
DOI:10.2298/CSIS091212032K

Design Pattern Instantiation Directed by

Concretization and Specialization

 Peter Kajsa1, Lubomir Majtas1, and Pavol Navrat
1

1 Faculty of Informatics and Information Technologies, Slovak University of
Technology, Ilkovičova 3, Bratislava, 842 16, Slovakia

{kajsa, majtas, navrat}@fiit.stuba.sk

Abstract. Design patterns provide an especially effective way to
improve the quality of a software system design as they provide
abstracted, generalized and verified solutions of non-trivial design
problems that occur repeatedly. The paper presents a method of design
pattern instantiation support based on the key principles of both MDD
and MDA. The method allows specification of the pattern instance
occurrence via the semantic extension of UML directly on the context.
The rest of the pattern instantiation is automated by model
transformations of the specified pattern instances to lower levels of
abstraction. Such approach enables the use of higher levels of
abstraction in the modeling of patterns. Moreover, the model
transformations are driven by models of patterns besides the instance
specification, and thus the approach provides very useful ways how to
determine and control the results of transformations. The method is not
limited to design pattern support only, it also provides a framework for
the addition of support for custom model structures which are often
created in models mechanically.

Keywords: Design patterns, concretization, specialization, MDD.

1. Introduction

There are many efforts to improve the quality of software system
development or maintenance based on identification, acquisition and
application of some kind of architectural knowledge [20]. In general, patterns
are based on abstractions and generalizations of effective, reliable and robust
solutions to recurring problems. Patterns provide abstracted, generalized and
verified solutions of non-trivial problems. The concept of patterns was first
introduced in the work of Alexander [17] dealing with urban solutions, but
soon patterns were also defined and used in software engineering. The idea
of applying verified pattern solutions to common recurring problems in the
software design attracted considerable attention very quickly (cf. [4] and
consequently, e.g. [5]), since the quality of software systems depends greatly
on the design solutions chosen by developers.

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 42

Patterns have been applied in various phases of the software development
lifecycle. Patterns were discovered and defined in software analysis, design,
integration, testing and other areas. Currently, design patterns represent an
important tool for developers in the process of software design construction,
and provide particularly effective ways to improve the quality of software
systems. It is evident that design patterns are not the solution to all problems
related to software development. Some have noted their limitations and
propose new approaches to the knowledge representation in the software
development domain, even proposing language architectures [21]. However,
it is well known that the application of design patterns in software projects
assists in the creation of modifiable, recursive and extensible software design
[4]. CASE or other modeling tools provide nowadays some kind of support for
design pattern instantiation, but it is often based on simple copying of pattern
template into the model with minimal possibilities for modification and with
minimal support of instance integration into the context – application model.
A more systematic approach to pattern instantiation in interaction between
software designer and a supporting tool has been presented in [22].

Since patterns provide abstracted and generalized solutions to recurring
problems, their application to a specific problem requires to concretize and
to specialize the solution described by the pattern [5] (see Fig. 1).

Fig. 1. Concretization and specialization of the solution described by the pattern,
when the pattern is applied to a concrete and specific problem [5]

Specialization process of a design pattern typically lies in its integration
into the specific context of the problem. The knowledge is mainly available to
developers and domain experts involved in the design process, because it
requires very specialized and detailed understanding of the domain context
and the specific application itself. This is why this process is difficult to
automate. Despite this, it is possible to make specializing of a pattern much
easier by providing an appropriate mechanism for supporting application of
design patterns.

The goal of concretization of a design pattern is to recast its abstract form
into a concrete realization with all its parts, methods, attributes and

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 43

associations, but only within the scope of the pattern instance and its
participants, not the rest of the application model. The more parts the
structure of the pattern instance contains, the more concrete it becomes. The
most concrete level of a design pattern instance is the source code, because
at this level of abstraction the pattern instance contains all parts of its
structure. Majority of activities in the concretization process depends on a
stable and fixed definition of the design pattern structure so that these
activities are fairly routine. This is a good starting point for the automation of
this process.

Consequently, we see a fairly good basis for the development of a method
that would describe the way how to apply a design pattern based on
supporting explicitly its specialization and concretization. We aim at
proposing a method that would involve a specially devised tool supporting
these two principal lines of design pattern instantiation.

Section 2 introduces several known approaches to tool based design
pattern support and section 3 infers the open problems in this area. In the rest
of the paper, we focus on the elaborated method of design pattern
instantiation. Section 4 presents the theory about the method and it provides
the method description. In the following section 5 the article covers particular
aspects of method realization. Section 6 contains case study and the method
evaluation. The paper is completed by a proposal of future works.

2. State of the Art

There exist several approaches which introduce their own tool-based support
for pattern instantiation.

Mapelsden et al. [15] introduce an approach to design pattern application
based on the Design Pattern Modelling Language. The authors describe this
language which is a notation for the specification of solutions of design
patterns and their instantiation into UML models. Design pattern instances
are regarded as a part of the object model, providing another construct that
can be used in the description of a program. Once all design pattern instance
elements are linked to one or more UML design elements, the consistency
checks are made. A deficiency of this approach is that the developer needs
to model all pattern participants manually and then link these parts into the
pattern model. El Boussaidi et al. [11] present model transformations based
on the Eclipse EMF and JRule frameworks. Wang et al. [12] provide similar
functionality by XSLT-based transformations of models stored in XMI-Light
format. Both approaches can be considered as driven by a single template
and they focus mostly on the transformation process and do not set space for
pattern customization.

Another method was introduced by Ó Cinnéide et al. [13]. They present a
method for the creation of behavior-preserving design pattern
transformations and apply this method to GoF design patterns. The method
involves a refactoring process which provides descriptions of transformations

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 44

to modify the spots for pattern instance placement (so called precursors). The
placement is achieved by the application of so called „micropatterns‟ to the
final pattern instances. While Ó Cinnéide's approach is supposed to guide the
developers pattern placement in the phase of refactoring (based on source
code analysis), Briand et al. [8] try to identify the spots for pattern instances
in the design phase (based on UML model analysis). They provide a semi-
automatic suggestion mechanism based on a decision tree combining an
evaluation of the automatic detection rules with user queries.

