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Abstract. Feature models are used to represent the variability and com-
monality of software product lines (SPL), and to decide on the configu-
ration of specific applications. Several variants based on tree or graph
hierarchical structures have been proposed. These structures are com-
pleted with additional constraints, generally expressed in parallel with the
feature diagram. This paper proposes the use of hypergraphs to integrate
both concepts in a unique characterization. Therefore, the definition, vali-
dation and selection of feature configurations can be internally based on
the hypergraph properties and well-known algorithms, while the concrete
visual syntax remains unchanged for domain engineers. The implemented
hypergraph algorithms have been tested using a complete set of feature
diagrams. Finally a feature meta-model can be derived directly from the
formal definitions, providing the foundations for building feature modeling
tools.
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1. Introduction

Software product lines (SPL) constitute a successful reuse paradigm in indus-
trial environments despite their complexity [3]. Feature diagrams (FD) represent
the variability and commonality of software product lines and permit the config-
uration of each specific application to be selected.

Feature diagrams were first introduced in the Feature Oriented Domain Anal-
ysis (FODA) method [11], and Fig. 1 shows an example of a partial feature
diagram of an eCommerce SPL inspired by Lau [15]. This proposal defined fea-
tures as the nodes of an and/or tree related by various types of edges. As de-
picted in Fig. 1 a feature diagram is a structure diagram showing the hierarchical
(parent/child) structure between the features. A feature diagram is composed of
the tree root or concept (eCommerce), and its subfeatures showing mandatory,
e.g. (Payment), optional, e.g. (Registration), and alternative features (Credit-
Card, DebitCard, ElectronicCheque). The relations (edges) between features
(nodes) can be: AND, XOR and OPTIONAL relationships. To improve their ex-
pressiveness, several extensions have been proposed, incorporating the OR
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decomposition [12], changing the visual syntax, or using directed acyclic graphs
(DAG) instead of simple trees and UML-like multiplicity constraints to annotate
multiplicities for sets of features [18]. Schobbens et al. [20] have surveyed and
evaluated the diverse FD variants, clarifying the differences and establishing
a generic semantics. The study classifies the existing proposals using several
characteristics: the FD is a tree or a DAG, the constraints are textually or graph-
ically shown, and the way the decomposition relationships (AND, XOR, OR,
multiplicity) are expressed. They propose a generic formalization of the syntax
and semantics of FD and a new non-redundant variant FD or VFD. One of the
conclusions is that these FD description languages have a different concrete
syntax but share many aspects of an abstract syntax and semantics based on
graphs.

eCommerce 

Storefront 

Buy Path Payment 
Registration 

….. 

Shopping Cart 

Order Confirmation 

Checkout 

PaymentType 

DebitCard Credit Card 

ElectronicCheque 

Fig. 1. Example of a FODA feature diagram

However, the use of standard graphs as the underlying structure of FDs
forces the use of ad hoc internal representations to differentiate the diverse
feature relationships. For example, the internal representation of the grouped
alternative decomposition of the feature PaymentType of Fig. 1 (One-To-Many
relationship), and the internal representation of the decomposition of the feature
Buy Path (three binary relationships) must be different.

Moreover, an FD alone cannot capture all domain restrictions. Constraints
between features (a feature requires another feature or two features are mutu-
ally exclusive) have been added, in textual or graphical formats, to complete the
semantics of the models. If textual, separate constraint documentation must be
handled to have the global picture of the model. Modifying a feature diagram
can be difficult, since changing the hierarchy can cause modifications in con-
straints.
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This leads us to consider the formalization of feature diagrams using di-
rected hypergraphs [9]. A directed hypergraph is a generalization of the concept
of directed graphs, an example is illustrated in Fig. 2 . In directed hypergraphs,
One-To-Many, e.g. E4 hyperarc, Many-To-One, e.g. E2 hyperarc, and Many-To-
Many,e.g. E1 hyperarc, relations are naturally represented, including, as par-
ticular cases, labeled graphs, And-Or graphs, DAGs, and simple trees. Thus,
conversion from a concrete FD to a hypergraph is simple and straightforward:
features are the nodes of the hypergraph; decompositions and constraints are
represented by hyperarcs.

The formalization of feature models using the structure of a hypergraph pro-
vides several benefits. Firstly, the use of hypergraphs as the underlying struc-
ture clarifies and simplifies the feature meta-model (only two basic types of
elements are defined: features and relationships). Consequently, the definition
and construction of automated tools is easier than in the case of graph based
structures, as fewer elements are needed to express the FD semantics. More
interestingly, analysis and configuration problems can be treated algorithmically,
taking advantage of the progress made in hypergraph theory. From the practi-
tioners’ point of view, this will not affect them directly, because the FD language
(i.e., the concrete syntax) is not modified.

Fig. 2. An example of hypergraph

The rest of the article is as follows: the next Section introduces hypergraphs
and formally defines the structure underlying an FD. Section 3 analyzes the con-
figuration problem and sketches the hypergraph algorithms used for deriving the
configuration, starting from a set of features selected by the user. Experimental
results are also provided. Section 4 uses the formal definition to build a feature
meta-model. Finally, Section 5 presents related work and Section 6 concludes
the paper and considers future work.
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2. Hypergraphs and Feature Diagrams

This section describes the conceptual framework and the formal structure, based
on hypergraphs, used to model features and relationships among features in an
FD. First, we define the feature modeling concepts to be used in the rest of the
paper. Next, basic definitions of hypergraphs are given. Finally, the formulation
of FDs is presented.

