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Abstract. In this paper we present a framework for fusing approximate
knowledge obtained from various distributed, heterogenous knowledge
sources. This issue is substantial in modeling multi-agent systems,
where a group of loosely coupled heterogeneous agents cooperate in
achieving a common goal. In paper [5] we have focused on defining gen-
eral mechanism for knowledge fusion. Next, the techniques ensuring
tractability of fusing knowledge expressed as a Horn subset of proposi-
tional dynamic logic were developed in [13,16].

Propositional logics may seem too weak to be useful in real-world
applications. On the other hand, propositional languages may be viewed
as sublanguages of first-order logics which serve as a natural tool to
define concepts in the spirit of description logics [2]. These notions may
be further used to define various ontologies, like e.g. those applicable in
the Semantic Web. Taking this step, we propose a framework, in which
our Horn subset of dynamic logic is combined with deductive database
technology. This synthesis is formally implemented in the framework of
HSPDL architecture. The resulting knowledge fusion rules are naturally
applicable to real-world data.

Keywords: knowledge fusion, multi-agent systems, approximate rea-
soning, rule-based systems.

1. Introduction

In this paper we investigate a framework for fusing approximate knowledge ob-
tained from various distributed, heterogenous knowledge sources. This issue
is substantial in modeling multiagent systems, where a group of loosely cou-
pled heterogeneous and autonomous agents cooperate in achieving a common
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B. Dunin-Kȩplicz, L.A. Nguyen, A. Szałas

goal. Information exchange, leading ultimately to knowledge fusion, is a natural
and vital ingredient of cooperation, coordination and negotiations, which consti-
tute paradigmatic activities of advanced multiagent systems. This is particularly
visible, when environment model an agent has access to and from which it can
reason is assumed to be limited by inherent perceptual limitations. There are
many reasons why approximate approaches are needed in this context, includ-
ing the following:

– sensor measurements, video streams, etc. are always approximate in their
very nature – in fact one can never expect precise, accurate data from such
sources

– even in the case of idealized perfect perception agents may draw substan-
tially different conclusions, based on their circumstances. For example, due
to different camera angles and light reflections one agent may draw a con-
clusion that a given object is red while another agent may classify the object
to be brown. As this is highly contextual, probabilistic sensor models may
be of little help and qualitative approximate reasoning may be needed.

As discussed in [7], in the past several years attempts have been made to
broaden the traditional definition of data fusion as state estimation via aggrega-
tion of multiple sensor streams. There is still a need to broaden the definition
to include the many additional processes used in all aspects of data and in-
formation fusion identified in large scale distributed systems. One of the more
successful proposals for providing a framework and model for this broadened
notion of data fusion is the data fusion model [33] and its revisions [29,21].
In [29] for example, data fusion is defined as “the process of combining data or
information to estimate or predict entity states” and the data fusion problem “be-
comes that of achieving a consistent, comprehensive estimate and prediction
of some relevant portion of the world state”.

There is a variety of possibilities to model approximate knowledge
[6,11,10,9,20,23,28,34,35,36]. In this presentation we have chosen a gener-
alization of rough sets and relations [27]. In contrast to [27] where only equiv-
alence relations are considered, our approach depends on allowing arbitrary
similarity relations. In order to construct approximations, a covering of the un-
derlying domain by similarity-based neighborhoods is used here. Resulting ap-
proximations have been shown to be useful in applications requiring approxi-
mate knowledge structures [6].

There are many choices as to possible constraints to be placed on the sim-
ilarity relation used to define approximations. The basic requirement is that the
lower approximation is included in the upper one of any set/relation. This is
equivalent to the seriality of similarity relations (see [8]), which we set as the
only requirement. On the other hand, one might not want the relation be tran-
sitive since similar objects do not naturally chain in a transitive manner (see,
e.g., [4,14,6,22,31]). Similarity measures on sets that could be adapted to the
context of approximate reasoning we deal with have been intensively studied in
the area of computer vision and fuzzy sets (see, e.g., [17,32]).
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The focus of this paper is approximate knowledge fusion based on the idea
of approximations. Our starting point is [5], where a framework for knowledge
fusion in multi-agent systems is introduced. Agent’s individual perceptual ca-
pabilities are represented by similarity relations, further aggregated to express
joint capabilities of teams. The aggregation expressing a shift from individual
to social level of agents’ activity has been formalized by means of dynamic
logic. The approach of [5], as using the full propositional dynamic logic, does
not guarantee tractability of reasoning [18]. To overcome this constraint we
adapt the techniques of [24,25,26] to provide an engine for tractable approx-
imate database querying restricted to a Horn fragment of serial propositional
dynamic logic, denoted by HSPDL.

1.1. Contributions of the Paper

In this paper we substantially extend our work presented in [13], where we
have concentrated on techniques allowing one to query HSPDL databases
in a tractable manner. Propositional logics have a very limited expressivity
and may seem too weak to be useful in real-world applications. For example,
one cannot express rules using even very basic arithmetics, like in rules (12)
and (13) of Section 5. On the other hand, propositional languages may be
viewed as sublanguages of first-order logics which serve as a natural tool to
define concepts in the spirit of description logics [2]. Additionally, allowing one
to query other modules of the system, not necessarily propositional (but re-
turning Boolean values), provides a powerful tool. Taking this step, we propose
a framework, in which our Horn subset of dynamic logic is combined with deduc-
tive database technology [1], allowing one to express an advanced knowledge
fusion applicable in real-world data.

The synthesis of the two formalisms naturally leads to a layered architec-
ture, with the lowest layer containing raw data and basic knowledge structures,
the middle one allowing to express rules specifying knowledge fusion, new
concepts and their approximations, and the upper level providing the resulting
knowledge database. We provide this architecture with both the formal seman-
tics and tractable querying machinery. This makes the framework a pragmatic,
rich formalism to be directly used in the chosen application domain.

The framework we propose can also be adapted to other propositional logics
designed as a specification and computation tool, e.g., for multiagent systems
as well as other robotics and software systems. This bridges the gap between
propositional languages and real-world, usually non-propositional data.

1.2. The HSPDL Architecture

There are three main layers of HSPDL architecture (see Figure 1):

– the lower layer consisting of perception data, knowledge databases, results
of classifiers, etc.
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– the middle layer containing HSPDL rules to define new concepts and their
approximations

– the upper layer using the data resulting from the lower layers, i.e., fused
concepts and approximations, to define new advanced rules and obtain new
facts.
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Fig. 1. The HSPDL architecture.

The architecture is highly independent of a particular technology. They can
be founded, e.g., on SQL databases or any other software systems.4 We only
make the following assumptions:

– the lower layer is conceptually a database storing relations (but, as indi-
cated, not necessarily a relational database)

– the lower layer provides a programming interface allowing:
• the middle layer to ask queries about concepts (unary relations) and

similarity relations (binary relations)
• the upper layer to ask queries about any relations represented in the

lower layer.
– the lower (respectively, upper) layer computes answers to queries in time

polynomial in the size of its domain.

