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Abstract. The importance of XML query optimization is growing due to
the rising number of XML-intensive data mining tasks. Earlier work on
algebras for XML query focused mostly on rule-based optimization and
used node-at-a-time execution model. Heavy query workloads in modern
applications require cost-based optimization which is naturally supported
by the set-at-a-time execution model. This paper introduces an algebra
with only set-at-a-time operations, and discusses expression reduction
methods and lazy evaluation techniques based on the algebra. Our exper-
iments demonstrate that, for queries with complex conditional and quan-
tified expressions, the proposed algebra results in plans with much better
performance than those produced by the state-of-the-art algebras. For rel-
atively simple queries, the proposed methods are expected to yield plans
with comparable performance.

Keywords: native XML databases, XML query optimization, query alge-
bras.

1. Introduction

High-level declarative query languages are one of the most important tools of-
fered by database management systems. These languages have great expres-
sive power and are easier to use than conventional programming languages.
Modern query execution engines contain sophisticated query optimizers that
transform a declarative query into an efficient sequence of low-level operations.
The overall optimization process can be presented as a two-phase process,
where the first phase is logical optimization and the second one, cost-based
optimization [7]. Logical optimization focuses on rewriting the query into logi-
cally equivalent forms that are hopefully more efficient. Cost-based optimiza-
tions first creates detailed plans for each rewritten query and then selects the
best one based on available statistics of the data.

An algebra of operations specifies equivalent operator reorderings. Rela-
tional database management systems use common relational algebra, however
there is no widely accepted algebra for XML databases. The reasons for this are
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partly historical, and partly to do with the complexity of the XQuery language.
Known XQuery algebras can be classified according to the optimization phase
that they target, as either rule-based (RB) or cost-based (CB).

RB algebras target the logical optimization phase. The operations of such
algebras support both node-at-a-time (NT) and set-at-a-time (ST) execution
models [10]. The former type sequentially pass execution for each input item
to subsequent operations. Operations of the latter type take as arguments sets
of tuples, just as relational operators do.

CB algebras require their operations to be cost-estimation friendly. Tradi-
tional cost estimation techniques [8] work only for ST operations for which the
cardinality of the result can be estimated from the cardinalities of the arguments.
For these techniques to apply, conditional predicates (if any) in the ST opera-
tions should test for simple value-based conditions, such as value equality or a
structural relationship in case of XML (e.g. parent-child).

The XQuery language includes quantified and conditional expressions and
where-clauses, each of which could involve potentially expensive predicates.
Lazy evaluation of the query, i.e. performing only those operation evaluations
that are necessary for producing the result, hence turns out to be an important
technique. While NT-strategy naturally supports lazy evaluation, ST requires
entire sets of input to be explicitly pre-evaluated, that in turn can lead to unnec-
essary computations.

In this paper, we propose algebraic transformations that generate more
efficient ST plans by pushing selective operations closer to the leafs of the
query plan. Unlike in the relational algebra, these algebraic transformations for
XQuery are non-trivial, as they require additional logical-plan transformations
in order to preserve correctness. An algebra that facilitates such transforma-
tions is the focus of this paper. Our algebra, XAnswer, covers all the XQuery
constructs except recursive functions.

We do not discuss cost estimation techniques in detail, instead focusing on
logical transformations of the inherently more efficient ST plans. We experimen-
tally demonstrate performance gains for queries with complex conditional and
quantified expressions by executing ST-operations in the order discovered using
the proposed transformations.

The remainder of the paper has following structure. In the section 3 we de-
fine the XAnswer algebra and its main operations. In the section 4 we describe
our rules for expression construction and their normalization. The expression
construction rules map XQuery to XAnswer. Since the proposed rules produce
redundant operations, in the section 5 we discuss transformations that reduce
redundancy and enable lazy evaluation. The section 6 presents our experimen-
tal validation.

2. Related work

XML-query optimization has been the subject of recent intensive research.
Early approaches [1, 2] are based on the algebra for XML Query introduced
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in [18] and utilize rewriting rules over expressions of XQuery Core [6]. Such
approaches, while are feasible for relatively simple queries, yield poor perfor-
mance on queries with nested expressions because of use of the use of NT-
style operations.