In general terms, a feature model defines features and their dependencies,
covering the commonality and variability of software products in a Software
Product Line. An FD is a structure defined by features, decomposition relation-
ships, and constraint relationships. To model an FD by means of a supporting
hypergraph we are only interested in its underlying structure formed by the fol-
lowing elements:

Features The collection of identified characteristics of a system which deter-
mines the scope of the Product Line under study. A feature is “a system
property that is relevant to some stakeholder and is used to capture com-
monalities or discriminate between systems” [5].

Root Feature Also known as the concept, this is a distinguishable feature used
to denote the feature diagram. It is always present in the feature model.

Feature relationships These are used to model directed associations between
features. They are used to model the decomposition of a feature (parent
feature) into one or more detailed features (children features). Each feature
relationship will be labeled with a UML-like multiplicity value specifying the
range of allowable features to be selected.

Constraints To further restrain the valid configurations of an FD, additional
constraints can be formulated as a (dependency) relationship between fea-
tures. The constraints considered are requires and mutex. Requires estab-
lishes a compulsory relationship between a source feature and a subset
of target or required features. The requires relationship defines an implica-
tion where, if the source feature is selected, then the implied set of features
must be selected as well. Unlike requires, the mutex relationship defines an
exclusion between features. Thus, if two or more features are associated by
a mutex constraint, one and only one of the features can be selected in a
product configuration.

A hypergraph is a generalization of a graph wherein edges can connect
more than two vertices and are called hyperedges. Directed hypergraphs ex-
tend directed graphs and have been used as a modeling and algorithmic tool
in many areas: formal languages, relational databases, manufacturing systems,
public transportation systems, etc. A technical, as well as historical, introduction
to directed hypergraphs has been given by Gallo et al. [9]. The main reason for
introducing this type of graph is to represent Many-to-Many relations, for which
simple DAG or trees are not well equipped. Definitions of hypergraph and the
Backward Star function, useful for our purposes, are given:

Definition 1. [8] A directed hypergraph, or simply hypergraph, is a pair H =
(V,E), where V is a non empty set of vertices (or nodes) and E is a set of
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directed hyperedges; a directed hyperedge or hyperarc e ∈ E is an ordered
pair, e = (T (e), H(e)), where T (e) ⊆ V is the tail of e, while H(e) ⊆ V \T (e) is
its head.

Definition 2. [8] Given a hypergraph H = (V,E) and a node v ∈ V , Backward
Star of node v, BS(v) ⊆ E, denotes the set of hyperarcs entering v, BS(v) =
{e ∈ E | v ∈ H(e)}

The hypergraphs we use in the rest of the article are F-hypergraphs, a par-
ticular case of acyclic directed hypergraphs, characterized by the fact that the
tail cardinality of the hyperarcs is always one (Forward hyperarcs, or simply
F-hyperarcs). So the next definition states:

Definition 3. An F-hypergraph is a pair H = (V,E), where V is a non empty
set of nodes and E is a set of F-hyperarcs; an F-hyperarc e ∈ E is an ordered
pair, e = (t(e), H(e)), where t(e) ∈ V is the tail of e, while H(e) ⊆ V − {t(e)} is
its head.

2.1. Feature Diagrams as Hypergraphs

A feature model, as the result of a Domain Analysis, defines features and their
relationships, the feature diagram being its key element. Therefore, the starting
point for the formulation of an FD in terms of hypergraphs is to associate one
node with each feature and one hyperarc with each feature relationship. The
feature diagram can thus be described by an F-hypergraph. Each hyperarc is
assigned a label which corresponds to the multiplicity of the relationship.

More formally, for a given FD, let F denote the set of all its features, F =
{f1, f2, . . . , fk} ∪ {fc}, where fc is the concept or root feature of the FD; fc is
the only node not contained in the head of any hyperarc of the hypergraph, i.e.
it is the only node in the FD whose Backward Star, BS(fc), is the empty set.

A feature relationship takes the general form e = (f, S, [m. . . n]), where:

– f is a feature of F
– S is a non empty subset of features of F − {f, fc}, |S| ≥ 1, and
– [m. . . n] is the relationship multiplicity with m,n integers, m ≥ 0; 0 < n ≤
|S|;m ≤ n

The semantics of the relationship multiplicity is that if feature f is selected, at
least m and no more than n features of subset S must be selected. From the
point of view of feature modeling, f is the parent feature and S the set of its
children features or subfeatures. We associate a hyperarc with each feature
relationship e, having f as its tail and S as its head. Fig. 3 shows how feature
decomposition relationships of an FD language are formulated as hyperacs.

The constraint relationships will be formulated as feature relationships. The
requires relationship establishes, in general, a compulsory relationship between
a feature f and a subset of features R such that, if f is selected, all features
of subset R must be selected. In other words, a requires relationship can be
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Fig. 3. Example of feature relationships [18] modeled as hyperarcs

written in terms of a feature relationship as e = (f,R, [q . . . q]) with |R| = q. We
would like to point out that introducing this kind of hyperarc, cycles could arise in
the hypergraph. This is an undesired and nonsensical situation; therefore, once
all the requires hyperarcs have been defined; the acyclicity of the hypergraph
could be tested with the F-Acyclic procedure described in [8].

