement of computation resources.

• We introduce a trust mechanism for client selection and aggregation weight control.
The client selection process could strike a delicate balance between received models
and transmission costs. The aggregation weight control ensures the necessary desired
attributes throughout the process. With the proposed trust mechanism, ET-FL could
optimize network performance and resource allocation.

• ET-FL equips a differential aggregation strategy bridging the global and local tiers.
The proposed strategy allows the local consensus models to have ample time to ag-
gregate features within the nodes before exchanging features in the global tier. The
strategy effectively optimizes feature exchange efficiency and resource consumption.

• Finally, the proposed ET-FL framework is applied on several real-world datasets to
show its performance and practicability.

The organization of the rest of this paper is as follows. Section 2 discusses the Related
Work and Section 3 presents the proposed ET-FL framework in detail. We provide the ex-
perimental results in a performance study in Section 4, and conclude the paper in Section
5.

2. Related Work

2.1. Federated Learning

Concerning data privacy, the FL architecture was designed with two components: the
server and the clients. The clients’ private data are not transferred to the server for training;
instead, they remain inside each client. To collect the features across clients, the server
maintains a consensus model. In the training process, the server distributes the consensus
model to the clients for client training and then collects the updated model weight from
the clients, aggregating it into the new consensus model. McMahan et al. [34] were the
first to propose architecture with the algorithm called FedAvg.
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FedAvg suffers multiple challenges in practical use. One is the data heterogeneous
problem, which indicates that FedAvg performs poorly when handling non-IID datasets.
Researchers have utilized the data heterogeneous problem to improve performance. For
example, Li et al. [27] proposed the Federated Proximal (FedProx) methodology which
introduces an additional hyperparameter to limit the convergence direction from deviating
too far from the consensus model of the client model optimization. Karimireddy et al.
[21] proposed the SCAFFOLD methodology which adds two variates to the server and
the client. The variates control the gradient direction to prevent the client model gradient
from being directed to an optimal point far from the server consensus model. In[45],
Wang et al. proposed FedNova, which normalizes the returned gradients by the numbers
of the local updates to prevent the aggregated gradient from being pulled away by a larger
dataset. Acar et al. [1] indicated that the client’s minimal loss will not equal the global
minimum loss. Therefore, they proposed the FedDyn methodology, which normalizes the
calculated loss on the client to fit the global one. Duan et al. [8] proposed the Astraea
framework which adds the role of mediator to manage a subset of training clients to have
balanced data in the group view. Both [50] and [15] provided a concept of sharing few
data on the clients over the system to resolve the data heterogeneous problem. In [18],
Jeong et al. proposed a federated argumentation method using a generator to generate non-
balanced data on the client side. However, the training of the generator requires clients to
upload a few data to the server for the FL design.

Other approaches to improving centralized FL performance include applying opti-
mizers to FL, resolving physical limitations, inquiring into the safety of transferred con-
tent, etc. [23,5,40,49] have tackled the communication challenges. Selecting the training
client is another approach to improving FL performance; this approach was adopted by
[37,20,36], while [35,29] defined new merging weight mechanisms, and [4,2,46] delved
into security for aggregation. Aside from the aforementioned approaches, some researchers
have adapted machine learning methodologies to FL. [39,28,31,44] implemented optimiz-
ers in FL, whereas [17,25,51,24,38] implemented knowledge distillation methodologies.

Instead of pursuing better performance using one consensus model on a system with
heterogeneous data, some researchers have deployed different models on the client side.
This approach is called personalized FL. Arvazagan et al. [3] proposed the FedPer algo-
rithm. In addition to the shared consensus model across the system, FedPer adds an extra
layer on top of the consensus model. Furthermore, this added layer does not attend the ag-
gregation to enhance the client feature. Fallah et al. [10] proposed the Per-FedAvg model
which splits the client training into two steps using two optimizers to generate the global
and local gradients. The global gradient is aggregated to update the consensus model.
Liang et al. [32] proposed the LG-FedAvg methodology. Each client maintains the global
and local models and updates them by both models’ loss in succession.