All the former approaches focus on the creation of pattern instances. The
ones presented by Dong et al. [9, 10] presume the presence of pattern
instances in the model. They provide support for evolution of the existing
pattern instances resulting from application changes. In the former [9], the
implementation employs QVT based model transformations, and in the latter
[10] the same is achieved by XSLT transformations over the model stored as
XMI. However, both work with a single configuration pattern template allowing
only changes in the presence of hot spots participants. Other possible
variations are omitted.

Debnath et al. [14] propose a level architecture of UML profiles for design
patterns. Authors introduce a profile for patterns and analyze the advantages
of using profiles to define, document, and visualize the design. Authors
provide a guide to the creation of UML Profiles, but they give no concrete
way of providing support in any tool. Dong et al. [16] discuss some of the
relevant aspects of the UML profile. The paper presents an approach to the
creation of UML profiles for design patterns. The approach allows an explicit
representation of patterns in software designs and introduces a notation for
the names of stereotypes: Type<name:String [instance:integer], role:String>;
for example: PatternClass<Observer[1], ConcreteObserver>. The introduced
notation is useful because it visualizes individual instances of design
patterns, but the Type part of the notation is redundant, because the
stereotype definition itself already carries the information.

3. Open Problems

The approaches that focus on the creation of pattern instances are typically
based on the strict forward participant generation - participants in all roles are
created according to a single template. Similarly, the support of design
patterns available in traditional CASE or other modeling tools is usually
based on UML templates of each design pattern. They are simply copied into
the model with a minimal possibility for modification and integration in the
rest of the model when pattern instance is created [1], [2]. However, patterns
describe not only the main solution, but also many alternative solutions and
variations. However, a developer is not allowed to choose an appropriate
variant or a concrete structure of the design pattern. Only one generic form is
offered to the developer for use. Any other adjustments need to be performed
manually without any tool based support. Further, by the generation of source

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 45

code from a model with applied pattern instances, only class structure is
generated, and the bodies of the methods of the patterns participants are
empty. Consequently, the support of concretization has great deficiencies.

Moreover, the instance of a pattern created by a tool is typically without
any connection to the rest of the application model. So the instance of a
pattern has not been integrated into the application model, i.e. the context. It
lacks associations and the names of pattern participants are general, and so
on. All these activities of instance specialization have to be done by the
developer manually. Even in the approach presented in [15], the developer
needs to model all pattern participants manually, and then to link these parts
to the pattern model.

Our intention is to automate these activities. Our vision is that the
developer simply specifies a pattern instance occurrence directly in the
context, and the rest of the pattern structure is then automatically generated
into the application model in an appropriate form.

4. Method Description

Our idea emphasizes collaboration between the developer and the CASE
tool. We assume that we do not need to force the developer to explicitly
model or mark all the pattern participants. Our aim is to encourage him/her
just to suggest the pattern instance occurrence while the rest of the
instantiation process is automated.

Patterns are often described as a collection of cooperating roles. Our
approach is based on the idea [19] that the pattern roles can be divided into
roles dealing with the domain of the created software system and roles
performing the pattern‟s infrastructure. The domain roles can be considered
as the “hot spots” while they can be modified, added or deleted according to
the requirements of the particular software environment. The roles
performing the pattern infrastructure are not changing too much between the
pattern instances. Their purpose is to glue the domain roles together to be
able to perform desired common functionality. Examples of domain
dependent roles are presented in the Table 1.

The employment of patterns into the project allows the developer to think
at a higher level of abstraction. When he decides to employ a pattern, the
first thing he needs to take care of is how it will be connected to his project,
how the solution will be integrated to the rest of his model / code. At this
moment the developer does not focus on the entire pattern‟s inner structure,
because it is irrelevant to him at this moment. The way how he integrates the
pattern to the project lies in the specification of the domain roles. Their
participants can be existing parts of the project or new ones created for this
situation. Once the domain roles are specified, the specification of the
infrastructure roles takes place. This is quite a routine, when the developer
subsequently adds participants of the infrastructure roles according to the
sample instance from the pattern catalogue.

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 46

Table 1. Examples of domain dependent roles of patterns [19]

Pattern Domain

dependent

roles

Description

Composite Leaf and its
Operations

Leaves and their operations provide all domain
dependent functionality. Everything else is just
the infrastructure allowing the hierarchical
access to the leaf instances.

Flyweight Concrete
Flyweight

Concrete Flyweight provides all domain
dependent functionality. The rest is
infrastructure for storing instances in memory
providing access to them.

When we look closer at such instantiation process from the perspective of

its division into two more or less independent processes of specialization and
concretization (described in the section 1 Introduction) [5], we can see that
the user does the specialization process when he is specifying the domain
roles. When he is supplementing pattern instance with the infrastructure roles
he just completes the concretization process.

In our approach we do not want to replace the developer in the
specialization process, but we want to relieve him of the necessity to
instantiate the infrastructure roles during the concretization process. We want
the developer to make a suggestion by the application of semantics as to
where and which design pattern he wishes to be applied in the model and to
specify the domain dependent roles. Then he can also specify which variant
of the pattern to employ, and in what way he wants it to be generated.
Subsequently, the rest of the pattern instance structure will be automatically
generated by model transformations to lower levels of abstraction according
to the instance specification.

In order to achieve the specified goal, it is necessary to provide an
appropriate mechanism of pattern semantics in the application model. It is
important to support insertion of semantics directly into the elements of the
model, because such approach supports the specialization of pattern
instances, and makes the creation of the instance specification effortless.
Thanks to the semantics, the model transformations are able to understand
the model of the application and recognize its parts.

 In case the transformations are driven by an appropriate model of design
pattern, and both the model of an application and the model of the pattern
contain information on semantics, the transformation is capable to compare
these models and to create mappings between them. So in this way the
transformation can recognize participants of design patterns that are present
in the application model already, and which are not. As a consequence, the
transformation is able to generate missing participants in the desired form
obtained from the pattern model.