The transformation of a mutex relationship into a feature relationship is
slightly more elaborate. It must be reinterpreted as a feature relationship from
a common and always present feature – the root feature fc – to the involved
features in a mutex constraint. In brief, if a mutex constraint exists among a
subset of features of FD, M ⊂ F − {fc}, then the constraint can be modeled
as: e = (fc,M, [0..1])

Some authors propose enhancing requires and mutex binary constraints
with arbitrary n-ary logical expressions between features. The semantics of
these complex expressions can be difficult to understand but, in any case, they
can be added as hyperarcs to the hypergraph [17].

We now have a one-to-one correspondence between the concepts of a fea-
ture model and the structure of a hypergraph. It should be pointed out that the
above formalization of features and feature relationships belongs to the abstract
syntax level being applicable, without loss of information, to the concrete syntax
variants of most representative FD languages [20].

Figure 4 depicts a feature diagram of a simple WebPortal system based
on the feature model described by Mendonça et al. [17]. As pointed out above,
there are some semantics which can not be expressed in a feature diagram
using features and decomposition relationships, therefore additional constraints
are required, the two best known being requires and mutex. Feature constraints
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to be considered for the WebPortal system displayed in figure Fig. 4 , expressed
in textual form, are:

WebPortal constraints
Auth. REQUIRES UserLogin
Transfer REQUIRES https
Ms MUTEX https

Fig. 4. WebPortal system feature diagram inspired by [17] using Riebish et al.
[18] notation

To describe the WebPortal feature model as an f-hypergraph model, the
aforementioned mapping rules will be applied. Let WP = (F,E) denote the
derived hypergraph, where F is the set of features, the nouns shown in Fig. 4,
F = {Gui, Security, ...}∪{WebPortal} and E are, repectively, the set of hyper-
arcs representing the decomposition and the constraint relationships between
features. These transformation are shown in table 1, where n1 → n2 means
n1 is a parent of n2; n2 is a subfeature of n1; and n1 → [n2, n3, . . . , nk] means
n1 is a parent of the set of features n2, n3, . . . , nk, and each ni i = 2 . . . k is a
subfeature of n1

Figure 5 illustrates the full F-Hypergraph transformation of the WebPortal
system feature diagram depicted in Fig. 4 according to the proposed hyperarc
transformation processes shown in Table 1. Note that the hyperarcs represent-
ing require and mutex constraints between features have been identified using
an empty arrowhead instead of the solid arrowhead used for hyperarcs derived
from the FD decomposition relationships. The existence of two kinds of adorn-
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Table 1. F-arcs of F-hypergraph WP = (F,E)

FEATURE MODEL RELATIONSHIP F-ARC
WebPortal→ Gui (WebPortal, {Gui}, [0 . . . 1])
WebPortal→ Security (WebPortal, {Security}, [0 . . . 1])
WebPortal→ Network (WebPortal, {Network}, [1 . . . 1])
WebPortal→ Performance (WebPortal, {Performance}, [0 . . . 1])
WebPortal→ PasswordPolicy (WebPortal, {PasswordPolicy}, [0 . . . 1])
Gui→ Resolution (Gui, {Resolution}, [0 . . . 1])
Gui→ Templates (Gui, {Templates}, [0 . . . 1])
Security→ [Auth., Transfer, Data] (Security, {Auth, Transfer,Data}, [1 . . . 3])
Network→ Protocol (Network, {Protocol}, [0 . . . 1])
Performance→ [Ms, Sec, Min] (Performance, {Ms, Sec,Min}, [1 . . . 1])
PasswordPolicy→ Expiration (PasswordPolicy, {Expiration}, [1 . . . 1])
PasswordPolicy→ Chars (PasswordPolicy, {Chars}, [1 . . . 1])
Templates→ Header (Templates, {Header}, [0 . . . 1])
Templates→ User Login (Templates, {UserLogin}, [0 . . . 1])
Protocol→ [ftp — http — https] (Protocol, {ftp, http, https}, [1 . . . 3])
Chars→ [Digits, Uppercase, Lower-
Case, SpecialChars]

(Chars, {Digits, Uppercase, LowerCase,
SpecialChars}, [2 . . . 4])

Auth. REQUIRES UserLogin (Auth, {UserLogin}, [1 . . . 1])
Transfer REQUIRES https (Transfer, {https}, [1 . . . 1])
Ms MUTEX https (WebPortal, {Ms, https}, [0 . . . 1])

Fig. 5. WebPortal system F-hypergraph transformation
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ments for hyperarcs has no special meaning, being used only for graphical pur-
poses.

2.2. Formal Definitions

This subsection summarizes the described concepts in a compact form:

Definition 4. A multiplicity value denoted as [m. . . n] is a pair of integers (m,n)
with m ≥ 0, n > 0 and m ≥ n.

Definition 5. An Unconstrained Feature Diagram is an (arc labeled) acyclic F-
hypergraph UD = (F,E, fc) where:

– F is its set of nodes (or features)
– E = {e1, e2, . . . , ep} is the set of decomposition F-arcs, with
ei = (fi, Ri, [m. . . n]) , Ri ⊆ F − {fi} and n = |head(ei)| for i = 1, . . . , p

– BS(fc) = ∅ ∧ BS(f) 6= ∅ ∀f ∈ F − {fc}

A particular type of Unconstrained Feature Diagram is the Feature Tree. If
each feature has no more than one parent, then the structure is a hypertree:

Definition 6. A Feature Tree FT is an Unconstrained Feature Diagram, such
that each feature has at most one entering hyperarc (root fc has none): |BS(f)| =
1 ∀f ∈ F − {fc}

Constraints are introduced as extensions, adding additional hyperarcs with
multiplicity 1 . . . n (requires) or 0 . . . 1 (mutex)