The context in which the middle layer rules appear may be very expressive.
It might be the case that all tractable knowledge fusion procedures become

4 In this paper we shall mainly focus on deductive databases technology using Datalog
as its query language (see, e.g., [1]).
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expressible without using HSPDL. However, we insist that the introduction of
HSPDL rules in the middle layer is both well motivated and intuitively appealing.
In the first place, some middle layer constructs are not expressible in many
database technologies, including standard SQL and Datalog. Otherwise, the
resulting rules happen to be indirect and lead to programs difficult to understand
and analyze, while HSPDL rules are fully declarative,

Layered architectures in similar but substantially different contexts have
been considered, e.g., in [15,31].

1.3. The Paper Structure

The paper is structured as follows. In Section 2 we recall the serial proposi-
tional dynamic logic. Computational aspects of its Horn fragment HSPDL are
discussed in Section 3. Section 4 is devoted to combining HSPDL with Datalog.
Section 5 illustrates possible applications of the introduced framework on an
example. Finally, Section 6 concludes the paper.

2. Serial Propositional Dynamic Logic

2.1. Language and Semantics of SPDL

Let us define serial propositional dynamic logic (SPDL). The key idea is to pro-
vide calculus on similarity relations rather than on programs. This somehow
unusual move allows us to reason about similarities using the whole apparatus
of dynamic logic, where “programs” are replaced by similarity relations.

Let SNames denote the set of similarity relation symbols, CNames denote
the set of concept names (i.e., propositions), and INames denote the set of
individuals. We assume that INames is finite and non-empty. We use letters like
σ to indicate elements of SNames, use letters like p, q to indicate elements of
CNames, and use letters like a, b, c to indicate elements of INames.

Definition 1. Formulas and similarity expressions (of SPDL) are respectively
defined by the two following BNF grammar rules:

ϕ ::= ⊤ | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | 〈α〉ϕ | [α]ϕ

α ::= σ | α;α | α ∪ α | α∗ | ϕ?

Operator ; is called the composition, ∪ the union, ∗ the iteration and ϕ? the test
operator. ⊳

We use letters like α, β to denote similarity expressions, and use letters like
ϕ, ψ to denote formulas.

Intuitively,

– α1;α2 stands for a set-theoretical composition of relations α1 and α2

– α1 ∪ α2 stands for set-theoretical union of relations α1 and α2

– α∗ stands for the reflexive and transitive closure of α
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– ϕ? stands for the test operator.

Operators 〈α〉 and [α] are modal operators of the dynamic logic with the follow-
ing intended meaning:

– 〈α〉ϕ: “there is an object similar w.r.t. α to a given object and satisfying
formula ϕ”

– [α]ϕ: “all objects similar w.r.t. α to a given object satisfy ϕ”.

The following definitions naturally capture these intuitions. Observe, how-
ever, that rather than possible worlds or states, objects are used as elements of
domains of Kripke structures.

Definition 2. A Kripke structure is a pair I = 〈∆I , ·I〉, where∆I is a non-empty
set of objects, and ·I is an interpretation function that maps each individual a
to an element aI of ∆I , each concept name p to a subset pI of ∆I , and each
similarity relation symbol σ to a binary relation σI on ∆I . ⊳

The interpretation function is extended for all formulas and similarity expres-
sions as follows:

⊤I = ∆I (¬ϕ)I = ∆I \ ϕI

(ϕ ∧ ψ)I = ϕI ∩ ψI (ϕ ∨ ψ)I = ϕI ∪ ψI (ϕ→ ψ)I = (¬ϕ ∨ ψ)I

(〈α〉ϕ)I = {x ∈ ∆I | ∃y [αI(x, y) ∧ ϕI(y)]}
([α]ϕ)I = {x ∈ ∆I | ∀y [αI(x, y) → ϕI(y)]}

(α;β)I = αI ◦ βI = {(x, y) | ∃z [αI(x, z) ∧ βI(z, y)]}
(α ∪ β)I = αI ∪ βI (α∗)I = (αI)∗ (ϕ?)I = {(x, x) | ϕI(x)}.

We sometimes write I, x |= ϕ to denote x ∈ ϕI . For a set Γ of formulas, we
write I, x |= Γ to denote that I, x |= ϕ for all ϕ ∈ Γ . If I, x |= Γ for all x ∈ ∆I

then we call I a model of Γ . If ϕI = ∆I then we say that ϕ is valid in I.
When dealing with the data complexity of the instance checking problem,

without loss of generality we can assume that both the sets SNames and
CNames are finite and fixed.

Definition 3. The size of a Kripke structure I is defined to be

|∆I |+Σp∈CNames|p
I |+Σσ∈SNames|σ

I |.

The length of a formula is the number of symbols occurring in it. The size of
a set of formulas is defined to be the sum of the lengths of its formulas. ⊳

Lemma 1. Given a Kripke structure I with domain of size n and a formula ϕ
with length m, the set ϕI can be computed in O(m× n3) steps.

Proof. Just notice that the complexity of computing the transitive closure of a bi-
nary relation is O(n3) (see, e.g., [3]). ⊳
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For every σ ∈ SNames, we adopt the axioms

[σ]ϕ→ 〈σ〉ϕ (1)

(or 〈σ〉⊤, equivalently). It is well known (see, e.g., [8,30]) that (1) corresponds
to the seriality property:

∀x∃y σI(x, y). (2)

Therefore we have the following definition.

Definition 4. By an admissible interpretation for SPDL we understand any
Kripke structure I with all similarities σ ∈ SNames satisfying (2). We call such
Kripke structures serial. ⊳

Note that we do not require a serial Kripke structure to satisfy the seriality
condition ∀x∃y αI(x, y) for every similarity expression α. This condition holds
when α does not contain the test operator, but does not hold, e.g., for α =
((¬⊤)?).

2.2. Expressing Approximations in SPDL

Let us now explain how SPDL is used as a query language involving approxi-
mate concepts. First, observe that interpretations assign sets of objects to for-
mulas. Therefore, it is natural to identify any formula with a query selecting all
objects satisfying this formula.

In order to explain the role of similarities and modal operators, let us first
recall the notion of approximations.

Definition 5. Let ∆ be a set of objects and α be a similarity expression repre-
senting a serial binary relation on ∆. For a ∈ ∆, by the neighborhood of a w.r.t.

α, we understand the set of elements similar to a : nα def
= {b ∈ ∆ | α(a, b)}.

For A ⊆ ∆, the lower and upper approximations of A w.r.t. α, denoted re-
spectively by A+

α and A⊕

α , are defined by

A
+

α = {a ∈ ∆ | nα(a)⊆A}

A
⊕

α = {a ∈ ∆ | nα(a) ∩ A 6= ∅}. ⊳

The meaning of those approximations is illustrated in Figure 2. Intuitively,
assuming that the perception of an agent is modeled by similarity expression α,

– a ∈ A
+

α means that all objects indiscernible from a are in A
– a ∈ A

⊕

α means that there are objects indiscernible from a which are in A.

