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Abstract. In this paper, we propose a two fold generic parser. First, it 
simulates the behavior of multiple parsing automata. Second, it parses 
strings drawn from either a context free grammar, a regular tree 
grammar, or from both. The proposed parser is based on an approach 
that defines an extended version of an automaton, called position-
parsing automaton (PPA) using concepts from LR and regular tree 
automata, combined with a newly introduced concept, called state 
instantiation and transition cloning. It is constructed as a direct mapping 
from a grammar, represented in an expanded list format. However, PPA 
is a non-deterministic automaton with a generic bottom–up parsing 
behavior. Hence, it is efficiently transformed into a reduced one (RBA). 
The proposed parser is then constructed to simulate the run of the RBA 
automaton on input strings derived from a respective grammar. Without 
loss of generality, the proposed parser is used within the framework of 
pattern matching and code generation. Comparisons with similar and 
well-known approaches, such as LR and RI, have shown that our 
parsing algorithm is conceptually simpler and requires less space and 
states.   

Keywords: bottom-up automata, parsing, regular tree grammars. 

1. Introduction 

Without loss of generality, in this paper we propose a generic parser within 
the framework of code generators, in which machine instructions are specified 
by patterns that are drawn either from context-free grammars ( LALR), regular 
tree grammars or from rewrite systems [1, 4, 5,12,15]. Pattern matching is 
then performed using respective parsing automata to generate an optimal set 
of machine instructions [6, 15]. The LALR parsing automata are efficient but 
too restrictive to handle patterns drawn from ambiguous context-free 
grammars. In contrast, the tree parsers are not restrictive but their 
optimization is a complex task. Approaches to handle ambiguous context-free 
grammars have been suggested in [14]. However, they are not intended to 
handle regular tree grammars. On the other hand, approaches to combine LR 
parsing and bottom-up tree parsing do exist, such as the one suggested in [9]. 
It is based on transforming a tree automaton recognizing a regular tree 
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language to a pushdown automaton recognizing the same language in postfix 
notation. In addition to the transformation overhead, this approach assumes 
that the transformed grammar is in normal form, deterministic and without 
hidden-left and right recursion [9]. Hence, there is a need for a parsing 
approach that admits ambiguous grammar and maintains the efficiency of 
LALR parsers and the expressive power of tree parsers. To satisfy such a 
need, we propose an approach for a hybrid parsing of both general context-
free and regular tree grammars. According to the proposed approach, and as 
a framework for parsing, a generic grammar (GG) is defined as one that can 
be either instantiated by a context-free grammar or by a regular tree grammar. 
GG is then represented in an expanded list format (PLF). As such, PLF 
constitutes a prefix representation of derivation trees for the grammar GG, 
where the ranked terminals are considered as nonterminals and the recursive 
terminal symbols are terminalized. Hence, the repeated expansion in the 
derivation trees is incorporated as recursion-invocation and recursion-
termination. The recursion-invocation constitutes an  -transition from the 

recursive occurrence to its respective head, while recursion-termination 
implies an  -transition from the recursive-head to its respective occurrence. 

Hence, the recursive occurrence initiates a derivation/reduction path as the 
one initiated by its respective head and considered as an instance of the 
original one. To distinguish between instances initiated by different recursive 
occurrences, an instance-identifier (ID) is assigned to each initiated path.  
Therefore, PLF with incorporated recursion implies initiation and termination 
of derivations/ reductions paths, as well as respective instances of these 
paths. A nondeterministic parsing automaton, called position parsing 
automaton (PPA), is then constructed in terms of a set of state instances and 
respective parsing actions as a direct mapping from the PLF of the production 
respective to the start symbol S of GG. PPA is defined based on a newly 
introduced concept of state and transition instances. According to such 
concept, Each PPA state (q, (inst)) is defined with an implicit index (inst) = . 

State instances are then created and terminated by appending and deleting 
instance-identifiers (ID) atop of the index (inst). The PPA transitions are 
augmented by semantic-actions that are performed at run time to create and 
terminate instances of PPA states and transitions in accordance to the 
incorporated recursion-invocation and recursion-termination. In addition to  
the newly introduced concept of state and transition instantiation, the states 
and transitions of the PPA automaton are defined based on combined 
concepts from LR (0) automata, regular tree automata. PPA has been 
adopted in [8] to construct a pattern matcher, where its parsing behavior has 
been adapted and synchronized with pattern matching and code selection. In 
this research, we emphasize the generality and soundness of PPA parsing 
behavior. Hence, we extend its behavior to cover subtle grammar cases. This 
includes direct and indirect (hidden) left / right recursion and ambiguous 
grammars with shift/reduce and reduce/reduce conflicts. In addition, we 
optimize its mapping from PLF by following a concurrent and a gradual 
construction approach for both PLF and PPA. As a simulator for tree parsing 
automata, finite automata and shift–reduce automata, the generic behavior of 
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PPA has been enriched by conceptual explanation, theory and graphical 
representation. However, PPA is a nondeterministic automaton. To obtain a 
more deterministic parsing behavior, PPA is efficiently transformed into a 
reduced one, called RBA, according to a proposed subset construction 
approach. The RBA automaton is represented by a parsing table that 
specifies the parsing actions respective to a given state and each input 
symbol.  A parser is then constructed to simulate the run the RBA automaton 
on strings derived from a generic grammar. Furthermore, the proposed parser 
is based on formalizing the parsing process and its solution in a way that 
guarantees its soundness, generalization and its efficient implementation. 
This was demonstrated by the proposed theory and by the respective 
implementation algorithms.    

Our parsing approach is motivated by reduction incorporated parsing 
introduced in [2, 3] and further developed in [10, 14]. According to these 
approaches, a finite automaton for terminalized grammar (RIA) is constructed 
to handle the regular parts of the language. Such automaton is then extended 
by recursive call automaton (RCA) to handle recursion. However, the 
suggested automaton in [2,3] does not handle hidden left recursion. In 
addition, the construction approach is based on by hand generated 
terminalization. Once terminalization has been detected, RCA is constructed.  
In [14] RIA has been extended to handle hidden-left recursion, while in [10] an 
automatic computation for terminalization has been suggested. In contrast, 
our approach handles hidden and direct left/right recursion. Terminalization is 
handled as recursion-invocation and recursion-termination during the 
concurrent construction of PLF and PPA. In addition, and rather than, the 
static creation of RCA, an instance is dynamically created during parsing. This 
achieved by the newly introduced concept of state instantiations and 
embedded semantic actions. Furthermore, our approach is embedded by 
appropriate concepts to parse regular trees. Further comparisons with these 
approaches and similar ones are given in Section 6.  

The remainder of this paper is organized as follows. Section 2 presents 
preliminaries. Section 3 presents the proposed parsing approach, followed by 
the definitions of the newly introduced concepts. This includes the proposed 
nondeterministic parsing automaton (PPA) and the theory on which it is 
based. Section 4 presents the PPA construction algorithm. Section 5 presents 
the subset construction and subsequently the proposed parser, followed by a 
discussion and a conclusion that are given in section 6 and section 7 
respectively.  

2. Preliminaries 

For our further discussions, we assume the following definitions based on the 
ones given in [1, 8, 11, 12, 13, 15]. 
Definition 1. The 4-tuple G = (Σ, N, P, S) defines a context-free grammar, 
where:   
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 Σ is an alphabet of terminal symbols.   

 N is a finite set of nonterminal symbols, where SN is the start symbol. 

 P is a finite set of productions p having the form p: AV, where A N 

and V(ΣN)*.  
 
Definition 2. A ranked alphabet Σ is a finite set of symbols (operators, 
constructors) such that each member of Σ has a nonnegative integer, called a 
rank (arity). The rank is defined by the function arity: Σ N, where 

 N denotes the set of natural numbers. 

 The terminals having a rank  1 are called operators and the ones having a 
rank =0 are called constants. 

 The members of Σ are grouped into the subsets Σ0,…, Σn such that Σn =  {a 
  Σ | arity (a) = i, i(0,1,…,n)}.  

 
Definition 3.  A tree language over Σ, denoted by T (Σ), consists of all 

possible terms that are inductively defined as:  

 If a Σ0  then a T(Σ ) 

 If t1,..., tn   T(Σ ) and a   Σn then a (t1,…, tn )   T(Σ ). 

 These terms represent trees with internal nodes and leaves labeled by 
operators and constants respectively. The number of children of a node 
labeled by an operator a is arity (a).  

 
Definition 4.  (Regular tree grammar). The 4-tuple G = (Σ, N, P, S) defines a 
regular tree grammar, where:   

 Σ is a ranked alphabet  

 N is a finite set of nonterminals with an assumed rank =0, where SN is 
the start symbol. 

 P is a finite set of productions p having the form p: AV, where A N 

and   VT (ΣN) is a prefix encoding of a tree over (ΣN).   
We denote A and V by LHS(p) and RHS(p), to represent the left hand side 

and the right hand side of the  production p respectively. Given p: AV and 

t1 T (ΣN), we say t1 derives t2  T(ΣN) in one-step, denoted by 
t1 t2, if LHS (p)  t1 and RHS (p) t2. Applying zero or more such 

derivation steps on t1 is denoted by t1 *t2, where each step derives a tree 

t  T (ΣN). 
  

Definition 5. (Regular tree language). The language generated by the 
grammar G is defined by the set L (G) = {t |t   T(Σ) and S * t}. 