The concept of training one global model and fitting it to the different tasks of the dif-
ferent datasets in meta-learning and multi-task learning can help to solve the data hetero-
geneous problem by viewing each dataset as a different task. Smith et al. [42] introduced
MOCHA, which identifies different clients as performing different tasks. To moderate the
weight between clients, the server maintains a matrix that identifies the relationship be-
tween each client. The training process optimizes the client model and relationship matrix.
In [9], Eicher et al. categorized the dataset by the time span in the day, such as midnight,
morning, noon, etc. Different training rounds pick different time spans’ data and clients



Elastic-Trust Hybrid Federated Learning 1781

for training. In[22], Khodak et al. proposed ARUBA, which maintains an extra parame-
ter, the learning rate, on the server side to better adapt the consensus model to different
tasks, which is also adjusted in rounds. Li et al. [26] proposed MOON, a personalized
methodology using contrastive learning to minimize the distance between the consensus
and local models.

According to the aforementioned research, FL methodologies have diverse approaches
to improving performance. However, the most frequently addressed issue is the data het-
erogeneous problem. The effect of data heterogeneity has even opened up a new branch
of FL methodologies called personalized FL. Considering these studies, we divided the
clients into different nodes according to the statistics. In addition, we adopted the central-
ized FL architecture inside nodes.

2.2. Decentralized Federated Learning

A decentralized network is structured without a central authority, relying instead on a
distributed architecture where each node operates independently. In this network, control
is not vested in a single entity, but is distributed among all participating nodes. Each
node has the ability to make decisions, process data, and communicate with other nodes
autonomously. The lack of a central control point means that there is no single point of
failure, enhancing the network’s fault tolerance and reliability.

With these decentralized network features, each node can gain control of its own
model and dataset. Furthermore, while each client manages a personal dataset and model,
it is a perfect situation to dive into the solution of dataset heterogeneity. These reasons en-
courage researchers to start their research in decentralized FL. Kalra et al. [19] proposed
a model called ProxyFL, in which the consensus model is used only as a proxy model for
exchanging the network features. Yue et al. [48]proposed the FedDCM method, which
shares the same concept with [19], but uses distillation to exchange the feature between
the proxy model and the local model. Gholami et al. [11] proposed a merging weight
called trust, which was evaluated by the contribution in the previous round.

With the increased connections between clients in a decentralized network, carefully
selecting peers is a new aspect of utilizing the framework. Tang et al. [43] provided a
method that selects the peer by the connection bandwidth, while Masmoudi et al. [33]
introduced OCD-FL, which includes a peer selection method determined by the energy
consumption and knowledge gain.

Other than the research mentioned above, resolving communication efficiency and
revising the existing centralized FL methodologies to a decentralized network are also
available to improve the framework. Hu et al. [14] divided the model into segments and
retained different segments from different peers to replace the aggregation and reduce the
communication cost, whereas Li et al. [30] introduced a model using knowledge distilla-
tion in the decentralized setting.

In the practical usage of decentralized FL, the network designs vary. For example, [46-
48] adopted decentralized FL in practical use in the medical category, but used different
network architecture. Huang et al. [16] used line architecture, Chang et al. [6] used a ring
network, while Xu et al. [47] used a mesh network in their decentralized FL network
architecture.

From the above literature, which benefits from the feature of a decentralized network,
decentralized FL has a natural advantage in handling heterogeneous data. In addition,
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communication efficiency remains an approach to utilize the framework with some new
research criteria, such as the peer selection problem. Considering these mentioned aspects,
we adopted the decentralized FL setting in the global tier with the trust mechanism for
controlling the merging weight and peer selection.

We propose a hybrid framework mixing the two architectures with client grouping and
trust mechanisms. We present a detailed explanation of our proposed model, Elastic-Trust
Hybrid Federated Learning, in the next section.