Note that seriality guarantees that the lower approximation of a set is in-
cluded in its upper approximation. In fact, this is the weakest requirement re-
garding approximations. The following is often desirable in many applications

A
+

α ⊆ A ⊆ A
⊕

α , (3)

as, in fact, shown in Figure 2. This property corresponds to the reflexivity of
the similarity relation expressed by α (see, e.g., [8,37,30]) and guarantees the
following:
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Fig. 2. Lower approximation A
+

α and upper approximation A
⊕

α of a set A.

– a ∈ A
+

α means that, from the point of view of the agent, a surely is in A,
since all objects indiscernible from a are in A

– a ∈ A
⊕

α means that, from the point of view of the agent, a possibly is in A,
since there are objects indiscernible from a which are in A.

Unfortunately, in some applications the set A is given solely via its approx-
imations, so constraints (3) cannot be checked automatically. This is often the
case of vague concepts lack precise definitions or lead to definitions unaccept-
able in applications due to its complexity or other issues. For example one could
define a concept of a “dog” via genetic code what is not that much of help when
classifying dogs in everyday life. Also, machine learned concepts are often ap-
proximated, as e.g., in version spaces (see [12]).

As an immediate consequence of Definitions 5 and 2 we have that:

[α]A expresses the lower approximation of A w.r.t. α, i.e., A+

α , (4)

〈α〉A expresses the upper approximation of A w.r.t. α, i.e., A⊕

α . (5)

Remark 1. In the view of (4) and (5), axiom (1) expresses the property that the
lower approximation of a set A w.r.t. any similarity expression α is included in
its upper approximation. As indicated before, axiom (1) is equivalent to seriality
expressed by (2). This justifies seriality to be the key requirement based on
approximations. ⊳

2.3. The Horn Fragment HSPDL

In order to express tractable queries we restrict the query language to the Horn
fragment HSPDL, defined below.

Definition 6. Positive formulas (of PDL), ϕpos, are defined by the following BNF
grammar:

ϕpos ::= ⊤ | p | ϕpos ∧ ϕpos | ϕpos ∨ ϕpos | 〈αpos3〉ϕpos | [αpos2 ]ϕpos

αpos3 ::= σ | αpos3 ;αpos3 | αpos3 ∪ αpos3 | α∗
pos3

| ϕpos?
αpos2 ::= σ | αpos2 ;αpos2 | αpos2 ∪ αpos2 | α∗

pos2
| (¬ϕpos)?
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HSPDL program clauses, ϕprog, are defined by the following BNF grammar:5

ϕprog ::= ⊤ | p | ϕpos → ϕprog | ϕprog ∧ ϕprog | 〈αprog3〉ϕprog | [αprog2 ]ϕprog

αprog3 ::= σ | αprog3 ;αprog3 | ϕprog?
αprog2 ::= σ | αprog2 ;αprog2 | αprog2 ∪ αprog2 | α∗

prog2
| ϕpos?

An HSPDL logic program is a finite set of HSPDL program clauses. The Horn
fragment HSPDL for the problem of checking whether 〈P ,A〉 |=s ϕ(a) consists
of HSPDL logic programs for P and positive formulas for ϕ. ⊳

Example 1. The following formulas are HSPDL program clauses:

p ∧ q ∧ r → s

[σ1]p ∧ 〈σ2〉q → 〈σ3〉(r ∧ [σ4]s)

[(σ1 ∪ σ2)∗]
(

〈(σ3 ∪ σ4)∗〉(p ∨ q) → [σ3]〈σ4〉r
)

,

while the following formulas are not:

p ∧ q → r ∨ s

p→ 〈σ1 ∨ σ2〉q

p→ 〈σ∗〉q. ⊳

Let us now formally link SPDL with databases.

Definition 7.

– A concept assertion is an expression of the form p(a), where p is a concept
name and a is an individual. A similarity assertion is an expression of the
form σ(a, b), where σ is a similarity relation symbol and a, b are individuals.6

An ABox is a finite set of concept assertions and similarity assertions.7 The
size of an ABox is the number of its assertions.

– Given a Kripke structure I and an ABox A, we say that I is a model of A,
denoted by I |= A, if aI ∈ pI for every concept assertion p(a) ∈ A and
(aI , bI) ∈ σI for every similarity assertion σ(a, b) ∈ A.

– Given an HSPDL logic program P and an ABox A, we call the pair 〈P ,A〉
an HSPDL database, with A as the extensional database and P as the
intensional part. An SPDL model of 〈P ,A〉 is a serial Kripke structure that
is a model of both P and A.

– Let 〈P ,A〉 be an HSPDL database, ϕ be a positive formula, and a be an
individual. We say that a has the property ϕ w.r.t. 〈P ,A〉 in SPDL (or ϕ(a)
is a logical consequence of 〈P ,A〉 in SPDL), denoted by 〈P ,A〉 |=s ϕ(a), if
aI ∈ ϕI for every SPDL model I of 〈P ,A〉. ⊳

By the instance checking problem for HSPDL we mean the problem of
checking whether 〈P ,A〉 |=s ϕ(a). The data complexity of this problem is mea-
sured when P , ϕ and a are fixed (and compose a query), while A varies as
input data.

5 Notice the two occurrences of ϕpos in the grammar. We do not allow formulas of the
form 〈α ∪ β〉ϕ or 〈α∗〉ϕ to be HSPDL program clauses because they cause non-
determinism.

6 Similarity assertions correspond to role assertions of description logic.
7 In [19], such an ABox is said to be extensionally reduced.
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3. Computational Aspects of HSPDL

3.1. Ordering Kripke Structures

To construct least models for HSPDL we need the following definitions.

Definition 8. A Kripke structure I = 〈∆I , ·I〉 is said to be less than or equal
to I ′ = 〈∆I

′

, ·I
′

〉, denoted by I ≤ I ′, if for every positive formula ϕ and every
individual a, aI ∈ ϕI implies aI

′

∈ ϕI
′

. ⊳

Definition 9. Given Kripke structures I = 〈∆I , ·I〉 and I ′ = 〈∆I
′

, ·I
′

〉 and
a binary relation r ⊆ ∆I ×∆I

′

, we say that I is less than or equal to I ′ w.r.t. r,
denoted by I ≤r I ′, if the following conditions hold for every individual a, every
similarity relation symbol σ, and every concept name p :

1. r(aI , aI
′

)
2. ∀x, x′, y

[

[σI(x, y) ∧ r(x, x′)] → ∃y′ [σI
′

(x′, y′) ∧ r(y, y′)]
]

3. ∀x, x′, y′
[

[σI
′

(x′, y′) ∧ r(x, x′)] → ∃y [σI(x, y) ∧ r(y, y′)]
]

4. ∀x, x′ [r(x, x′) → (x ∈ pI → x′ ∈ pI
′

)]. ⊳

In Definition 9, the first three conditions state that r is a kind of bisimula-
tion between the frames of I and I ′. Intuitively, r(x, x′) states that x has fewer
positive properties than x′.

The following lemma is proved in [16].