We note that model transformations automate the concretization process.
They are driven by pattern instance suggestion and specification and by the
pattern model as well. Such transformations have several capabilities. Firstly,

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 47

they provide a possibility to choose an appropriate configuration of the
pattern by instance specification. Secondly, they enable the modeling of a
custom pattern or structure by modification of the pattern model, and this way
to achieve its generation into the model.

Moreover, our method assumes that the models and the transformations
are split into more levels of abstraction in accord with the ideas of the MDA
development process. These levels support work with instances of design
patterns at various levels of abstraction. This process is shown in Fig. 2.

Fig. 2. Proposal of design pattern instantiation process

One of the main objectives of the approach is to consider ideas of model
driven, iterative, and incremental development of software systems. It is
important to note why the transformation to platform specific models (PSM) is
necessary. It is at this level that the first differences in structure between
instances of design patterns may occur. For example, some platforms allow
multiple inheritance, others provide interfaces, etc.

5. Method Realization

The following subsections explain particular aspects of the method
realization.

5.1. Realization of Pattern Instance Suggestion and Specification

The suggestion and the specification of pattern instance are realized by
applying information on the semantics into the models provided by
semantical extension of UML. We choose the semantical extension of UML in
a form of UML profile as a standard extension of UML, since one of our goals

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 48

is to remain compliant with the majority of other UML tools. UML profiles
provide a standard way to extend the UML semantics in the form of
definitions of stereotypes, tagged values - meta-attributes of stereotypes,
enumeration and constraints. All these can be applied directly to specific
model elements such as Classes, Attributes, and Operations [6]. This way it
is possible to specify participants of design patterns and relations between
them directly in the context of the elements of the application model (for
more details about the UML profile please see the section 5.3).

For example, Fig. 3 shows a suggestion of the Observer pattern instance
via applying one stereotype <<Observes>> to a desired element, in this case,
an association. From the information the transformation can recognize that
the source element of the association represents a Concrete Observer and
the destination element is a Concrete Subject. Consequently, on the basis of
the information and the available pattern model and semantics, the
transformation can recognize the other pattern participants need to be added
to the model.

Fig. 3. Example of an application of the Observer pattern to a model. It represents a
specified platform independent instance and thus the most abstract form of the
Observer pattern instance

The transformation also needs information about how to generate the rest
of pattern instance, e.g. variant of pattern, desired adjustments of pattern
instance, and so on. The next step is the specification of pattern instance.
This goal is achieved by setting up values of meta-attributes of stereotype
(Fig. 3). In our approach this step is not mandatory, because default values of
meta-attributes of the stereotype are set and are available. Consequently, the
application of the desired pattern can consist only of applying one suggestion
mark – the stereotype onto the specified model element, when the developer
wants the default variant of the pattern. Any other activities will be completed
by a tool via model transformations. In this phase, developers do not have to
concern themselves with the concrete details of the pattern structure, and

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 49

they can comfortably work with the pattern instances at a higher level of
abstraction. The Application of the desired pattern is realized on elements of
the system model or context, and thus the specialization process is
supported.

5.2. Realization of Concretization Process

The concretization process is realized and automated by model
transformations to lower levels of abstraction until the source code level is
reached. One of the possible results of the transformation of the model from
Fig. 3 is shown in Fig. 4. As it can be seen the transformation generates the
rest of pattern structure in a desired form in accord with pattern suggestion
and specification from Fig. 3. The pattern instance becomes more concrete,
so the form of the instance now represents its lower abstraction level. Thanks
to the realization of the pattern instance by placing the suggestion and
specification directly into the context of elements in the application model,
the transformation is also able to integrate the generated participants with
participants already present in the model. As a result, the pattern instance is
in the application specific form.

Fig. 4. The result of the transformation to Java target platform of the model from Fig.
3 in accord with the instance suggestion and specification

It is important that the transformation is realized and launched with a
choice of target platform because, as mentioned earlier, at this point the first
differences may occur in the structure of patterns depending on target
platform. The choice of a target platform also determines the set of possible
choices of data types before subsequent transformation to source code level.

As one can see in Fig. 4, the transformation also adds explicit marks
(stereotypes) to all identified and generated pattern participants. The addition
of marks and also the whole transformation is performed on the basis of the
pattern model (more in Section 5.4). As a consequence, the instance is

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 50

clearly visible, and the developer can repeat the instantiation process at a
lower level (PSM) directly from the optional second step, i.e. by specifying
the instance and choosing a more detailed adjustments of pattern instance
(e.g. concrete data types). Again, the default values of the stereotype meta-
attributes are set, so the developer can run the transformation to source code
directly.

Fig. 5. An overall illustration of the pattern instantiation process

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 51

Two separate groups of classes are generated by the initial transformation
to source code. The first is the base group which is always overwritten by
subsequent source code generation. The second is the development group
which is generated only by initial transformation. The developer can write and
add a specific implementation here without the threat of it being overwritten.

Overall illustration of the described pattern instantiation process is shown
in Fig. 5 using as an example a Decorator pattern application.

This way, our approach has achieved support for working with pattern
instances at three different levels of abstraction:

 Pattern suggestion and specification level – PIM

 Design model level – PSM

 Source code level

5.3. Realization of UML Profile for Design Patterns

UML profiles provide a suitable way to define semantics for each design
pattern and allow applying of semantics directly onto the elements of model.
Consequently, a UML profile allows specification of participants of design
patterns, and relations between them, directly on the elements of application
model. The snippet of UML profile for Observer pattern is shown in Fig. 6.

Fig. 6. The snippet of UML profile with some elements for Observer pattern

Authored UML profile provides semantics to various pattern instances
adjustments, suggestions and specifications. However, it is not mandatory to
apply all the semantics elements (stereotypes). The developer applies and
specifies only what he needs to express. On the basis of applied semantics
and pattern models with semantics, the transformation generates elements
that are missing (more in the next Section 5.4). Because of the default values
of meta-attributes of stereotypes, the transformation always has enough
information for default behavior. Inconsistent specifications of pattern

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 52

instances are handled by OCL constraints which are part of UML profile as
well (for example see Fig. 6).