3. The Proposed Framework: ET-FL

Our first goal was to address the challenge of dealing with heterogeneous data and to avoid
using extra computational resources on clients for a personalized approach. Instead, we
proposed a client grouping strategy with a centralized server inside each node. To facili-
tate the exchange of features between nodes, we introduced a global tier to gather all the
servers and build a network. We also aimed to remove control from any specific server
and to form a decentralized network known as the global tier network. Additionally, we
acknowledge that the optimal model weight derived from all the data may not always be
the best for practical usage. To address this, we introduced the elastic Trust mechanism for
each node to determine the preferred weight for global aggregation in different iterations.
This approach also serves as a peer selection method. Finally, we observed that a syn-
chronous setting for global tier training and local tier training leads to insufficient feature
information exchange. As a solution, we proposed the differential aggregation strategy.

Fig. 1. The system architecture of ET-FL

Figure 1 displays the architecture of the system design. In the following section, we
denote our nodes N = {1, 2, 3, . . . }, and server S = {sn | n ∈ N} to better illustrate
our architecture.

3.1. Local Tier

In the local tier, we group clients into clusters based on their statistical characteristics.
Each cluster has a server assigned to manage the training process within the cluster. We
denote Cs = {1, 2, 3, . . .} as the clients that are grouped under a specific server. This
organizational structure is illustrated in Figure 2.
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Fig. 2. The node structure

Each client device maintains a private dataset D = {ds,c | c ∈ Cs, s ∈ S} as well
as a local model W = {ws,c | c ∈ Cs, s ∈ S}. Meanwhile, the server stores a con-
sensus model S and is responsible for coordinating the training process. In star network
architecture, centralized FL methodologies such as the three most mentioned methodolo-
gies, FedAvg, FedProx, and SCAFFOLD, can be effectively implemented. Our objective
function is given as follows:

w(t+1) = argmin
w

FL(w) (1)

The FedAvg algorithm represents a pioneering approach to employing FL. The train-
ing begins with the server initializing the consensus model weight and randomly selecting
a subset of clients for training. Subsequently, the server transmits the consensus model
weight to the chosen clients to initialize the training process on their end. Upon recep-
tion of the model weight, the clients apply it to their respective models and commence
the training procedure using their local datasets over a specified number of epochs. Upon
completion of training, the client returns the model weight to the server. Post-receiving all
the model weights from the selected clients, the server aggregates the model weights using
the weight calculated from the training data size of the clients. The server then leverages
the accumulated gradient to optimize the consensus model. These steps constitute one
round, and a comprehensive training process encompasses several rounds. We denote the
server weight W∫ and the selected client K to express the aggregation as follows:

ws =
1

M

∑
k∈K

nkwk, where M =
∑
k∈K

nk (2)

The FedAvg methodology has introduced a new avenue for research, prompting many
researchers to explore its applications. FedProx has emerged as a key player in this field,
with a particular focus on addressing the challenges posed by data heterogeneity. In order
to mitigate the risk of highly diverse client datasets misleading the consensus model,
FedProx incorporates a penalty mechanism that accounts for the discrepancy between the
local model and the consensus model. This ensures that the client’s search for the optimal
model weight is guided by a refined equation, thereby enhancing the overall efficacy of
the approach. The new equation of the client for searching for the optimal model weight
is as follows:

w(t+1) = argmin
w

Fk(w) +
µ

2
∥w − wt∥2 (3)
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Although we describe the client process as a search for the best model weight, it in-
volves receiving the current round model weight W⊔ from the server, thereby controlling
the client’s distance from the server. Furthermore, the parameter ⇕⊓ is crucial in determin-
ing how closely the client remains near the server. Essentially, a higher ⇕⊓ level increases
the client’s difficulty finding an optimal space away from the server.

SCAFFOLD addresses the issue of data heterogeneity by introducing server and client
control variates, which help control the client model stepping during training. These vari-
ates indicate the stepping direction in the previous round. As the client undergoes training,
the gradient is adjusted using the gap between the server and client variates. The specific
formula for this correction is provided as follows:

w
(t+1)
k = wt

k − ηl∇L(wt
k)− ck + cs (4)

where ck and cs refer to the client and server control variables. At the end of each
round, these variables undergo updates based on a predefined formula. This update en-
sures that the variables accurately reflect the state of the client-server interaction. The
formula is listed as follows:

c
(t+1)
k = ctk − cs +

1

Kηl

(
ws − w

(t+1)
k

)
, where K stands for number of epochs (5)

c(t+1)
s = cts + ηg

(
1

S

∑
i∈S

w
(t+1)
i − wt

s

)
, where S is the number of selected clients

(6)