Lemma 2. Let I = 〈∆I , ·I〉 and I ′ = 〈∆I
′

, ·I
′

〉 be Kripke structures, and r ⊆
∆I ×∆I

′

be a relation that satisfies conditions 2, 3, 4 of Definition 9. If r(x, x′)
holds then, for every positive formula ϕ, x ∈ ϕI implies x′ ∈ ϕI

′

. ⊳

Corollary 1. Let I and I ′ be Kripke structures such that I ≤r I ′ for some r.
Then I ≤ I ′. ⊳

We are now ready to define the least SPDL model of a HSPDL database.

Definition 10. Let 〈P ,A〉 be an HSPDL database. We say that a Kripke struc-
ture I is a least SPDL model of 〈P ,A〉 if I is an SPDL model of 〈P ,A〉 and for
any other SPDL model I ′ of 〈P ,A〉 we have that I ≤ I ′. ⊳

3.2. Constructing Least SPDL Models for HSPDL Databases

Now, we are ready to present an algorithm that constructs a finite least SPDL

model for a given HSPDL database 〈P ,A〉. During execution, the algorithm
constructs the following data structures:

– ∆ is a set of objects. We distinguish the subset ∆0 of ∆ that consists of all
individuals (from INames).

– H is a mapping that maps every x ∈ ∆ to a set of formulas, which are the
properties that should hold for x. When the elements of ∆ are treated as
states, H(x) denotes the contents of the state x.
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– Next is a mapping such that, for x ∈ ∆ and 〈σ〉ϕ ∈ H(x), we have
Next(x, 〈σ〉ϕ) ∈ ∆. The meaning of Next(x, 〈σ〉ϕ) = y is that:
• 〈σ〉ϕ ∈ H(x) and ϕ ∈ H(y),
• the “requirement” 〈σ〉ϕ is realized for x by going to y via a σ-transition.

We call the tuple 〈∆,H,Next〉 a model graph.
Using the above data structures, we define a Kripke structure I such that:

– ∆I = ∆,
– aI = a for every a ∈ INames,
– pI = {x ∈ ∆ | p ∈ H(x)} for every p ∈ CNames,
– σI = {(a, b) | σ(a, b) ∈ A} ∪ {(x, y) | Next(x, 〈σ〉ϕ) = y for some ϕ} for

every σ ∈ SNames.

Definition 11. For x, y ∈ ∆, we say that y is reachable from x if there exists
a word σ1 . . . σk such that (σ1 . . . σk)I(x, y) holds. We say that y is reachable
from ∆0 if it is reachable from some x ∈ ∆0. ⊳

Definition 12. The saturation of a set Γ of formulas, denoted by Sat(Γ ), is
defined to be the smallest superset of Γ such that:

– ⊤ ∈ Sat(Γ ) and 〈σ〉⊤ ∈ Sat(Γ ) for all σ ∈ SNames,
– if ϕ ∧ ψ ∈ Sat(Γ ) or 〈ϕ?〉ψ ∈ Sat(Γ ) then ϕ ∈ Sat(Γ ) and ψ ∈ Sat(Γ ),
– if 〈α;β〉ϕ ∈ Sat(Γ ) then 〈α〉〈β〉ϕ ∈ Sat(Γ ),
– if [α;β]ϕ ∈ Sat(Γ ) then [α][β]ϕ ∈ Sat(Γ ),
– if [α ∪ β]ϕ ∈ Sat(Γ ) then [α]ϕ ∈ Sat(Γ ) and [β]ϕ ∈ Sat(Γ ),
– if [α∗]ϕ ∈ Sat(Γ ) then ϕ ∈ Sat(Γ ) and [α][α∗]ϕ ∈ Sat(Γ ),
– if [ϕ?]ψ ∈ Sat(Γ ) then (ϕ→ ψ) ∈ Sat(Γ ). ⊳

Observe that Sat(Γ ) is finite when Γ is finite. It can be shown that the size
of Sat(Γ ) is quadratic in the size of Γ (cf. Lemma 6.3 in [18]).

Definition 13. The transfer of Γ through σ is defined by:

Trans(Γ, σ)
def
= Sat({ϕ | [σ]ϕ ∈ Γ}). ⊳

We use procedure Find(Γ ) defined as:

if there exists x ∈ ∆ \∆0 with H(x) = Γ then return x,
else add a new object x to ∆ with H(x) = Γ and return x.

Algorithm 1 shown in Figure 3 constructs a least SPDL model for an HSPDL

database 〈P ,A〉 as follows. At the beginning, ∆ starts from ∆0 = INames with
H(x), for x ∈ ∆0, being the saturation of P ∪ {p | p(x) ∈ A}. Then for each
x ∈ ∆ reachable from ∆0 and for each formula ϕ ∈ H(x) that does not hold for
x, the algorithm makes a change to satisfy ϕ for x.

There are three relevant forms of ϕ:8

8 The other possible forms of ϕ are dealt with by the saturation operator Sat.
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Algorithm 1

Input: An HSPDL database 〈P ,A〉.
Output: A least SPDL model I of 〈P ,A〉.

1. set ∆0 := INames, ∆ := ∆0, P ′ := Sat(P)
for x ∈ ∆, set H(x) := P ′ ∪ {p | p(x) ∈ A}

2. for every x ∈ ∆ reachable from ∆0 and for every formula ϕ ∈ H(x)
(a) case ϕ = 〈σ〉ψ : if Next(x, 〈σ〉ψ) is not defined then

Next(x, 〈σ〉ψ) := Find(Sat({ψ}) ∪ Trans(H(x), σ) ∪ P ′)
(b) case ϕ = [σ]ψ :

i. for every y ∈ ∆0 such that σI(x, y) holds and ψ /∈ H(y)
H(y) := H(y) ∪ Sat({ψ})

ii. for every y ∈ ∆ \∆0 such that σI(x, y) holds and ψ /∈ H(y)
A. y∗ := Find(H(y) ∪ Sat({ψ}))
B. for every ξ such that Next(x, 〈σ〉ξ) = y

Next(x, 〈σ〉ξ) := y∗
(c) case ϕ = (ψ → ξ) : if x ∈ ψI and Next(y, 〈σ〉⊤) is defined for every y

reachable from x and every σ ∈ SNames then
i. if x ∈ ∆0 then H(x) := H(x)∪ Sat({ξ})
ii. else

A. x∗ := Find(H(x) ∪ Sat({ξ}))
B. for every y, σ, ζ such that Next(y, 〈σ〉ζ) = x

Next(y, 〈σ〉ζ) := x∗

3. if some change occurred, go to Step 2
4. delete from ∆ every x unreachable from ∆0 and delete from H and Next

all elements related to such an x.

Fig. 3. Constructing a least SPDL model for an HSPDL database.