 
Definition  6. (Regular tree parsing). Parsing a tree t   L (G) is the process 
of constructing a possible S– derivation tree for t, which is inductively defined 
as a tree with a root labeled by the start grammar symbol S and with children 
labeled by the RHS(S), where: 

 The children labeled by terminals   Σ0 are leaves. The children labeled by 
nonterminals are interior nodes and constitute roots for V-derivation trees, 
each one of which is inductively defined as S-derivation tree.  



A Generic Parser for Strings and Trees 

ComSIS Vol. 9, No. 1, January 2012 385 

 The children labeled by ranked terminals   Σn are interior nodes and 

constitute roots for sub trees, each one of which is inductively defined as S-
derivation tree.  However, the children of such sub trees are labeled by the 
grammar symbols composing the arity of their respective roots.  

      
Definition 7. Generic Grammar (GG) A generic grammar is a 4-tuple GG= (Σ, 
N, P, S) that is either instantiated by a context-free grammar, as given by 
Definition 1, or by a regular tree grammar, as given by Definition 4. However, 
the ranked terminals are nonterminalized as given by Definition 8. 
Subsequently, in our further discussion, we use the following generic terms.  

 Derivation tree (DT): Denotes either an S-derivation tree or a classical one 
for the context free grammars. 

 String: Denotes either a prefix encoding of the input trees or sentences 
generated by a context free grammar. 

 

Definition 8. Given a (t1,…,tn) T(Σ), the ranked terminal (a  Σn) is 

nonterminalized as a → t1… tn, where each ranked terminal in (t1,…, tn ) is 
inductively nonterminalized. 
 
Example 1.  Given GG = (Σ, N, P, S), it can be instantiated with a regular tree 
grammar as follows: 

 Σ = {Σ0, Σ1, Σ2}, where Σ0= {c}, Σ1= {m} and Σ2 = {+} 

 N = {R}, R = S and P= { R→ +(m(c),R) | + (m(R),R) | c } 

 Such grammar generates strings (trees) of the forms: c, + (m(c), c),…, 
+(m(c),+ (m(c),c)).                                             

 GG can be instantiated with a context-free grammar as follows: 

 Σ= Σ0 = {a, b, c}; N = {S, A , B} and S is the start symbol 

 P = {S → A b , A → a B , B → c | c B} 

 Such grammar generates strings (sentences) of the forms: acb, accb, 
accccb,... 

3. The proposed parsing approach 

Given a generic grammar GG, we propose a parsing approach based on 
simulating the run of a reduced bottom--up automaton (RBA) on strings 
generated by GG. RBA is obtained as result of a subset construction applied 
on a proposed nondeterministic automaton (PPA). Such automaton is an 
extended version of a one introduced in [8]. It is constructed in terms of a set 
of states and parsing actions as a direct mapping from the production 
respective to the start symbol S of GG, which is represented in the expanded 
list format (PLF).  According to PLF, a production p:  A →   in GG is defined 

as PLF (A) = A ( ), where each nonterminal  A in   is inductively 

replaced by the PLF respective to its corresponding production(s). The 
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recursive occurrence of the symbol A in RHS (p) is not replaced by a 
corresponding PLF. Only, it is designated as recursive instance of its 
respective head. In addition, each grammar symbol in PLF is assigned a 
doted integer as an index to reflect its occurrence order (position), as well as 
its nesting depth. As such, PLF constitutes a prefix representation of 
derivation trees for the grammar GG, where the repeated expansion in the 
derivation trees is represented as an incorporated recursion. Further, the 
positions assigned to the grammar symbols of PLF represent their paths in a 
respective derivation tree.  Hence, the types of the grammar symbols and 
their occurrence order in PLF imply derivation/reduction relationships.  The 
PPA states and parsing actions are then defined based on such relationships, 
using concepts from tree parsing and shift-reduce automata that are 
combined with newly introduced ones to handle the incorporation of recursion 
in PLF. Such concepts include state-instantiation, transition-cloning and 
transitions having embedded semantic-actions. In this section, we present the 
PLF form and PPA automaton. In the following sections, we present the 
subset construction of PPA into the reduced RBA automaton and the 
proposed parser. In addition and where appropriate, we present theory to 
demonstrate the generality and the soundness of the proposed approach. 
However, we immediately present an example to illustrate the proposed 
approach and to facilitate our further discussion.  

 
Example 2. Consider the  grammar of Example 1.  A PLF form respective to 
the start grammar symbol S is defined as PLF (S) = S0 (A1 (a1.1, B1.2 (c1.2.1)), 
b2). It is a prefix representation of the derivation tree for GG, as shown in Fig. 
1(a). The grammar symbols are attached an index to represent their 
respective positions, for examples: The index (0) attached to S, defines S as a 
head and the indexes assigned to A and b indicate that they constitute the 
first and the second subordinates of S respectively.      
 

            S0                                S0                                    S0
i
    S0

f
             

                                                       r                                                 r 
                                         

         A1         b2                         A1                  b2                   A1
i
          A1

f
                b2

i
    b      b2

f
 

                                                                r                                              r 

           a1.1       B1..2                        a1.1            B1..2                a1.1
i
      a    a1.1

f
        B1..2

i
         B1..2

f
  

                                                       

                                                                                                   r                                                             r 

                             c1.2.1                                                c1.2.1                                       c1.2.1
i
     c     c1..2.1

f
     

                   
                      (a)                             (b)                                       (c)   
   

Fig. 1. (a)  A derivation tree for the grammar GG of Example1. (b) Derivation/reduction 
relationships implied by PLF respective to GG. (c) PPA automaton respective to GG. 
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The derivations/reductions implied by PLF (S) are shown in Fig.1 (b) in terms 

of the nested paths S0 
 A1 ( 

( a1.1 
 B1..2 ( 

 c1.2.1) 

r  B1..2 ) r  A1 ) 
 b2 r  S0, where the outermost path 

indicates the derivation S0   A1 b2 and the reduction to  S0. The innermost 

paths indicate the derivations A1   a1.1 B1.2 and B1..2   c1.2.1 as well as the 

reductions to B1..2  and A1. Further, the derivations are performed according to 
the rightmost derivation first, and the reductions according to the leftmost 
phrase first. Hence, a bottom-up parsing automaton (PPA), as shown in Fig. 

1(c), can be constructed by a direct mapping from PLF(S) as the tuple (T, qin, 

qfin, Q, SPA, RPA), where: 
 

 T = (   ) is the input alphabet, where   represent strings generated 

by the GG grammar. 

 Q is the set of PPA states, where qin and qfin are the initial and the final 
ones. 

 SPA and RPA are the sets of shift and reduce parsing actions respectively.  
The PPA construction proceeds as follows: 

 Each grammar symbol V  ( N) is represented by a pair of 
abstract ones, defined as (V

i
, V

f
), to indicate a prediction and an 

acceptance of V in an assumed parsing. Consequently, respective 
PPA states are defined by the pair (q

i 
= V

i
, q

f
 = V

f
), where: q

i
 is an initial 

state instantiated by V
i
 and acts as a predictor (scanner) for V. The 

state q
f
 is a final one, instantiated by V

f
 and acts as its respective 

acceptor.  Hence, the PPA states are constructed by the set Q = { (qp
i 
= 

Vp
i
, qp

f
 = Vp

f
  ) | VpPLF (p(S))}. For example, Fig. 2(c) shows a 

transition graph constructed in terms of a set of nodes instantiated by 
respective grammar symbols from PLF(p(S)). These nodes constitute 
the set Q. For simplicity, the symbols (q

i 
, q

f
)  and  (V

i
, V

f
) are 

interchangeably used to denote respective PPA states.     

 The derivations/reductions implied by PLF (S) are mapped into 
respective PPA parsing actions as follows: 

o The  -transitions are mapped into the set {(  ( q1,  ) = 

qj)}SPA, for example the -transitions S0 
i 

 A1
i
; b2

f
 

r  S0 
f
 and a1.1

f
 

 B1..2
i
 are mapped into  (S0 

i
,  ) 

= A1
i
 ;   (b2

f
  ) = S0 

f
 and  ( a1.1

f
,  ) = B1..2

i
. Such parsing 

actions represent  the following:   -transitions from the states 

instantiated by head grammar symbols to the states of their 
immediate subordinates;  -transitions from the states of last 

subordinates to the states of their respective heads; and  -

transitions from states of grammar symbols to the states of 
their respective successors (siblings).  

o The derivations of terminal symbols are mapped into the set 
{(  (q1, V) = qj)} SPA of respective move-transitions 

defined between their corresponding pairs of initial and final 
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states. For example, the derivation of the symbols a and c are 
mapped into the move-transitions   ( q1, a ) = a1.1

f
    and  

(c1.2.1
i
, a ) = c1..2.1

f
. 

o The reduce-transitions r indicate reductions to LHSs of 

the productions for respective nonterminal symbols. Hence, 

these transitions are mapped by the set {  (q, V) = reduce 

(p)| V N, q= V
f
 and V is LHS (p)} of reduce parsing actions 

for final states of their respective nonterminals. For example,   

the reduce-transition b2
f
 r  S0 

f
 is mapped as the reduce 

parsing action   (S0 
f
  , S) = reduce(S → A b).   