3.2. Global Tier

Within our local network infrastructure, clients are segmented into distinct nodes for or-
ganizational purposes. Each node’s server is interconnected to facilitate the seamless ex-
change of features across the various nodes. This interconnected network, known as the
global tier, plays a pivotal role in our operations. To ensure that server control is uniformly
distributed and feature exchange is conducted with optimal efficiency, we have imple-
mented a mesh network within the global tier. Utilizing this mesh network enables us to
manage equal server controllability and to maximize the efficiency of feature exchange
across nodes. Figure 3 depicts the intricate interactions between a server and other servers
within the global tier, providing a comprehensive illustration of our network architecture.

Figure 3 illustrates how a server retrieves model weights from other servers, known as
an aggregation step. We introduce a novel concept called ”Trust” for merging weights dur-
ing aggregation. Trust governs the feature weight gathered from the servers. Higher trust
weight indicates the greater significance of the corresponding model’s feature. Trust also
serves as a method for selecting peers while adjusting the trust weight to zero. Moreover,
trust is an independent setting that differs from the servers and is elastic over iterations.
Trust (T) is represented as follows:

T ⊆
{
(x, y, t) | (x, y) ∈ N2, t ∈ [0, 1]

}
(7)
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We denote the aggregated model in the global tier as Scon. We can express the relation
of trust as follows:

Scon =

 ∑
t∈Ts, w∈S

t · w

∣∣∣∣∣∣ s ∈ S

 (8)

Fig. 3. Global tier aggregation

Furthermore, we have put forward a differential aggregation strategy, which entails
adjusting the pace of aggregation in the global and local tiers. In this strategy, we define
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the global training cycle as an iteration and the local training cycle as a round. By imple-
menting the differential aggregation strategy, multiple rounds of training are incorporated
into a single iteration. Through the implementation of a differential aggregation strategy,
our model effectively optimizes the sharing of features and minimizes communication
costs. This allows for a harmonious balance between the utilization of shared features and
the associated costs of communication within the model. Algorithm 1 details the main
learning process in the ET-FL framework.

4. Experiments and Evaluation

To thoroughly evaluate the effectiveness of our proposed methodology, ET-FL, we under-
took a comprehensive series of experiments involving three diverse datasets:

• Shakespeare [41]: This dataset is derived from ”The Complete Works of William
Shakespeare,” including all the plays written by William Shakespeare. We obtained
the preprocessed version from LEAF [50], which adopted the dataset for the task of
next-letter prediction with an input sequence length of 80 characters. We adopt the
LSTM model for the next-letter prediction task.

• Amazon Review [13]: This dataset is a collection of Amazon product details and
customer reviews, encompassing both the rating and review text. To prepare the data
for analysis, we truncated and tokenized the review text to a maximum length of 200
words for input while selecting the rating as the corresponding label. We chose to use
a Transformer model to predict the rating

• EMNIST [7]: The EMNIST dataset, short for extended MNIST, is a comprehen-
sive extension of the original MNIST dataset. It was derived from the NIST Special
Database 19, which encompasses handwritten digits and both upper- and lower-case
letters. The MNIST dataset comprises 70,000 images.

Table 1. Summary of Datasets
Dataset # train # test # labels

Shakespeare [41] 606,277 202,103 80
Amazon Review [13] 418,811 139,613 6

EMNIST [7] 209,993 70,007 10

We divided these datasets into 20 non-IID sub-datasets to accommodate our specific
needs. Each sub-dataset consists of a training set and a corresponding test set.