1. ϕ is of the form 〈σ〉ψ:
To satisfy ϕ for x, we connect x via a σ-transition to an object y ∈ ∆ \∆0

with

H(y) = Sat({ψ} ∪ {ξ | [σ]ξ ∈ H(x)} ∪ P)

by setting Next(x, 〈σ〉ψ) := y.
2. ϕ is of the form [σ]ψ:

We intend to add ψ to H(y) for every y such that σI(x, y). We do this for
the case when y ∈ ∆0. However, for y ∈ ∆ \ ∆0 modifying H(y) has two
drawbacks:

– first, other objects connected to y will be affected (e.g., if p is added to
H(y) and σI

2 (z, y) holds, then 〈σ2〉p becomes satisfied for z, while x and
z may be independent)

– second, modifying H(y) may cause H(y) = H(y′) for some y′ ∈ ∆ \∆0

different from y, which we try to avoid.
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As a solution, instead of modifying H(y) we replace σ-transitions (x, y) by
σ-transitions (x, y∗), where y∗ is the object such that

H(y∗) = H(y) ∪ Sat({ψ}).

3. ϕ is of the form ψ → ξ (where ψ is a positive formula):
If ψ “must hold”9 for x then we intend to add ξ to H(x). We do this for the
case x ∈ ∆0. However, when x ∈ ∆ \∆0, analogously to the case when ϕ
is of the form [σ]ζ, we do not modify H(x), but replace transitions (y, x) by
transitions (y, x∗), where x∗ is the object such that

H(x∗) = H(x) ∪ Sat({ξ}).

Example 2. Let P = {p → [σ∗]q, [σ∗]q → p} and A = {p(a), s(a), σ(a, b)}. In
Figure 4 we illustrate the construction of a least SPDL model of 〈P ,A〉. ⊳

The proofs of the following lemma and theorem can be found in [16]. For the
theorem we assume that the set of individuals (of INames) that do not occur in
the ABox A is fixed.

Lemma 3. Let I be the model constructed by Algorithm 1 for 〈P ,A〉, and I ′ be
an arbitrary SPDL model of 〈P ,A〉. Let

r = {(a, aI
′

) | a is an individual occurring in A} ∪

{(x, x′) ∈ ∆I ×∆I
′

| x is not an individual and I ′, x′ |= H(x)}.

Then I ≤r I ′. ⊳

Theorem 1. For an input HSPDL database 〈P ,A〉 Algorithm 1 runs in polyno-
mial time in the size of A and returns a least SPDL model I of 〈P ,A〉 of a size
polynomial in the size of A. ⊳

Remark 2. The above theorem is central for the querying machinery developed
in this paper. According to Definitions 8 and 10, the least model I has the
property that for every positive formula ϕ and for every individual a, we have
that 〈P ,A〉 |=s ϕ(a) iff aI ∈ ϕI . The model is then used to compute answers to
queries. ⊳

The following corollary follows from the above theorem and Lemma 1.

Corollary 2. The data complexity of HSPDL is in PTIME. ⊳

9 The statement “ψ must hold for x” intuitively means that “ψ follows from H(x)”. As it
can be seen later, a sufficient condition for the truth of this statement is that x ∈ ψI

and Next(y, 〈σ〉⊤) is defined for every y reachable from x and every σ ∈ SNames.
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The model graph after the first execution of Step 2 :

a

P ,⊤, 〈σ〉⊤, p, s

b

P ,⊤, 〈σ〉⊤

c

P ,⊤, 〈σ〉⊤

The model graph after the second execution of Step 2 :

a

P ,⊤, 〈σ〉⊤, p, s
[σ∗]q, q, [σ][σ∗]q

b

P ,⊤, 〈σ〉⊤
[σ∗]q, q, [σ][σ∗]q, p

c

P ,⊤, 〈σ〉⊤

d

P ,⊤, 〈σ〉⊤
[σ∗]q, q, [σ][σ∗]q

The model graph after the third execution of Step 2 :

a

P ,⊤, 〈σ〉⊤, p, s
[σ∗]q, q, [σ][σ∗]q

b

P ,⊤, 〈σ〉⊤
[σ∗]q, q, [σ][σ∗]q, p

c

P ,⊤, 〈σ〉⊤

d

P ,⊤, 〈σ〉⊤
[σ∗]q, q, [σ][σ∗]q

e

P ,⊤, 〈σ〉⊤
[σ∗]q, q, [σ][σ∗]q, p

The resulting SPDL model I :

a

p, s, q

b

q, p

e

q, p

Fig. 4. An illustration of the run of Algorithm 1 for P = {p → [σ∗]q, [σ∗]q → p} and
A = {p(a), s(a), σ(a, b)}. We have that ∆0 = {a, b}. In the shown model graphs, an
edge from a node x to a node y means Next(x, 〈σ〉⊤) = y. The edges in the resulting
model I represent the similarity relation σI .
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3.3. Important Consequences of the Construction of Least Mo dels for
HSPDL

Some steps of Algorithm 1 add new objects to satisfy certain formulas. This is
a new phenomenon, comparing to more traditional rule languages, where, e.g.,
existential quantification in heads of program clauses is forbidden. Such an ad-
dition of new objects sometimes occurs as a result of application of procedure
Find, e.g., in Step 2a of Algorithm 1. On the other hand, this phenomenon seri-
ously affects similarity relations. The following example illustrates the problem.

Example 3. Consider an ABox {p(a), σ(a, a)} and a rule p → 〈σ〉q. In such
a case, during construction of a least model, Algorithm 1 adds to its universe
two new objects, say b and c, for which σ(a, b), σ(a, c), σ(b, c), σ(c, c) and q(b)
additionally hold. Extending the domain by artificially created objects might be
seen as a rather unexpected side-effect of the construction of a least model.
The explanation is that new objects are sometimes added to satisfy certain
rules. ⊳

The above example shows that rules do add new objects which are not
grounded in the ABox of the database. Methodologically, such a situation is
doubtful, as such artificially added objects are not as strongly justified as ob-
jects “observed” and directly described in terms of facts. In fact, these artificial
objects are only possible explanations of rules, so have a rather weak status.
We address this point in our layered architecture.

Another important issue is that the construction of a least model provided by
Algorithm 1 may result in unexpected consequences due to identifying certain
new objects. The following example illustrates this problem.

Example 4. Consider the rule σ(a, x) ∧ σ(b, x) → p(a, b), where σ is a similarity
relation. In general p(a, b) may not be a consequence of the rule. However,
Algorithm 1 might have identified two objects, say c, d such that σ(a, c) and
σ(b, d) hold. In such a case p(a, b) would become deducible from the considered
rule. ⊳

Observe that in the light of Theorem 1, Algorithm 1 constructs a least model
for the input program. This means (see Remark 2) that the method we propose
is correct. The above discussion applies to the case when queries of the highest
level directly refer to similarity relations constructed in the middle layer.

Summing up, it is not safe to use similarity relations that have been changed
by the HSPDL layer in higher-level queries. In the following sections we de-
fine a query language which allows one to ask only “safe” queries, free of the
unwanted side-effects discussed above and guaranteeing the correctness of
reasoning.