Semantics of patterns is defined in one common UML profile for all
supported patterns. However, the semantics of patterns from UML profile is
not generalized for all patterns or structures. It contains semantics specific for
patterns which are supported and in the consequence, when a developer
wants to support new pattern or structure, he needs to add a semantics
specific for this new pattern or structure into the profile (for more details see
section 5.7 Extending of Support for New Patterns or Structures). It is
important to remark, that it is not quite possible to create a profile generalized
for all patterns or structures, because each pattern has its own semantics,
purpose, variations and so on. Moreover, exactly our goal is to allow the
developer to suggest and specify his intentions and design decisions in a
specific way via semantics specific for the applied pattern. In case that the
semantics applied by developer would be general for all patterns, intentions
or decisions, we would not be capable of deducing some required specific
information from such general semantics.

We tried to name the stereotypes according to the established names of
pattern participants. However, a developer can change these names in the
UML profile, but he must, of course, update also the pattern model.

Authored prototype of UML profile with description can be found in [26].

5.4. Realization of Transformations

Transformations performed by the tool are driven by properly specified and
marked models of design patterns. These prepared models cover all
supported pattern variants and possible modifications. Each element of these
models is marked. There are two types of marks in pattern models. The first
type of mark expresses the role of the element in the scope of the pattern.
On the basis of this type of mark the tool is capable of creating mappings
between models. The second type of mark expresses an association of the
element with a variant of the pattern. On the basis of this type of mark the
tool is capable of deciding which element should be generated into the
model, which way and in what form. For the second type of mark the
following notation is defined:

[~]?StereotypeName::Meta-attributeName::value;

An element from the pattern model is generated into the model only if the
specified meta-attribute of the specified stereotype has the specified value.
These marks can be joined via “;”, while the symbol “~” expresses negation.
If an element has no mark, it is always generated into the model. A sample
section of the model of the Observer pattern is exposed in the Fig. 7.

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 53

Fig. 7. Sample section of Observer pattern model by which the transformation is
driven

The whole algorithm of the transformation is captured in the following Fig.
8.

The first action performed by the tool after the start of the transformation is
the comparison of the first type marks in pattern model to the marks in the
application model. When an instance of pattern is processed, only the marks
with identical value of group_id are taken into consideration (for example,

see <<Decorates>> stereotype in the Fig. 5 or case study in the Fig. 19 -

21). When the mark is without group_id, each next occurrence of the mark

with the same name is considered as another instance participant. For
example, stereotype <<Observers>> does not have goup_id meta-

attribute and therefore, when the tool processes one of such marks the others
are considered as other instances (for example, see example of Observer
instantiation in the section 5.5).

Based on the first type marks comparison the tool is capable of making a
mapping between the marked models, and consequently to recognize which
parts of the structure of the design pattern instance are in the model of the
developing application and which are not. For example, in Fig. 3 in the
previous section we have shown the application of the Observer pattern by
applying one stereotype <<Observes>> on the directed association. From so
marked association the tool can recognize that the parts Concrete Observer
and Concrete Subject of this Observer pattern instance are present in the
model already, and also which elements (in this case classes) in the
application model represent these roles or parts.

Decisions about which variant of pattern and which elements from the
pattern model need to be generated into the application model are based on
the comparison of the second type marks in the pattern model with the values
of the meta-attributes of stereotypes. These values are set up by the
developer in the second step - specification of the pattern instance (see
Sections 5.1 and 5.2 and Fig. 3 and 5).

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 54

Fig. 8. Principles of tool functioning - tool under the hood.

After decision-making and selection of the desired pattern form, the alone
transformation is performed. The results of the transformation are correctly
specialized and concrete instances of the patterns created in the desired
form, as presented in Fig. 4 and 5 in the previous sub-section.

Driving the model transformations by pattern models allows us to adjust
results of transformations by modifying of the pattern models. Marks in the
models ensure that the tool is always capable of creating correct mappings
between the model of application and the model which drives the

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 55

transformation, and consequently decide which element should be generated
into the model and in what form. This way it is possible to model any custom
structure and achieve support for its application into the model.

The transformation to source code is realized on the basis of the code
templates for now. Each pattern participant has own code template. The
transformation takes code template with name identical to the stereotype
name of the participant and it generates template‟s content into specified
destination. For model elements without any stereotype the common code
template is used which generates only signatures of the class, fields and
methods with empty body. The inconsistent states, such as duplicity of
classes, illegal inheritance and others, are handled by the first transformation
of the model of highest level of abstraction to the model of lower level of
abstraction. The rules of correcting of such inconsistent states are common
for all possible patterns or structures and therefore they are hard coded in the
transformation algorithm. The transformation of the model to source code
simply generates source code of each element from the model. An example
of snippet of Subject code template is shown in the following Fig. 9.

The transformation to source code is still under our research. For more
details see the section 7 Future Work. We have proposed the improvement
of this transformation already.

Fig. 9. Snippet of code template of Subject participant of Observer pattern

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 56

5.5. Detailed View on the Method and the Tool in Action

This section provides illustration of the method and the tool, its functionality
and usage by means of an example. The following Fig. 10 shows example of
initial form of UML model before application of patterns.

Fig. 10. Example of starting UML model before the application of patterns

The model represents an example of starting point of model into which the
developer intends to apply, for example, Observer pattern now. In order to
apply the desired pattern (in this case Observer) the developer suggests the
instance occurrences via particular semantics marks – stereotypes (in this
case stereotype <<Observes>>). Notice that the developer performs the

suggestion of pattern instance occurrence on existing model elements
directly in the context and so, in the consequence, the pattern instance will be
integrated in the application model or context and thus there won't be
necessary any manual specialization of pattern instance.

The resulting model after pattern instances suggestion is shown in the
following Fig 11.

