
DOI 10.2298/CSIS101109004J

A Generic Parser for Strings and Trees

Riad S Jabri

Computer Science Department
King Abdullah II School for Information Technology

University of Jordan, Amman 11942 –Jordan
jabri@ju.edu.jo

Abstract. In this paper, we propose a two fold generic parser. First, it
simulates the behavior of multiple parsing automata. Second, it parses
strings drawn from either a context free grammar, a regular tree
grammar, or from both. The proposed parser is based on an approach
that defines an extended version of an automaton, called position-
parsing automaton (PPA) using concepts from LR and regular tree
automata, combined with a newly introduced concept, called state
instantiation and transition cloning. It is constructed as a direct mapping
from a grammar, represented in an expanded list format. However, PPA
is a non-deterministic automaton with a generic bottom–up parsing
behavior. Hence, it is efficiently transformed into a reduced one (RBA).
The proposed parser is then constructed to simulate the run of the RBA
automaton on input strings derived from a respective grammar. Without
loss of generality, the proposed parser is used within the framework of
pattern matching and code generation. Comparisons with similar and
well-known approaches, such as LR and RI, have shown that our
parsing algorithm is conceptually simpler and requires less space and
states.

Keywords: bottom-up automata, parsing, regular tree grammars.

1. Introduction

Without loss of generality, in this paper we propose a generic parser within
the framework of code generators, in which machine instructions are specified
by patterns that are drawn either from context-free grammars (LALR), regular
tree grammars or from rewrite systems [1, 4, 5,12,15]. Pattern matching is
then performed using respective parsing automata to generate an optimal set
of machine instructions [6, 15]. The LALR parsing automata are efficient but
too restrictive to handle patterns drawn from ambiguous context-free
grammars. In contrast, the tree parsers are not restrictive but their
optimization is a complex task. Approaches to handle ambiguous context-free
grammars have been suggested in [14]. However, they are not intended to
handle regular tree grammars. On the other hand, approaches to combine LR
parsing and bottom-up tree parsing do exist, such as the one suggested in [9].
It is based on transforming a tree automaton recognizing a regular tree

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 382

language to a pushdown automaton recognizing the same language in postfix
notation. In addition to the transformation overhead, this approach assumes
that the transformed grammar is in normal form, deterministic and without
hidden-left and right recursion [9]. Hence, there is a need for a parsing
approach that admits ambiguous grammar and maintains the efficiency of
LALR parsers and the expressive power of tree parsers. To satisfy such a
need, we propose an approach for a hybrid parsing of both general context-
free and regular tree grammars. According to the proposed approach, and as
a framework for parsing, a generic grammar (GG) is defined as one that can
be either instantiated by a context-free grammar or by a regular tree grammar.
GG is then represented in an expanded list format (PLF). As such, PLF
constitutes a prefix representation of derivation trees for the grammar GG,
where the ranked terminals are considered as nonterminals and the recursive
terminal symbols are terminalized. Hence, the repeated expansion in the
derivation trees is incorporated as recursion-invocation and recursion-
termination. The recursion-invocation constitutes an -transition from the

recursive occurrence to its respective head, while recursion-termination
implies an -transition from the recursive-head to its respective occurrence.

Hence, the recursive occurrence initiates a derivation/reduction path as the
one initiated by its respective head and considered as an instance of the
original one. To distinguish between instances initiated by different recursive
occurrences, an instance-identifier (ID) is assigned to each initiated path.
Therefore, PLF with incorporated recursion implies initiation and termination
of derivations/ reductions paths, as well as respective instances of these
paths. A nondeterministic parsing automaton, called position parsing
automaton (PPA), is then constructed in terms of a set of state instances and
respective parsing actions as a direct mapping from the PLF of the production
respective to the start symbol S of GG. PPA is defined based on a newly
introduced concept of state and transition instances. According to such
concept, Each PPA state (q, (inst)) is defined with an implicit index (inst) = .

State instances are then created and terminated by appending and deleting
instance-identifiers (ID) atop of the index (inst). The PPA transitions are
augmented by semantic-actions that are performed at run time to create and
terminate instances of PPA states and transitions in accordance to the
incorporated recursion-invocation and recursion-termination. In addition to
the newly introduced concept of state and transition instantiation, the states
and transitions of the PPA automaton are defined based on combined
concepts from LR (0) automata, regular tree automata. PPA has been
adopted in [8] to construct a pattern matcher, where its parsing behavior has
been adapted and synchronized with pattern matching and code selection. In
this research, we emphasize the generality and soundness of PPA parsing
behavior. Hence, we extend its behavior to cover subtle grammar cases. This
includes direct and indirect (hidden) left / right recursion and ambiguous
grammars with shift/reduce and reduce/reduce conflicts. In addition, we
optimize its mapping from PLF by following a concurrent and a gradual
construction approach for both PLF and PPA. As a simulator for tree parsing
automata, finite automata and shift–reduce automata, the generic behavior of

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 383

PPA has been enriched by conceptual explanation, theory and graphical
representation. However, PPA is a nondeterministic automaton. To obtain a
more deterministic parsing behavior, PPA is efficiently transformed into a
reduced one, called RBA, according to a proposed subset construction
approach. The RBA automaton is represented by a parsing table that
specifies the parsing actions respective to a given state and each input
symbol. A parser is then constructed to simulate the run the RBA automaton
on strings derived from a generic grammar. Furthermore, the proposed parser
is based on formalizing the parsing process and its solution in a way that
guarantees its soundness, generalization and its efficient implementation.
This was demonstrated by the proposed theory and by the respective
implementation algorithms.

Our parsing approach is motivated by reduction incorporated parsing
introduced in [2, 3] and further developed in [10, 14]. According to these
approaches, a finite automaton for terminalized grammar (RIA) is constructed
to handle the regular parts of the language. Such automaton is then extended
by recursive call automaton (RCA) to handle recursion. However, the
suggested automaton in [2,3] does not handle hidden left recursion. In
addition, the construction approach is based on by hand generated
terminalization. Once terminalization has been detected, RCA is constructed.
In [14] RIA has been extended to handle hidden-left recursion, while in [10] an
automatic computation for terminalization has been suggested. In contrast,
our approach handles hidden and direct left/right recursion. Terminalization is
handled as recursion-invocation and recursion-termination during the
concurrent construction of PLF and PPA. In addition, and rather than, the
static creation of RCA, an instance is dynamically created during parsing. This
achieved by the newly introduced concept of state instantiations and
embedded semantic actions. Furthermore, our approach is embedded by
appropriate concepts to parse regular trees. Further comparisons with these
approaches and similar ones are given in Section 6.

The remainder of this paper is organized as follows. Section 2 presents
preliminaries. Section 3 presents the proposed parsing approach, followed by
the definitions of the newly introduced concepts. This includes the proposed
nondeterministic parsing automaton (PPA) and the theory on which it is
based. Section 4 presents the PPA construction algorithm. Section 5 presents
the subset construction and subsequently the proposed parser, followed by a
discussion and a conclusion that are given in section 6 and section 7
respectively.

2. Preliminaries

For our further discussions, we assume the following definitions based on the
ones given in [1, 8, 11, 12, 13, 15].
Definition 1. The 4-tuple G = (Σ, N, P, S) defines a context-free grammar,
where:

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 384

 Σ is an alphabet of terminal symbols.

 N is a finite set of nonterminal symbols, where SN is the start symbol.

 P is a finite set of productions p having the form p: AV, where A N

and V(ΣN)*.

Definition 2. A ranked alphabet Σ is a finite set of symbols (operators,
constructors) such that each member of Σ has a nonnegative integer, called a
rank (arity). The rank is defined by the function arity: Σ N, where

 N denotes the set of natural numbers.

 The terminals having a rank 1 are called operators and the ones having a
rank =0 are called constants.

 The members of Σ are grouped into the subsets Σ0,…, Σn such that Σn = {a
 Σ | arity (a) = i, i(0,1,…,n)}.

Definition 3. A tree language over Σ, denoted by T (Σ), consists of all

possible terms that are inductively defined as:

 If a Σ0 then a T(Σ)

 If t1,..., tn T(Σ) and a Σn then a (t1,…, tn) T(Σ).

 These terms represent trees with internal nodes and leaves labeled by
operators and constants respectively. The number of children of a node
labeled by an operator a is arity (a).

Definition 4. (Regular tree grammar). The 4-tuple G = (Σ, N, P, S) defines a
regular tree grammar, where:

 Σ is a ranked alphabet

 N is a finite set of nonterminals with an assumed rank =0, where SN is
the start symbol.

 P is a finite set of productions p having the form p: AV, where A N

and VT (ΣN) is a prefix encoding of a tree over (ΣN).
We denote A and V by LHS(p) and RHS(p), to represent the left hand side

and the right hand side of the production p respectively. Given p: AV and

t1 T (ΣN), we say t1 derives t2 T(ΣN) in one-step, denoted by
t1 t2, if LHS (p) t1 and RHS (p) t2. Applying zero or more such

derivation steps on t1 is denoted by t1 *t2, where each step derives a tree

t T (ΣN).