4.1. Baseline and Metrics

We selected the average training loss, test accuracy, test recall, test precision, and test F1-
score for evaluating our model. The training loss is calculated as the difference between
the model’s predicted value (output logit) and the actual value, indicating how well the
model fits the training dataset. Commonly used methods for calculating training loss are
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mean square error and cross-entropy loss. In our experiment, we opted for cross-entropy
loss. The cross-entropy loss formula follows, where p(x) represents the label encoded
into a one-hot vector and q(x) represents the model’s output logit. Applying a negative
sign to the formula results in a positive value, facilitating easier comprehension. A lower
value indicates effective model training, while a higher value suggests the opposite.

Cross-Entropy Loss = −p(x) log q(x) (9)

The concept of accuracy, recall, precision, and F1-score is a computed metric obtained
from the confusion matrix depicted in the accompanying Figure. A true positive denotes
a scenario where both the actual and predicted values are positive. On the other hand,
false negatives and false positives refer to cases where the actual and predicted values are
discordant, indicating either a misclassification of a positive actual value as negative or a
misclassification of a negative actual value as positive, respectively. Finally, a true nega-
tive encompasses situations where the actual and predicted values are correctly identified
as negative.

Fig. 4. The node structure

Accuracy is the ratio of correctly predicted data to the overall data. It is the ratio of
the true positive and the true negative data to the overall data. The formula is as follows:

Accuracy =
TP+ TN

TP+ FN+ FP + TN
(10)

Recall is the ratio of corrected predicted positive data to the overall data whose true
label is positive. It provides the performance on the true label side. The formula is as
follows:

Recall =
TP

TP + FN
(11)

Precision is the ratio of corrected predicted positive data to the overall data whose
predicted label is marked as positive. It provides the performance on the predicted output’s
side. The formula is as follows:

Precision =
TP

TP + FP
(12)

To identify a model that performs well, it should not only have good performance
on either recall or precision, but on both. The F1 score therefore takes into account both
recall and precision simultaneously. The formula is as follows:

F1-score =
2 · Recall · Precision
Recall + Precision

(13)
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To mitigate the impact of heterogeneous datasets, we averaged the training loss and the
accuracy achieved during the training iterations as the reference metrics for comparison.

As for the baseline methods, we carefully chose several FL algorithms to serve for
evaluation, and compared these baseline models with our proposed methodology using
specific evaluation metrics. The evaluation methods we chose are test loss and accuracy.
The algorithms we selected for comparison are integral to our research and will provide
valuable insights into the effectiveness of our proposed approach.

• ML (single): This baseline collects all the datasets into one server to undergo the
training process. It represents the traditional machine learning training process, which
provides a comparison of the traditional machine learning training process and the FL
approaches.

• FedAvg [34]: FedAvg, which stands for Federated Averaging, is a foundational method-
ology in FL. This approach revolutionizes traditional training architectures by in-
troducing two essential roles: the server and the client. The server orchestrates the
collaborative model training process, while the client devices actively participate in
model training, all while ensuring that data privacy is securely maintained.

• FedProx [10]: FedProx is a novel approach designed to deal with diverse and varying
datasets. This is achieved by incorporating a hyperparameter that plays a crucial role
in determining the direction of model optimization. Additionally, FedProx ensures
that the model does not stray too far from the central server during the optimization
process, thus maintaining stability and consistency.

• SCAFFOLD [21]: SCAFFOLD introduces the server and client variates in the train-
ing process. Every gradient will get a correction, which is the difference between the
server and client variates. This prevents the client update from drifting away from the
system’s optimal point.

• Per-FedAvg [10]: Per-FedAvg adopts the Model-Agnostic Meta-Learning approach,
which stands for the personalized approach in FL. The server holds a consensus model
that is validated to handle all the tasks. However, applying the consensus model to any
specific task will lead to poor performance. Therefore, the client model has to undergo
an extra training process to fit the usage.

4.2. Performance Comparison

We evaluated our proposed method against baseline models using the Shakespeare, Ama-
zon Review, and Loan datasets. For consistency, we reviewed each baseline’s original
research to apply the optimal settings. Our experimental setup included an optimizer with
Stochastic Gradient Descent at a 0.01 learning rate, with 250 training rounds per server
and four epochs per client per round. We adopted other specialized parameter settings
from the existing methodologies.