Once PPA has been constructed, a subset construction ( -closure) is then 

applied on the resulting automaton to obtain a reduced one (RBA), as shown 
in Fig.2, where: 

 The RBA states are constructed as the set Q = { q0= (S0
i
, A1

i
 , a1.1

i
 ), q1 = 

(C1.21
i
, B1.2

i
, a1.1

f
 ), q2 = (b2

i
, A1

f
 , B1.2

f
 , c1.2.1

f
 ), q3 = (S0

f
 , b2

f
 )} of  -closures 

 The RBA parsing actions are constructed as shift parsing actions defined 
by the set SPA= {ζ (q0, a) = q1, ζ (q1, c) = q2, ζ (q2, b) = q3} and reduce 
parsing actions defined by the set RPA = {δ (q2, B) = reduce (B → c), δ (q2, 
A) = reduce (A →aB), δ (q3, S) = reduce (S →Ab)}.         

 Finally, the run of RBA on the input acb proceeds according to the 

transitions q0 a  q1 c  q2  b  q3, where the reductions B → c, 

A →aB and S →Ab are performed at the states q2, q2   and q3 respectively.  
 

 
 

               
 

 a                                      c                                     b                 

 
 

Fig. 2. RBA automaton for the grammar of Example 1   

Example 2 demonstrates the proposed parsing approach using a simple 
context-free grammar. However, such approach handles regular tree 
grammars and subtle cases such as embedded recursion and grammar 
productions with different alternatives, as presented in the following sections. 

3.1. The production list format (PLF) 

Let the 4-tuple (Σ, N, P, S) be a GG grammar, where: (p: A →α) P and     
α= (V1…Vj…Vn)   ( ΣN)*. We inductively define the production list format 
respective to p as PLF (A) = A (PLF (V1)),…, PLF(Vj),…, PLF(Vn)), where: 

 Each nonterminal Vj is replaced by the PLF (Vj) defined for its respective 
production. 

 q0 : 

  S0
i
  

 A1
i
   

 a1.1
i
            

 q1 : 

 C1.21
i
  

  B1.2
i
   

   a1.1
f
              

 q2 : 

 b2
i
 

 A1
f
 

 B1.2
f
  

 c1.2.1
f
           

 q3 : 

 S0
f
  

 b2
f
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 Each ranked terminal Vj is rewritten by its respective PLF (Vj ), defined as 
PLF (Vj ) = (PLF (Vj1),…,PLF (Vji),…,PLF (Vjn)), where: Vj (Vj1, Vji,...,Vjn) 
T(Σ N). 

   PLF(Vj) = Vj, if Vj Σ0. 

  Each grammar symbol in PLF (A) is assigned an index reflecting the 
position at which it occurs within PLF (A). The index is computed using a  
function (IND) that is inductively defined as: 
-  IND (Vj) = { ε}, if Vj   Σ0. 

- IND (PLF(Vj)) = {0, 1. IND (PLF (V1j)),…,n. IND (PLF (Vnj))}, if Vj N and 

 a production (Vj → V1j… Vnj )   P 
-  IND (PLF(Vj)) = { ε, 1. IND (PLF (V1j)),…,n. IND (PLF (Vnj))}, if Vj Σn 

and Vj( V1j… Vnj ) T(Σ   N). 
    To cover the alternative productions and the productions having 

embedded recursion, the definition for PLF is extended as follows: 

   Let (p: A →α ) be a production having recursion, where α= V1…Ai…Vn. 

The PLF respective to p is defined as PLF (A) = Ar∗0 (PLF (V1),..., Ar∗i 
,…,PLF ( Vn)), where the grammar symbol A is expanded by its definition 
(production) while its respective recursive-occurrence Ai is rewritten, 

without further expansion (terminalized). In addition, the head Ar∗0 and the 

recursive-occurrence Ar∗i are designated by appending the mark (r*) as a 
prefix to their respective index.  

  Let (p: A →{ αn}) be a production with alternatives. We represent p  as A→ 
A(1) | A(2) |…|A(j)|…| A(n), where A(j) →αj  is the alternative (j). The PLF 

form respective to p is then defined as PLF (A) = A0 ((PLF (A (1)) |….| PLF 

(A (n))), where the grammar symbols of different alternatives are 
designated by the number of the alternative to which they belong. However, 
they are indexed according to their positions in the designated alternative.         

PLF in its extended form constitutes a prefix representation of alternative 
derivation trees with incorporated recursion. Hence, it implies alternative 
sequences of derivations and reductions, where the embedded recursion is 
incorporated as recursion-invocation and recursion-termination. The 
recursion-invocation constitutes an  -transition from the recursive occurrence 

to its respective head, while recursion-termination implies an  -transition 

from the recursive-head to its respective occurrence. Hence, the recursive 
occurrence initiates a derivation/reduction path as the one initiated by its 
respective head and considered as an instance of the original one. To 
distinguish between instances initiated by different recursive occurrences, an 
instance-identifier (ID) is assigned to each initiated path. 
 
Example 3.  Let GG be a regular tree grammar as given in Example1.  A PLF 
form respective to the start symbol R is defined as  

PLF (R) = Rr*0 (PLF (R (1)) PLF (R (2)) PLF (R(3)),where: 

PLF (R(1)  = Rr*0 (1) (+1(1) (m1.1(1) (c1.1.1(1) ), Rr*1.2(1) ) ; 
PLF (R(2) = Rr*0 (2) (+1(2) (m1.1(2)(Rr*1.1.1(2) ), Rr*1.2(2) )  and 
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PLF (R(3) = Rr*0 (3)(c1(3)).  
 PLF(R) is a prefix representation of three alternative derivation trees with 

incorporated recursion, as shown in Fig. 3,  where Rr*1.2(1), Rr*1.1.1(2) and 
Rr*1..2(2) designate  such recursion. Consequently, PLF(R) implies three 
alternative sequences of derivations and reductions as shown in Fig. 4.   

 

                                                       Rr*0 

 

                       Rr*0 (1)                        Rr*0(2)      Rr*0(3)      

                                           

                                                                             
                       +1(1)                          +1(2)                c1(3) 
                                            
            m1.1 (1)        Rr*1.2(1)      m1.1(2)        Rr*1..2(2)  
 

               c1.1.1 (1)                         Rr*1.1.1(2) 
 

Fig. 3. Derivations trees respective to the grammar of Example 3 
 

                                                      Rr*0 

                                                                r 

                       Rr*0 (1)   r                       Rr*0(3)                                     

                          r                                        r  
                                                                        

                       +1(1)                               c1(3)                       
                                    r         

           
              m1.1 (1)        Rr*1.2(1)       

                  r             ri           rt 

                                 
            c1.1.1 (1)         Rr*0          Rr*0       

Fig. 4. The derivations/ reductions implied by PLF respective to the grammar (3). 

The recursion-invocation is denoted by ri and constitutes the  -transition 

from Rr*1.2(1) ri
 Rr*0, while the recursion-termination is denoted by rt 

and constitutes the  -transition Rr*0 rt
Rr*1.2(1).  Hence, the recursive 

occurrence (Rr*1.2(1)) initiates a derivation/reduction path as the one initiated 
by its respective head (Rr*0). An instance-identifier (ID) is assigned to the 
initiated path from Rr*1.2(1) as ID= Rr*1.2(1), while the original one has ID= . 

The instantiated path ends upon a reduction to the recursive-head, where 
then recursion-termination is performed. Hence, PLF with incorporated 
recursion implies initiation and termination of derivations/ reductions paths, as 
well as respective instances of these paths. 
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3.2. The position parsing automata (PPA) 

PPA is a nondeterministic automaton constructed in terms of a set of states 
and parsing actions respective to a GG grammar, represented in its expanded 
list format PLF(S). For example, Fig. 5 shows PPA respective to the grammar 
of Example 3.  As such, PPA is defined as given below based on the following 
concepts and assumptions for its respective states and parsing actions: 
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Fig. 5.  PPA respective to the grammar of Example 3. 

 GG is either instantiated by a context-free grammar or as a regular tree 
grammar. The set of productions P is generic and is either instantiated with 
grammar productions or ranked trees (terms). Hence, PPA includes parsing 
actions respective to the derivations and reductions of ranked trees. The 
derivations include shifting (reading) the subordinates of their respective 
ranked terminal. The reductions indicate the completion of such read. 
Therefore, reading the subordinates of a given ranked terminal are 
considered as a respective reduction, denoted by coherent-read, for 
example the string m(c) represents the ranked terminal m. Its respective 

derivations / reductions as shown in Fig.4 are: m1.1 (1) r c1.1.1 (1)) 

r  m1.1 (1).They include an -transition and a reduce-transition which 

are mapped into the PPA states  m1.1
i
(1),   m1.1

f
(1), c1.1.1

i
(1)  and   c1.1.1

f
(1) 

as shown in Fig. 5 with the following parsing actions:   (m1.1
i
(1),  ) = 

c1.1.1
i
(1) SPA,  (c1.1.1

i
(1), c) = c1.1.1

f
(1) SPA,   (c1.1.1

f
(1),  ) = 
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m1.1
f
(1)SPA and δ(m1.1

f
(1), m) = reduce (m →m( c)), where the 

subordinate c of m is read, and a reduction to the nonterminalized m is 
performed. Such reduction is considered as a coherent read of m(c). 