Definition 7. Given an Unconstrained Feature Diagram UD = (F,E, fc), a
Constrained Feature Diagram, or simply a Feature Diagram, is an acyclic F-
hypergraph FD = (F,E′, fc), where

– E′ = E ∪ Er ∪ Et

– E ∩ Er = E ∩ Et = Er ∩ Et = ∅
– Er = {r1, r2, . . . , rk} is the set of requires constraints F-arcs, with
ri = (fi, Ri, [q . . . q]) where fi ∈ F, Ri ⊂ F − {fi} for i = 1, . . . , k
such that 1 ≤ |head(ri)| = q

– Et = {t1, t2, . . . , tl} is the set of mutex constraints F-arcs, with
ti = (fc, Ri, [0 . . . 1]), where Ri ⊂ F − {fc} for i = 1, . . . , l and
|head(ti)| ≥ 2

– For each e ∈ E′, the function isConstraint is defined:
• isConstraint(e) = true, if e ∈ Er ∪ Et

• isConstraint(e) = false, if e ∈ E

The last Boolean function is defined so as to be used in the configuration
process, as explained further in Section 3.

As it is the most complete type of FD, from here on, we refer to the Con-
strained variant simply as the Feature Diagram or FD and denote it by default
as FD = (F,E, fc). Section 3 shows how the well-known hypergraph traversal
algorithm can contribute to the FD validation and configuration procedures.
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3. Configuration of Feature Diagrams

A (partial) configuration of a Feature Diagram is a sub-set of the original Fea-
ture Diagram where the variability is (partially) removed. In general, a manual
process of feature selection is carried out, obeying the constraints expressed in
the diagram. Some of these constraints are implicitly imposed by the diagram
structure. Defining mandatory (non-mandatory ) as decompositions where the
minimum multiplicity is equal to (less than) the number of children, the following
rules apply:

Rule 1 The root feature must be present in any configuration.
Rule 2 A feature can be selected only if at least one of its parents is selected.
Rule 3 If a feature is present, the features connected to it, through mandatory

decompositions, must be selected.
Rule 4 If a feature is present, the number k of non mandatory features selected

as children of its decompositions must be between the minimum and maxi-
mum of the original hyperarc multiplicity: m ≤ k ≤ n.

Two more rules are imposed by the requires and mutex constraints:

Rule 5 Requires constraints mean that, for each feature in the configuration,
all the elements required by it must also be present. In the hypergraph rep-
resentation, this is equivalent to a mandatory decomposition (Rule 3).

Rule 6 Mutex constraints over a set of features mean that, if an involved feature
is present in the configuration, the others must be absent. In the hypergraph
representation, this is equivalent to a non-mandatory decomposition with
multiplicity equal to [0..1] (Rule 4).

Consequently, the configuration procedure can be applied uniformly to the
constrained hypergraph, instead of dividing it into two problems or transforming
the feature tree (or graph) into a set of propositional formulas, as proposed in
the literature [17]. In fact, generalizing the several variants, all the above rules
can be reformulated in a comprehensive way: In a valid configuration, defined
as a subset of features of one FD, the present features must satisfy two simple
properties:

Property 1 For each feature other than the root, at least one of its structural
parents (the tail of a hyperarc not representing a mutex/requires constraint)
must also be present.

Property 2 For each leaving hyperarc of the considered feature, with [m. . . n]
multiplicity, at least m and at most n children features of the head of the
hyperarc must also be present in the configuration

These properties are enough to accomplish the rules 1 to 6. Considering
the possible combinations of children given by the hyperarc multiplicity, the re-
maining rules can be trivially deduced. The second property implicitly defines a
type of reduction [8] of the original FD hyperarcs into each one of the possible
configuration hyperarcs.
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Definition 8. Given a Feature Diagram FD = (F,E, fc), and a hyperarc e ∈ E
where e = (tail(e), head(e), [m. . . n]), we define a C-reduction of e as a hyper-
arc eG = (tail(eG), head(eG)) such that tail(eG) = tail(e), head(eG) ⊆ head(e),
m ≤ |head(eG)| ≤ n.

Definition 9. A Valid Configuration G = (FG, EG) is a hypergraph obtained
from a (Constrained) Feature Diagram FD = (F,E, fc) by replacing each se-
lected hyperarc of E by one of its C-reductions:

– FG is a subset of features of F: FG ⊆ F
– EG is a set of hyperarcs EG = {eG} where eG is a C-reduction of one e ∈ E.
– The root is present: fc ∈ FG

– For each feature in the configuration, at least one of its parents in FD is
present, giving as a result an F-connected hypergraph:
∀f ∈ FG f 6= fc ∃e ∈ E ∧ isConstraint(e) = false ∧f ∈ head(e)∧ tail(e) ∈
FG

– For each feature f in FG, for each leaving hyperarc e of f in E,
e = (tail(e), head(e), [m. . . n]), with m > 0, one C-reduction eG of e, must
be present in the configuration:
∀f ∈ FG ∧ e ∈ E ∧ tail(e) = f ∧ m > 0 ⇒ ∃eG ∈ EG such that
eG is a C-reduction of e

Considering that the semantics of feature modeling is expressed by the con-
cept of FD configuration [20], we can say that an FD is valid if at least one valid
configuration can be derived from it and if each feature of the FD is present in
at least one configuration (no dead features). The trivial cases are one FD with
only one feature (the root itself) or with only mandatory features (no variability
at all, only one valid configuration). For the useful cases, to validate one FD, it is
enough to prove that each feature is present in at least one valid configuration.
The next Subsection gives a procedure to find a valid configuration of one FD,
given a set of selected features. The repeated application of that procedure to
each individual feature of the FD will serve to trivially prove the validity of the
FD itself.