Definition 5. (Regular tree language). The language generated by the
grammar G is defined by the set L (G) = {t |t T(Σ) and S * t}.

Definition 6. (Regular tree parsing). Parsing a tree t L (G) is the process
of constructing a possible S– derivation tree for t, which is inductively defined
as a tree with a root labeled by the start grammar symbol S and with children
labeled by the RHS(S), where:

 The children labeled by terminals Σ0 are leaves. The children labeled by
nonterminals are interior nodes and constitute roots for V-derivation trees,
each one of which is inductively defined as S-derivation tree.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 385

 The children labeled by ranked terminals Σn are interior nodes and

constitute roots for sub trees, each one of which is inductively defined as S-
derivation tree. However, the children of such sub trees are labeled by the
grammar symbols composing the arity of their respective roots.

Definition 7. Generic Grammar (GG) A generic grammar is a 4-tuple GG= (Σ,
N, P, S) that is either instantiated by a context-free grammar, as given by
Definition 1, or by a regular tree grammar, as given by Definition 4. However,
the ranked terminals are nonterminalized as given by Definition 8.
Subsequently, in our further discussion, we use the following generic terms.

 Derivation tree (DT): Denotes either an S-derivation tree or a classical one
for the context free grammars.

 String: Denotes either a prefix encoding of the input trees or sentences
generated by a context free grammar.

Definition 8. Given a (t1,…,tn) T(Σ), the ranked terminal (a Σn) is

nonterminalized as a → t1… tn, where each ranked terminal in (t1,…, tn) is
inductively nonterminalized.

Example 1. Given GG = (Σ, N, P, S), it can be instantiated with a regular tree
grammar as follows:

 Σ = {Σ0, Σ1, Σ2}, where Σ0= {c}, Σ1= {m} and Σ2 = {+}

 N = {R}, R = S and P= { R→ +(m(c),R) | + (m(R),R) | c }

 Such grammar generates strings (trees) of the forms: c, + (m(c), c),…,
+(m(c),+ (m(c),c)).

 GG can be instantiated with a context-free grammar as follows:

 Σ= Σ0 = {a, b, c}; N = {S, A , B} and S is the start symbol

 P = {S → A b , A → a B , B → c | c B}

 Such grammar generates strings (sentences) of the forms: acb, accb,
accccb,...

3. The proposed parsing approach

Given a generic grammar GG, we propose a parsing approach based on
simulating the run of a reduced bottom--up automaton (RBA) on strings
generated by GG. RBA is obtained as result of a subset construction applied
on a proposed nondeterministic automaton (PPA). Such automaton is an
extended version of a one introduced in [8]. It is constructed in terms of a set
of states and parsing actions as a direct mapping from the production
respective to the start symbol S of GG, which is represented in the expanded
list format (PLF). According to PLF, a production p: A → in GG is defined

as PLF (A) = A (), where each nonterminal A in is inductively

replaced by the PLF respective to its corresponding production(s). The

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 386

recursive occurrence of the symbol A in RHS (p) is not replaced by a
corresponding PLF. Only, it is designated as recursive instance of its
respective head. In addition, each grammar symbol in PLF is assigned a
doted integer as an index to reflect its occurrence order (position), as well as
its nesting depth. As such, PLF constitutes a prefix representation of
derivation trees for the grammar GG, where the repeated expansion in the
derivation trees is represented as an incorporated recursion. Further, the
positions assigned to the grammar symbols of PLF represent their paths in a
respective derivation tree. Hence, the types of the grammar symbols and
their occurrence order in PLF imply derivation/reduction relationships. The
PPA states and parsing actions are then defined based on such relationships,
using concepts from tree parsing and shift-reduce automata that are
combined with newly introduced ones to handle the incorporation of recursion
in PLF. Such concepts include state-instantiation, transition-cloning and
transitions having embedded semantic-actions. In this section, we present the
PLF form and PPA automaton. In the following sections, we present the
subset construction of PPA into the reduced RBA automaton and the
proposed parser. In addition and where appropriate, we present theory to
demonstrate the generality and the soundness of the proposed approach.
However, we immediately present an example to illustrate the proposed
approach and to facilitate our further discussion.

Example 2. Consider the grammar of Example 1. A PLF form respective to
the start grammar symbol S is defined as PLF (S) = S0 (A1 (a1.1, B1.2 (c1.2.1)),
b2). It is a prefix representation of the derivation tree for GG, as shown in Fig.
1(a). The grammar symbols are attached an index to represent their
respective positions, for examples: The index (0) attached to S, defines S as a
head and the indexes assigned to A and b indicate that they constitute the
first and the second subordinates of S respectively.

 S0 S0 S0
i
 S0

f

 r r

 A1 b2 A1 b2 A1
i
 A1

f
 b2

i
 b b2

f

 r r

 a1.1 B1..2 a1.1 B1..2 a1.1
i
 a a1.1

f
 B1..2

i
 B1..2

f

 r r

 c1.2.1 c1.2.1 c1.2.1
i
 c c1..2.1

f

 (a) (b) (c)

Fig. 1. (a) A derivation tree for the grammar GG of Example1. (b) Derivation/reduction
relationships implied by PLF respective to GG. (c) PPA automaton respective to GG.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 387

The derivations/reductions implied by PLF (S) are shown in Fig.1 (b) in terms

of the nested paths S0
 A1 (

(a1.1
 B1..2 (

 c1.2.1)

r B1..2) r A1)
 b2 r S0, where the outermost path

indicates the derivation S0 A1 b2 and the reduction to S0. The innermost

paths indicate the derivations A1 a1.1 B1.2 and B1..2 c1.2.1 as well as the

reductions to B1..2 and A1. Further, the derivations are performed according to
the rightmost derivation first, and the reductions according to the leftmost
phrase first. Hence, a bottom-up parsing automaton (PPA), as shown in Fig.

1(c), can be constructed by a direct mapping from PLF(S) as the tuple (T, qin,

qfin, Q, SPA, RPA), where:

 T = () is the input alphabet, where represent strings generated

by the GG grammar.

 Q is the set of PPA states, where qin and qfin are the initial and the final
ones.

 SPA and RPA are the sets of shift and reduce parsing actions respectively.
The PPA construction proceeds as follows:

 Each grammar symbol V (N) is represented by a pair of
abstract ones, defined as (V

i
, V

f
), to indicate a prediction and an

acceptance of V in an assumed parsing. Consequently, respective
PPA states are defined by the pair (q

i
= V

i
, q

f
 = V

f
), where: q

i
 is an initial

state instantiated by V
i
 and acts as a predictor (scanner) for V. The

state q
f
 is a final one, instantiated by V

f
 and acts as its respective

acceptor. Hence, the PPA states are constructed by the set Q = { (qp
i
=

Vp
i
, qp

f
 = Vp

f
) | VpPLF (p(S))}. For example, Fig. 2(c) shows a

transition graph constructed in terms of a set of nodes instantiated by
respective grammar symbols from PLF(p(S)). These nodes constitute
the set Q. For simplicity, the symbols (q

i
, q

f
) and (V

i
, V

f
) are

interchangeably used to denote respective PPA states.

 The derivations/reductions implied by PLF (S) are mapped into
respective PPA parsing actions as follows:

o The -transitions are mapped into the set {((q1,) =

qj)}SPA, for example the -transitions S0
i

 A1
i
; b2

f

r S0
f
 and a1.1

f

 B1..2
i
 are mapped into (S0

i
,)

= A1
i
 ; (b2

f
) = S0

f
 and (a1.1

f
,) = B1..2

i
. Such parsing

actions represent the following: -transitions from the states

instantiated by head grammar symbols to the states of their
immediate subordinates; -transitions from the states of last

subordinates to the states of their respective heads; and -

transitions from states of grammar symbols to the states of
their respective successors (siblings).

o The derivations of terminal symbols are mapped into the set
{((q1, V) = qj)} SPA of respective move-transitions

defined between their corresponding pairs of initial and final

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 388

states. For example, the derivation of the symbols a and c are
mapped into the move-transitions (q1, a) = a1.1

f
 and

(c1.2.1
i
, a) = c1..2.1

f
.

o The reduce-transitions r indicate reductions to LHSs of

the productions for respective nonterminal symbols. Hence,

these transitions are mapped by the set { (q, V) = reduce

(p)| V N, q= V
f
 and V is LHS (p)} of reduce parsing actions

for final states of their respective nonterminals. For example,

the reduce-transition b2
f
 r S0

f
 is mapped as the reduce

parsing action (S0
f
 , S) = reduce(S → A b).