Fig. 11. The resulting model after pattern instances suggestion

It is important to remark, that each stereotype can be applied only on an
instance of meta-class onto which is designated. For example, the stereotype

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 57

<<Observes>> extends the meta-class association and the stereotype

<<Observer>> extends the meta-class class. Therefore, the tool does not

allow to apply the stereotype <<Observer>> to any association or any

other model element which is not an instance of meta-class class and also it

does not allow to apply the stereotype <<Observes>> to any class or any

other model element which is not an instance of meta-class association.

Now the tool knows what design pattern and where the developer wants to
apply it. On the basis of comparison of this model to the pattern model by
which the tool is driven, the tool also recognizes that the association between
classes TextualDisplay and AccountData corresponds with association

between ConcreteObserver and ConcreteSubject from the pattern

model. The recognition is realized on the basis of first type of marks –
stereotypes comparison in these models (see Fig. 12) and this way the tool
creates mapping between these models.

Because the match of marks occurs on the association, the transformation
recognizes that also the source and destination elements of associations (in
our case ConcreteObserver and ConcreteSubject) must be already in

the model of the application under development. In consequence, the
transformation recognizes which elements of pattern model are in the model
of application and which are not.

Fig. 12. Creation of mapping between model of developing application or system and
pattern model by which the tool and the transformation are driven

Because the pattern model covers all the pattern variants, the tool needs
to know which variant of pattern the developer wants to generate. In other
words, the tool needs to know which of all identified missing pattern elements
from the pattern model and what way it should generate into the model of

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 58

application. So the developer chooses the variant or modification of the
pattern via setting up the values of particular stereotype meta-attributes in the
next step of pattern instantiation (see Fig. 13). It is important to remark that
the meta-attributes of stereotypes have set their default values. Therefore,
this step is realized only if the developer wants to generate other than default
variant of pattern. The possible variants and adjustments of pattern are
defined in UML profile via enumerations or elements‟ primitive type
specification such as boolean, integer and so on.

The developer specifies which variant or modification of pattern he desires
and so the developer creates the specifications of suggested pattern
instances. When the transformation is being executed, the tool processes all
identified missing pattern participants from pattern model and it checks the
second type of marks – keywords on these missing elements. As it has been
introduced in previous section, for the second type of mark the following
notation is defined (remind that these marks can be joined via “;”, while the
symbol “~” expresses negation):

[~]?StereotypeName::Meta-attributeName::value;

A missing element from the pattern model is generated into the model only
when the specified meta-attribute of the specified stereotype has the
specified value.

Fig. 13. Setting up of values of stereotype meta-attributes

Elements from pattern model of which at least one second type mark does
not match the pattern instance specification are ignored by the tool and so
only elements with all positive matches of marks or without any mark are
generated into the model. For example, when the element

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 59

ConcreteSubject from the pattern model is identified as missing element

in the application model, it is always generated into the application model,
because it does not have any second type mark. On the other hand, the
methods getState and setState are generated, only if the developer sets

the value of meta-attribute encapsulateSubjectState of the stereotype

Observes to true, because these methods are marked with the following

second type mark <<Observes::encapsulateSubjectState::true>>

(see Fig. 14, ConcreteSubject class of Observer pattern model).

Fig. 14. Element ConcreteSubject from Observer pattern model

When suggestions and specifications of pattern instances are completed,
the transformation can be launched simply from context menu of application
model (for more details see user guide on [26]). The resulting model of
transformation is shown in the following Fig. 15.

The following sample specification of pattern instances has been set in the
second step of pattern instantiation by the developer (i.e. choosing pattern
variant and adjustments via setting up the values of stereotype meta-
attributes, see Fig. 13).
1. <<Observes>> AccountData – TextualDispaly:

 modelOfNotification = sending - the interface of Observers

which takes reference to the SubjectState class as notification

parameter has been generated.

 managerType = noManager – no manager has been generated

 encapsulateSubjectState = true - the state of class

ConcreteSubject has been encapsulated

2. <<Observes>> AccountData – GraphicsDisplay:

 the same as previous instance AccountData – TextualDispaly.

3. <<Observes>> AccountData – TableView:

 modelOfNotification = callBack - the interface of Observers

which takes reference to Subject class as notification parameter has

been generated.

 managerType = noManager - no manager has been generated

 encapsulateSubjectState = false – this instance of Observer

pattern does not use any encapsulated SubjectState, but the

Subject reference instead.

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 60

Fig. 15. The resulting model of transformation of model from Fig. 13

Fig. 16. Choosing of implementation details of pattern instances

The transformation marks explicitly also all the identified and generated
participants of pattern instances and in the consequence, it makes the
participants clearly visible. Moreover, in the next step of instantiation the
developer can repeat the previous instantiation process from second step and
can specify implementation details of pattern instances directly without
necessity of further stereotype application (see Fig. 16). This step is optional

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 61

again, because the default implementations details are set and so the
developer can launch the transformation to source code immediately.

The snippet of resulting source code of transformation of model from Fig.
16 to Java source code is shown in the Fig. 17.

The transformation to the source code generates two separate packages
(generated and developed). The first is the base package which is always

overwritten by subsequent source code generation. The second is the
development package which is generated only by the initial transformation.
The developer can write and add a specific implementation here without the
threat of it being overwritten. Further, the distinct methods of observer
notification have been generated for each group of Observers according to

their specification (in our case TextualDispaly and GraphicsDisplay as

the first group with SSObserver interface and TableView as the second

group with SObserver interface, see Fig. 17). The transformation also uses

chosen data types in the code generation. Description of source code
generation has been introduced in the section 5.4. The snippet of code
template of Subject participant of Observer pattern has been shown in the

Fig. 9 as well.
After all, suggested and specified pattern instances from the highest level

of abstraction have been transformed to the lowest level of abstraction –
source code. The developer can utilize the created model and perform next
iteration of development. For more details how the method and the tool work
see user guide and video on [26].