Later approaches fall into two groups: tree-based and tuple-based. These
approaches differ in the kind of elements their operations are defined over. The
former use tree-based algebras [4, 9] which operate on ordered sets of trees.
The latter use relational-like structures, sets of tuples.

The operations used in tree-based approach generate trees for intermediate
results and use pattern matching over those trees.

While most of the tuple-based approaches require the sets of tuples to be
ordered, others such as the query algebra [14] avoid this limitation. While some
algebras for tuple-based approach assume that tuples contain only atomic val-
ues [14], others permit values to be sequences [13, 15, 19], and some oth-
ers [11,16] allow values to be sets of tuples.

Tuple-based algebras enable traditional optimization techniques known from
relational databases. Significant performance gains can be obtained by us-
ing query unnesting [11, 13], which is special transformation to substitute NT-
operations with combinations of ST-operations. This gain is due to the ability to
exploit hash join for implementing ST-operations, whereas for NT-operations a
nested-loop join is likely the only possible implementation. One of the most
aggressive unnesting schemes is used in Galax [13]. For query translation
it uses special NT-operations MapConcat, MapFromItem and Cond for con-
ditional expressions (if-then-else). It also defines an ST-operation GroupBy.
Query unnesting is based on the idea of introducing the GroupBy operation
where possible (actually, inside operations corresponding to for -clauses). Then,
using other rules, GroupBy and MapConcat are swapped to replace MapCon-
cat with cartesian product (or join) when possible.

Recent algebras [13,15] are unable to unnest certain classes of nested ex-
pressions, instead being forced to utilize NT-operations. These operations ap-
pear in selections with complex predicates, as well as in quantified (some or
every ) or conditional expressions.

Let’s consider a FLWOR with if-then-else clause:

for \$i in A/B
let \$b := \$i/D
return if \$i/c then \$b/T else \i/F

Translation of this query with NT-style condition, like in earlier work, will lead
to the use of inefficient nested loop join and the lack of support for lazy evalua-
tion will cause redundant execution of $i/D even if $i/c is false.
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3. Algebra overview

In this section we introduce XAnswer, our tuple-based algebra, in which all op-
erations can be set-at-a-time (ST). Our algebra, has some similar components
to XAT [19] and Galax. Just like XAT and Galax, its operations are defined over
ordered sets of tuples. Each tuple is a set of items that can be either a single
value (XML atomic value, XML-node [17]) or a sequence of single values. We
call this structure an envelope and define it formally:

Definition 1 Envelope (< he|be|re >) is a triple of header he, body be and
result attribute re. Header he is an unordered set of unique-whitin-this-header
names called attributes (A). Result attribute re is an attribute from he. Body
be is an ordered set of tuples (τ ), where each tuple is a set of pairs (A, v) for
each attribute A of the header. v is either a single value or a sequence of single
values.

In what follows, we will denote tuples as τ(e), where e is a sequence of val-
ues of corresponding tuple pairs. Envelopes are denoted as < h|τ(e1) . . . |r >,
where h is the header, r is the result attribute, τ(ei) forms envelope body, and
ei denotes the sequence of values corresponding to the i − th attribute within
h. The signature < || > is used for the empty envelope.

Envelopes are similar (') if they have identical headers and their bodies
differ only in order of tuples. An envelope includes (�) another envelope if they
have identical headers and if the the body of the first contains all the tuples of
the latter.

We continue with the description of the operations that form an algebraic
basis. Next, we briefly introduce additional operations that simplify notations or
support more efficient implementation.

3.1. Basic operations

Basic operations are presented in the Table 1. To uniquely identify new at-
tributes, we use the function nextId() to generate the attribute’s names. An
operation for attribute renaming is trivial, and we do not list it among the opera-
tions in the table.

Along with relational-like operations that appear in other tuple-based alge-
bras [13, 14, 19], XAnswer adds the union operation. Unlike its relational coun-
terpart, XAnswer’s union does not remove duplicates.

In XAnswer, we introduced a left-outer-join operation instead of express-
ing it using selection, cross product, and union operators. This is so because
envelopes’ bodies are ordered and may contain duplicates. Using the left-outer-
join along with selection and union, it is possible to express other set operations,
namely intersection and subtraction.