Once PPA has been constructed, a subset construction (-closure) is then

applied on the resulting automaton to obtain a reduced one (RBA), as shown
in Fig.2, where:

 The RBA states are constructed as the set Q = { q0= (S0
i
, A1

i
 , a1.1

i
), q1 =

(C1.21
i
, B1.2

i
, a1.1

f
), q2 = (b2

i
, A1

f
 , B1.2

f
 , c1.2.1

f
), q3 = (S0

f
 , b2

f
)} of -closures

 The RBA parsing actions are constructed as shift parsing actions defined
by the set SPA= {ζ (q0, a) = q1, ζ (q1, c) = q2, ζ (q2, b) = q3} and reduce
parsing actions defined by the set RPA = {δ (q2, B) = reduce (B → c), δ (q2,
A) = reduce (A →aB), δ (q3, S) = reduce (S →Ab)}.

 Finally, the run of RBA on the input acb proceeds according to the

transitions q0 a q1 c q2 b q3, where the reductions B → c,

A →aB and S →Ab are performed at the states q2, q2 and q3 respectively.

 a c b

Fig. 2. RBA automaton for the grammar of Example 1

Example 2 demonstrates the proposed parsing approach using a simple
context-free grammar. However, such approach handles regular tree
grammars and subtle cases such as embedded recursion and grammar
productions with different alternatives, as presented in the following sections.

3.1. The production list format (PLF)

Let the 4-tuple (Σ, N, P, S) be a GG grammar, where: (p: A →α) P and
α= (V1…Vj…Vn) (ΣN)*. We inductively define the production list format
respective to p as PLF (A) = A (PLF (V1)),…, PLF(Vj),…, PLF(Vn)), where:

 Each nonterminal Vj is replaced by the PLF (Vj) defined for its respective
production.

 q0 :

 S0
i

 A1
i

 a1.1
i

 q1 :

 C1.21
i

 B1.2
i

 a1.1
f

 q2 :

 b2
i

 A1
f

 B1.2
f

 c1.2.1
f

 q3 :

 S0
f

 b2
f

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 389

 Each ranked terminal Vj is rewritten by its respective PLF (Vj), defined as
PLF (Vj) = (PLF (Vj1),…,PLF (Vji),…,PLF (Vjn)), where: Vj (Vj1, Vji,...,Vjn)
T(Σ N).

 PLF(Vj) = Vj, if Vj Σ0.

 Each grammar symbol in PLF (A) is assigned an index reflecting the
position at which it occurs within PLF (A). The index is computed using a
function (IND) that is inductively defined as:
- IND (Vj) = { ε}, if Vj Σ0.

- IND (PLF(Vj)) = {0, 1. IND (PLF (V1j)),…,n. IND (PLF (Vnj))}, if Vj N and

 a production (Vj → V1j… Vnj) P
- IND (PLF(Vj)) = { ε, 1. IND (PLF (V1j)),…,n. IND (PLF (Vnj))}, if Vj Σn

and Vj(V1j… Vnj) T(Σ N).
 To cover the alternative productions and the productions having

embedded recursion, the definition for PLF is extended as follows:

 Let (p: A →α) be a production having recursion, where α= V1…Ai…Vn.

The PLF respective to p is defined as PLF (A) = Ar∗0 (PLF (V1),..., Ar∗i
,…,PLF (Vn)), where the grammar symbol A is expanded by its definition
(production) while its respective recursive-occurrence Ai is rewritten,

without further expansion (terminalized). In addition, the head Ar∗0 and the

recursive-occurrence Ar∗i are designated by appending the mark (r*) as a
prefix to their respective index.

 Let (p: A →{ αn}) be a production with alternatives. We represent p as A→
A(1) | A(2) |…|A(j)|…| A(n), where A(j) →αj is the alternative (j). The PLF

form respective to p is then defined as PLF (A) = A0 ((PLF (A (1)) |….| PLF

(A (n))), where the grammar symbols of different alternatives are
designated by the number of the alternative to which they belong. However,
they are indexed according to their positions in the designated alternative.

PLF in its extended form constitutes a prefix representation of alternative
derivation trees with incorporated recursion. Hence, it implies alternative
sequences of derivations and reductions, where the embedded recursion is
incorporated as recursion-invocation and recursion-termination. The
recursion-invocation constitutes an -transition from the recursive occurrence

to its respective head, while recursion-termination implies an -transition

from the recursive-head to its respective occurrence. Hence, the recursive
occurrence initiates a derivation/reduction path as the one initiated by its
respective head and considered as an instance of the original one. To
distinguish between instances initiated by different recursive occurrences, an
instance-identifier (ID) is assigned to each initiated path.

Example 3. Let GG be a regular tree grammar as given in Example1. A PLF
form respective to the start symbol R is defined as

PLF (R) = Rr*0 (PLF (R (1)) PLF (R (2)) PLF (R(3)),where:

PLF (R(1) = Rr*0 (1) (+1(1) (m1.1(1) (c1.1.1(1)), Rr*1.2(1)) ;
PLF (R(2) = Rr*0 (2) (+1(2) (m1.1(2)(Rr*1.1.1(2)), Rr*1.2(2)) and

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 390

PLF (R(3) = Rr*0 (3)(c1(3)).
 PLF(R) is a prefix representation of three alternative derivation trees with

incorporated recursion, as shown in Fig. 3, where Rr*1.2(1), Rr*1.1.1(2) and
Rr*1..2(2) designate such recursion. Consequently, PLF(R) implies three
alternative sequences of derivations and reductions as shown in Fig. 4.

 Rr*0

 Rr*0 (1) Rr*0(2) Rr*0(3)

 +1(1) +1(2) c1(3)

 m1.1 (1) Rr*1.2(1) m1.1(2) Rr*1..2(2)

 c1.1.1 (1) Rr*1.1.1(2)

Fig. 3. Derivations trees respective to the grammar of Example 3

 Rr*0

 r

 Rr*0 (1) r Rr*0(3)

 r r

 +1(1) c1(3)
 r

 m1.1 (1) Rr*1.2(1)

 r ri rt

 c1.1.1 (1) Rr*0 Rr*0

Fig. 4. The derivations/ reductions implied by PLF respective to the grammar (3).

The recursion-invocation is denoted by ri and constitutes the -transition

from Rr*1.2(1) ri
 Rr*0, while the recursion-termination is denoted by rt

and constitutes the -transition Rr*0 rt
Rr*1.2(1). Hence, the recursive

occurrence (Rr*1.2(1)) initiates a derivation/reduction path as the one initiated
by its respective head (Rr*0). An instance-identifier (ID) is assigned to the
initiated path from Rr*1.2(1) as ID= Rr*1.2(1), while the original one has ID= .

The instantiated path ends upon a reduction to the recursive-head, where
then recursion-termination is performed. Hence, PLF with incorporated
recursion implies initiation and termination of derivations/ reductions paths, as
well as respective instances of these paths.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 391

3.2. The position parsing automata (PPA)

PPA is a nondeterministic automaton constructed in terms of a set of states
and parsing actions respective to a GG grammar, represented in its expanded
list format PLF(S). For example, Fig. 5 shows PPA respective to the grammar
of Example 3. As such, PPA is defined as given below based on the following
concepts and assumptions for its respective states and parsing actions:

 Rr*0
i
 Rr*0

f

 Rr*0
i
(1) Rr*0

f
(1) Rr*0

i
(3) Rr*0

f
(3)

 Rr*0
f
 Rr*0

i
(2) Rr*0

f
(2) Rr*0

f

 +1

i
 (1) +1

f
 (1) c1

i
 (3) c c1

f
 (3)

 +1

i
 (2) +1

f
 (2)

 m1.1

i
(1) m1.1

f
(1) Rr*1.2

i
(1) Rr*1.2

f
(1)

 m1.1
i
(2) m1.1

f
(2) Rr*1.2

i
 (2) Rr*1.2

f
(2)

 Rr*0

i
 Rr*0

f
 Rr*0

i
 Rr*0

f

c1.1.1

i
(1) c c1.1.1

f
(1) Rr* 1.2.1

i
(2) Rr* 1.2.1

i
(2)

 Rr*0

i
 Rr*0

f

Fig. 5. PPA respective to the grammar of Example 3.

 GG is either instantiated by a context-free grammar or as a regular tree
grammar. The set of productions P is generic and is either instantiated with
grammar productions or ranked trees (terms). Hence, PPA includes parsing
actions respective to the derivations and reductions of ranked trees. The
derivations include shifting (reading) the subordinates of their respective
ranked terminal. The reductions indicate the completion of such read.
Therefore, reading the subordinates of a given ranked terminal are
considered as a respective reduction, denoted by coherent-read, for
example the string m(c) represents the ranked terminal m. Its respective

derivations / reductions as shown in Fig.4 are: m1.1 (1) r c1.1.1 (1))

r m1.1 (1).They include an -transition and a reduce-transition which

are mapped into the PPA states m1.1
i
(1), m1.1

f
(1), c1.1.1

i
(1) and c1.1.1

f
(1)

as shown in Fig. 5 with the following parsing actions: (m1.1
i
(1),) =

c1.1.1
i
(1) SPA, (c1.1.1

i
(1), c) = c1.1.1

f
(1) SPA, (c1.1.1

f
(1),) =

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 392

m1.1
f
(1)SPA and δ(m1.1

f
(1), m) = reduce (m →m(c)), where the

subordinate c of m is read, and a reduction to the nonterminalized m is
performed. Such reduction is considered as a coherent read of m(c).