3.1. Configuration Procedure of a Feature Diagram

The given definition will guide the configuration process. Once the application
engineer has expressed his/her preferences, by selecting a set of features, and
has checked their compatibility (i.e., there are no mutex or multiplicity conflicts
between them), we can find a usual problem: it is possible that feature decom-
positions with no children selected remain undefined (hyperarcs with minimum
multiplicity m, 0 < m < |head(e)| ). There are at least two ways in which the
configuration procedure can be dealt with: a) finding the (probably ordered) set
of all valid configurations that fulfill the defined selection; and b) guiding the
engineer until a unique valid configuration is found. The first option is a com-
plete but computationally costly solution. The second is more realistic, but it
remains a largely manual process, accomplished with the help of FD modeling
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tools. Staged configuration [7] is a classical approach for solving this problem
in several steps.

To facilitate the configuration process in these undefined hyperarcs, we think
that it is useful to predetermine a topological order in the set of features included
in the head of each hyperarc. This option implies that the domain engineer
has assigned a preference order to each group of features (alternatively, the
“weight” of the feature plus its mandatory descendants could be automatically
calculated and assigned to the features [8]). The aim is to have a (set of) default
feature(s) when there is no explicit decision. An example can clarify the idea: in
an e-commerce product line, credit card payment is more frequent than check
or transfer based payments and, in consequence, if the application engineer
does not explicitly decide to change the payment method, credit payment will
be selected by default.

In any case, the possible configurations can be generated in two steps that
try to accomplish properties 1 and 2 respectively:

Step 1 The partial configurations that include the selected features are found.
This step is deterministic in the sense that one path from each selected fea-
ture to root must be included, and (recursively) mandatory descendants of
each feature in the configuration must be added. If valid (no multiplicity lim-
its are violated), the resulting partial configurations can be communicated
to the engineer or used in step 2.

Step 2 Each resulting partial configuration is completed using a second proce-
dure that finds the most “economical” configuration of the FD. For each
undefined hyperarc (the number of selected features of its head is less
than the minimum multiplicity and the hyperarc tail is present) the default
feature descendant(s) are added to reach the minimum multiplicity. Again,
mandatory descendants of each new feature are added and constraints are
checked.

The first step is a variation of the hypergraph BV isist(r,H) algorithm. The
second one can be designed as a refinement of the FV isit(r,H) algorithm,
both described and analyzed in [8], and running in O(size(H)) time, H being
the traversed hypergraph. Thus, given a (Constrained) Feature Diagram FD =
(F,E, fc), and U being an identified (selected manually) subset of features of
F : U ⊂ F , a set of valid configurations Gi = (FGi

, EGi
) is obtained in two steps.

3.2. Step 1 Implementation

We say that one hyperarc e ∈ F is a parent hyperarc of the feature u if the
head of the hyperarc contains u, u ∈ head(e), and it is structural (i.e., not a
constraint type hyperarc). The value used(e) gives the number of features of
head(e) included in the configuration so far. For each present feature, at least
one parent hyperarc must be included in the configuration. We always start
from an initial configuration of FD, G0 = (F0, E0) where F0 includes only the
root feature of FD and E0 has zero selected hyperarcs.
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For U and G, where G is a (partial) configuration of FD, a procedure con-
figure(U,G), adapted from BV isist(r,H) [8] is applied (See Procedure 1 basic
scheme). For each feature u ∈ U , u is selected and removed. For each hy-
perarc e, parent of u, (i.e., requires or mutex arcs are not selected), and if it
is a valid parent hyperarc (the hyperarc used(e) value is less than the hyperarc
maximum multiplicity), the configuration process continues: the tail of e is added
to the list of selected features and a new recursive execution of procedure 1 is
launched, starting from the current configuration. If there are no valid parent
hyperarcs for a feature, the procedure execution aborts (though other branches
can continue).

Clearly the original complexity of the procedure increases with the num-
ber of features with more than one structural parent, being multiplied by each
number of structural entering arcs ai of each feature fi except the root, i. e.
O(size(H).Πai) (though all or most of the values are one in the FDs published
in the literature). In the implemented version of the procedure, each time one
feature is added, two operations are used for efficiency reasons: (1) its manda-
tory descendants are also added to the selected features, using an auxiliary
procedure; (2) the existence of conflicts in the resulting partial configuration is
tested using an auxiliary compatible(G) function (returns false if used(e) > n
in any hyperarc of the configuration) to discard illegal configurations as soon
as possible. Procedure 1 transforms the initial U and G0 = (F0, E0) into one
set of partial configurations G′i = (FGi

, EGi
), all compatible with the expressed

requirements.
For each resulting modified G′i, property 1 holds at this point, that is, each

feature has at least one structural parent (and no conflicts are present). Prop-
erty 2 must be accomplished in a second step.

3.3. Step 2 Implementation

The procedure complete(G′i) inspired by FV isist(r,H) [8], is applied to each
modified partial configurationG′i. The original FV isist(r,H) finds all nodes con-
nected to root r and returns a set of paths connecting them to r. This must be
adapted in order to limit the number of features of head(e) to be examined. Note
that, for each undefined hyperarc, only m features must be selected, [m. . . n]
being its multiplicity value. The algorithm can be improved if we consider the
default features first. Thus, if valid, the algorithm will reach the configuration
where all the choices are the default features(s). Only when that configuration
is illegal, is backtracking applied and the algorithm continues to search for a
valid configuration Gi = (FGi

, EGi
).