4. Combining HSPDL With Datalog

In the presence of ABoxes, a concept name can be viewed as a unary predi-
cate, and a similarity relation symbol can be viewed as a binary predicate. In

ComSIS Vol. 7, No. 3, June 2010 631
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this section we extend our language HSPDL with external capabilities offered
by database technologies and/or other software systems. The idea is quite gen-
eral. However, in what follows we focus on Datalog as a possible instantiation
of the idea. Therefore, in what follows we consider combination of HSPDL and
Datalog and external data types.10

To solve problems discussed in Section 3.3, we introduce a special unary
predicate IName (treated as a concept name) with the semantics that, in every
interpretation I, IName

I
consists of all objects which are not assigned to any

individual from INames.
We use two basic types O and D, where O is called the individual type (or

object type) and D is called the data type. We assume that D is a fixed non-
empty set, which may be the set of real numbers, the set of natural numbers,
the set of strings, or a mixture of them. For simplicity we do not divide D into
components.

An individual a ∈ INames has type O, a concept name p ∈ CNames ∪
{IName} has type P (O) (the powerset type of O), and a similarity relation sym-
bol σ ∈ SNames has type P (O × O). Apart from CNames and SNames, we
use also a set OPreds of ordinary predicates and a set ECPreds of external
checkable predicates. A k-ary predicate of OPreds has type P (T1 × . . . × Tk),
where each Ti is either O or D. A k-ary predicate of ECPreds has type P (Dk).
We assume that each predicate of ECPreds has a fixed interpretation which is
checkable in the sense that, if p is a k-ary predicate of ECPreds and d1, . . . , dk
are elements of D, then the truth value of p(d1, . . . , dk) is fixed and computable.
For example, when D is the type of real numbers, we may want to use the binary
predicates >, ≥, <, ≤ on D with the usual semantics.

We assume that the sets INames, CNames, SNames, OPreds, ECPreds and
D are pairwise disjoint and do not contain IName. Let Preds = CNames ∪
SNames ∪ OPreds ∪ ECPreds ∪ {IName}. It is the set of all predicates of our
language.

Definition 14. An interpretation is a pair I = 〈∆I , ·I〉, where∆I is a non-empty
set of objects and ·I is an interpretation function that maps each individual a to
an element aI of ∆I , maps IName to IName

I
= ∆I \ {aI | a ∈ INames}, and

maps each predicate p ∈ CNames ∪ SNames ∪OPreds of type P (T1 × . . .× Tk)
to a subset pI of D1× . . .×Dk, where Di = ∆I if Ti = O, and Di = D if Ti = D,
for 1 ≤ i ≤ k. ⊳

An interpretation I can be treated as a Kripke structure by restricting ·I to
INames∪CNames∪SNames∪{IName}, especially when interpreting formulas of
PDL. Given a formula ϕ of PDL built from concept names of CNames∪{IName}
and similarity relation symbols of SNames, the set ϕI ⊆ ∆I is defined as usual.
For a ∈ INames, we write I |= ϕ(a) to denote that aI ∈ ϕI .

10 In the literature (e.g., [1]), Datalog programs consist of an extensional database (facts)
and an intensional database (rules). In this paper we refer to the extensional part of
the database as to its ABox.
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Definition 15. A term is either an individual or an element of D (called a data
constant) or a variable (of type O or D). If p is a predicate of type P (T1×. . .×Tk),
and for 1 ≤ i ≤ k, ti is a term of type Ti, then p(t1, . . . , tk) is an atomic formula
(also called an atom). ⊳

From now on we use letters like x, y, z to denote variables, and letters like
t to denote terms. We assume that the types of used predicates are given, and
each used variable has a unique type O or D, known from the context.

Definition 16. A variable assignment w.r.t. an interpretation I is a function that
maps each variable of type O to an element of ∆I and maps each variable of
type D to an element of D.

The value of a term t w.r.t. a variable assignment ν is denoted by tν and
defined as follows: if t is a variable then tν = ν(t); if t is an individual then
tν = tI ; if t is a data constant (i.e. t ∈ D) then tν = t.

Let I be an interpretation and ν be a variable assignment w.r.t. I. We say
that an atom p(t1, . . . , tk) is satisfied in I using ν, write I, ν |= p(t1, . . . , tk), if
(tν1 , . . . , t

ν
k) ∈ pI for the case p /∈ ECPreds, and p(tν1 , . . . , t

ν
k) holds for the case

p ∈ ECPreds. A ground atom A (i.e. an atom without variables) is satisfied in I,
write I |= A, if I, ν |= A for any ν. ⊳

Definition 17. An ABox (in the extended language) is a finite set of ground
atoms of predicates of CNames ∪ SNames ∪ OPreds. An interpretation I is a
model of an ABox A if all atoms of A are satisfied in I. ⊳

We now define Datalog extended with external checkable predicates.

Definition 18.

– A Datalog program clause is a formula of the form

A1 ∧ . . . ∧ An → B

where n ≥ 0 and A1, . . . , An, B are atomic formulas with the restriction that:
• B is an atom of a predicate of CNames ∪ SNames ∪OPreds

• every variable occurring in B occurs also in A1 ∧ . . . ∧ An

• every variable occurring in the clause occurs, amongst others, in an
atom of a predicate not belonging to ECPreds.

The last two restrictions are called the range-restrictedness condition. We
call B the head, and A1 ∧ . . . ∧ An the body of the clause. We omit the
implication sign → when n = 0.

– A Datalog program is a finite set of Datalog program clauses.
– An interpretation I validates a Datalog program clauseA1 ∧ . . . ∧ An → B if

for every variable assignment ν, if I, ν |= Ai for all 1 ≤ i ≤ n then I, ν |= B.
An interpretation I is a model of a Datalog program P if it validates all the
clauses of P . ⊳
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We now consider combination of HSPDL and Datalog. In the combined lan-
guage, a database consists of an ABox A as the extensional part, and a mixed
logic program P of HSPDL and Datalog as the intensional part. We will study
the case when P consists of three layers, as discussed in Section 1.2 and illus-
trated in Figure 1. To be now more concrete, consider P = 〈P1,P2,P3〉 with the
following meaning:

– the lower layer P1 is a Datalog program intended for specifying the most
basic predicates, basic concepts and similarity relations by using the per-
ceptual data of agents and assertions stored in A

– the middle layer P2 is an HSPDL logic program built on top of P1 and A for
specifying advanced concepts by using the concepts and similarity relations
specified in P1 and A

– the upper layer P3 is a Datalog program built on top of P2, P1 and A for
defining additional ordinary predicates and for completing definition of con-
cepts and ordinary predicates.

The set InPreds(P) (resp. OutPreds(P)) of input predicates (resp. output
predicates) a Datalog program P is the set of all predicates occurring in the
heads (resp. bodies) of program clauses of P .

We define the set OutPreds(ϕ) of output predicates of an HSPDL program
clause ϕ recursively as follows:

OutPreds(⊤) = ∅

OutPreds(p) = {p}

OutPreds(ψ → ξ) = OutPreds(ξ)

OutPreds(ψ ∧ ξ) = OutPreds(ψ) ∪OutPreds(ξ)

OutPreds(〈α〉ψ) = OutPreds(α) ∪OutPreds(ψ)

OutPreds([α]ψ) = OutPreds(ψ)

OutPreds(σ) = {σ}

OutPreds(α;β) = OutPreds(α) ∪OutPreds(β)

OutPreds(ψ?) = OutPreds(ψ)

For example, OutPreds([σ1]p→ 〈σ3〉(〈σ2〉q → (r ∧ [σ4]s))) = {σ3, r, s}.
The set OutPreds(P) of output predicates of an HSPDL logic program P is

defined to be
⋃

ϕ∈P
OutPreds(ϕ).