 PLF (S) implies instances of alternative derivations/ reductions, 
distinguished by respective instance identifiers (ID), as explained in 
Example 3. Therefore, such PLF is mapped into instances of alternative of 
PPA states and parsing actions. Such mapping proceeds as given in 

Example 2, where PPA is formulated as the tuple (T, qin, qfin, Q, SPA, 

RPA). However, it is extended to include instances of alternative states and 
parsing actions as follows: 

 The set Q = { (qp
i 
= Vp

i
, qp

f
 = Vp

f
  ) | Vp  PLF (S)} of PPA states,  as 

given in Example 1, is extended by the concept of a state-instance to 
have the form Q = {(qp

i 
(alt)(inst) = Vp

i
(alt)(inst)), (qp

f
(alt)(inst) = 

Vp
f
(alt)(inst))}, where the index (alt) represents the alternative to which 

each pair of states (qp
i
, qp

f
 ) belongs and (inst) is an implicit index to 

represent different instances of the pair. Initially, the PPA states are 
created with the implicit index (inst) = . At run-time, state-instances are 

created upon initiation of an instance of a derivation/reduction path. Such 
creation is indicated by appending the instance-identifier (ID) of the 
initiated derivation/reduction path atop of the implicit index (inst) of its 
respective states. For example, let the derivations/ reductions implied by 
PLF (S) be as given in Fig.4.  A possible path initiated by the  transition 

Rr*1.2(1) ri
 Rr*0 is: Rr*0 ri

 Rr*0(3) 
 c1 (3) Originally, 

such path has  respective PPA states Rr*0
i
(3)( ) and c1

i
 (3)( ) as 

shown in Fig.5. However, upon the  transition Rr*1.2(1) ri
 Rr*0 , 

respective state instances are created as Rr*0
i
(3)(( )( Rr*1.2(1)) and c1

i
 

(3)(( )Rr*1.2(1)). Since recursion-invocation and recursion-termination 

establish instances of derivation/reduction paths with nested life-time, 
the (inst) used as an index for PPA states is organized as a stack 
structure, onto which an ID is pushed upon recursion-invocation and 
thereafter popped upon recursion-termination.  

 To handle the initiation and termination of instances of PPA states, the 
specifications of the parsing actions SPA and RPA are extended by 
semantic actions which are performed at run time as integral parts of the 
performed transitions and reductions. Thus, SPA and RBA are specified 
as SPA = { (q1(alt)(inst), V) = q2(alt)(inst)) :: { semantic-action} and RPA 

=  { δ (q1(alt)(inst), V) = reduce(p(V)) :: { semantic-action} respectively. 
The specified semantic-actions constitute program segments defined  in 
accordance with recursion-invocation and recursion-termination as 
follows:  

 The recursion-invocation is initiated by a transition of the form: 
 (qi(alt)(inst), V) = (qrj(alt)(inst)), where  qi is a state which 

immediately precedes the one respective to a recursive-
occurrence(qrj(alt)(inst)). The   –transition  (qrj(alt)(inst),  ) = 

(qr0j(alt)(inst)) :: { recursion-initiation } is then  performed to the 
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respective recursive-head ( qr0(alt)(inst)), where recursion-initiation is 
a  semantic-action defined as: Top(inst(qr0)) = ID (qrj)  to push the 
instance-identifier atop of the implied index (inst) of qr0 .  Further on, 
instances of PPA states are subsequently created according to the 
transitions respective to qr0. Such creation is achieved by augmenting 
each transition   ( qi(alt)(inst), V ) = qj(alt)(inst)) SPA by an implicit 

semantic-action defined as Top(inst(qj)) = Top(inst(qi )) to propagate 
the instance-identifier from qi  to qj. Hence any transition   ( 

qr0(alt)(inst), V ) = qj(alt)(inst)) SPA will propagate  ID (qrj) and a 
respective  instance of a derivation/reduction path will be established. 
For example, and considering Fig. 4,  the  PPA transition which 

initiates an instance of the path  Rr*1.2(1) ri
 Rr*0 is:   

(Rr*1.2(1)( ), ) = Rr*0 ( ) :: { recursion-initiation} SPA, where 

the –transition to Rr*0
i
 and  { recursion-initiation} are performed. As a 

result, the instance-identifier Rr*1.2(1) of the initiated    path is pushed 
atop of (ins) respective to Rr*0 ( ). Subsequent transitions in 

accordance with current input are then performed.  These transitions 
create instances of PPA states respective to the initiated 
derivations/reductions. Assuming an input (c), the subsequent PPA 
transitions, are: Rr*0

i
( )(Rr*1.2(1)) 


(Rr*0

i
(3)( )(Rr*1.2(1)) 

(c1.1.1
i
(3)( )(Rr*1.2(1)) c

 

c1.1.1
f
(3)( )(Rr*1.2(1)) ,as shown in Fig.5.  

 The recursion-termination is established by a transition from a state 
which immediately precedes the one respective to final state of a 
recursive-head, where then an  –transition is performed to the final 

state respective recursive-occurrence. Hence, the reduce parsing 
action respective to the final state q of a recursive-head is extended 
by semantic-action, denoted by recursion-termination to execute a 
program segment ({IF (Top (ID (q))   ) { t = Pop(ID(q)); perform  –

transition to t })  that terminates the initiated path and returns the 
control ( –transition) to the final state respective to a recursive-

occurrence. For example, and assuming an input (c) the above-
illustrated path is terminated by the following sequence of PPA 
parsing actions:  (c1.1.1

f
(1) ( )(Rr*1.2(1)), ) = Rr*0

f
(3)( )(Rr*1.2(1)), 

 (Rr*0
f
(3)( ) (Rr*1.2(1),  ) =  Rr*0

 f
( )(Rr*1.2(1)). Once a transition to 

Rr*0
 f
 (3) has taken place, the reduce parsing action δ(Rr*0

 f
 (3),R(3)) = 

reduce(Rc)::{recursion-termination} and the augmented semantic-

action  are performed. As a result, Rr*1.2(1) is popped from (inst) 
respective to Rr*0

f
 (3), and  –transition to Rr*1.2(1) is performed. In 

addition, (inst) respective to Rr*1.2(1) is established as .  

 To handle direct and indirect left recursion, the recursive-heads, the 
recursive-occurrences and their mutual  –transitions are designated 

as cyclic. The cyclic  –transitions and {recursion-initiation} are not 

performed. Instead, an instance of the recursive-head is created with 
respect to the recursive-occurrence as having all the transitions other 
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than the cyclic ones. In addition to its transitions, a cyclic recursion-
termination (CRT) is added to the parsing actions of the final states 
respective to the recursive- heads. CRT constitutes a default  –

transitions to the final states respective to the recursive-occurrences, 
as Illustrated later by Example 9.  

Based on the above assumptions, the definition of PPA is formalized as 
follows:  

Definition 9.  (Position Parsing Automaton).  Let (Σ, N, P, S) be a GG 

grammar and PLF(S) be the PLF form respective to the start grammar symbol 

S. The 5-tuple PPA (p) = (T, Q, qin, qfin, SA, SPA, RPA, CR) constitutes an 

extended definition for the position parsing automaton (PPA), where:             

1.  T = (   ) and    represent strings generated by the GG grammar. 

2. qin and qfin are the initial and final states. 

3. Q  =
n

alt 1
 (qp

i 
(alt)( ) = Vp

i
(alt)( ), qp

f
 (alt)( ) =Vp

f
(alt)( )) is the set the 

PPA states respective to the individual  grammar symbols Vp in n alternatives of 
PLF(p(S)). Having a stack-structured index (inst), each PPA state constitutes a run-
time nested state-instance created by PPA parsing actions in accordance   with a 
dynamically incorporated recursion. Initially the PPA states are created with (inst) = 
( ). 

4. SA = {recursion-initiation, instance-propagation, recursion-termination} is a set of 
semantic-actions that are responsible for initiation, creation and termination of 
instances of PPA states and transitions with respect to   embedded recursion. 
These actions are embedded within the PPA parsing actions, and executed when 
such actions are applied during parsing.  

5. SPA:   (q1(Alt)(inst), V) = q2 (Alt)(inst),) :: {semantic-action} is a move parsing 

action that specifies the subsequent PPA state q2Q  for a given  state q1Q and 
a given  grammar symbol VT. In addition, and whenever the transition is applied 
during parsing, the transition performs instance-propagation as implied semantic 
action and {semantic-action}SA as explicit one, if the transition is augmented with 
the later.  

6. RPA:   (q(Alt)(inst), V) = reduce( r) :: { semantic-action} is a reduce parsing action 

that  performs a reduction rule (r), for every V   N , q Q such that q is the 
respective state to Vp

f
  and V is the LHS (r). RPA performs the indicated {semantic- 

action}, If the reduction is associated with such action. 

7. CR:  ( q(Alt)(inst),V) = coherent read  V (V1…Vn) is a parsing action, defined for 

every V    n and q Q such that q is the respective state to V
f
. It represents the 

completion of the parsing process for the ranked terminal symbol V and its 
subordinate symbols (V1…Vn). 

Based on the presented definition for the PPA, its construction is reduced 
to a direct mapping from the PLF (S) using the function: M (PLF(S)) → 
{PPA.Q, PPA. PPA.SPA, PPA.RPA, PPA.CR}, where M (PLF(S)) performs 
two major steps. In each step, it scans PLF(S) from left to right and considers 
the grammar symbols of each alternative of PLF(S) according to their 
occurrence order. However, the first step constructs the set of PPA states 

(PPA.Q) as union of the ones respective to the start symbol Sr*0  and to the 

grammar symbols of each alternative PLF (P(S(j). Hence, PPA.Q is 
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constructed as the set { (qin = Sr*0 I ),( qfin = Sr*0 f ), 
n

alt 1 
i

((qi
i 
(alt)( ) 

= Vi
i
(j)(ID)), (qi

f
 (alt)( )=Vi

f
(alt)( ))).  The second step establishes the PPA 

parsing actions for the start symbol Sr*0  and for each grammar symbol Vi (j) in 

every alternative PLF (S(j)), according to their order and using Definition 9 as 
a mapping scheme. 