 PLF (S) implies instances of alternative derivations/ reductions,
distinguished by respective instance identifiers (ID), as explained in
Example 3. Therefore, such PLF is mapped into instances of alternative of
PPA states and parsing actions. Such mapping proceeds as given in

Example 2, where PPA is formulated as the tuple (T, qin, qfin, Q, SPA,

RPA). However, it is extended to include instances of alternative states and
parsing actions as follows:

 The set Q = { (qp
i
= Vp

i
, qp

f
 = Vp

f
) | Vp PLF (S)} of PPA states, as

given in Example 1, is extended by the concept of a state-instance to
have the form Q = {(qp

i
(alt)(inst) = Vp

i
(alt)(inst)), (qp

f
(alt)(inst) =

Vp
f
(alt)(inst))}, where the index (alt) represents the alternative to which

each pair of states (qp
i
, qp

f
) belongs and (inst) is an implicit index to

represent different instances of the pair. Initially, the PPA states are
created with the implicit index (inst) = . At run-time, state-instances are

created upon initiation of an instance of a derivation/reduction path. Such
creation is indicated by appending the instance-identifier (ID) of the
initiated derivation/reduction path atop of the implicit index (inst) of its
respective states. For example, let the derivations/ reductions implied by
PLF (S) be as given in Fig.4. A possible path initiated by the transition

Rr*1.2(1) ri
 Rr*0 is: Rr*0 ri

 Rr*0(3)
 c1 (3) Originally,

such path has respective PPA states Rr*0
i
(3)() and c1

i
 (3)() as

shown in Fig.5. However, upon the transition Rr*1.2(1) ri
 Rr*0 ,

respective state instances are created as Rr*0
i
(3)(()(Rr*1.2(1)) and c1

i

(3)(()Rr*1.2(1)). Since recursion-invocation and recursion-termination

establish instances of derivation/reduction paths with nested life-time,
the (inst) used as an index for PPA states is organized as a stack
structure, onto which an ID is pushed upon recursion-invocation and
thereafter popped upon recursion-termination.

 To handle the initiation and termination of instances of PPA states, the
specifications of the parsing actions SPA and RPA are extended by
semantic actions which are performed at run time as integral parts of the
performed transitions and reductions. Thus, SPA and RBA are specified
as SPA = { (q1(alt)(inst), V) = q2(alt)(inst)) :: { semantic-action} and RPA

= { δ (q1(alt)(inst), V) = reduce(p(V)) :: { semantic-action} respectively.
The specified semantic-actions constitute program segments defined in
accordance with recursion-invocation and recursion-termination as
follows:

 The recursion-invocation is initiated by a transition of the form:
 (qi(alt)(inst), V) = (qrj(alt)(inst)), where qi is a state which

immediately precedes the one respective to a recursive-
occurrence(qrj(alt)(inst)). The –transition (qrj(alt)(inst),) =

(qr0j(alt)(inst)) :: { recursion-initiation } is then performed to the

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 393

respective recursive-head (qr0(alt)(inst)), where recursion-initiation is
a semantic-action defined as: Top(inst(qr0)) = ID (qrj) to push the
instance-identifier atop of the implied index (inst) of qr0 . Further on,
instances of PPA states are subsequently created according to the
transitions respective to qr0. Such creation is achieved by augmenting
each transition (qi(alt)(inst), V) = qj(alt)(inst)) SPA by an implicit

semantic-action defined as Top(inst(qj)) = Top(inst(qi)) to propagate
the instance-identifier from qi to qj. Hence any transition (

qr0(alt)(inst), V) = qj(alt)(inst)) SPA will propagate ID (qrj) and a
respective instance of a derivation/reduction path will be established.
For example, and considering Fig. 4, the PPA transition which

initiates an instance of the path Rr*1.2(1) ri
 Rr*0 is:

(Rr*1.2(1)(),) = Rr*0 () :: { recursion-initiation} SPA, where

the –transition to Rr*0
i
 and { recursion-initiation} are performed. As a

result, the instance-identifier Rr*1.2(1) of the initiated path is pushed
atop of (ins) respective to Rr*0 (). Subsequent transitions in

accordance with current input are then performed. These transitions
create instances of PPA states respective to the initiated
derivations/reductions. Assuming an input (c), the subsequent PPA
transitions, are: Rr*0

i
()(Rr*1.2(1))

(Rr*0

i
(3)()(Rr*1.2(1))

(c1.1.1
i
(3)()(Rr*1.2(1)) c

c1.1.1
f
(3)()(Rr*1.2(1)) ,as shown in Fig.5.

 The recursion-termination is established by a transition from a state
which immediately precedes the one respective to final state of a
recursive-head, where then an –transition is performed to the final

state respective recursive-occurrence. Hence, the reduce parsing
action respective to the final state q of a recursive-head is extended
by semantic-action, denoted by recursion-termination to execute a
program segment ({IF (Top (ID (q))) { t = Pop(ID(q)); perform –

transition to t }) that terminates the initiated path and returns the
control (–transition) to the final state respective to a recursive-

occurrence. For example, and assuming an input (c) the above-
illustrated path is terminated by the following sequence of PPA
parsing actions: (c1.1.1

f
(1) ()(Rr*1.2(1)),) = Rr*0

f
(3)()(Rr*1.2(1)),

 (Rr*0
f
(3)() (Rr*1.2(1),) = Rr*0

 f
()(Rr*1.2(1)). Once a transition to

Rr*0
 f
 (3) has taken place, the reduce parsing action δ(Rr*0

 f
 (3),R(3)) =

reduce(Rc)::{recursion-termination} and the augmented semantic-

action are performed. As a result, Rr*1.2(1) is popped from (inst)
respective to Rr*0

f
 (3), and –transition to Rr*1.2(1) is performed. In

addition, (inst) respective to Rr*1.2(1) is established as .

 To handle direct and indirect left recursion, the recursive-heads, the
recursive-occurrences and their mutual –transitions are designated

as cyclic. The cyclic –transitions and {recursion-initiation} are not

performed. Instead, an instance of the recursive-head is created with
respect to the recursive-occurrence as having all the transitions other

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 394

than the cyclic ones. In addition to its transitions, a cyclic recursion-
termination (CRT) is added to the parsing actions of the final states
respective to the recursive- heads. CRT constitutes a default –

transitions to the final states respective to the recursive-occurrences,
as Illustrated later by Example 9.

Based on the above assumptions, the definition of PPA is formalized as
follows:

Definition 9. (Position Parsing Automaton). Let (Σ, N, P, S) be a GG

grammar and PLF(S) be the PLF form respective to the start grammar symbol

S. The 5-tuple PPA (p) = (T, Q, qin, qfin, SA, SPA, RPA, CR) constitutes an

extended definition for the position parsing automaton (PPA), where:

1. T = () and represent strings generated by the GG grammar.

2. qin and qfin are the initial and final states.

3. Q =
n

alt 1
 (qp

i
(alt)() = Vp

i
(alt)(), qp

f
 (alt)() =Vp

f
(alt)()) is the set the

PPA states respective to the individual grammar symbols Vp in n alternatives of
PLF(p(S)). Having a stack-structured index (inst), each PPA state constitutes a run-
time nested state-instance created by PPA parsing actions in accordance with a
dynamically incorporated recursion. Initially the PPA states are created with (inst) =
().

4. SA = {recursion-initiation, instance-propagation, recursion-termination} is a set of
semantic-actions that are responsible for initiation, creation and termination of
instances of PPA states and transitions with respect to embedded recursion.
These actions are embedded within the PPA parsing actions, and executed when
such actions are applied during parsing.

5. SPA: (q1(Alt)(inst), V) = q2 (Alt)(inst),) :: {semantic-action} is a move parsing

action that specifies the subsequent PPA state q2Q for a given state q1Q and
a given grammar symbol VT. In addition, and whenever the transition is applied
during parsing, the transition performs instance-propagation as implied semantic
action and {semantic-action}SA as explicit one, if the transition is augmented with
the later.

6. RPA: (q(Alt)(inst), V) = reduce(r) :: { semantic-action} is a reduce parsing action

that performs a reduction rule (r), for every V N , q Q such that q is the
respective state to Vp

f
 and V is the LHS (r). RPA performs the indicated {semantic-

action}, If the reduction is associated with such action.