To enable query unnesting, previous tuple-based algebras [13, 19] use tu-
ples grouping. They evaluate a nested query in ST-fashion instead of NT, group
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Table 1. Main algebraic operations
Operation name Input Output

Unary operations
Function execution (ff )

< h|τ(e1) . . . τ(en)|r >

< h, i = nextId()|τ(e1, f(e1)) . . . τ(en, f(en))|i >
Selection (σpr) < h|τ(e′1) . . . |r >, where (e′)i ⊆ (e)i and pr(ei) = true

Projection (πh′ ) < h′|τ(e′1 |h′) . . . |r |h′>, where h′ ⊆ h
Sort (sorth′ ) < h′|τ(e′1) . . . |r >, where (e′)i = Sorth′(e)i
Index (indexi) < h, i|τ(e1, 1) . . . τ(en, n)|r >
Nest (nesth′ ) See example table 2 and comments in section 3.1
Unnest (unnesth′ ) See example table 2 and comments in section 3.1
Duplicate (duphi ) < h, nextId()|τ(e1, e1 |hi) . . . |r >, where hi ∈ h

Binary operations

Union (
⋃

) < h|τ(e1) . . . |r >,
< h|τ(e1) . . . τ(en), τ(e′1) . . . τ(e′m)|r >

< h|τ(e′1) . . . |r >

Cross product (×) < h, h′|τ(e1, e′1) . . . τ(e1, e′n), τ(e2, e′1) . . . |r′ >< h|τ(e1) . . . |r >,

Left outer join (1l
pr)

< h′|τ(e′1) . . . |r′ > < h, h′|τ(e1, e′′1 ) . . . τ(e1, e′′n), τ(e2, e′′1 ) . . . |r′ >,
where if (pr(ei, e′i) = true) then e′′i = e′i else e′′i = ()

the results of the query into sequences, and append the sequences to corre-
sponding tuples. In [13], this is done using a complex operation called group by.
We define a lower-level operation nest along with an unnest operation that un-
groups grouped tuples. The semantics of these operations is shown in the Table
2. While nest and unnest appear in [19], previously proposed tuple groupings
are different from ours. Our nest and unnest operations are not complementary
(see Table 2). Note that if h is empty in nesth, all tuples fall into one group,
and the resulting envelope has a single tuple with sequences of values for each
attribute.

Table 2. Input and output of algebraic operations
(a) nestA,B

Input Output
A B C A B C

a1 b1
c1

a1 b1

c1
c2 c2

a1 b2 c3 c2
a1 b1 c2 a1 b2 c3

(b) unnestA,B

Input Output
A B C A B C

a1 b1

c1 a1 b1 c1
c2 a1 b1 c2
c2 a1 b1 c2

a1 b2 c3 a1 b2 c3

(c) dupB

Input Output
A B A B B’
a1 b1 a1 b1 b1
a2 b2 a2 b2 b2

(d) quanteverytrue,B

Input Output
A B A B

a1

true

a2 truefalse
true

a2 true

For duplication of attribute values we use duplicate operation (dupa). The
input and output are presented in the Table 2. The operation is used in plan
reduction described in the section 5.2 to replace relatively expensive joins.
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3.2. Additional operations

In order to simplify notation, we introduce specific leaf algebraic operations,
leaf path step (LPSp := unnestre(f)(fp(< || >))) and leaf constructor (LCc :=
unnestre(f)(fc(< || >))). LPS is used to extract values stored in a document.
LC is used to extract XML-values (constants) that are not present in a docu-
ment (e.g. they occur in the text of a query). In LCc operation, c is a sequence
constructor (e.g. (1,2,3)) or an element constructor (e.g. <a>text</a>). In
LPSp operation, p is an XPath expression (e.g. /a/b//c).

Structural join is the traditional join operation with a structural predicate that
specifies the relation between two nodes (e.g. parent-child). If structural predi-
cate is applied to sequences of values, it evaluates to true if there is at least one
value satisfying the predicate in each sequence. Unary path step and structural
join are used in path expressions mapping.

XAnswer has a basic function operation (ff ). The pattern f specifies the
overall structure of the element and places where corresponding tuple val-
ues should be substituted. In our notation, we add a special operation called
element constructor (θp), where p is an element pattern which describes the
schema of an element.

The purpose of quantify (quantqc,hi
) operation is to efficiently implement lazy

evaluation (section 5.3). The operation is a specific kind of selection used for
controlling the pipeline. A sample input and output of the quantify operation are
presented in Table 2.