As in procedure configure(U,G), in the optimized implemented version, the
mandatory descendants of each new feature selected are also added to the
selected features, using an auxiliary procedure (not shown in the basic scheme
of procedure complete(Gi)). If new feature(s) with no parents are added to the
configuration, a new call to the configure(U,G) procedure is necessary to find
their parents before completion (U includes the new features without parents).
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Procedure configure(U,G)

Generation of the staged (partial) configurations;
while U 6= ∅ do

// Select and remove node u ∈ U
u← first(U) ;
U← U− {u} ;
// Mark node u ∈ G as selected
mark(u,G) ;
// Valid number of parents
parents← 0 ;
// Try entering non-constrained arcs
foreach e ∈ BS(u) and isConstraint = false do

// Select hyper-arc when possible
if used(e) < max(e) then

parents← parents+ 1 ;
used(e)← used(e) + 1 ;
if not getMark(tail(e),G) then

mark(tail(e),G) ;
end
U← U ∪ tail(e) ;
configure(U,G) ;

end
end

end
// Finished path
G← void ;
// Check for non-valid configurations
if parents = 0 then

return ;
end
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Again the original complexity of the algorithm is increased by the number of
possibilities that can be chosen in each hyperarc with 0 < m < |head(e)| (2 in
[1..1] and |head(e)| = 2, 3 in [1..1] and |head(e)| = 3, 3 in [2..2] |head(e)| = 3).
This combinatorial explosion is alleviated because, in practice, we only select
the first m features of the ordered set of children features and we only intend to
find the first valid configuration.

The minimal set of features present in a configuration if no features are se-
lected (built applying both procedures to the root feature and selecting the first
m children in each hyperarc) constitutes the default feature configuration. The
minimal set of features present in all the possible configurations (built applying
only configure to the root feature and selecting only m mandatory/ requires fea-
tures where m = |head(e)| in each considered hyperarc) constitutes the core
features. The base package of the SPL architecture [13] is a design solution to
these core features.

3.4. Empirical Evaluation

An implementation in Java has been coded to test the procedures and to es-
timate the time needed to reach the partial and final configurations. The FDs
used for experimentation were downloaded from the SPLOT3 project [16]. The
configurations were created in a quasi-random way (if an alternative feature is
included, the rest of the features of the group are discarded to trivially avoid in-
consistent configurations). The number of selected features over the total (RCS
in the Tables) range between 1% and 35%. The real FDs of the SPLOT Web
(all of which are originally trees with constraints) were divided for their study
into several groups according to size.

The results corresponding to the biggest real models are shown in Table 1.
The columns contain the FD Size (FDS), Extra constraints representativeness
(ECR), Relative configuration initial size (RCS) , Zero (mandatory descendants
of root), First, and Second Algorithm Average time in ms (S0, S1, S2), Configura-
tion time (S1−2), First or second staged-configuration size (average ratio of the
number of valid configurations obtained in first, C1, or second, C2, algorithm
execution). The dashes mean that no valid random configuration is generated,
as the maximum number of features to be chosen was exceeded. It can be
seen that, in general, when the number of initially selected features (RCS col-
umn) is increased, the time of algorithm 1 grows while the time of algorithm
2 decreases. The total sum remains acceptable (less than 0.4 seconds). The
computer used was a Mac (OS X), equipped with an Intel processor (Core 2
Duo 2.16 Gigahertz), 2 Gb of memory.

A second group of studied FDs corresponds to benchmark models, with a
considerably bigger size: up to 10,000 features and 1,000 constraints. Some
constraints (in particular ternary CNF expressions) had to be previously trans-
formed into hypergraph constructions and/or binary constraints to be dealt with,

3 http://splot-research.org/
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Procedure complete(Gi)

Generation of a complete configuration from a partial configuration;

// Collect hyperarcs to be completed
foreach e ∈ E∧ getMark(tail(e),Gi) do

W←W ∪ {e} ;
end
while W 6= ∅ do

// Select and remove node w ∈W
w← first(W ) ;
W←W − {w} ;
// Try hyper-arc’s head non-selected features
foreach f ∈ head(w) do

// Select feature f and check for no conflicts
if used(w ) < min(w) and not getMark(f,Gi) then

mark(f,Gi) ;
used(w )← used(w )+ 1 ;
if compatible(Gi) then

// Find partial configurations for require
constraints

if count(getRequire(Gi)) > 0 then
Giv ← configure(getRequire(Gi),Gi) ;

else
Giv ← Gi;

end
// Complete derived partial configurations or

current
foreach g ∈ Giv do

Gi′ ← complete(g) ;
if compatible(Gi′ ) then

Gi ← Gi ∪{ Gi′ } ;
else

// Configuration no valid
Gi ← void ;

end
end

else
// Configuration no valid
Gi ← void ;

end
end

end
end
if W = ∅ then

// Configuration is completed
end
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as described in [19]. The elapsed time in these cases is longer but acceptable
with a peak of 18.5 seconds (Table 2).