Fig. 17. The snippet of resulting source code of transformation of model from Fig. 16
to Java source code

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 62

5.6. Implementation

The presented method and the tool was implemented and verified in the form
of an IBM Rational Software Modeler transformation plug-in. The following
features have been implemented:

 Semantics in the UML profile for the patterns Factory Method, Decorator,
Observer, Chain of Responsibility and Mediator

 Transformation of the highest level of abstraction (PIM) to the lower level
(PSM) and transformation of PSM to source code

 Incremental consistency check mechanism

 Visualization of pattern instances and its participants

 Transformation of PIM to the lower level model PSM is driven by pattern
models

 Models of design pattern covered all pattern variants and modifications
which provide the basis upon which the transformational tool is driven

 Mechanism for adjustments of concrete form or desired variant of pattern
instance for the patterns Factory Method, Decorator, Observer and
Mediator
The first type of transformation of the highest level of abstraction (PIM) to

the lower level (PSM) is implemented by M2M, UML2 and EMF frameworks.
These frameworks are subprojects of the top-level Eclipse Modeling Project
and they provide ideal infrastructure for model-to-model transformations.

The second type of transformation of model of lower level of abstraction
(PSM) to source code is implemented by frameworks JET, UML2 and EMF.
The JET is also part of Eclipse Modeling Project in M2T (Model to Text) area.
It provides infrastructure for source code generation based on code
templates. The architecture of the implemented tool is shown on the following
figure 18.

Fig. 18. The architecture of the implemented tool

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 63

5.7. Extending of Support for New Patterns or Structures

In order to extend the support for a new pattern or structure it is necessary to
add definition of semantics of such new pattern into the existing UML profile.
It is necessary to identify participants of a new pattern and to add definition of
stereotype for each identified participant into the profile. All defined
stereotypes should have the same second part of its qualified name (in RSM
the stereotypes should have the same keyword). This part of the name
represents the name of the new pattern. It is up to the developer how he
names it, but the name should be unique in the set of names of supported
patterns. After that it is necessary to identify variants of the new pattern and
to create the according meta-attributes of the stereotypes (tagged values)
and to create also definition of permissible values of the meta-attributes in
form of enumerations or their type definition. If any stereotype can be applied
in scope of one instance of a new pattern more than once, then the
stereotype should have group_id meta-attribute in order to distinguish

which stereotype belongs to which instance. In other words if cardinality of
any participant of a new pattern is greater than one, then the stereotype of
such participant should have defined group_id meta-attribute.

In the second step it is necessary to create a class model of the new
pattern and to mark the participants with appropriate stereotype defined in the
first step. Now the tool would be able to create mapping between models,
because the developer places the same marks – stereotypes in the
application model. So the tool can compare them simply. The tool still needs
to know which participant it should generate and when. So it is necessary to
add second type marks - keywords to the elements of class model of new
pattern in introduced form:

[~]?StereotypeName::Meta-attributeName::value;

If the specified meta-attribute of the specified stereotype has the specified
value, the element will be generated into the application model. Finally, it is
necessary to export created model of a new pattern into XMI structure and
place it into the working folder of the tool. The name of the file with the
pattern model should be the same as the name of the new pattern (i.e. the
second part of qualified name of stereotypes defined in the first step). The
refresh or update of original UML profile is also necessary.

How the developer marks the model of the new pattern, thus the tool will
generate the pattern into the model of application. So it is up to developer to
mark the pattern model in the way that he desires. We do not want to restrict
the developer. Our aim is to allow him to model any custom pattern. The tool
simply takes a new pattern model, next the tool seeks in it the elements with
marks identical to marks from application model placed by developer and
then it maps the elements with identical marks. After that on the basis of the
comparison of second type marks (keywords) from new pattern model and
values of meta-attributes from application model which have been set by
developer the tool filters out unwanted elements and it generates desired
elements of the pattern. The tool performs all actions according to the

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 64

algorithm introduced in Section 5.4 (Fig. 8). That approach allows extension
of transformation with new special functionality in form of definition of new
rules and notations of marks. In this case the implementation of the new rules
and the new notation recognition should be necessary, of course.

6. Evaluation

The presented method and its realization were evaluated in various
experiments. In the following case study the aspects of correct pattern
instantiation were considered in the evaluation process. The transformation
algorithm (in Fig. 8) always checks on the presence of elements with identical
definition by adding the pattern elements to the application model.
Consequently, the transformation does not duplicate the pattern participants
with identical definition when more instances of patterns are applied in the
model. In addition, when the transformation of the model is run repeatedly,
the incremental consistency of the model is verified. When an element with
an identical definition is presented in the model, it is not duplicated. Instead,
it is swapped. Illustrations of some case studies are shown in the following
Fig. 19, 20 and 21.

The next evaluation was realized through experiments in which we have
monitored and focused on the time of carrying out of an assigned task with
and without usage of the tool. Also the count of generated and added source
code lines has been observed. The tasks consisted of implementing specified
instances of design patterns in a specified form. The average results of the
experiments on a group of five programmers and five master degree students
of software engineering are summarized in the Table 2.

Table 2. Average results of executed experiments

Time with

using the

tool t1

Time

without

using the

tool t2

Speed up

t2/t1

Number of

generated

code lines

Ng

Number

of added

code lines

Nd

Improving

coefficient

(Ng / Nd) + 1

< 30 min > 120 min > 4 478 52 10,2

The quantity of the generated source code has been evaluated for each

design pattern via metrics. The results of this evaluation are shown in Table
3.

Table 3. Quantity of generated source code

Design Pattern LOC NOA NOC NOCON NOIS NOM NOO

Decorator

pattern
223 9 6 7 11 103 22

Mediator pattern 212 6 6 7 9 50 15

Observer pattern 193 14 6 1 10 60 14

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 65

Fig. 19. Case study of simple Chain of Responsibility pattern instantiation

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 66

Fig. 20. Case study of advanced instantiation of Chain of Responsibility pattern. In
this case, there are two clients. One client uses Button and Dialog as the

processing objects and the other client uses Dialog and AnotherHandler as the

processing objects. Variant B illustrates the case with different handled method
names and Variant A with the same handled method names (in this case, all
processing objects have super classes with the same definition, so the tool does not
duplicate them, but it substitutes them instead)

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 67

Fig. 21. Case study of sample Observer and Decorator pattern composition. Classes
DigitalClock, AnalogClock and AnotherObserver have the same

group_id and therefore they are considered as one Decorator instance. Moreover,

the tool does not duplicate the elements with an identical definition, but it substitutes
them successively as instance by instance are generated

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 68

Results of experiments show a significant improvement gained by use of
the method and tool in the area.