7. CR: (q(Alt)(inst),V) = coherent read V (V1…Vn) is a parsing action, defined for

every V n and q Q such that q is the respective state to V
f
. It represents the

completion of the parsing process for the ranked terminal symbol V and its
subordinate symbols (V1…Vn).

Based on the presented definition for the PPA, its construction is reduced
to a direct mapping from the PLF (S) using the function: M (PLF(S)) →
{PPA.Q, PPA. PPA.SPA, PPA.RPA, PPA.CR}, where M (PLF(S)) performs
two major steps. In each step, it scans PLF(S) from left to right and considers
the grammar symbols of each alternative of PLF(S) according to their
occurrence order. However, the first step constructs the set of PPA states

(PPA.Q) as union of the ones respective to the start symbol Sr*0 and to the

grammar symbols of each alternative PLF (P(S(j). Hence, PPA.Q is

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 395

constructed as the set { (qin = Sr*0 I),(qfin = Sr*0 f),
n

alt 1
i

((qi
i
(alt)()

= Vi
i
(j)(ID)), (qi

f
 (alt)()=Vi

f
(alt)())). The second step establishes the PPA

parsing actions for the start symbol Sr*0 and for each grammar symbol Vi (j) in

every alternative PLF (S(j)), according to their order and using Definition 9 as
a mapping scheme.

3.3. Soundness and generality of the PPA construction

Let the 4-tuple (Σ, N, P, S) be a GG grammar, where A P and (

T(ΣN)or (ΣN)). The constructed automaton PPA = (T, Q, qin, qfin,

SPA, RPA, CR) using the mapping function M (PLF (A), as given in section
3.2, constitutes a two fold generic parsing automaton. First, its parsing
behavior simulates tree parsing automata and shift–reduce automata, but with
reduced stack activities. Second, it parses hybrid strings drawn from a given
type of grammar, augmented by definitions from another type of a grammar,
for examples:

 A context-free grammar augmented by constructs from regular tree
grammar.

 A regular tree grammar extended by context- free grammar constructs.
The validity of the PPA properties and the soundness of its construction

approach are demonstrated by the following lemmas.

Lemma 1. PPA constitutes a bottom up parsing automaton that simulates

shift – reduce automata.

 Proof. Let GG be instantiated by a context-free G. Let a rightmost

derivation be (S cwwAw Y). In shift-reduce parser, the

reductions are performed according to the right most derivations, but in a
reverse order. Thus, the reduction to Y is performed followed by one to A.
In our approach, the above rightmost derivation is simulated by the

following sequence of transitions: S
i

…First()
i
 … Last

()
f
 A

i
First()

I
 …Last()

f
 Y

i
 c

i…. c
f

Y
f
 A

fFirst(w)
i … Last(w)

f
, where Y

f
 occurs before A

f
 ,that is,

the reduction to Y is performed first. Thus, the reductions performed by
our automata are according to the rightmost derivations, but in reverse
order. Further more, a handle in a shift-reduce parser is defined as the right
side of a production that is formed on the top of the parsing stack [1]. Once,
such a handle is formed a reduction is performed. For this purpose, the
parser performs the following stack activities: push subsequent terminal
(input) symbols, pop parsing stack symbols formed as a handle and push
its respective nonterminal. In contrast, the PPA shift activity is defined
as -transition and move transition on a terminal symbol. A handle is

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 396

formed as a result of a sequence of transitions between the initial and the
final states of a respective nonterminal. Subsequently, PPA reduction to a
respective nonterminal is performed upon the -transition from the final

state of the last handle's symbol to the final state of the respective

nonterminal, for example, the sequence (Y
i

c
i
 c

 c
f

 Y
f
)

forms the handle (c) respective to (Y). Upon the -transition from c
f

to Y
f
pi , the reduction to Y is performed. Hence, PPA simulates a shift-

reduce automaton. Furthermore, it parses the regular parts of the language
as a finite automaton. However, it behaves as a pushdown automaton by
using state instantiation with an instance identifier organized as a stack to
handle recursion.

Lemma 2 PPA constitutes a bottom up parsing automaton that simulates the
run of regular tree automata.
Proof. Let GG be instantiated by a regular tree grammar, where Σ0= (b,x,y)
Σ2= c, (S,A) N and P= { S c(Ab), Axy}. let S cAb cxyb be a GG

derivation. Let a bottom-up regular tree automaton be defined by the 4-tuple

RA = (Σ, Q, , Q
f
), where: Σ is the input (ranked) alphabet, Q is a set of

automaton states, = { Q x Σj x Q
j
| j 0} is a set of transitions and Q

f
 is a set

of final states. RA constructs S-derivation tree for cxyb as composed of sub
trees constructed according to the following order: A(x,y), c(A,b) and S(c).
Such construction is obtained a result of the following transitions: (qx, x), (qy,
y), (qA, A, qx, qy), (qb, b), (qc, c, qA, qb) and (qS, S, qc). On other hand, the run
of PPA on cxyb simulates the same construction order, but according to the
following sequence of states transitions: S

i
0 c

i
1 A

i
1.1 x

i
1.1.1

x
f
1.i.1 y

i
1.1.2 y

f
1.1.2 A

f
1.1 b

i
1.2 b

f
1,2c

f
1 S

f
0, where: the

reductions: Axy, cAb (coherent read) and S c(Ab) are performed at

A
f
1.1, c

f
1 and S

f
0 respectively. Thus, the reduction order represents a rightmost

derivation in reverse order and it is equivalent to the bottom–up construction
of the S-derivation tree. Furthermore, RA and PPA have the same
interpretation of their transitions with respect to the input cxyb.For example,
the RA transitions (qx, x) and (qA, A, qx, qy) are considered as the mappings
x qx and (A, qx, qy) qA. In contrast, the respective PPA transitions: x

i
1.1.1

x
 x

f
1.i.1 and A

i
1.1 x

… x
 A

f
1.1, with implied reduction Axy,

are considered as the mappings: x x
f
1.i.1 and (A, x

f
1.i.1, y

f
1.1.2) A

f
1.1

respectively.

4. The PPA construction algorithm

Given a GG grammar, PPA (S) is then constructed as a direct mapping from
its respective PLF(S), using the mapping function M (PLF(S)) as discussed in
section 3. However, such function performs two passes (steps) over a fully
expanded PLF(S). During the first pass, the PPA states are constructed, while

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 397

during second one the PPA parsing actions are constructed. Since PLF(S) is
prefix representations of derivation trees respective to GG, its full expansion is
equivalent to the construction of such trees. In this section, we propose an
alternative but more efficient approach and derive a respective construction
algorithm. The proposed approach is a one-pass and based on applying M
(PLF(S)) over PLF(S) while it is being expanded in incremental way. For this
purpose, we consider a non-expanded form of PLF(S) and a respective but
partially constructed PPA as follows:

 Let S , where = (V1…Vj…Vn) (ΣN). A non inductive form of

PLF(S) is defined as :

 NPLF(S) = S0 (V1p1…Vj pj…Vn pn), where NPLF(S) implies a derivation sub

 tree, denoted PDT (S), with a root labeled by S0 and children labeled by

 V1p1, …,Vjpj,…, and Vn pn.

 A partially constructed PPA (PPPA) respective to NPLF(S) is defined as
the one that is obtained as a result of applying a modified version of
M(NPLF(S)) over PDT(S). Such version is defined as a mapping function
M (S0, Children(PDT(S)) which assumes that the states respective to the
root of PDT (S0) has been created and performs the following:

 Create PPA states respective to the children of PDT(V1p1…Vj pj…Vn pn)

 Establish the parsing actions that cover the transitions between the root
and children; the transitions between the children; and the transitions of the
states instantiated by recursive occurrences of the grammar symbols.
The construction of PPA is then proceeds according to Algorithm 1 as

given below. Assuming an input consisting of the NPLF forms respective to a
given GG grammar, Algorithm 1 constructs the PPA(S), using the following
data structures and functions:

 The first step of the mapping function is implemented by two functions:
CreateNode and CreatePDT to handle the construction of the individual
PDTs. The function CreateNode constructs the individual nodes of PDT
instantiated with respective grammar symbols. The nodes are indexed by
the positions of grammar symbols as they occur within the NPLF forms.
The function CreatePDT constructs the PDT respective to a given NPLF
form. CreatePDT returns a record of two fields. The first field represents the
root of the subtree PDT and the second one represents the children of the
PDT as an array of nodes created by the function CreateNode.