3.3. Soundness and generality of the PPA construction 

Let the 4-tuple (Σ, N, P, S) be a GG grammar, where A    P and (   

T(ΣN )or  ( ΣN)).  The constructed automaton PPA = (T, Q, qin, qfin, 

SPA, RPA, CR) using the mapping function M (PLF (A), as given in section 
3.2, constitutes a two fold generic parsing automaton. First, its parsing 
behavior simulates tree parsing automata and shift–reduce automata, but with  
reduced stack activities. Second, it parses hybrid strings drawn from a given 
type of grammar, augmented by definitions from another type of a grammar, 
for examples: 

 A context-free grammar augmented by constructs from regular tree 
grammar. 

 A regular tree grammar extended by context- free grammar constructs. 
The validity of the PPA properties and the soundness of its construction 

approach are demonstrated by the following lemmas.  

    

Lemma 1. PPA constitutes a bottom up parsing automaton that simulates 

shift – reduce automata. 

 Proof.  Let GG be instantiated by a context-free G. Let a rightmost 

derivation be (S cwwAw   Y ). In shift-reduce parser, the 

reductions are performed according to the right most derivations, but in a 
reverse order. Thus, the reduction to Y is performed followed by one to A. 
In our approach, the above rightmost derivation is simulated  by the 

following sequence of transitions: S
i
 

…First(  )
i
 …  Last 

(  )
f
      A

i 
First( )

I
 …Last( )

f
 Y

i
 c

i….  c
f
   

Y
f
   A

fFirst(w )
i …  Last(w )

f
, where Y

f
  occurs before A

f
 ,that is,  

the  reduction to Y  is performed first. Thus, the reductions performed by 
our automata are according to the rightmost derivations, but in reverse 
order. Further more, a handle in a shift-reduce parser is defined as the right 
side of a production that is formed on the top of the parsing stack [1]. Once, 
such a handle is formed a reduction is performed. For this purpose, the 
parser performs the following stack activities:  push subsequent terminal 
(input) symbols, pop parsing stack symbols formed as a handle and push 
its respective nonterminal. In contrast, the PPA shift activity is defined 
as -transition and move transition on a terminal symbol. A handle is 
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formed as a result of a sequence of transitions between the initial and the 
final states of a respective nonterminal. Subsequently, PPA reduction to a 
respective nonterminal is performed upon the  -transition from the final 

state of the last handle's symbol to the final state of the respective 

nonterminal, for example, the sequence (Y
i
 

c
i
 c

 c
f
 

 Y
f
) 

forms the handle (c) respective to (Y).  Upon the  -transition from c
f
 

to Y
f
pi , the reduction to Y is performed. Hence, PPA simulates a shift-

reduce automaton. Furthermore, it parses the regular parts of the language 
as a finite automaton. However, it behaves as a pushdown automaton by 
using state instantiation with an instance identifier organized as a stack to 
handle recursion.  

 
Lemma 2 PPA constitutes a bottom up parsing automaton that simulates the 
run of regular tree automata. 
Proof. Let GG be instantiated by a regular tree grammar, where Σ0= (b,x,y) 
Σ2= c, (S,A)  N and P= { S c(Ab), Axy}. let S cAb cxyb be a GG 

derivation. Let a bottom-up regular tree automaton be defined by the 4-tuple 

RA = (Σ, Q,  , Q
f
 ), where: Σ is the input (ranked) alphabet, Q is a set of 

automaton states,  = { Q x Σj x Q
j 
| j  0} is a set of transitions and Q

f
 is a set 

of final states. RA constructs S-derivation tree for cxyb as composed of sub 
trees constructed according to the following order: A(x,y), c(A,b) and S(c). 
Such construction is obtained a result  of the following transitions: (qx, x), (qy, 
y), (qA, A, qx, qy), (qb, b),  (qc, c, qA, qb) and (qS, S, qc ). On other hand, the run 
of PPA on cxyb simulates the same construction order, but according to the 
following sequence of states transitions: S

i
0  c

i
1   A

i
1.1  x

i
1.1.1  

x
f
1.i.1  y

i
1.1.2  y

f
1.1.2  A

f
1.1  b

i
1.2  b

f
1,2c

f
1   S

f
0, where: the 

reductions: Axy, cAb (coherent read) and S c(Ab) are performed at 

A
f
1.1, c

f
1 and S

f
0 respectively. Thus, the reduction order represents a rightmost 

derivation in reverse order and it is equivalent to the bottom–up construction 
of the S-derivation tree. Furthermore, RA and PPA have the same 
interpretation of their transitions with respect to the input cxyb.For example,  
the RA transitions (qx, x) and (qA, A, qx, qy) are considered as the mappings 
x  qx and (A, qx, qy)   qA. In contrast, the respective PPA transitions: x

i
1.1.1 

x
 x

f
1.i.1 and A

i
1.1 x

… x
 A

f
1.1, with implied reduction Axy, 

are considered as the mappings: x  x
f
1.i.1 and (A, x

f
1.i.1, y

f
1.1.2)   A

f
1.1 

respectively.    

4. The PPA construction algorithm 

Given a GG grammar, PPA (S) is then constructed as a direct mapping from 
its respective PLF(S), using the mapping function M (PLF(S)) as discussed in 
section 3.  However, such function performs two passes (steps) over a fully 
expanded PLF(S). During the first pass, the PPA states are constructed, while 
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during second one the PPA parsing actions are constructed. Since PLF(S) is 
prefix representations of derivation trees respective to GG, its full expansion is 
equivalent to the construction of such trees. In this section, we propose an 
alternative but more efficient approach and derive a respective construction 
algorithm. The proposed approach is a one-pass and based on applying M 
(PLF(S)) over PLF(S) while it is being expanded in incremental way. For this 
purpose, we consider a non-expanded form of PLF(S) and a respective but 
partially constructed PPA as follows:           

 Let S    , where = (V1…Vj…Vn )   ( ΣN). A non inductive  form of   

PLF(S) is defined as : 

 NPLF(S) = S0 (V1p1…Vj pj…Vn pn), where NPLF(S) implies a derivation sub  

 tree, denoted PDT (S), with a root labeled by S0 and children labeled by  

 V1p1, …,Vjpj,…,  and Vn pn.  

 A partially constructed PPA  (PPPA) respective to NPLF(S) is  defined as 
the one that is obtained as a result of applying a modified version of 
M(NPLF(S)) over PDT(S). Such version is defined  as  a mapping function 
M (S0, Children( PDT(S)) which  assumes  that  the states respective to the 
root of PDT (S0) has been created and performs the following:  

 Create  PPA  states  respective to the children of PDT(V1p1…Vj pj…Vn pn)     

 Establish the parsing actions that cover the transitions between the    root 
and children; the transitions between the children; and the transitions of the 
states instantiated by recursive occurrences of the grammar symbols.     
The construction of PPA is then proceeds according to Algorithm 1 as 

given below. Assuming an input consisting of the NPLF forms respective to a 
given GG grammar, Algorithm 1 constructs the PPA(S), using the following 
data structures and functions:  

 The first  step of the mapping function is implemented by two functions: 
CreateNode and CreatePDT to handle the construction of the individual 
PDTs. The function CreateNode constructs the individual nodes of PDT 
instantiated with respective grammar symbols. The nodes are indexed by 
the positions of grammar symbols as they occur within the NPLF forms. 
The function CreatePDT constructs the PDT respective to a given NPLF 
form. CreatePDT returns a record of two fields. The first field represents the 
root of the subtree PDT and the second one represents the children of the 
PDT as an array of nodes created by the function CreateNode.   

 The second  step of the mapping function is implemented by two functions: 
CreateGSPA and by ConstructPPA to handle the construction of the 
individual PPPA. The function CreateGSPA has a parameter of type Node 
and returns it's respective initial and final states. Also, CreateGSPA 
establishes the parsing actions respective to these states, including the 
ones with recursive occurrences. The function ConsructPPA constructs a 
PPPA respective to a transmitted PDT as a parameter. ConsructPPA calls 
the function CreateGSPA to create the states and the parsing actions for 
the individual nodes of the PDT’s children. Then, it establishes the parsing 
actions that cover the transitions between the root and children; the 



Riad S Jabri 

ComSIS Vol. 9, No. 1, January 2012 398 

transitions between the children; and the transitions of the states, 
instantiated by recursive occurrences of the grammar symbols.      

   Algorithm 1  
   Input:  A GG  grammar , with start symbol S and its respective NPLF forms    
   Output :   A bottom up   automaton  PPA = ( Q, qin, qfin, SPA, PAR, CR )  
   Method:  An incremental construction of PLF forms, coupled with their     

 gradual   transformation into the PPA(S), according to the     
  program given in Fig. 8. 