Definition 19. A three-layered HSPDL-Datalog program is a tuple 〈P1,P2,P3〉,
where P1, P3 are Datalog programs and P2 is an HSPDL logic program using
CNames ∪ {IName} as the set of concept names, with the property that:

OutPreds(P2) ∩ InPreds(P1) = ∅ (6)

OutPreds(P3) ⊆ CNames ∪OPreds (7)

OutPreds(P3) ∩ InPreds(P1) = ∅ (8)

OutPreds(P3) ∩ InPreds(P2) = ∅ (9)
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OutPreds(P2) ∩ SNames ∩ InPreds(P3) = ∅ (10)

IName /∈ OutPreds(P2) (11)

Condition (6) states that the output predicates of P2 are not used as input
predicates of P1. Conditions (7), (8) and (9) state that the output predicates of
P3 can be only concept names or ordinary predicates which are not used as
input predicates of P1 and P2. Roughly speaking, these conditions state that
〈P1,P2,P3〉 is well-layered. Additionally, Conditions (10) and (6) guarantee that
the similarity relations specified by P2 are not used as input predicates of P1

and P3. The reason is that an HSPDL logic program is intended to specify and
minimize only (complex) concepts, but not to minimize similarity relations that
are specified as side effects of existential modal operators. By (11) and the
definition of Datalog program clauses, IName /∈ OutPreds(P1)∪OutPreds(P2)∪
OutPreds(P3).

Definition 20. If 〈P1,P2,P3〉 is a three-layered HSPDL-Datalog program and
A is an ABox then the tuple 〈P1,P2,P3,A〉 is called a three-layered HSPDL-
Datalog database (with A as a part of the bottom layer). ⊳

Observe that A is separated as data complexity takes its size as input. Also,
facts from A are accessible to all layers.

In the following definition we accept the well-known Unique Names Assump-
tion (see, e.g., [1]) for individuals from INames. Furthermore, the interpretation
of similarity relations restricted to objects interpreting individuals from INames
is computed and fixed by the first layer P1 using the minimal Herbrand model
semantics.

Definition 21. Let I be an interpretation, 〈P1,P2,P3〉 be a three-layered
HSPDL-Datalog program, and A be an ABox. We say that I is a model of the
three-layered HSPDL-Datalog database 〈P1,P2,P3,A〉 if:

– it is a model of P1,P3,A and is an SPDL model of P2 (when restricting ·I to
INames ∪ CNames ∪ SNames ∪ {IName})

– for every a 6= b ∈ INames, we have that aI 6= bI

– for every interpretation I ′ satisfying the previous two conditions, for every
σ ∈ SNames and a, b ∈ INames, if (aI , bI) ∈ σI then (aI

′

, bI
′

) ∈ σI
′

. ⊳

Definition 22. A query to a three-layered HSPDL-Datalog database
〈P1,P2,P3,A〉 is an atomic formula A of a predicate of CNames ∪ OPreds.
A (correct) answer to such a query is a substitution θ = {x1/t1, . . . , xk/tk} such
that:

– x1, . . . , xk are all the different variables occurring in the query
– for 1 ≤ i ≤ k, if xi is a variable of type O then ti is an individual, else (xi is

a variable of type D and) ti is a data constant of D
– the ground atom Aθ is satisfied in every model of 〈P1,P2,P3,A〉. ⊳
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Note that more complex queries can be expressed by adding a clause to
the intensional part of the database. For example, if ϕ is a positive formula of
PDL without predicates of OutPreds(P3) and a is an individual, then to check
whether aI ∈ ϕI in every model I of a database 〈P1,P2,P3,A〉 we can check
whether {x/a} is a correct answer to the query p(x) w.r.t. the extended database
〈P1,P2 ∪ {ϕ → p},P3,A〉, where p is a new concept name. Similarly, if ϕ =
A1 ∧ . . . ∧ An is a formula such that x1, . . . , xk are all the variables occurring
in ϕ and no predicate of ϕ belongs to OutPreds(P2) ∩ SNames, then answers
to the query p(x1, . . . , xk) w.r.t. 〈P1,P2,P3 ∪ {ϕ → p(x1, . . . , xk)},A〉, where p
is a new predicate of OPreds, are exactly the ground substitutions θ such that
A1θ, . . . , Anθ are satisfied in every model of 〈P1,P2,P3,A〉.

Definition 23. By the three-layered HSPDL-Datalog query language we refer
to the language of three-layered HSPDL-Datalog databases and their queries.
The data complexity of this language is the complexity of the problem of find-
ing all answers to a given query A w.r.t. a given three-layered HSPDL-Datalog
database 〈P1,P2,P3,A〉, which is measured in the size of A, when A, P1, P2

and P3 are fixed. ⊳

The following theorem is the main result of this section, for which we assume
that, given a k-ary predicate p of ECPreds and elements d1, . . . , dk of D, check-
ing whether p(d1, . . . , dk) holds can be done in polynomial time in the number
of bits needed to represent d1, . . . , dk.

Theorem 2. The three-layered HSPDL-Datalog query language has PTIME

data complexity.

Proof. (sketch) Let a three-layered HSPDL-Datalog database 〈P1,P2,P3,A〉 be
given. First, we compute the minimal Herbrand model I1 of P1 and A. Treating
it as an ABox, we next compute a least model I2 for 〈P2, I1〉 using Algorithm 1
with the following modification of procedure Find(Γ ):

if there exists x ∈ ∆ \∆0 with H(x) = Γ ∪ {IName} then return x,
else add a new object x to ∆ with H(x) = Γ ∪ {IName} and return x.

Treating I2 as an ABox, we now compute the minimal Herbrand model I3 of
P3 and I2. It can be shown that, for any query A, a ground substitution θ is an
answer to A w.r.t. the database 〈P1,P2,P3,A〉 iff Aθ is satisfied in the interpre-
tation corresponding to I3. By Theorem 1 and the fact that the data complexity
of Datalog is in PTIME, the above computation runs in time polynomial w.r.t. the
size of A. ⊳

5. Example

5.1. The Scenario

Consider safety of UGVs’ movement on a specific surface (UGV is an acronym
for Unmanned Ground Vehicle). For simplicity, we consider two UGVs, denoted
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by UGV1 and UGV2, operating on the same road segment and exchanging their
knowledge, as well as assume that slipperiness of the road and speed of the
UGV are the only factors that affect their safety.

Assume that the following equipment and data is available:

– there is an external sensor measuring the slipperiness of the road, evalu-
ated by a real number in the range [1, 10]

– each UGV is equipped with sensors detecting its speed, measured in km
h

,
being a real number in [0, 20]

– there is a database of facts about situations that led or did not lead to acci-
dents caused by the UGVs.