Addition operation is a special complex operation included in the algebra
to avoid unnecessary steps in physical plan. The operation appears during the
plan reduction described in the section 5.2. Addition is a combination of pro-
jection, nest and join: A

⊕v
p B = nesthe(A)(πhe(A)

⋃
v(A 1l

p B)), where p is a
predicate and v ⊆ he(B).

4. Plan construction

The plan construction process consists of two steps, normalization and trans-
lation. During the process FLWOR expressions are broken into single for- and
let-clauses [6], predicates are moved from xpath to where-clauses [5, 11, 13]
and complex expressions are removed by introducing new variables [11].

4.1. Normalization

let $k := for $i in expr
(for $j in . . .)

return cond
(: if ”some” :)

let $r := $k = true
(: if ”every” :)

let $r := not($k = false)
return $r

Fig. 1. Quantifiers nor-
malization

The proposed normalization differs from previous
work mostly in the normalization of nested, quantified
and conditional expressions.

Below we outline some of our logical transforma-
tions. We break up complex expressions via intro-
duction of new variables in such a way that only let-
clauses contain them. Any nested FLWOR expres-
sion starts with a for-clause. Positional predicates are
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moved to where-clauses. Quantified expressions are
replaced with FLWORs (see Figure 1).

4.2. Translation

An algebraic expression is constructed in a top-down fashion. The Table 3 il-
lustrates some of the expression construction rules. We assume that P is a
subexpression that was constructed on a previous step and E is an expression
corresponding to the bound expression (expr) of a let- or a for-clause, he(E) or
re(E) means header or return attribute extraction from the resulting envelope
of the expression E.

Table 3. Construction rules
XQuery XAnswer

1 for $i in expr P × πre(E)(E).
2 let $i := expr (P × nest()(πre(E)(E)).
3 for $i in expr(v) πhe(P )∪re(E)(indexi(P ) 1i=j

E(unnestv(indexj(P )))).

4 let $i := expr(v). Expr is xpath ex-
pression that has a reference to previously
defined variable

πhe(P )∪re(E)(nesthe(P )∪i(indexi(P ) 1l
i=j

πre(E)∪j(E(unnestv(indexj(P )))))).

5 let $i := expr(v1 . . . vn). Expr is not
xpath and has references to previously de-
fined variables

πhe(P )∪re(E)(nesthe(P )∪i(indexi(P ) 1l
i=j

E(indexj(P )))).

6 expr(v1 . . . vn). Expr is logical or alge-
braic expression operating with variables
v1 . . . vn.

fep,v1...vn(E).

7 where expr. σre(E)=true(E(P )).

8 order by v1 . . . vn. sortv1...vn(P ).
9 /axis::node-test. P 1::axis LPSnode−test.

10 E1opE2. Op is one of intersect, union, ex-
cept.

P1opP2, op ∈ (∪,∩, \).

11 if exprc then exprt else exprf . See section 5.3.

Note that, if P =< || >, in the rules 1,2,9 only right operand of 1 and ×
should be considered as a resulting subplan.

Example 1

Below we demonstrate sample plan construction process. Let’s denote hA =
re(LPSA) and hB = re(LPSB).
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Step Rule Input Output
0 for $v in A

let $m := $v/B
P =< || >

1 1 for $v in A ; P =< || > P = πre(E)(E)

2 9 A ; P =< || > E = LPSA

3 1 for $v in A ; P =< || >; E =
LPSA

P = πre(LPSA)(LPSA)

4 5 let $m := $v/B ; P =
πre(LPSA)(LPSA)

πhe(P )∪re(E|P ′ )(nesthe(P )∪i(indexi(P ) 1l
i=j

πre(E|P ′ )∪j(E|P ′))), P ′ = unnestv(indexj(P ))

5 9 $v/B; P ′ = unnestv(indexj(P )) E|P ′ = P ′ 1::child LPSB

6 5 let $m := $v/B; P =
πre(LPSA)(LPSA); E|P ′ =
P ′ 1::child LPSB

P = πhA∪hB (nesthA∪i(indexi(T ) 1l
i=j

πhB∪j(unnestv(indexj(T )) 1::child LPSB))),
T = πhA(LPSA)

Optimized: πhA
⋃

hB
(nesthA∪i((indexi(LPSA)) 1

l
child LPSB))

5. Optimization

Efficient physical plans are derived by applying optimizing transformations to
the constructed algebraic plans. The logical transformations of algebraic plans
also enables further physical plan optimization.