 The second step of the mapping function is implemented by two functions:
CreateGSPA and by ConstructPPA to handle the construction of the
individual PPPA. The function CreateGSPA has a parameter of type Node
and returns it's respective initial and final states. Also, CreateGSPA
establishes the parsing actions respective to these states, including the
ones with recursive occurrences. The function ConsructPPA constructs a
PPPA respective to a transmitted PDT as a parameter. ConsructPPA calls
the function CreateGSPA to create the states and the parsing actions for
the individual nodes of the PDT’s children. Then, it establishes the parsing
actions that cover the transitions between the root and children; the

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 398

transitions between the children; and the transitions of the states,
instantiated by recursive occurrences of the grammar symbols.

 Algorithm 1
 Input: A GG grammar , with start symbol S and its respective NPLF forms
 Output : A bottom up automaton PPA = (Q, qin, qfin, SPA, PAR, CR)
 Method: An incremental construction of PLF forms, coupled with their

 gradual transformation into the PPA(S), according to the
 program given in Fig. 8.

 Nod0 = Create-node(S, , 0, S); GSPA = CreateGSPA (Node0);
 PPA.qin= GSPA.States[1].initial; PPA.qfin = GSPA.States[1].final;
 For (each alterntive of NPLF(S))
 {PDT = CreateNewPDT(Node0);
 ConstructPPPA(PDT.root, PDT.children)};}
 Set–of–Current-PDT = Set–of–Current-PDTPDT;
 While (Set–of –Current-PDT)

 {Current-PDT-Constructor = Select-next–PDT (Set–of–Current-PDT);
 Set–of–current-PDT = Set–of–Current-PDT \ Current-PDT-Constructor;
 New-PDT-Roots = (Current-PDT-Constructor).ChildrenLevel
 For i to MaxSize (New-PDT-Roots)
 {New-Root= New-PDT-Roots[i];
 For m = 1 to MaxAltenative (New-Root)
 { Alternative-Node = New-Root [m];
 if AlternativeNode is terminal { }
 Elseif { PDT= CreatePDT(AlternativeNode);
 Set–of–Current-PPT = Set–of–Current-PDTPDT ;
 ConstructPPPA(PDT.root, PDT.children); } } }

Fig. 6. A program for the construction of the PPA automaton

 S0
i
 S0

f

 S0

i
 (1) S0

f
(1) S0

i
 S0

i
 (2) S0

f
(2)

 PPPA(S0(2))
 Ar*1

i
(1) A r*1

f
(1) C2

i
(1) C2

f
(1) a3

i
(1) a a3

f
(1)

 c2.1
 i
(1) c c.2.1

f
(1)

 A r*1.1

i
(1) A r*1.1

 f
(1) D1.2

i
(1) D1..2

f
(1)

 rec-init rec-term

 a1.1

i
(1) a a1.1

f
(1) c1.2.1

i
(1) c c1.2.1

f
(1)

Fig. 7. A partial PPA automaton for the grammar of Example 4

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 399

Example 4. Let G = (Σ, N, P, S) be a context free grammar, where: Σ = {a, b};
N= {A, B, C, D}; P= {p1: S→ACa; p2:S→BDb; p3:A→AD; p4:A→a; p5:B→Bc;
p6: B→b; p7: C→c p8:D→c. This grammar has direct left recursion and
reduce-reduce conflicts. The NPLF forms respective to G are as follows:
NPLF(S0) = S0 (Ar*1 (1), C2(1), a3(1) | Br*1 (1), D2(1), b3(1)); NPLF(Ar*1 (1) = Ar*0

(Ar*1 (1) , D2(1) | a1(1)); NPLF(C2 (1) = C0 (c1(1); NPLF(Br*1 (1)= Br*0 (Br*1 (1) ,
C2(1) | b1(1)); NPLF(D2 (1) = D0 (c1(1)). Fig.7 shows the transition graph of
PPA(S(1)) respective to alternative (1) of NPLF(S0). Its incremental
construction according to algorithm 1 proceeds as follows:

 At steps 1.1 and 1.2, the root PDT is constructed as composed of the
single node Node0 = S0 with - transitions to the roots (Node1(1) = S0(1),

Node0(2) = S0(2) of two alternative PDTs. The respective PPPA
automaton is constructed in terms of the following:

 The PPA states: PPA.Q = {(PPA.q in = S0
i
), (PPA.qfin = S0

f
), (q 0

i
 (1) =

S0
i
(1)), (q 0

f
(1) = S0

 f
 (1)), (q 0

i
 (2) = S0

 i
 (2)), (q 0

f
(2) = S0

 f
 (2))}

 The PPA parsing action: PPA.SPA = {((q in,) = q 0
i
 (1)),((q in,) =

q 0
i
 (2)), ((q in,) = q 0

i
 (3)), ((q 0

f
(1),) =.qfin), ((q 0

f
(2),) =.qfin)}

 The PPA parsing action: (q0
f
(1),S)= reduce (r1(S)); (q 0

f
 (2), S) =

reduce (r2(R).

 At step 2, The PDT respective to the root Node0 (1) is formed as: Node1(1)
= Ar*1 (1), Node2 (1) = C2 (1) and Node3 (1) = a (1) respectively. The
respective PPPA automaton is constructed as consisting of the following:

 The PPA states: PPA.Q = PPA.Q { (q 1
i
 (1) = Ar*1

i
(1))) ,(q 2

i
 (2) = C2

i
(1)

(2)) ,(q 3
i
 (1) = a3

 i
 (1)), (q 1

f
(1) = Ar*1

f
(1) (1)), (q2

f
(1) = C2

 f
 (1)), (q 3

f
(1)=

a3
 f
 (1)}.

 The parsing actions: PPA.PAS = PPA.PAS {((q 0
i
 (1),)= (q 1

i
 (1)) ,

((q 1
f
 (1),)= (q 2

i
 (1)), ((q 2

f
 (1),)= (q 3

i
 (1)), ((q 3

i
 (1),a)=

q 3
f
(1)), ((q 3

f
(1),)= q 0

f
(1)).

 During the second iteration, the children of the (Node1(1) and Node2(1), are
considered as roots for which subsequent PDTs and PPPA are
constructed .This process is iterated until no further PDT can be
constructed. As a result, the construction of PPA(S(1)) automaton
respective to to alternative (1) of NPLF(S0), is completed, as given in
Fig.7.

 PPA(S(1)) contains the cyclic transition Ar*1
i
(1) → A r*1.1

i
(1) → Ar*1

i
(1).

Hence, the transition Ar*1
i
(1)

 A r*1.1
i
(1) and rec-init are freezed, and

rec-term (A r*1
f
(1)

 A r*1.1
 f
(1)) is considered as a cyclic one.

5. The Subset Construction Algorithm

In this section, we propose a subset construction (-closure) for PPA (G). It

is an extension to the one for nondeterministic finite automata as given in [1].

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 400

Such extension is needed to cover a wider class of grammars including
regular tree and context free grammars. The subset construction algorithm,
denoted by Algorithm 2 is given below. Having the PPA states PPA.Q and
their respective parsing actions (PPA.PAS, PPA.PAR, RBA.CR) as an input,
Algorithm 2 constructs a reduced bottom-up automata RBA (G), represented
by its respective states RBA.Q and a parsing table PAT. The table PAT is
organized as matrix of the form: ParsingAction array [qo…qn, V1…Vn] , where

qo…qn RPA.Q and V1…Vn (the input alphabet of GG). The

individual entries of ParsingAction specify the transitions, the reductions and
the semantic actions to be made by RBA(G) during its run on an input
alphabet, generated from the grammar G. Algorithm 2 computes the RBA(G)
states and their respective parsing actions using an -closure function [1].

This function has a parameter of type state and returns set of states,
constituting the -closure of the transmitted parameter. The function closes

the initial states and the final states respective to the different grammar
symbol types. However, it does not close the initial states instantiated by
grammar symbols of type ranked terminals and the grammar symbols of type
recursive instances. The steps of proposed algorithm handle their -closures,

taking into consideration their peculiarities. It is worth mentioning that the -

closure for the initial states is equivalent to the kernel item in LR parsing,
while the one for final states is equivalent to the complete item.

Algorithm 2
Input: A nondeterministic PPA automaton represented by its respective
states (PPA. qin, PPA. qfin , PPA.Q) and parsing actions (PPA.PAS,
PPA.PAR and PPA.CR).
Output: A reduced bottom-up automata RBA(G) represented by its respective
states (RPA.qin, RPA.qfin, RPA.Q) , parsing actions (RPA.PAS, RBA.PAR ,
RBA.CR) and by a parsing table PAT.
Method: Apply the subset construction on the states of the PPA(G),
according to the following steps:
Step0:

 Initially, apply the -closure function on PPA. qin to obtain its respective

RPA.qin

 Add PPA.qin to the set of RBA (G) states (RBA.Q), marked as
unprocessed one.

Step1:

 Select an unprocessed state from the set (RBA.Q).

 Group the alternative states from which the selected state is composed into
two classes. The first one includes the initial states instantiated by
recursive instances. The second class includes the initial states respective
to terminals and ranked terminals.