The main objects are situations, which form the type O. In this example, the
type D consists of real numbers and we use the following predicates, where
i ∈ {1, 2}:11

– ordinary predicates spd i (speed), slp (slipperiness), dec-spd i (decrease
speed); the intuitive meaning of these predicates is:

• spd i(x, y) holds when the speed of UGVi in situation x is y
• slp(x, y) holds when the slipperiness of the considered road segment in

situation x is y
• dec-spd i(x, y) holds when the speed of UGVi in situation x should be

decreased by y km
h

.

– external checkable predicates >, <, ≤ and sim , sim i, where >, <, ≤ have
the standard meaning, as in the arithmetics of reals and

simi(x1, x2)
def

≡
abs(x1 − x2)

max(x1, x2)
≤ ǫi,

where ǫi reflects the accuracy of speed measurements of UGVi; we assume

here that ǫ1
def
= 0.12 and ǫ2

def
= 0.09; for sim (non-indexed) we use ǫ def

= 0.18

– concept names h-spd i (high speed), h-slp (highly slippery), unsafe, unsafei,
h-unsafei (highly unsafe), accident

– similarity relation symbols σi, where the intended meaning of σi(x1, x2) is
that situations x1 and x2 are similar w.r.t. UGVi

– auxiliary similarity relation symbol ̺, used for expressing that one situation
is “safer” then the other w.r.t. both speed and slipperiness.

5.2. Exemplary Rules

Consider the following layers of the system, where we assume that i ∈ {1, 2}.

11 The index i indicates subjective knowledge of UGVi, while the lack of index indicates
that the respective concepts are related to the external or fused knowledge.
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Rules of the Lower Layer

spd i(x, y) ∧ y > 15 → h-spd i(x) (12)

slp(x, y) ∧ y > 7 → h-slp(x) (13)
(

spd i(x1, y1) ∧ slp(x1, z1) ∧ spd i(x2, y2) ∧ slp(x2, z2) ∧
sim i(y1, y2) ∧ sim(z1, z2)

)

→ σi(x1, x2)
(14)

(

spd i(x1, y1) ∧ slp(x1, z1) ∧ spd i(x2, y2) ∧ slp(x2, z2) ∧
y1 < y2 ∧ z1 ≤ z2

)

→ ̺i(x1, x2)
(15)

(

spd i(x1, y1) ∧ slp(x1, z1) ∧ spd i(x2, y2) ∧ slp(x2, z2) ∧
y1 ≤ y2 ∧ z1 < z2

)

→ ̺i(x1, x2)
(16)

The meaning of these rules is:

(12): UGV’s speed greater than 15km
h

is considered high
(13): road slipperiness greater than 7 is considered high
(14): two situations are similar w.r.t. σi when speeds and slipperiness in

these situations are similar (w.r.t. sim i)
(15) and (16): ̺i(x1, x2) holds when situation x1 is “safer” than x2 from

the point of view of UGVi.

Rules of the Middle Layer

h-spd i ∧ h-slp → unsafei (17)

unsafei → [̺i]unsafei (18)

[̺i](IName ∨ 〈σi〉accident) → unsafei (19)

[̺i](IName ∨ accident) → h-unsafei (20)

[̺1 ∪ ̺2](IName ∨ (unsafe1 ∧ h-unsafe2)) → unsafe (21)

[̺1 ∪ ̺2](IName ∨ (h-unsafe1 ∧ unsafe2)) → unsafe (22)

Note that a formula of the form (IName ∨ ϕ) represents the set of objects x
such that if x is assigned to some individual of INames then x satisfies the prop-
erty ϕ. Intuitively, this means that either the situation x is not explicitly presented
in the database12 or it satisfies the property ϕ.

The meaning of the above rules is:

(17): the situation is unsafe whenever both the speed and the slipperi-
ness are high

(18): if situation s is unsafe then also situations with the speed and
slipperiness greater than or equal to those of s, are unsafe

(19): if, for a given situation s, every situation that is explicitly presented
in the database and more dangerous than s (w.r.t. ̺i) is similar (w.r.t.
σi) to a situation in which there was an accident, then conclude that
s is also unsafe for UGVi

12 That is, x is added by Algorithm 1.
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(20): if, for a given situation s, in every situation that is explicitly pre-
sented in the database and more dangerous than s (w.r.t. ̺i) there
was an accident, then conclude that s is a highly unsafe situation for
UGVi

(21) and (22): specify unsafeness by fusing similarity relations of both
UGVs.

Rules of the Upper Layer

unsafei(x) ∧ h-slp(x) → dec-spd i(x, 2) (23)

h-unsafei(x) ∧ h-slp(x) → dec-spd i(x, 5) (24)

unsafe(x) → dec-spd i(x, 3) (25)

The meaning of these rules is:

(23): if x is an unsafe situation for UGVi in which the road is highly
slippery, then UGVi should decrease its speed by 2km

h

(24): if x is a highly unsafe situation for UGVi, in which the road is highly
slippery, then UGVi should decrease its speed by 5km

h

(25): if x is an unsafe situation, then each UGV should decrease its
speed by 3km

h
.

Let

– P1 be the Datalog program consisting of the clauses (12) – (16)
– P2 be the HSPDL program consisting of the clauses (17) – (22)
– P3 be the Datalog program consisting of the clauses (23) – (25).

Thus, 〈P1,P2,P3〉 is a three-layered HSPDL-Datalog program.

Exemplary Facts of the Lower Layer

Let A be the exemplary ABox consisting of facts presented below:

situation slp spd1 spd2 accident

s0 10 20 20 yes
s1 9 19 17 yes
s2 8 17 18 yes
s3 7 16 17 yes
s4 7 16 16 (no)
s5 6 12 17 (no)
s6 4 18 15 (no)
s7 6 16 16 ?

This ABox contains only four facts of predicate accident , with argument s0,
s1, s2 or s3. In the situations s4, s5, s6, there were no accidents. The situation
s7 is the current situation, for which we want to consider safeness of the UGVs.
With respect to the three-layered HSPDL-Datalog database 〈P1,P2,P3,A〉, the
query dec-spd1(s7, x) returns answer x = 2.
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6. Conclusions

In the paper we have addressed the problem of fusing possibly approximate
knowledge from distributed sources. To express fusion rules we have used the
Horn fragment of serial propositional dynamic logic combined with Datalog-
based deductive databases machinery. As a framework for such a combina-
tion we have proposed a three-layered architecture. This allowed us to provide
a pragmatic framework for knowledge fusion that can be used in many applica-
tion areas. We have demonstrated the use of our approach on an example.

The paper can also be considered as an advanced case-study of embedding
expressive propositional logics into database environments. Similar methodol-
ogy can be used for many other logics designed as specification and computa-
tional tools for advanced software and robotics systems.
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15. B. Dunin-Kȩplicz. An architecture with multiple meta-levels for the development of
correct programs. In Proc. of Fourth International Workshop on Meta Programming
in Logic, number 883 in LNCS, pages 293–310, 1995.
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