Table 2. Time (ms) of execution of the configuration algorithms applied to real
FDs

Configuration
Feature model FDs ECR(%) RCS S0 S1 S2 S[1−2]∗ C1 C2

Home 5 % 4.36 1.98 12.66 15.03 1.0 1.0
Integration 67 11.9 15 % 8.72 4.19 7.78 12.54 1.0 1.0
System 25 % 14.59 1.37 3.17 5.29 1. 1.0

35 % - - - - - -
Ecological 5 % 9.04 3.52 25.59 29.65 0.72 0.72
car 94 4.3 15 % 19.71 14.13 0.0 14.2 0.0 0.0

25 % 28.13 12.41 0.0 12.5 0.0 0.0
35 % - - - - - -

Electronic 5 % 39.79 28.58 287.98 317.93 1.0 0.84
shopping 287 11.8 15 % 77.1 55.29 188.74 245.71 1.0 0.8

25 % 124.2 79.46 147.8 229.73 1.0 0.8
35 % 199.17 110.97 106.54 219.71 1.0 0.6

As all these models are based on trees, we use a modified version of the
“Electronic shopping” FD (the last row of table 1) to test the influence of fea-
tures with more than one parent in the performance of the first and second step
configuration algorithms (the first algorithm creates several alternative partial
configurations, completed by the second algorithm). Table 3 shows the results.
Although the time increases notably, the relation time/number of found configu-
rations is of the same order of magnitude. Thus, we can conclude that the use
of hypergraphs as a practical tool with regular FDs is viable. More details of the
conducted tests can be found in [19].

4. Feature Meta-Model

One of the advantages of the definition of Feature Diagrams as F-hypergraphs
is that we have only two types of elements, features and relationships, instead
of introducing an additional element (grouped features) to complete the seman-
tics. In consequence, the definition and implementation (as CASE tools) of the
meta-model is easier. The proposal is modular, allowing several versions, from
the simplest Tree based meta-model to the complete constrained F-hypergraph
meta-model. More complete details of the meta-model definition and tool imple-
mentation with GMF can be found in [14]. The definition style uses the package
merge mechanism and is the same that the UML 2 meta-model uses exten-
sively in the OMG documentation. This approach allows all the variants of the
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Table 3. Time (ms) of execution of the configuration algorithms applied to
benchmarks FDs [16]

Configuration
Feature model FDs ECR(%) RCS S0 S1 S2 S[1−2]∗ C1 C2

SPLOT- 1 % 69.68 7.72 3544.49 3553.85 0.98 0.08
FM-50- 517 9.6 2 % 72.61 15.92 3643.55 3661.15 0.96 0.01
SAT-1 5 % 90.3 47.91 3218.32 3268.04 0.81 0.0
SPLOT- 1 % 71.16 5.71 3115.95 3123.34 0.99 0.34
FM-50- 511 9.4 2 % 71.48 12.78 3004.28 3018.68 0.95 0.25
SAT-2 5 % 88.83 41.88 2759.61 2803.5 0.82 0.16
SPLOT- 1 % 255.7 21.15 18456.9 18481.16 0.78 0.26
FM-100- 1034 9.6 2 % 274.52 60.65 9239.41 9301.71 0.36 0.5
SAT-1 5 % 329.89 224.79 245.76 470.83 0.01 0.0
SPLOT- 1 % 217.36 23.83 15786.21 15812.61 0.74 0.38
FM-100- 1036 9.4 2 % 227.58 56.24 5785.63 5842.91 0.25 0.06
SAT-2 5 % 283.67 184.34 0.0 184.56 0.0 0.0

Table 4. Time (ms) of execution of the configuration algorithms applied to cus-
tomized FDs with multiple parent features

Configuration
Cust. FDs ECR(%) RCS S0 S1 S2 S[1−2]∗ C1 C2

F2 = 2 5 % 44.33 57.26 346.2 405.2 1.36 1.26
∧ 287 11.8 15 % 85.6 147.34 358.66 509.93 1.83 1.43
F3 = 0 25 % 135.71 189.38 281.41 474.49 1.95 1.0

35 % 209.7 205.67 216.59 426.25 1.9 0.9
F2 = 2 5 % 47.45 59.96 384.5 447.08 1.36 1.3
∧ 287 11.8 15 % 85.27 266.1 735.23 1006.87 3.57 2.83
F3 = 1 25 % 140.35 470.29 881.43 1363.0 6.0 3.0

35 % 229.68 559.04 829.98 1404.13 6.6 4.6
F2 = 2 5 % 47.32 218.84 1654.22 1881.47 4.58 6.5
∧ 287 11.8 15 % 95.34 1303.77 4469.7 5810.7 20.77 12.8
F 3 = 3 25 % 152.26 3240.44 8502.7 11836.78 45.95 26.45

35 % 254.95 3762.53 10133.82 14053.74 57.6 43.2
F2 = 3 5 % 42.65 216.88 1680.09 1903.33 4.56 5.7
∧ 287 11.8 15 % 89.61 1473.03 5867.12 7380.1 22.73 18.8
F3 = 3 25 % 151.83 3737.02 10166.15 14012.18 56.65 31.2