        Nod0  = Create-node(S, , 0, S);  GSPA =  CreateGSPA (Node0); 
         PPA.qin= GSPA.States[1].initial; PPA.qfin =  GSPA.States[1].final;    
        For (each alterntive of NPLF(S))       
        {PDT = CreateNewPDT(Node0); 
          ConstructPPPA( PDT.root, PDT.children)};}  
       Set–of–Current-PDT =  Set–of–Current-PDTPDT; 
       While (Set–of –Current-PDT  )  

        {Current-PDT-Constructor = Select-next–PDT (Set–of–Current-PDT); 
         Set–of–current-PDT = Set–of–Current-PDT \ Current-PDT-Constructor;                          
         New-PDT-Roots =  (Current-PDT-Constructor).ChildrenLevel 
         For i to MaxSize (New-PDT-Roots)  
          {New-Root= New-PDT-Roots[i];                              
           For m = 1 to MaxAltenative (New-Root  ) 
            { Alternative-Node = New-Root [m];  
             if AlternativeNode is terminal { } 
             Elseif {  PDT= CreatePDT(AlternativeNode); 
                Set–of–Current-PPT =  Set–of–Current-PDTPDT ;                                                
                ConstructPPPA( PDT.root, PDT.children); } }  } 

Fig. 6. A program for the construction of the PPA automaton
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Fig. 7.  A partial PPA automaton for the grammar of Example 4 
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Example 4. Let G = (Σ, N, P, S) be a context free grammar, where:  Σ = {a, b}; 
N= {A, B, C, D}; P= {p1: S→ACa; p2:S→BDb; p3:A→AD; p4:A→a; p5:B→Bc; 
p6: B→b; p7: C→c p8:D→c. This grammar has direct left recursion and 
reduce-reduce conflicts. The NPLF forms respective to G are as follows: 
NPLF(S0) = S0 ( Ar*1 (1), C2(1), a3(1) | Br*1 (1), D2(1), b3(1)); NPLF(Ar*1 (1) = Ar*0 

(Ar*1 (1) , D2(1) | a1(1)); NPLF(C2 (1) = C0 (c1(1); NPLF(Br*1 (1)= Br*0 (Br*1 (1) , 
C2(1) | b1(1)); NPLF(D2 (1) = D0 (c1(1)). Fig.7 shows the transition graph of 
PPA(S(1)) respective to alternative (1) of NPLF(S0). Its incremental 
construction according to algorithm 1 proceeds as follows: 

 

 At steps 1.1 and 1.2, the root PDT is constructed as composed of the 
single node Node0 = S0  with  - transitions to the roots ( Node1(1)  = S0(1), 

Node0(2)  = S0(2 ) of two alternative PDTs.  The respective PPPA 
automaton is constructed in terms of the following:  

  The PPA states: PPA.Q = {( PPA.q in = S0
i
  ),  (PPA.qfin  = S0

f
 ), (q 0

i
 (1 ) =   

S0 
i
(1)),  (q 0

f
(1) =  S0

 f
 (1 )), ( q 0

i
 (2 ) = S0

 i
 (2 )), ( q 0

f
(2 ) = S0

 f
 (2 ))} 

 The PPA parsing action: PPA.SPA = {( ( q in, ) = q 0
i
 (1 )),(  ( q in, ) = 

q 0
i
 (2 )), ( ( q in, ) = q 0

i
 (3 )), ( (q 0

f
(1), ) =.qfin ),  ( (q 0

f
(2 ), ) =.qfin )}     

 The PPA parsing action: (q0
f
(1),S)= reduce (r1(S));   ( q 0

f
 (2), S) = 

reduce (r2(R).                

 At step 2, The PDT respective to the root Node0 (1) is formed as:  Node1(1) 
= Ar*1 (1), Node2 (1) = C2 (1) and  Node3 (1) = a (1) respectively. The 
respective PPPA automaton  is constructed as  consisting of   the following:  

   The PPA states: PPA.Q = PPA.Q { (q 1
i
 (1 ) = Ar*1

i
(1))) ,(q 2

i
 (2 ) = C2

i
(1) 

(2)) ,( q 3
i
 (1 ) = a3

 i
 (1)), (q 1

f
(1 )  = Ar*1

f
(1) (1)), ( q2

f
(1 ) =  C2

 f
 (1 )),     (q 3

f
(1 )= 

a3
 f
 (1)}.  

 The parsing actions: PPA.PAS = PPA.PAS {(  (q 0
i
 (1 ),  )= (q 1

i
 (1 )) , 

(  (q 1
f
 (1 ),  )= (q 2

i
 (1 )), (  (q 2

f
 (1),  )= (q 3

i
 (1 )), (  (q 3

i
 (1 ),a)=          

q 3
f
(1 )), (  (q 3

f
(1 ),  )= q 0

f
(1 )). 

 During the second iteration, the children of the (Node1(1) and Node2(1), are 
considered as roots  for which subsequent PDTs and PPPA are 
constructed .This process is iterated  until no further PDT can be 
constructed.  As a result, the construction of PPA(S(1)) automaton 
respective to to alternative (1) of NPLF(S0),   is completed, as given in 
Fig.7. 

 PPA(S(1)) contains  the cyclic transition  Ar*1
i
(1) →  A r*1.1

i
(1) →    Ar*1

i
(1). 

Hence, the transition   Ar*1
i
(1) 

 A r*1.1
i
(1) and  rec-init are freezed, and 

rec-term (  A r*1
f
(1) 

 A r*1.1
 f
(1)) is considered as a cyclic one. 

5. The Subset Construction Algorithm  

In this section, we propose a subset construction ( -closure) for PPA (G). It 

is an extension to the one for nondeterministic finite automata as given in [1]. 
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Such extension is needed to cover a wider class of grammars including 
regular tree and context free grammars. The subset construction algorithm, 
denoted by Algorithm 2 is given below. Having the PPA states PPA.Q and 
their respective parsing actions (PPA.PAS, PPA.PAR, RBA.CR) as an input, 
Algorithm 2 constructs a reduced bottom-up automata RBA (G), represented 
by its respective states RBA.Q and a parsing table PAT. The table PAT is 
organized as matrix of the form: ParsingAction array [ qo…qn, V1…Vn] , where 

qo…qn   RPA.Q and V1…Vn    ( the input alphabet of GG ). The 

individual entries of ParsingAction specify the transitions, the reductions and 
the semantic actions to be made by RBA(G) during its run on an input 
alphabet, generated from the grammar G. Algorithm 2 computes the RBA(G)  
states and their respective parsing actions using  an  -closure function [1]. 

This function has a parameter of type state and returns set of states, 
constituting the  -closure of the transmitted parameter. The function closes 

the initial states and the final states respective to the different grammar 
symbol types. However, it does not close the initial states instantiated by 
grammar symbols of type ranked terminals and the grammar symbols of type 
recursive instances. The steps of proposed algorithm handle their  -closures, 

taking into consideration their peculiarities. It is worth mentioning that the -

closure for the initial states is equivalent to  the kernel item in LR parsing, 
while the one for final states  is equivalent to the complete item. 

 
Algorithm 2  
Input:  A nondeterministic PPA automaton represented by its respective 
states (PPA. qin, PPA. qfin , PPA.Q) and  parsing actions ( PPA.PAS,  
PPA.PAR and PPA.CR). 
Output: A reduced bottom-up automata RBA(G) represented by its respective 
states (RPA.qin, RPA.qfin, RPA.Q) ,  parsing actions (RPA.PAS,  RBA.PAR , 
RBA.CR) and by a parsing table PAT.       
Method: Apply the subset construction on the states of the PPA(G),  
according  to the following steps:     
Step0:  

 Initially, apply the  -closure function on PPA. qin to obtain  its respective 

RPA.qin 

 Add PPA.qin to the set of RBA (G) states (RBA.Q), marked as 
unprocessed one. 

Step1:  

 Select an unprocessed state from the set (RBA.Q). 

 Group the alternative states from which the selected state is composed into 
two classes. The first one includes the initial states instantiated by 
recursive instances. The second class includes the initial states respective 
to terminals and ranked terminals.  

Step 2: Perform actions respective to each class as follows 
2.1: Actions for the class of type recursive instance 

 Create new RBA states for each state(s) in the group, instantiated by their 
respective recursive instances. 
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  Add the new states (s) to the set RBA.Q, marked as processed ones.   

 Add to the table PAT parsing actions of type "move" from the selected state 
to the new one (s), augmented with semantic action (recursion-initiation). 

  Set the parsing actions for the new state (s), as the ones for the state 
instantiated by the occurrence of its respective head.  Compute  -closure 

for the PPA state, instantiated by final symbol respective to the new state 
(s). Create new RBA state, instantiated by such closure. Add the new 
states to the set RBA.Q, marked as unprocessed. 

 The actions respective to recursive instances designated as cyclic are the 
same as the above. However, their respective –transitions and {recursion-

initiation} are designated as cyclic.      

Table 1. The RBA parsing table for the grammar  of Example 5  

 

State 

                                           Input Symbols 

           Parsing actions: Move(M), reduce(R) and semantic action (S)     

  +   m    c 

q0 M(q1, q2 )       M(q3) 

q1  M(q4)  

q2  M(q5), S(rec-initiation)  

q3 R( r3: Rc) 

S(rec-termination) 

R( r3: Rc) 

S(rec-termination) 

R( r3: Rc) 

S(rec-termination) 

q4 M(q7 q8), c(m(c)) 

S(rec-initiation) 

  

q5 M(q1, q2 )       q3 

q6 M(q10), 

S(Initial(q11)) 

c(m(R))      

  

q8 M(q1, q2 )       q3 

q9 R( r), c(+(m(c,R)) 

R(r1: 

R+(m(c,R)) 

S(rec-termination) 

R( r), c(+(m(c,R)) 

R(r1:R+(m(c,R))R(r),  

S(rec-termination) 

R( r), c(+(m(c,R)) 

R(r1: 

R+(m(c,R))R( r) 

S(rec-termination) 

q10 M(q1, q2 )       q3 

q11 R( r), c(+(m(c),R)) 

R(r2: 

R+(m(R),R)) 

S(rec-termination) 

R( r), c(+(m(c),R)) 

R( r2: R+(m(R),R)) 

S(rec-termination) 

R( r), c(+(m(c),R)) 

R(r2: R+(m(R),R)) 

S(rec-termination) 

 
2.2: Actions for the class of type terminals and ranked terminals 

 For each state in the class, select its respective parsing actions of type 
move (transition) as specified  by the parsing table PPA.PAS.  
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 Compute the -closures for each destination state as defined by each 

selected transition. 