To group clients effectively, we utilized a pre-trained Transformer model to extract
data features from output hidden states. We then calculated client centroids as representa-
tive statistical data, applying K-means clustering to organize clients into distinct groups.
Finally, we recalculated the centroids for each node and used the distance between nodes
as a trust metric. Results are displayed in Tables 2 to 6.

Table 2 shows the cross-entropy loss metric, where centralized FL approaches face
higher losses due to data heterogeneity. Per-FedAvg improves on the centralized methods,
but our model surpasses even personalized models, achieving outstanding performance.
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Table 2. Experiment Results of Averaged Cross-Entropy Loss
Model Shakespeare Amazon Review EMNIST
ML (single) 1.798 0.232 0.000*
FedAvg 3.926 3.285 0.528
FedProx 3.982 3.475 0.243
SCAFFOLD 3.144 3.320 0.796
Per-FedAvg 1.302 0.258 0.018
ET-FL (FedAvg) 2.529 1.690 0.209
ET-FL (FedProx) 2.618 1.932 0.064
ET-FL (SCAFFOLD) 2.135 1.836 0.226

* less than 0.001

Table 3. Experiment Results of Averaged Accuracy
Model Shakespeare Amazon Review EMNIST
ML (single) 0.466 0.710 0.996
FedAvg 0.208 0.457 0.882
FedProx 0.190 0.440 0.924
SCAFFOLD 0.201 0.449 0.878
Per-FedAvg 0.233 0.673 0.956
ET-FL (FedAvg) 0.323 0.679 0.936
ET-FL (FedProx) 0.315 0.644 0.978
ET-FL (SCAFFOLD) 0.359 0.658 0.930

Next, we examine the average accuracy results in Table 3, which show a pattern sim-
ilar to the cross-entropy loss findings. Centralized FL methodologies perform below per-
sonalized FL methods, while our model surpasses centralized FL and achieves compara-
ble accuracy to Per-FedAvg.

Table 4. Experiment Results of Averaged Recall
Model Shakespeare Amazon Review EMNIST
ML (single) 0.466 0.710 0.996
FedAvg 0.208 0.457 0.882
FedProx 0.190 0.440 0.924
SCAFFOLD 0.201 0.449 0.878
Per-FedAvg 0.233 0.673 0.956
ET-FL (FedAvg) 0.323 0.679 0.936
ET-FL (FedProx) 0.315 0.644 0.978
ET-FL (SCAFFOLD) 0.359 0.658 0.930

From Tables 4, 5, and 6, these metrics further confirm that centralized FL methods
generally underperform compared to personalized ones, with the exception of FedAvg and
FedProx on the EMNIST dataset for the precision metric. These findings underscore our
model’s strengths. By effectively grouping clients, our approach successfully mitigates
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Table 5. Experiment Results of Averaged Precision
Model Shakespeare Amazon Review EMNIST
ML (single) 0.519 0.687 0.996
FedAvg 0.338 0.585 0.988
FedProx 0.297 0.547 0.994
SCAFFOLD 0.419 0.559 0.979
Per-FedAvg 0.303 0.753 0.969
ET-FL (FedAvg) 0.425 0.783 0.990
ET-FL (FedProx) 0.372 0.727 0.995
ET-FL (SCAFFOLD) 0.528 0.735 0.989

Table 6. Experiment Results of Averaged F1
Model Shakespeare Amazon Review EMNIST
ML (single) 0.426 0.696 0.996
FedAvg 0.210 0.461 0.914
FedProx 0.181 0.442 0.952
SCAFFOLD 0.212 0.453 0.911
Per-FedAvg 0.218 0.676 0.958
ET-FL (FedAvg) 0.331 0.683 0.954
ET-FL (FedProx) 0.317 0.641 0.973
ET-FL (SCAFFOLD) 0.363 0.653 0.951

the data heterogeneity challenge faced in centralized FL. Its improved performance over
centralized methods and its competitive standing with personalized approaches highlight
its robustness and effectiveness.