35 % 251.19 8595.86 30783.49 39636.66 115.2 97.2
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Fig. 6. Detail of the proposed Feature Meta-model [14]

feature diagrams mentioned in Section 2 to be covered. The details of the hy-
pergraph based constrained meta-model are shown in Fig. 6. HyperArc and
Node are abstract meta-classes. A FeatureDiagram has a Root (feature), a set
of zero or more (non-root) Features, and a set of Decompositions. Each Decom-
position connects a parent Node (Root or Feature) with one or more children
Features. As multiplicity of children meta-association indicates, a Feature can
be the child of more than one Decomposition and, indirectly, of a parent Feature.
(If we change the multiplicity to 1..1, we convert the structure into a tree with
a root that has no parents.) Decomposition has an associated MultiplicityEle-
ment that must conform to the associated OCL constraint: the maximum value
(upper) must be less than or equal to the number of children of the Decomposi-
tion. Finally Mutex and Requires meta-classes are specializations of HyperArc
with the adequate invariant to express the semantics of these constraints, as
explained in Section 2.2: the fixed multiplicity of Mutex is 0..1, the multiplicity
of requires is n..n (if n is the number of involved children, 1..1 being the typ-
ical situation). A basic implementation was presented in [14]. As part of our
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industrial oriented work, we have previously implemented a Feature Modeling
Tool (FMT)4 as a plug-in for Microsoft Visual Studio IDE. The meta-model we
used was based on constrained trees, validation was external, and the config-
uration used a staged approach. Work in progress includes the change of the
internal meta-model and the incorporation of the validation and configuration
algorithms.

5. Related Work

Starting with the original FODA proposal [11], several variants of feature di-
agrams have been proposed: FORM [12] is an extension where feature dia-
grams are single-rooted directed acyclic graphs (DAG) instead of simple trees.
FeatureRSEB [10] also uses DAGs and changes the visual syntax, including
a graphical representation for the constraints requires and mutex. Other au-
thors, such as Czarnecki et al. [5,6] and Batory [1], continue to use trees as the
main structure (however Czarnecki et al. add OR decomposition, graphical con-
straints, and distinguish between group and feature cardinalities). Riebisch et
al. [18] replace AND, X-OR, and OR by multiplicities combined with mandatory
and optional edges.

Cechticky et al. proposed a notation without solitary features in an attempt
to reduce the number of redundant representations: a group with one grouped
feature is used instead [4]. A detailed comparison of all these variants has been
done by Schobbens et al. in [20]. The authors use a parameterized formal def-
inition of the feature diagram, obtaining a framework useful for comparing and
classifying all the variants, proving how the diverse options can be equivalent.

Most authors (see [7] for example) deal with the structural constraints implicit
in the features tree (or graph) independently of the additional mutex/requires
constraints. The definition of the complete feature models, therefore, requires
working with graphs (the structure) and logical expressions (the constraints).
Some recent works are devoted to the global validation of feature models,
mainly based on propositional formulas [1] or constraint solvers [2].

Batory [1] uses a grammar and propositional formulas to validate the PL
and each PL configuration. A sound connection between FDs, grammars, and
propositional formulas was established and a system (logic truth maintenance
system) enabling the propagation of constraints as user select features, to avoid
inconsistent product specifications, was proposed. Furthermore, rules for trans-
formation between feature models and grammars and a tool named GUIDSL,
which takes a grammar as input and provides a graphical user interface to cre-
ate configurations, was provided. Mendonça et al. use a two stage analysis to
validate the models [17]. The advantage of using hypergraphs is the remarkable
simplification of the supporting model. Instead of transforming FDs into a set of
formulas to find inconsistencies or configure the final product, the algorithms
can be used directly on the constrained hypergraphs, using a unique formal-

4 http://giro.infor.uva.es/FeatureTool.html
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ism. Modeling and transformation tools are consequently easier to define and
implement.

6. Conclusions and Future Work

In this article, we have used F-hypergraphs to describe the abstract syntax of
feature diagrams and their configuration. A valid feature diagram configuration
is defined as a subset of its features, where the root is always present and the
rest of the features satisfy two properties (at least one of its structural parents
is present and for each leaving hyperarc at least minimum and at most max-
imum features of the hyperarc head are also present in the configuration). A
configuration procedure has been defined and implemented.

Once the formal definition is stated, the construction of an extensible fea-
ture meta-model has been dealt with. The algebraic definition directly yields the
required invariants, establishing a firm foundation for the meta-model. The ad-
vantages of simplicity and extensibility have made it possible to build modeling
feature tools compatible with the different flavors of feature diagrams.

Work in progress includes the revised version of FMT, which will incorporate
internally the proposed meta-model and the implemented configuration algo-
rithms. The algorithms themselves are being optimized for their tool utilization,
using FD preprocessing. Basically, the independent application of the first algo-
rithm to each feature allows a sub-hypergraph (or an ordered set of them) to be
associated with it, so that a configuration can be found faster by combining the
sub-hypergraphs related to each feature (i.e., the union of features and hyper-
arc sets). If a valid partial configuration results, the second algorithm is applied
to complete the configuration.
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Miguel A. Laguna, José M. Marqués, and Guillermo Rodrı́guez-Cano

6. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature
models and their specialization. Software Process: Improvement and Practice 10(1),
7–29 (2005)

7. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through special-
ization and multilevel configuration of feature models. Software Process: Improve-
ment and Practice 10(2), 143–169 (2005)

8. Gallo, G., Longo, G., Pallottino Sang, S.: Directed hypergraphs and applications.
Discrete Applied Mathematics 42(2-3), 177–201 (1993)

9. Gallo, G., Scutella, M.: Directed hypergraphs as a modelling paradigm. Decisions in
Economics and Finance 21(1), 97–123 (1998)

10. Griss, M.L., Favaro, J., d’Allessandro, M.: Integrating feature modeling with the
RSEB. In: Devanbu, P., Poulin, J. (eds.) Proceedings: Fifth International Conference
on Software Reuse. pp. 76–85. IEEE Computer Society Press (1998)

11. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented domain
analysis (FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon University (Nov 1990)

12. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented
reuse method with domain-specific reference architectures. Annals of Software En-
gineering 5, 143–168 (January 1998)
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