 Create new RBA states, instantiated by the  -closures. 

 Add the new states to the set RBA.Q, marked as unprocessed ones. 

 Add to the table PAT parsing actions "move" respective to the grammar 
symbol ,instantiating the state ;  the selected state ;and  the new ones. 

 For each alternative of the new states of type "final" , add to the table PAT 
the respective parsing actions "Reduce or coherent read" as  specified by 
the  PPA parsing actions , including the augmented  semantic-action, if 
any. 

 
Example 5 Applying the subset construction on the PPA automaton of 
Example 3, will produce the RBA automaton, represented by Table 1 as its 
respective parsing table.  

 
Example 6 Applying the subset construction on the PPA automaton of 
Example 4, will produce the RBA automaton, represented by its respective 
parsing table, given as Table 2. 

5.1. The PA- Parser 

In this section, we propose a parser, denoted PA-Parser, that simulates in 
pseudo-parallel the run of RBA (G) automaton on input strings, generated by 
the grammar G. In addition to the input string, the PA-Parser consults a  
parsing-table PAT respective to RBA(G), as constructed by the subset 
construction algorithm. The PA-Parser produces alternative parsing paths 
which represent a bottom-up construction of derivation trees respective to the 
input string. During paring, these paths are constructed in terms of performed 
state transitions and reductions as follows:  

 The RBA initial state(qin) is considered as the intial derivation. Hence, a 

respective derivation/reduction path is created as parsing-pathind = qin, 

where ind =1 indicates the nesting depth of the path. 

  For each alternative (J) of a subsequent transition or a recursion 

termination (q), a continuation for the current   parsing-pathind is created as 

parsing-pathind.j = parsing-pathind   q. 
Based on the above- mentioned assumptions, PA-Parser is implemented 

by Algorithm3. 
 

Algorithm 3 The PA- Parser 

Input:  An input string and the RBA(G) automaton respective to a    

            grammar G and represented by its respective  parsing-table PAT. 

Output: Successful and erroneous parsing paths represented as a set of      

              respective state transitions and reductions. 
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Table 2. The RBA parsing table for the grammar  of Example 6 

 

State 

                                           Input Symbols 

           Parsing actions: Move(M), reduce(R) and semantic action (S)     

a c b 

q0 M(q2); ''-tran(q1r
i
) 

; S(rec-initiation)''   

 M(q4); ''-tran(q1r
i
) ; 

S(rec-initiation)''       

q1r
i
 M(q1); ''-tran(q1r

i
) 

; S(rec-initiation)''      

  

q2r
i
  M(q5)  

q2   M(q7); R( r4: Aa) 

 S(rec-termination)'' 

 

q3r
i
   M(q4); ''-tran(q3r

i
 ) 

; S(rec-initiation)''       

q3r
f
  M(q6)  

q4 R( r6: Bb) 

 S(rec-ermination)'' 

M(q8); R( r6: Bb) 

 S(rec-termination)'' 

R( r6: Bb) 

 S(rec-termination)'' 

q5 R( r8: Dc); R( 

r3:AAD); S(rec-

termination)'' 

M(q7); R( r8: 

Dc);R(r3: 

AAD);S(rec-

termination)'' 

R( r8: Dc); R( r3: 

AAD);S(rec-

termination)'' 

q6 R(r5:BBc); 

S(rec-termination)'' 

M(q8);R(r5:BBc); 

S(rec-termination)'' 

R(r5:BBc); 

S(rec-termination)'' 

q7 M(q9);R(r7: 

Cc));      

R(r7:Cc)); R(r7: Cc)); 

q8 R( r8: Dc) R( r8: Dc) M(q10);R( r8: 

Dc) 

q9 R(r1: SACa); R(r1: SACa)) R(r1: SACa)) 

q10 R(r1: SBDb); R(r1: SBDb); R(r1: SBDb); 

 

Method:    
Initially, the parsing algorithm considers the initial state of RBA (G) as the 

current parser state (ind, qin (  )) as well as the initial parsing path. Each 

state is considered as having its respective instance-identifier initialized to , 

In addition, and as a transition-state, it is associated with an attribute, denoted 
by ind, to indicate the parsing path to which it belongs. The algorithm then, 
iteratively, consults the parsing table PAT entry respective to the pair (current 
state, current input symbol) and performs the following:  

 Determine the subsequent parser states , perform the implicit semantic 
action for the propagation of the state instance-identifiers and create 
respective parsing paths 
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  If the consulted parsing table entry specifies a parsing action reduction, the 
respective reduction is added to the current parsing path .  

 If this entry specifies semantic action of type recursion-termination, the 
computed return state is considered as a continuation that is added to the 
set of the parser's next states and to respective parsing path. 

Finally, upon reaching the end of the input string, the set { parsing-pathind} 

is produced  as an output, consisting  of parsing  paths in which RBA(G) has 
reached some of its final states and erroneous ones, otherwise. 
 
Example 7. Considering RBA automaton as given in Example 5, the run   PA-
Parser on the input + (m(c), c) proceeds as shown in Table 3, where two 
parsing paths are formulated and produced as an output: 

parsing-path1,1.xxx  = {(q0,  ), (q1,  ), (q4,  ),(q7,  ), (q8,  9), CR(m(c),  

 (q3,  9),(q9,  ),R( r3: Rc), CR(m(R), R( r3: Rc),CR(+(m(c),R)), 

  R( r1: R+(m(c,R))} and 

parsing-path1,2.xxx  ={( q0,  ), (q2,  ),(q5,  6), (q3,  ) (q6,  ), 

(q10,  11), R( r3: Rc), CR(m(R), (q3,  11) (q11,  ), R( r3: Rc), 

CR(+(m(R),R), R( r2: R+(m(R),R) }. These paths are equivalent to a 

bottom-up construction of their respective derivation trees ( Fig. 4) 

Table 3.  The parse of the input +(m (c),c) by PA-Parser for grammar (5) 

 

Current-

parser-state 

 

                          Parsing behavior  

Current 

input  

  Parsing –action- 

Move(M) 

   Next parser 

states  

Parsing–actions: 

 Reduce(R),Semantic-action (S), 

Coherent-read(CR) 

(q0,  )  + {M(q1,   ), 

M (q2,  )} 

 

(q1,   ) 

(q2,  ) 

m  M(q4,  ) 

M(q5,  6) 

 

S(rec-intiation (q6)) 

(q4,  ) 

 

(q5,  6) 

c M(q7,  ) M(q8, 

 9) 

M(q3,  ) M(q6, 

 ) M(q10,  11) 

CR(m(c), S(rec-intiation (q9)) 

R( r3: Rc), CR(m(R) 

S(rec-termination(q6)) 

S(rec-intiation (q11)) 

(q8,  9) 

 

 

 

(q10,  11) 

c M(q3,  9) M(q9, 

 ) 

 

 

M(q3,  11) 

M(q11,  ) 

R( r3: Rc) 

S(rec-termination (q9) 

C(+(m(c,R)) 

R( r1: R+(m(c,R)) 

R( r3: Rc) 

S(rec-termination (q11) 

C(+(m(R),R)) 

R( r2: R+(m(R),R)) 
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Example 8. Considering RBA automaton as given in Example 6, the run   PA-
Parser on the input acca proceeds as shown in Table 4, where three parsing 
paths are formulated and produced as an output:  

parsing-path1,1.xxx  = {( q0, ), (q2,  ), R(r4:Aa), (q7,   ), R( r7: Cc)  

                                   Error} 

parsing-path1,2.xxx = {(q0, 1r), (q2, 1r), R(r4:Aa),(q1r, 1r) ,(q5,  1r ),  

                                    R(r8:Dc),R(r3:AAD),(q7,  1r), R( r7: Cc),  

                                    (q9, 1r), R( r1: SACa)} 

parsing-path1,2,2.xxx={(q0,  1r),(q2, 1r),R(r4:Aa),(q1r, 1r),(q5, 1r),    

                                    R(r8:Dc), R(r3: AAD), (q1r, 1r),(q5, 1r ), 

                                    R(r8:Dc),R(r3:AAD), (q1r, 1r), error} 

Among  these parsing paths, parsing-path1,2.xxx constitutes a successful 

one. 