4.3. Trust Weight Influence Analysis

As previously mentioned, the initial trust weight is derived from the distance between
centroids of different nodes’ data. It is important to note that the trust weight of each node
consists of two key components: the weights for aggregating consensus models from other
servers and the weight applied to the server’s consensus model. In our calculations, we as-
signed a specific value to the latter weight, while the undistributed weight was determined
based on the distance. A more considerable distance results in a lower weight, while a
shorter distance leads to a higher weight. Consequently, we experimented by assigning
different values to the latter weight to test the personalized level of nodes. To evaluate
the personalized level, we performed the evaluation before and after the aggregation and
subtracted the value. In cross-entropy loss, a higher value means the loss increases more
after the aggregation, while a lower value means a low loss increase. This means less
personalized and more personalized, respectively. In the accuracy, recall, precision, and
F1-score metrics, the lower the reduction in performance after the aggregation, the more
personalized the aggregated model will be. In contrast, higher reduction means the ag-
gregated model receives more features from the other consensus model and, thus, is less
personalized. The results are presented in Table 7.
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Table 7. Personalized levels under different trust settings
Loss Accuracy Recall Precision F1-score

0.5 0.676 -0.196 -0.196 -0.072 -0.145
0.6 0.477 -0.130 -0.130 -0.044 -0.089
0.7 0.293 -0.074 -0.074 -0.034 -0.053
0.8 0.143 -0.029 -0.029 -0.016 -0.020
0.9 0.042 -0.004 -0.004 -0.001 -0.002

According to the results, we can discover that a lower trust weight on the server’s
weight leads to a greater increase in cross-entropy loss and a decrease in the other metrics.
In contrast, higher trust in the server’s weight results in less cross-entropy increase and
less performance decrease. The higher weight means the consensus model has a better-
personalized level inside the group. In comparison, a lower weight means that the consen-
sus model receives more information from another consensus model. In conclusion, our
design of trust successfully provides users with a method to control performance, whether
it is more personalized or adopts more global features.

4.4. Iteration and Round Ratio Analysis

In designing the differential aggregation strategy, we considered the number of features
exchanged in aggregation and the resource cost, trying to find a balance point between
rounds executed in one iteration. Therefore, we conducted this experiment to explore the
influence of different ratio settings on the rounds and iterations. In the FL methodologies,
the non-IID datasets lead to fluctuation in performance. To eliminate the variation factor,
we divided the clients into 20 nodes. We randomly picked one node to be the observation
target. The target node’s model converges at around 20 epochs if trained using the tradi-
tional machine learning approach. As a result, we executed our framework with a total of
20 epochs, with one epoch in one round, and conducted 2, 5, 10, and 20 rounds in one
iteration. In addition, we added a test set for executing 30 rounds in one iteration. Collect-
ing these test scenarios allowed us to observe the difference between pre-convergence,
convergence, and post-convergence situations. To evaluate the outcome of each node’s
collection of sufficient information for global tier aggregation, we used the feature gained
from other nodes as the evaluation metric. To measure the feature gain in one iteration
from other nodes, we evaluated the target node using other nodes’ test datasets, sub-
tracted the results before and after the aggregation, and averaged the value from different
test datasets. For those settings that are executed over one iteration, we averaged the result
by the aggregation times. The experiment results are shown in Table 8.

According to the results, we can discover that some values are negative. This is be-
cause the global consensus model mixes multiple models simultaneously. However, with
the mixing in model weight, some features will be less significant, causing the perfor-
mance to decrease when evaluating using the corresponding test dataset. In addition, we
discovered that fewer rounds in one iteration led to better performance in feature gain.
Therefore, doing a global aggregation more frequently is a better option. However, our
differential aggregation strategy still provides users with an option to leverage the feature
gain and the communication cost for tuning the best ratio for different users.
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Table 8. Averaged feature gain on the different ratios between iterations and rounds
Rounds Accuracy Recall Precision F1-score

2 0.011 0.011 0.050 0.014
5 -0.003 -0.003 -0.014 -0.002

10 -0.006 -0.006 0.049 0.001
20 -0.007 -0.007 0.004 -0.001
30 -0.012 -0.012 0.073 -0.007

4.5. Ablation Study

We conducted a series of experiments to assess how well our model’s various components
performed when we turned off specific components. The situations are listed below:

• w/o global tier: We deemed all the nodes to have equal authority over other nodes
and complete control of the model and dataset. Thus, we adopted the decentralized
FL to eliminate the possibility of any client having control over others. By removing
the global tier, our architecture retains the local tier. In addition, due to the absence
of connection between different nodes for feature exchange, the clients should be
grouped into one node, which is a centralized FL architecture.