::child

LPSA

index
i

LPSB

project
h
A

vunnest

i=i
project h

A
,i

nest
h
A
,i

project
h
A
h
B

Fig. 2. The plan from Example 1

We explain all our transformations with the help of a directed graph in which
vertices (nodes) represent algebraic operations and edges connect those oper-
ations to their operands (the Figure 2). In Example 1 above, indexi(πhA

(LPSA))
and indexj(πhA

(LPSA)) produce envelopes which differ only in headers. Such
envelopes can be converted to each other with the HR operation. In such cases
we consider the two subplans identical and leave only one in the graph (see Fig-
ure 2).

Definition 2 An operation block is a subgraph that has no more than one node
(output node) with incoming external edges, and has all outgoing external edges
(if any) leading to only one external node. The targets of the outgoing edges are
called input nodes.
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Below we consider an expression B1(B2), where B1 and B2 are operation
blocks, and all input nodes of B1 have outgoing edges lead to the output node
of B2.

Definition 3 An operation block B is non-reducing if an envelope En passed
to the block is not empty and πhe(En)(B(En)) � En. An operation block B is
non-modifying if πhe(En)(B(En)) ' En.

Non-reducing operation blocks keep all tuples of the input envelope. Non-
modifying operation blocks are non-reducing blocks that do not add new tuples
to the input envelope. Non-reducing and non-modifying properties can be nat-
urally generalized from operation blocks to unary operations, join and left outer
join (for joins, the left operand is considered as the input in the sense of Defini-
tion 3). Non-modifying operations include duplication, function, sort, etc. Non-
reducing operations additionally include left outer join. Join and selection are
reducing operations because tuples of the (left) operand may be eliminated.

Cycles appear in the graph as a result of constructing parts of the plan corre-
sponding to for- (for-cycles) and let-clauses (let-cycles) that refer to previously
defined variables. Let-cycle are non-modifying due to use of nest and left outer
join (see rule 5 of Table 3). For-cycles are reducing operation blocks.

Definition 4 Two operation blocks B1 and B2 are independent if B2(B1(P )) '
B1(B2(P )).

If a block operates with attributes that were added to the header of the re-
sulting envelope by another block, it depends on the other block. Independent
blocks never depend on each other.

Optimizing transformations listed in the following sections preserve the value
of πre(P )(P ). This is achieved by using an HR operation to change the return
attribute if needed. For compactness we omit usages of an HR operation.

5.1. Blocks pushdown

Optimizing transformations include reordering, removal, and replacement of op-
erations. The goal of optimizing reordering is to make the intermediate results
created during the plan execution smaller. With respect to this, it is important to
perform selective operations as early as possible. In graph terms, it means that
these operations should be placed closer to the leaves of the graph (i.e. pushed
down). Often, selective operations can be pushed down only along with a con-
taining operation block. We present a blocks pushdown algorithm that enables
selective operations pushdown.

We refer to operation blocks corresponding to for-, let-, where-, etc. clauses
as clause-blocks. Two clause-blocks are independent if one clause of normal-
ized query does not refer to a variable introduced in another.

1. Suppose P = Bs(Br) is a plan, where Bs and Br are operation blocks and
Bs is a block to push down.
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2. Locate a clause-block Bm, Br = Be(Bm(Bb)): Bs depends on Bm. If there
is no such Bm, then Be = Br.

3. Recursively perform the algorithm on Bm, obtaining B′
m.

4. Push down Bs through Be in order to obtain: P = B′
e(Bs(B

′
m(B′

b))).

5.2. Redundant operation reduction

In this section we present logical optimizations that remove redundant opera-
tions or group several operations into complex ones. The optimizations include:

– removal of unnest operations;
– introduction of addition operations;
– removal of unnecessary index operations; and
– cycle removal.

Unnest removal is trivial and can be applied directly: unnesth′(P )⇒ P if P
does not contain nesth′′ and h′′ ⊂ h′.

The addition operation is also introduced directly based on its definition
(see section 3.2). The addition operation groups several operations (nest, join,
projection) into a single one and allows further physical plan optimizations.