7. Future Work

In the future, it is important to support also the fourth characteristic of the
model driven development – the invertibility of models. The most important
problem is to transform the source code to the design level (PSM), because
the higher-level semantics cannot be reasoned directly and automatically
from the source code in general. The knowledge is mainly available to
developers and domain experts involved in the design process. Therefore,
our aim is to add the missing semantics into the source code. Our idea is to
mark explicitly and make visible higher-level (i.e. design) intentions in the
source code via annotations. This way it would be possible to express also
the semantics of patterns in the source code and the intention of annotated
code as well. Consequently, it would be possible to expand the visibility of
pattern instances from model into the source code by annotations. The
pattern instances do not become invisible in huge amount of source code
lines, quite the contrary, the full visibility of instances and their participants
would be achieved by annotations. Consequently, using source code
annotations the inverse transformation would be able to recognize pattern
instance participants in source code and to transform them into a higher level
of abstraction.

Besides this feature, also the traceability of transformations and pattern
instances would be enhanced at the source code level. The code annotations
make identifying of pattern participants in the source code quite easy. As a
result, the tool based support of pattern instantiation or existing instances
evolution, validation and identification at the source code level can be
achieved in the form of code assists. Thanks to the annotations, the tool
would be able to identify the pattern participants already implemented, and
subsequently it would be able to offer to the developer the generation of any
missing pattern participant or the possible evolution of instance in the given
context. The evolution of existing instances of patterns without any tool-
based support is quite difficult, because a developer has not a good vision
about all concrete participants of pattern instances in the source code.
However, this idea would bring significant improvement in pattern
instantiation, evolution and validation in the source code.

Nowadays, we have proposed the improvement of the transformation to
the source code. The method presented in this paper marks all pattern
participants by stereotypes in the model. Our idea is that the transformation
to the source code preserves the marking from the model and also extends it
via annotations into the generated source code. Therefore no manual
annotation of the code would be necessary in the generated source code, in
comparison to the other present approaches [23, 24]. For more details about
the improvement of the transformation to the source code and the method of

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 69

continuous support of the patterns at the source code level see our paper
[25].

Currently, the tool does not give any suggestion or guide on what suitable
patterns to apply are. In our opinion, this guide is relatively hard to automate
by the tool, because the knowledge of what are suitable patterns to apply
requires really detailed understanding of the context and the application and,
therefore, it is available especially to the developers or designers involved in
the design process. But this is also a challenge to the future.

8. Conclusion

The abstraction, semantics and model transformations represent the key
aspects of Model Driven Development and Model Driven Architecture. The
possible level of the automation of the development process can be
improved considerably thanks to them. The semantics applied in the models
enables the possibility to understand the model and its elements, and also to
recognize which elements play which roles in the model. Consequently, on
the basis of the understanding of the model and its elements, it is possible to
construct the transformation which transforms the model to a lower level of
abstraction.

These principles represent the basis of the elaborated method of the
design pattern application support. Thanks to the elaborated semantic
extension of UML in form of UML profile, it is possible to specify participants
of design patterns and relations between them directly on the elements of the
application model. The suggestion and specification of pattern instances in
the model allow the transition to higher levels of abstraction in the modeling
of pattern instances. The instantiation details are split into more levels of
abstraction, so developers do not need to concern themselves with concrete
details of pattern structure at higher levels.

The transformations of models to lower levels of abstractions are driven by
models of patterns. This aspect provides the key option to the developer to
adjust the results of transformations by modification of these pattern models.
This way it is possible to model any custom model structure and achieve
support of its application to the model. Consequently, the method is not
limited to GoF design pattern support only, but it also represents the
framework of creation and addition of support for other custom model
structures which are often created in models mechanically.

Acknowledgments. This work was partially supported by the Scientific Grant
Agency of Republic of Slovakia, grant No. VEGA 1/0508/09 and by Slovak Research
and Development Agency, grant No. APVV-0391-06 “Semantic Composition of Web
and Grid Services”.

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 70

References

1. Arlow, J., Neustadt, I.: Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML, Addison Wesley, (2003)

2. France, R., Dae-kyoo, K., Ghosh, S.: A UML-Based Pattern Specification
Technique, pp. 193-206, IEEE transactions on Software Engineering, (2004)

3. Frankel, D.: Model Driven Architecture: Applying MDA to Enterprise Computing,
Wiley Publishing, (2003)

4. Gamma, E. et al.: Design Patterns, Elements of Reusable Object-Oriented
Software, Addison-Wesley professional computing series, (1995)

5. Návrat, P. et al.: A technique for modeling design patterns. Knowledge-Based
Software Engineering - JCKBSE'98, pp. 89-97, IOS Press, (1998)

6. Object Management Group: MDA, MOF and UML Specifications. (2009)
[Online]. Available: http://www.omg.org/

7. Borland Software Corporation: Borland Together Architect. (2009) [Online].
Available: http://www.borland.com/together/

8. Briand, L., Labiche, Y., Sauve, A.: Guiding the application of design patterns
based on uml models. In ICSM '06: Proceedings of the 22nd IEEE International
Conference on Software Maintenance, pp 234-243, Washington, DC, USA,
(2006). IEEE Computer Society.

9. Dong, J., Yang, S.: Qvt based model transformation for design pattern
evolutions. In: J.-N. Hwang (Ed.): Proceedings of the Tenth IASTED
International Conference on Internet and Multimedia Systems and Applications
(IMSA 2006), Honolulu, Hawaii, USA, August 14-16, 2006. IASTED/ACTA Press
2006, 16-22.