Table 4.  The parse of  input acca  by PA-Parser for the  grammar of  Example 8 

 

state 

 

                          Parsing behavior  

input    Parsing–action- 

Move 

   Next parser 

states  

Parsing –action- Reduce 

Semantic-action 

(q0, ) 

(q0, 1r)   

a M(q2,  ) 

M (q2, 1r)  M 

(q1r, 1r) 

R( r4: Aa) 

R(r4:Aa);S(rec-termination(q1r))''  

 (q2,  ) 

(q1r, 1r)  

c M (q7,   ) 

M (q5,  1r ))  

 

M (q5,  1r ))  

M (q1r, 1r)    

R( r7: Cc), 

R(r8:Dc), R(r3: AAD), 

 

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))'' 

(q7,   ) 

(q5, 1r) 

(q1r, 1r)      

c Error 

M(q7,  1r) 

M (q5,  1r ))  

M (q1r, 1r)   

 

R( r7: Cc), 

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))'' 

(q7,  1r) 

(q1r, 1r) 

a M(q9, 1r)  R( r1: SACa), 

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))''   
 
Example 9.   Let G = (Σ, N, P, S) be a grammar with left and embedded 
recursion. Where (a,+)   Σ, (E,F)N and P= { EE+F,  EF, F  a, 

F  (E)). Applying the subset construction Algorithm 2 on the PPA 

automaton respective to the grammar G, will produce the RBA automaton, 
represented by 12 states and their respective parsing actions. The PA- Parser 
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behavior on the input a+((a+a)) formulates the following  parsing path as an 
output. 

parsing-path1,1.xxx  = {(q0,  ), (q1,  1 ), (q6,  1 ), R( r3: Fa), R( r2: 

FE, (q2,   ) (q7, ),  (q8,   ), (q9,  3.1 ) (q3,  3.1 1.2 ) (q6,  3.1 1.2) 

R( r3: Fa), R( r2: FE) (q2,   3.1 1.2), (q7,  3.1 1.2 ) (q10,  3.1 1.2 ), 

R( r3: Fa), R( r1: EE+F), (q5,  3.1 ), (q12,  3.1), R( r4: F (E)), 

(q1o,   ), (q13,  ), R( r4: F (E)), R( r1: EE+F)}. 

6. Discussion  

The experiments and the analysis of the derived algorithms for the proposed 
generic parser have shown the following:  
1. The algorithms are characterized by the following calculated complexity:  

- The PPA(G) construction algorithm (Algorithm 1) produces  O(2G) states  

      and O(2G+(G+1)+G)) transitions, where G = 


n

i

pi
1

||  is the sum of the  

     length(|pi|) of the individual productions. The construction time is      

     O(L*(|N+ n|*MAX(|pi|, i=1,…n))+ (MAX(|pi|, i=1,…n)+1))* ALD G*C ,       

      where C is constant reflecting the levels (L) of the grammar’s derivation  
     tree and the number of alternative definitions  (ALD). 
    -  The PPA (G) subset construction algorithm (Algorithm 2) has a runtime     

       O ((| + n +Nr|* | - Transitions ( + n +Nr)|    O (G
2
 )* s, where s     

       is the  number of the PAA reduced states. 
    - The parsing algorithm requires a time 
              O (| shift-transitions| +|reduce-transitions| )*|input pattern|.  

    - The size of the parsing table is O (| | * |s|).  
To illustrate the above calculated complexity, we consider the grammar of 

Example 5, the construction of its respective PPA (Fig. 5) and RBA (Table 1) 
have the following characteristics:  

 The size of the grammar G = 12; ALD =3; L=3 ; s = 12; | shift-transitions| =  
19; |reduce-transitions|= 18. 

 Number of PPA states and transitions ( -transitions, move, reductions, 

coherent read) = 61. 

 PPA construction (Algorithm 1) time is characterized by O(60)   6* 12, 
where the dominant operations are ConstructPPPA and CreatePDT. 

 The subset construction (Algorithm 2) time is characterized by O(384)   
1728, where the dominant operations are EmptyClosure  and Add( PAT, 
parsing actions). 

 The parsing table is a matrix of 36 elements. The parse of the input string 
+(m(c),c) is characterized by O(148), where the dominant operations are 
the access of the parsing table and the computation of the subsequent 
states.   
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1. The PA–Parser has a reduced nondeterministic behavior on an input drawn from 
ambiguous grammar. The parser generates multiple parsing paths. Since the parser 
is to be used in code selection, such paths are used to select pattern matches 
subject to minimization criteria. For  example, the output of the parser on input 
+(m(c),c) drawn from the grammar (5) ,as shown in Table 3,  represents two pattern 
matches; +(m(c), R)) and +(m(R),R)).The pattern with the minimum cost is then 
selected  as the one that matches the input. Thus a pattern matcher can be adapted 
to the behavior of PA-Parser. However, an opposite approach has been suggested 
in [8], where PPA has been adopted and tightly coupled with the construction of a 
general pattern matcher.      

2. The PA–Parser has a deterministic behavior on input drawn from non-ambiguous 
context free grammars. This is demonstrated by examples 2 and 9, where only one 
parsing path is constructed for the given input.   

In addition to its generic behavior, a general comparison of PA-Parser with 
other bottom-up parsing algorithms such as LR,  RI [1, 10] has proved that our 
algorithm is conceptually simpler and requires less states. The simplicity is 
achieved based on the fact that our approach is tabular and uses a variation 
of finite automata and its subset construction. Thus, it features their simplicity, 
as well as their performance with additional overhead due to the embedded 
semantic actions. However, a particular comparison with similar approaches 
is as follows:  

  LR parsers require that the input grammar is a deterministic [1]. In 
contrast, the input grammar for PA-parser is generic which can be either 
instantiated by regular tree or by deterministic and nondeterministic 
context-free grammars Further more, parsing the same string by both 
parsers has shown that the PA-parser has less  number of moves (shifts) 
by  20% than the ones for LR( 0 ) as demonstrated by Example 9 , where  
the LR(0) [1] automaton for the same grammar consists of 12 states, while 
our parser consists of 15 states. In addition to the absence of parsing stack 
activities, no goto transitions on nonterminals are used by our parser. 
Hence, their pre-computation and run time overheads are eliminated.       

 GLR parsers [14] cover nondeterministic context-free grammars by using a 
graph structured stack constructed at run time to represent in pseudo-
parallel multiple parse contexts. In contrast, the proposed parser is based 
on a nondeterministic predictive automaton, the states and the parsing 
actions of which represents   multiple parse contexts in terms of  alternative  
derivation /reduction paths. At run time, these are regenerated in terms of 
alternative parsing paths (sequence of transitions and reductions) with 
respect to an input string. Further more, applying our parsing approach on 
a pathological example (S  SSS |SS | a) as given in [14], a considerable 

reductions in number of states and transitions (number of visited edges) 
are achieved.  The number of the states is fixed, but they are instantiated. 
Hence, a trade off is made between a space and parsing time, due to 
states instantiation. 

 Reduction incorporated parsers as introduced in [2] and further optimized in 
[3] are based on constructing a tier (RIA) that is extended to a pushdown 
automaton by RCA to handle recursion. In contrast our approach uses a 
nondeterministic automaton that is augmented by semantic actions to 
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dynamically create instances of RCA states during parsing. Compared to 
the tier constructed in [2], PPA has less number of states. Also, Its 
optimization to RBA produces an automaton with the same size as the 
optimized version of the pushdown automaton as given in [3]. This  is 
demonstrated by Example 9 using the same grammar given in [3]. Our 
optimization approach is based on a subset construction ( -closure). 

Hence, it is more efficient than the heuristic construction steps given in [3].  

 Deterministic pushdown automata have been used to recognize regular 
tree languages as suggested in [9]. However, such use is based on 
creating  context-free grammar that generates a regular language in postfix 
form. Such a grammar is in Reversed Griebach Normal Form [9]. In 
contrast, our approach is based on instantiating a generic grammar (GG) 
by a regular tree grammar that is then mapped into a recognizing 
automaton. GG is assumed to be a general context-free grammar and no 
need to transform the input string into a postfix notation.         

 Shift-resolve parser [7] is based on a nondeterministic automation which is 
then determinized using an approach that generalizes similar construction 
for LR parsers. Using two stacks, it performs reductions with a pushback 
down to point where reductions should take place. In contrast, our 
approach generalizes similar construction for deterministic finite automata. 
The reductions are performed where they should take place using no 
parsing stack. The parse of the same string by the shift-resolve, as given in 
[7]  and by our approach, as given in Example 8, shows a reduction in 
parsing-table size as well as in parsing  steps.            

7. Conclusion  

In this paper, we have proposed and implemented a new parsing approach 
that is characterized by its soundness, generality and efficiency. The parsing 
approach is based on an extended version of a recently developed position 
parsing automaton (PPA). The states and the transitions of the PAA are 
defined based on concepts from the LR (0) items, the finite deterministic 
automata and a newly introduced concept of the so called state instantiations. 
The PAA constitutes a nondeterministic bottom–up automaton that is 
transformed into a reduced one (RBA) in efficient way. Such automaton 
simulates the parsing behavior of tree automata as well as the shift-reduce 
automata. Due to their simplified construction principle, the construction 
overhead for both PPA and RBA is maintained to a minimum.  Considering 
grammars used by similar approaches, both have been shown as powerful 
parsing models for ambiguous context-free grammar as well as for regular 
tree grammars. Although, the considered grammars are not as sophisticated 
as real languages, they are representative ones. Compared to similar 
approaches, their respective parsing by the proposed one has produced less 
parser size and fewer shifts-reduce parsing steps. In fact, RBA is a finite 
automaton that is dynamically extended to incorporate recursion. Such 
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extension is based on embedded semantic actions to create instances of  the 
RBA states and transitions. Hence, it constitutes an additional overhead 
during parsing. However, this overhead is reduced due to the instantiation 
approach. According to such an approach, each RBA state is attached an 
index and subsequently several state instances can be created and 
terminated by appending and deleting different instance identifiers atop of the 
state’s attached index. Thus, the space required by state instantiations is 
minimized and a trade off is made between space, RBA construction and 
parsing time. As a future work, further experiments well be performed toward 
achieving more deterministic behavior for the ambiguous grammars at a 
further reduction of the instantiation cost.     
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