Removal of unnecessary index operations is a two-step operation that
consists of preliminary reordering of index operations and subsequent index
operations removal itself. After unnest removal and introdution of addition oper-
ation let-blocks are identified by the presence of addition operation. Such blocks
are non-modifying operation blocks due to use of left outer join and nest. Con-
sequently, if an index operation is performed before such block, indexes are
retained in the result, and the following transformation is valid:

indexi(πhe(P )∪re(B)B(indexj(P )))⇒ πhe(P )∪re(B)∪i(B(indexi(indexj(P )))).

Subsequent application of this transformation produces a plan that contains
sequences of index operations. The sequences are replaced with a single index
operation.

Cycle removal is performed on for- and let-cycles that appear (as implied by
the construction rules) whenever the respective bound expressions reference
previously defined variables. The bound expressions can be one of three kinds:
an xpath expression, a FLWOR expression, or a conditional expression.

If the bound expression of a for- or a let-clause is an xpath. Xpath expres-
sions are mapped using structural join and LPS operations. Assume Bx is a
block corresponding to some xpath. It consists of structural join and LPS oper-
ations. While structural joins are reducing operations, they have left outer ver-
sions (1l) that are non-reducing. Bl

x is obtained from Bx by replacing structural
joins with left outer joins.

We propose the following transformation for let-cycles:

πhe(P )∪re(Bx)(nesti
(
indexi(P ) 1

l
i=j (Bx (unnestv(indexj(P ))))

)
)⇒

πhe(P )∪re(Bl
x)
(nesti

(
Bl

x(unnestv(indexi(P )))
)
).
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The transformation for for-cycle is:

πhe(P )∪re(Bx)(indexi(P ) 1i=j Bx (unnestv(indexj(P ))))⇒
πhe(P )∪re(Bx)(Bx(unnestv(dupv(P )))) .

The topmost join operation in the original plans of the cycle is used to set up
a correspondence between variable values of the query context with the new
values obtained within the clause. Unnest operation can break the correspon-
dence. To keep it, we use dup operation instead of join and then perform re-
quired unnesting on the introduced attribute. If the unnest operation is removed
in optimization process, dup can also be eliminated.

If the bound expression of a let-clause is a nested FLWOR. The optimization
is based on the fact that the topmost join 1l

i=j that organizes a cycle can be
removed if it has a non-reducing operation block as a right-hand operand.

After query normalization, each nested FLWOR starts with for and ends with
where, order by, and return. The last three clauses are mapped with, respec-
tively, σ, sort and π operations. Let an operation block B1 corresponds to order
by and return, and B2 corresponds to the sequence of let- and for-clauses. A
plan for complete let-clause with a nested FLWOR is:

πhe(P )∪re(B1)(nesti(indexi(P ) 1
l
i=j B1(σp(B2(indexj(P )))))). (1)

1l in this plan can be pushed down over B1. The transformation also modi-
fies sort operation to preserve original order.

Let B2 = BF1
(. . . BFn

), where BFi
are for- or let-blocks.

There are two cases: ∀i BFi
is not dependent on P and ∃i BFi

is dependent
on P . In case BFi

is not dependent on P according to normalization rules, BF1

is a for-block. According to construction rules and independence with P , F1 =
P ×Bx, where Bx is a block corresponding to a xpath expression. Since BF2 is
also independent of P , it is easy to see that BF2

(P×BF1
) = P×BF2

(BF1
). After

application of this transformation sequentially for expression (1), combining σ
and × into 1l

p, and removing outer 1l
i=i, we obtain:

πhe(P )∪re(B1)(nesti(B1(indexi(P ) 1
l
p BFn

(. . . (BF1
))))).

In case BFi is dependent on P , we use the fact that let-cycles are non-
modifying blocks (see section 5) and for-cycles are reducing due to their top-
most join operations.

Let’s denote Bl
2 = BL1

(. . . BLn
), where BLi

= BFi
if BFi

is a let-block and
BLi

= Bl
Fi

if BFi
is a for-block. Bl

Fi
is obtained by replacing its topmost join with

left outer join in BFi . We perform (1) to the following:

πhe(P )∪re(B1)(nesti(B1(σp(B
l
2(indexi(P )))))).