Step 2: Perform actions respective to each class as follows
2.1: Actions for the class of type recursive instance

 Create new RBA states for each state(s) in the group, instantiated by their
respective recursive instances.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 401

 Add the new states (s) to the set RBA.Q, marked as processed ones.

 Add to the table PAT parsing actions of type "move" from the selected state
to the new one (s), augmented with semantic action (recursion-initiation).

 Set the parsing actions for the new state (s), as the ones for the state
instantiated by the occurrence of its respective head. Compute -closure

for the PPA state, instantiated by final symbol respective to the new state
(s). Create new RBA state, instantiated by such closure. Add the new
states to the set RBA.Q, marked as unprocessed.

 The actions respective to recursive instances designated as cyclic are the
same as the above. However, their respective –transitions and {recursion-

initiation} are designated as cyclic.

Table 1. The RBA parsing table for the grammar of Example 5

State

 Input Symbols

 Parsing actions: Move(M), reduce(R) and semantic action (S)

 + m c

q0 M(q1, q2) M(q3)

q1 M(q4)

q2 M(q5), S(rec-initiation)

q3 R(r3: Rc)

S(rec-termination)

R(r3: Rc)

S(rec-termination)

R(r3: Rc)

S(rec-termination)

q4 M(q7 q8), c(m(c))

S(rec-initiation)

q5 M(q1, q2) q3

q6 M(q10),

S(Initial(q11))

c(m(R))

q8 M(q1, q2) q3

q9 R(r), c(+(m(c,R))

R(r1:

R+(m(c,R))

S(rec-termination)

R(r), c(+(m(c,R))

R(r1:R+(m(c,R))R(r),

S(rec-termination)

R(r), c(+(m(c,R))

R(r1:

R+(m(c,R))R(r)

S(rec-termination)

q10 M(q1, q2) q3

q11 R(r), c(+(m(c),R))

R(r2:

R+(m(R),R))

S(rec-termination)

R(r), c(+(m(c),R))

R(r2: R+(m(R),R))

S(rec-termination)

R(r), c(+(m(c),R))

R(r2: R+(m(R),R))

S(rec-termination)

2.2: Actions for the class of type terminals and ranked terminals

 For each state in the class, select its respective parsing actions of type
move (transition) as specified by the parsing table PPA.PAS.

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 402

 Compute the -closures for each destination state as defined by each

selected transition.

 Create new RBA states, instantiated by the -closures.

 Add the new states to the set RBA.Q, marked as unprocessed ones.

 Add to the table PAT parsing actions "move" respective to the grammar
symbol ,instantiating the state ; the selected state ;and the new ones.

 For each alternative of the new states of type "final" , add to the table PAT
the respective parsing actions "Reduce or coherent read" as specified by
the PPA parsing actions , including the augmented semantic-action, if
any.

Example 5 Applying the subset construction on the PPA automaton of
Example 3, will produce the RBA automaton, represented by Table 1 as its
respective parsing table.

Example 6 Applying the subset construction on the PPA automaton of
Example 4, will produce the RBA automaton, represented by its respective
parsing table, given as Table 2.

5.1. The PA- Parser

In this section, we propose a parser, denoted PA-Parser, that simulates in
pseudo-parallel the run of RBA (G) automaton on input strings, generated by
the grammar G. In addition to the input string, the PA-Parser consults a
parsing-table PAT respective to RBA(G), as constructed by the subset
construction algorithm. The PA-Parser produces alternative parsing paths
which represent a bottom-up construction of derivation trees respective to the
input string. During paring, these paths are constructed in terms of performed
state transitions and reductions as follows:

 The RBA initial state(qin) is considered as the intial derivation. Hence, a

respective derivation/reduction path is created as parsing-pathind = qin,

where ind =1 indicates the nesting depth of the path.

 For each alternative (J) of a subsequent transition or a recursion

termination (q), a continuation for the current parsing-pathind is created as

parsing-pathind.j = parsing-pathind q.
Based on the above- mentioned assumptions, PA-Parser is implemented

by Algorithm3.

Algorithm 3 The PA- Parser

Input: An input string and the RBA(G) automaton respective to a

 grammar G and represented by its respective parsing-table PAT.

Output: Successful and erroneous parsing paths represented as a set of

 respective state transitions and reductions.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 403

Table 2. The RBA parsing table for the grammar of Example 6

State

 Input Symbols

 Parsing actions: Move(M), reduce(R) and semantic action (S)

a c b

q0 M(q2); ''-tran(q1r
i
)

; S(rec-initiation)''

 M(q4); ''-tran(q1r
i
) ;

S(rec-initiation)''

q1r
i
 M(q1); ''-tran(q1r

i
)

; S(rec-initiation)''

q2r
i
 M(q5)

q2 M(q7); R(r4: Aa)

 S(rec-termination)''

q3r
i
 M(q4); ''-tran(q3r

i
)

; S(rec-initiation)''

q3r
f
 M(q6)

q4 R(r6: Bb)

 S(rec-ermination)''

M(q8); R(r6: Bb)

 S(rec-termination)''

R(r6: Bb)

 S(rec-termination)''

q5 R(r8: Dc); R(

r3:AAD); S(rec-

termination)''

M(q7); R(r8:

Dc);R(r3:

AAD);S(rec-

termination)''

R(r8: Dc); R(r3:

AAD);S(rec-

termination)''

q6 R(r5:BBc);

S(rec-termination)''

M(q8);R(r5:BBc);

S(rec-termination)''

R(r5:BBc);

S(rec-termination)''

q7 M(q9);R(r7:

Cc));

R(r7:Cc)); R(r7: Cc));

q8 R(r8: Dc) R(r8: Dc) M(q10);R(r8:

Dc)

q9 R(r1: SACa); R(r1: SACa)) R(r1: SACa))

q10 R(r1: SBDb); R(r1: SBDb); R(r1: SBDb);

Method:
Initially, the parsing algorithm considers the initial state of RBA (G) as the

current parser state (ind, qin ()) as well as the initial parsing path. Each

state is considered as having its respective instance-identifier initialized to ,

In addition, and as a transition-state, it is associated with an attribute, denoted
by ind, to indicate the parsing path to which it belongs. The algorithm then,
iteratively, consults the parsing table PAT entry respective to the pair (current
state, current input symbol) and performs the following:

 Determine the subsequent parser states , perform the implicit semantic
action for the propagation of the state instance-identifiers and create
respective parsing paths

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 404

 If the consulted parsing table entry specifies a parsing action reduction, the
respective reduction is added to the current parsing path .

 If this entry specifies semantic action of type recursion-termination, the
computed return state is considered as a continuation that is added to the
set of the parser's next states and to respective parsing path.

Finally, upon reaching the end of the input string, the set { parsing-pathind}

is produced as an output, consisting of parsing paths in which RBA(G) has
reached some of its final states and erroneous ones, otherwise.

Example 7. Considering RBA automaton as given in Example 5, the run PA-
Parser on the input + (m(c), c) proceeds as shown in Table 3, where two
parsing paths are formulated and produced as an output:

parsing-path1,1.xxx = {(q0,), (q1,), (q4,),(q7,), (q8, 9), CR(m(c),

 (q3, 9),(q9,),R(r3: Rc), CR(m(R), R(r3: Rc),CR(+(m(c),R)),

 R(r1: R+(m(c,R))} and

parsing-path1,2.xxx ={(q0,), (q2,),(q5, 6), (q3,) (q6,),

(q10, 11), R(r3: Rc), CR(m(R), (q3, 11) (q11,), R(r3: Rc),

CR(+(m(R),R), R(r2: R+(m(R),R) }. These paths are equivalent to a

bottom-up construction of their respective derivation trees (Fig. 4)

Table 3. The parse of the input +(m (c),c) by PA-Parser for grammar (5)

Current-

parser-state

 Parsing behavior

Current

input

 Parsing –action-

Move(M)

 Next parser

states

Parsing–actions:

 Reduce(R),Semantic-action (S),

Coherent-read(CR)

(q0,) + {M(q1,),

M (q2,)}

(q1,)

(q2,)

m M(q4,)

M(q5, 6)

S(rec-intiation (q6))

(q4,)

(q5, 6)

c M(q7,) M(q8,

 9)

M(q3,) M(q6,

) M(q10, 11)

CR(m(c), S(rec-intiation (q9))

R(r3: Rc), CR(m(R)

S(rec-termination(q6))

S(rec-intiation (q11))

(q8, 9)

(q10, 11)

c M(q3, 9) M(q9,

)

M(q3, 11)

M(q11,)

R(r3: Rc)

S(rec-termination (q9)

C(+(m(c,R))

R(r1: R+(m(c,R))

R(r3: Rc)

S(rec-termination (q11)

C(+(m(R),R))

R(r2: R+(m(R),R))

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 405

Example 8. Considering RBA automaton as given in Example 6, the run PA-
Parser on the input acca proceeds as shown in Table 4, where three parsing
paths are formulated and produced as an output:

parsing-path1,1.xxx = {(q0,), (q2,), R(r4:Aa), (q7,), R(r7: Cc)

 Error}

parsing-path1,2.xxx = {(q0, 1r), (q2, 1r), R(r4:Aa),(q1r, 1r) ,(q5, 1r),

 R(r8:Dc),R(r3:AAD),(q7, 1r), R(r7: Cc),

 (q9, 1r), R(r1: SACa)}

parsing-path1,2,2.xxx={(q0, 1r),(q2, 1r),R(r4:Aa),(q1r, 1r),(q5, 1r),

 R(r8:Dc), R(r3: AAD), (q1r, 1r),(q5, 1r),

 R(r8:Dc),R(r3:AAD), (q1r, 1r), error}

Among these parsing paths, parsing-path1,2.xxx constitutes a successful

one.