• w/o local tier: We designed the client grouping strategy in the local tier and adopted
centralized FL architecture inside nodes. By removing the local tier, our framework
remains a decentralized network in the global tier. Thus, every client is equivalent to
a node located in the global tier, aggregating different nodes’ features according to
the trust.

• w/o trust: The trust mechanism is designed for a user-controllable parameter to deter-
mine the weight to aggregate different consensus models. While removing the trust
from our model, we used the weight calculated by the client train data size, a method
mentioned in [2]. Within the group level, we calculate the weight from the total size
of training data inside nodes instead of the selected clients’ training data size.

• w/o differential aggregation strategy: The differential aggregation strategy indicates
that the training process inside the global and local tiers is asynchronous. While one
training iteration performs in the global tier, the local tier may perform several train-
ing rounds. Our orientation in designing the feature is to find a balance between the
feature aggregation and the resource cost. If this strategy is disabled, only one round
will be performed in one iteration.

Table 9. The component effectiveness in the ablation study
Loss Accuracy Recall Precision F1-score

w/o global tier 3.926 (+1.397) 0.208 (-0.115) 0.208 (-0.115) 0.338 (-0.087) 0.210 (-0.121)
w/o local tier 0.841 (-1.688) 0.742 (+0.419) 0.742 (+0.419) 0.707 (+0.282) 0.707 (+0.376)

w/o trust 2.997 (+0.468) 0.268 (-0.055) 0.268 (-0.055) 0.391 (-0.034) 0.268 (-0.063)
w/o differential aggregation strategy 0.899 (-1.630) 0.735 (+0.412) 0.735 (+0.412) 0.695 (+0.270) 0.698 (+0.367)

ET-FL 2.529 0.323 0.323 0.425 0.331
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According to the metrics, our model without a global tier loses the ability to person-
alize the model for each node, thus reducing performance. Our model without the local
tier results in every client being a node in the global tier. This structure mitigates the loss
inside the node due to only one client in each node. Thus, it can easily reach the system
optimal inside the node. However, while leveling up the client tier, every client has to train
every round, thus raising the computation resource cost in contrast to the random client
selection strategy in centralized FL. While removing the trust mechanism, the model per-
formance is affected by the size of the dataset nodes, losing the ability to control the
convergence direction. This results in a subpar performance. The experiment without the
differential aggregation strategy also results in better performance. However, exchanging
the model weight in every round increases the transmission cost. In summary, our design
of the hybrid framework with client grouping, the trust mechanism, and the differential
aggregation strategy provides the optimal setting for resolving the data heterogeneous
problem and the personalized approach with a more straightforward, user-controllable
method.

5. Conclusion

ET-FL is an advanced two-layer hybrid Federated Learning (FL) framework that inte-
grates both global and local tiers. It applies centralized FL methods at the local level and
decentralized methods at the global level. To tackle data heterogeneity within nodes, we
developed a unique grouping strategy that clusters clients by statistical similarity. Addi-
tionally, we introduced ”Trust,” a new aggregation weight that enhances both global ag-
gregation and peer selection, enabling secure, reliable collaboration. A differential aggre-
gation strategy further balances global feature aggregation with resource efficiency across
tiers. We rigorously evaluated ET-FL on real-world datasets, comparing it to five base-
line models with two primary metrics. Results showed that ET-FL consistently outper-
formed centralized FL methods and rivaled personalized FL approaches, achieving these
outcomes with lower computational costs, making it highly efficient and cost-effective.
ET-FL is especially promising for applications dealing with data heterogeneity or limited
computational resources, as well as for decentralized setups organized by device owner-
ship. This balanced, resource-efficient approach opens up new possibilities for Federated
Learning applications.
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