Cycle removal is applied recursively for inner cycles.
If the bound expression of a let-clause is a conditional expression. If the

bound expression is a conditional expression, transformations similar to those
described for xpath expression case can be applied because the corresponding
operation block is non-reducing. We omit details due to space limitations.
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5.3. Transformations for lazy evaluation

Lazy evaluation is preferable in quantified expressions, positional predicates,
and conditions of where, if-then-else, typeswitch clauses. In XAnswer, these
types of expressions are mapped with ST-operations. When a physical plan is
executed, the operands of the ST-operations are pre-evaluated, thus potentially
making expensive unnecessary computations. To reduce such computations,
certain support, e.g. pushing down of selective operations closer to leaves, is
required in the process of algebraic plan modification.

Transformations of quantified expressions and positional predicates.
Positional predicates allow physical plan execution to avoid the calculation of
the whole operand of the operation. For quantified expressions, if one satisfy-
ing (or not satisfying - depending on whether “some” or “every” is used) value is
found, there is no need to evaluate further the operand of the quantified opera-
tion. Position and quant operations are introduced into algebraic plans to allow
pipelined evaluation at the physical level.

According to normalization and construction rules, positional predicates are
mapped using selections and index operations. If hi = re(indexi) and p is a
positional predicate σp(hi) is replaced with positionp(hi).

A similar mapping is used for quantified expressions. Unlike the case of
positional predicates, the selection is performed over nested values. According
to the proposed optimizations, the nestings are included in addition operations.
Then, if hi = re(

⊕
), an expression σp(hi) is substituted with quantp(hi).

Transformations of conditions. Consider a where-clause where A op B.
A and B are logical expressions or terminals (variable references). Op is a
logical operator and or or. We assume without loss of genrality that A and B
are terminals; if not, the process described below can be applied recursively.BA

and BB are operation blocks corresponding to A and B respectively. In case of
if-then-else we use BC , BT and BF to denote corresponding operation blocks
for the condition, then-, and else-branches. We assume that other blocks in the
plan are independent with A and B. Without this assumption lazy evaluation
does not bring performance benefits and there is no much point in applying this
transformation.

Transformation of conditions is preceded by sequential pushdown of BA,
BB (where-clause) or BC , BT , BF (if-then-else-clause) using the algorithm de-
scribed in section 5.1.

Logical “and” in a where-clause. Selection decomposition is:

σA&B (BB(BA(P ))) = σA (σB(BB(BA(P )))) .

Due to normalization, BA and BB are independent blocks.
Blocks B′

A, B′
B , P ′ (possibly empty) are obtained by pushdown of BA and

BB according to the algorithm in section 5.1:BB(BA(P ))⇒ B′
B(BB(B

′
A(BA(P

′)))).
B′

B has blocks depending on it, all blocks are independent with B′
A. We also as-

sume that B′
B contains sort operation that restores original order of tuples. The

transformation result is:

B′
B(σB(BB(B

′
A(σA(BA(P

′)))))).
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Logical “or” in a where-clause. Since A ∪ B = A ∪ (B\A), the selection
decomposition is:

sorti[πhe(P )∪i (σA(BB(BA(indexi(P )))))

∪πhe(P )∪i (σ¬A&B(BB(BA(indexi(P )))))].

Block pushdown then gives us:

B′
B(π (σA(BA(P

′))) ∪ π (σB(BB(B
′
A(σ¬A(BA(P

′))))))).

An algebraic expression for if-then-else clause case is:

sorti[HR(re(BT )→k)(σC(P
′′)) ∪HR(re(BF )→k)(σeC(P

′′))],

where P ′′ = BF (BT (BC(indexi(P )))).
Blocks pushdown results in:

B′
TF (HR(π(BT (B

′
C(σC(BC(P

′)))))) ∪HR(π(BF (B
′′
C(σC(BC(P

′))))))) .

The blocks B′
C , B

′′
C , B

′
TF , and P ′ are obtained by pushing down BC , BT , and

BF blocks. Only BT is not independent with B′
C and BF is not independent with

B′′
C . As with B′

B in the previous case, B′
TF contains sort operation that restores

original order of tuples.
Similar optimization, whose description we omit here, is used for typeswitch-

clauses.
The proposed optimizations are presented on the Figure 3.
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select
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(a) Where-clause decomposition
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(b) If-then-else decomposition

Fig. 3. Optimizations for lazy evaluation

6. Experiments

Our experimental implementation of XAnswer is based on XML DBMS eXist [1].
EXist storage provides DLN-indexes [12] as unique ids for all nodes and all
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structural operations can be evaluated using just the ids. Thus, envelopes were
implemented as arrays of tuples that contain either atomic values (e.g. string,
integer), ids, or sequences of the ids or atomic values.