10. Dong, J., Yang, S., Zhang, K.: A model transformation approach for design
pattern evolutions. In ECBS '06: Proceedings of the 13th Annual IEEE
International Symposium and Workshop on Engineering of Computer Based
Systems, pp 80-92, Washington, DC, USA, (2006). IEEE Computer Society.

11. Boussaidi, G., Mili, H.: A model-driven framework for representing and applying
design patterns. In COMPSAC '07: Proceedings of the 31st Annual International
Computer Software and Applications Conference, pp 97-100, Washington, DC,
USA, (2007). IEEE Computer Society.

12. Wang, X.-B., Wu, Q.-Y., Wang, H.-M., Shi, D.-X.: Research and implementation
of design pattern-oriented model transformation. In ICCGI '07: Proceedings of
the International Multi-Conference on Computing in the Global Information
Technology, Washington, DC, USA, (2007). IEEE Computer Society.

13. Cinnéide, M., Nixon, P.: Automated software evolution towards design patterns.
In IW- PSE '01: Proceedings of the 4th International Workshop on Principles of
Software Evolution, pp 162-165, New York, NY, USA, (2001). ACM.

14. Debnath, N.C. et al.: Defining Patterns Using UML Profiles. In IEEE
International Conference on Computer Systems and Applications, pp.1147-
1150, Washington, DC, USA, (2006). IEEE Computer Society.

15. Mapelsden, D., Hosking, J., and Grundy, J.: Design pattern modelling and
instantiation using DPML. In Proceedings of the Fortieth international
Conference on Tools Pacific: Objects For internet, Mobile and Embedded
Applications, pp 3-11, Darlinghurst, Australia, (2002) ACM International
Conference Proceeding Series, vol. 21. Australian Computer Society.

16. Dong, J., Yang, S.: Visualizing design patterns with a UML profile. In
Proceedings of the 2003 IEEE Symposium on Human Centric Computing

Design Pattern Instantiation Directed by Concretization and Specialization

ComSIS Vol. 8, No. 1, January 2011 71

Languages and Environments, pp 123-125, Washington, DC, (2003). IEEE
Computer Society.

17. Alexander, C. et al.: A pattern language. Towns, buildings, construction. Oxford
University Press, New York, USA, ISBN 0-19-501919-9, (1977).

18. Judson, S. R.: Pattern-based model transformation. In OOPSLA '03:
Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp 124-125, Anaheim,
CA, USA, (2003). ACM

19. Majtás, Ľ: Tool Based Support of the Pattern Instance Creation. In: e-
Informatica Software Engineering Journal, Vol. 3. Iss. 1, 89-102. (2009)

20. Havlice, Z. et al.: Knowledge Based Software Engineering. In: Computer
Science and Technology Research Survey, elfa, Kosice, pp. 1-10, (2009)

21. Kollár, J., Porubän, J., Václavík, P., Forgác, M., Wassermann, L. et al.: New
Generation of Language Architectures. In: Kollar, J. (Edt.): Computer Science
and Technology Research Survey, elfa, Kosice, pp. 21-30, (2009)

22. Marko, V.: Template Based, Designer Driven Design Pattern Instantiation
Support. In: LNCS 3255 – SOFSEM 2004, Springer-Verlag, pp. 144-158, (2004)

23. Sabo, M., Porubän, J.: Preserving Design Patterns using Source Code
Annotations. In: Journal of Computer Science and Control Systems. (2009), pp.
53-56.

24. Meffert, K.: Supporting Design Patterns with Annotations. In: Proceedings of the
13th Annual IEEE international Symposium and Workshop on Engineering of
Computer Based System. ECBS‟06. IEEE Computer Society, Washington, DC,
(2006), pp. 437-445

25. Kajsa, P., Návrat, P.: Design Pattern Support at Source Code Level Based on
Annotations and Feature Models. In: Student Research Conference in
Informatics and Information Technologies 2010, Bratislava, (2010), pp. 233-
240

26. Kajsa, P., Majtás M., Návrat, P.: Web page of Design Pattern Instantiation

Directed by Concretization and Specialization. (2010). [Online]. Available:
http://www.fiit.stuba.sk/~kajsa/tool-based-design-patterns-support/

Peter Kajsa is a PhD student and a teaching assistant at the Faculty of
Informatics and Information Technologies of the Slovak University of
Technology in Bratislava. Peter received his Master degree in Software
Engineering in the year 2009. His main research interests include
design and architecture of software systems, design and architectural
patterns, Model Driven Development, Model Driven Architecture and
other Object Management Group specifications. He has published several
works in the area.

Ľubomír Majtás is a PhD candidate and a teaching assistant at the Faculty
of Informatics and Information Technologies of the Slovak University of
Technology in Bratislava. He received his Master degree in Software
Engineering in the year 2006. His main research activities focus on design
and architecture of software systems, Model Driven Development and Model-
Driven Architecture where he specializes on support automation for design

Peter Kajsa, Lubomir Majtas, and Pavol Navrat

ComSIS Vol. 8, No. 1, January 2011 72

pattern instances creation and their detection in the existing software. He has
published several papers in the area.

Pavol Návrat received his Ing. (Master) cum laude in 1975, and his PhD.
degree in computing machinery in 1984 both from Slovak University of
Technology. He is currently a professor of Informatics at the Slovak
University of Technology and serves as the director of the Institute of
Informatics and Software Engineering. During his career, he was also with
other universities abroad. His research interests include related areas from
software engineering, artificial intelligence, and information systems. He
published numerous research articles, several books and co-edited and co-
authored several monographs. Prof. Návrat is a Fellow of the IET and a
Senior Member of the IEEE and its Computer Society. He is also a Senior
Member of the ACM and a member of the Association for Advancement of
Artificial Intelligence, Slovak Society for Computer Science and Slovak
Artificial Intelligence Society. He serves on the Technical Committee 12
Artificial Intelligence of IFIP as the representative of Slovakia.

Received: December 12, 2009; Accepted: October 11, 2010.