The code was written in Java and experiments were conducted under Win-
dows XP on Intel Dual Core T2300 @1.6 GHz with 2Gb of main memory. The
XMark benchmark [3] was used as data set.
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Performance comparison

NT (1)
ST (2)
ST optimized (3)

Fig. 4. Experiment E1

Known approaches can perform unnesting for relatively simple queries with
nested FLWORs. That kind of optimization allows switching from NT to ST-
execution, which can bring dramatic performance gain, since it allows the hash
join algorithm to be used instead of nested loops. Using normalization tech-
niques similar to ours, known approaches achieve performance comparable
to XAnswer. However, known approaches cannot perform unnesting when the
query contains quantifiers, where-clauses, or conditional clauses with nested
FLWORs. Moreover, many such cases require lazy evaluation.

To compare other approaches with ours, we implemented NT-style plan cre-
ation for conditional clauses as well as ST-operations of XAnswer. In experi-
ments we focused only on such queries over the XMark’s data set. We present
details for only two experiment sets. The first set (E1) evaluates performance
of naive NT-execution (the default plan generated by eXist), ST (initial XAnswer
plan), and optimized-ST (optimized XAnswer plan) on a typical XMark query
(such as query Q8) where earlier approaches can perform unnesting.

The second set (E2) evaluates performance of naive NT-execution (the de-
fault plan generated by eXist), partial NT (having NT-style condition operation
and ST for clauses without conditions and quantifiers), ST (XAnswer plan with-
out lazy evaluation), and optimized-ST (optimized XAnswer plan) for a query
with a conditional clause that requires lazy evaluation.
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Fig. 5. Experiment E2

Query 1 A query example from the set E2

let $doc := doc(’doc.xml’)
for $ca in $doc//closed-auction
let $b :=
for $p in $doc//person
where $p/@id = $ca/buyer/@person
return $p

return
if ($ca/price >200)
then (
let $c := \b/country
let $n := $b/name
return <rb>{$c,$n}</rb>)

else (
let $item :=
for $it in $doc//regions//item
where $it/@id=$ca/itemref/@item
return $it

let $l := $item/location
let $n :=$item/name
return <ri>{$l,$n}</ri>)
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Figure 4 demonstrates performance comparison for E1. The huge perfor-
mance gain of ST-plan compared to NT is observed due to use of hash join
over input sets instead of evaluating inner expression in a loop. Since the query
has a relatively simple where-clause that does not require lazy evaluation, the
ST-optimized plan does not demonstrate major performance gain. The increase
is mostly achieved through removal of a cycle and use of addition operation,
which reduces amount of hash operations in the physical plan.

Figure 5 demonstrates performance evaluation for E2. Note, that the time
axis has a logarithmic scale. Since partial NT-plan utilizes ST-execution for the
first nested FLWOR, the performance gain compared to naive NT is similar
to the one obtained in E1. But NT-style condition leads to evaluation of nested
expressions in a loop, which causes difference in performance with the ST plan.
The gain of the optimized-ST is due to the smaller sizes of intermediate results.
The sizes are smaller because evaluation of the first nested FLWOR then- and
else- branches happens only when teh condition has corresponding values: for
example FLWOR and then are evaluated only when price > 200 in line 7 of the
code in Query 1.

7. Conclusion

Heavy query workloads in modern applications require algebras that support
cost-based optimization. Set-at-a-time execution is a natural way to support
cost estimation. While set-at-a-time execution appeared in earlier work on effi-
cient XQuery processing techniques, known algebras combine it with node-at-
a-time to cover the complete set of XQuery operations.

In this paper we presented an algebra with only set-at-a-time operations that
supports compilation of complete XQuery except recursive functions. We intro-
duced optimization rules eliminating unnecessary operations and enabling lazy
evaluation. It was experimentally shown that for complex queries with condi-
tional and quantified expressions the proposed methods yield plans with much
better performance than those that can be obtained with known algebras.
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