Table 4. The parse of input acca by PA-Parser for the grammar of Example 8

state

 Parsing behavior

input Parsing–action-

Move

 Next parser

states

Parsing –action- Reduce

Semantic-action

(q0,)

(q0, 1r)

a M(q2,)

M (q2, 1r) M

(q1r, 1r)

R(r4: Aa)

R(r4:Aa);S(rec-termination(q1r))''

 (q2,)

(q1r, 1r)

c M (q7,)

M (q5, 1r))

M (q5, 1r))

M (q1r, 1r)

R(r7: Cc),

R(r8:Dc), R(r3: AAD),

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))''

(q7,)

(q5, 1r)

(q1r, 1r)

c Error

M(q7, 1r)

M (q5, 1r))

M (q1r, 1r)

R(r7: Cc),

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))''

(q7, 1r)

(q1r, 1r)

a M(q9, 1r) R(r1: SACa),

R(r8:Dc), R(r3: AAD),S(rec-

termination (q1r))''

Example 9. Let G = (Σ, N, P, S) be a grammar with left and embedded
recursion. Where (a,+) Σ, (E,F)N and P= { EE+F, EF, F a,

F (E)). Applying the subset construction Algorithm 2 on the PPA

automaton respective to the grammar G, will produce the RBA automaton,
represented by 12 states and their respective parsing actions. The PA- Parser

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 406

behavior on the input a+((a+a)) formulates the following parsing path as an
output.

parsing-path1,1.xxx = {(q0,), (q1, 1), (q6, 1), R(r3: Fa), R(r2:

FE, (q2,) (q7,), (q8,), (q9, 3.1) (q3, 3.1 1.2) (q6, 3.1 1.2)

R(r3: Fa), R(r2: FE) (q2, 3.1 1.2), (q7, 3.1 1.2) (q10, 3.1 1.2),

R(r3: Fa), R(r1: EE+F), (q5, 3.1), (q12, 3.1), R(r4: F (E)),

(q1o,), (q13,), R(r4: F (E)), R(r1: EE+F)}.

6. Discussion

The experiments and the analysis of the derived algorithms for the proposed
generic parser have shown the following:
1. The algorithms are characterized by the following calculated complexity:

- The PPA(G) construction algorithm (Algorithm 1) produces O(2G) states

 and O(2G+(G+1)+G)) transitions, where G =

n

i

pi
1

|| is the sum of the

 length(|pi|) of the individual productions. The construction time is

 O(L*(|N+ n|*MAX(|pi|, i=1,…n))+ (MAX(|pi|, i=1,…n)+1))* ALD G*C ,

 where C is constant reflecting the levels (L) of the grammar’s derivation
 tree and the number of alternative definitions (ALD).
 - The PPA (G) subset construction algorithm (Algorithm 2) has a runtime

 O ((| + n +Nr|* | - Transitions (+ n +Nr)| O (G
2
)* s, where s

 is the number of the PAA reduced states.
 - The parsing algorithm requires a time
 O (| shift-transitions| +|reduce-transitions|)*|input pattern|.

 - The size of the parsing table is O (| | * |s|).
To illustrate the above calculated complexity, we consider the grammar of

Example 5, the construction of its respective PPA (Fig. 5) and RBA (Table 1)
have the following characteristics:

 The size of the grammar G = 12; ALD =3; L=3 ; s = 12; | shift-transitions| =
19; |reduce-transitions|= 18.

 Number of PPA states and transitions (-transitions, move, reductions,

coherent read) = 61.

 PPA construction (Algorithm 1) time is characterized by O(60) 6* 12,
where the dominant operations are ConstructPPPA and CreatePDT.

 The subset construction (Algorithm 2) time is characterized by O(384)
1728, where the dominant operations are EmptyClosure and Add(PAT,
parsing actions).

 The parsing table is a matrix of 36 elements. The parse of the input string
+(m(c),c) is characterized by O(148), where the dominant operations are
the access of the parsing table and the computation of the subsequent
states.

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 407

1. The PA–Parser has a reduced nondeterministic behavior on an input drawn from
ambiguous grammar. The parser generates multiple parsing paths. Since the parser
is to be used in code selection, such paths are used to select pattern matches
subject to minimization criteria. For example, the output of the parser on input
+(m(c),c) drawn from the grammar (5) ,as shown in Table 3, represents two pattern
matches; +(m(c), R)) and +(m(R),R)).The pattern with the minimum cost is then
selected as the one that matches the input. Thus a pattern matcher can be adapted
to the behavior of PA-Parser. However, an opposite approach has been suggested
in [8], where PPA has been adopted and tightly coupled with the construction of a
general pattern matcher.

2. The PA–Parser has a deterministic behavior on input drawn from non-ambiguous
context free grammars. This is demonstrated by examples 2 and 9, where only one
parsing path is constructed for the given input.

In addition to its generic behavior, a general comparison of PA-Parser with
other bottom-up parsing algorithms such as LR, RI [1, 10] has proved that our
algorithm is conceptually simpler and requires less states. The simplicity is
achieved based on the fact that our approach is tabular and uses a variation
of finite automata and its subset construction. Thus, it features their simplicity,
as well as their performance with additional overhead due to the embedded
semantic actions. However, a particular comparison with similar approaches
is as follows:

 LR parsers require that the input grammar is a deterministic [1]. In
contrast, the input grammar for PA-parser is generic which can be either
instantiated by regular tree or by deterministic and nondeterministic
context-free grammars Further more, parsing the same string by both
parsers has shown that the PA-parser has less number of moves (shifts)
by 20% than the ones for LR(0) as demonstrated by Example 9 , where
the LR(0) [1] automaton for the same grammar consists of 12 states, while
our parser consists of 15 states. In addition to the absence of parsing stack
activities, no goto transitions on nonterminals are used by our parser.
Hence, their pre-computation and run time overheads are eliminated.

 GLR parsers [14] cover nondeterministic context-free grammars by using a
graph structured stack constructed at run time to represent in pseudo-
parallel multiple parse contexts. In contrast, the proposed parser is based
on a nondeterministic predictive automaton, the states and the parsing
actions of which represents multiple parse contexts in terms of alternative
derivation /reduction paths. At run time, these are regenerated in terms of
alternative parsing paths (sequence of transitions and reductions) with
respect to an input string. Further more, applying our parsing approach on
a pathological example (S SSS |SS | a) as given in [14], a considerable

reductions in number of states and transitions (number of visited edges)
are achieved. The number of the states is fixed, but they are instantiated.
Hence, a trade off is made between a space and parsing time, due to
states instantiation.

 Reduction incorporated parsers as introduced in [2] and further optimized in
[3] are based on constructing a tier (RIA) that is extended to a pushdown
automaton by RCA to handle recursion. In contrast our approach uses a
nondeterministic automaton that is augmented by semantic actions to

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 408

dynamically create instances of RCA states during parsing. Compared to
the tier constructed in [2], PPA has less number of states. Also, Its
optimization to RBA produces an automaton with the same size as the
optimized version of the pushdown automaton as given in [3]. This is
demonstrated by Example 9 using the same grammar given in [3]. Our
optimization approach is based on a subset construction (-closure).

Hence, it is more efficient than the heuristic construction steps given in [3].

 Deterministic pushdown automata have been used to recognize regular
tree languages as suggested in [9]. However, such use is based on
creating context-free grammar that generates a regular language in postfix
form. Such a grammar is in Reversed Griebach Normal Form [9]. In
contrast, our approach is based on instantiating a generic grammar (GG)
by a regular tree grammar that is then mapped into a recognizing
automaton. GG is assumed to be a general context-free grammar and no
need to transform the input string into a postfix notation.

 Shift-resolve parser [7] is based on a nondeterministic automation which is
then determinized using an approach that generalizes similar construction
for LR parsers. Using two stacks, it performs reductions with a pushback
down to point where reductions should take place. In contrast, our
approach generalizes similar construction for deterministic finite automata.
The reductions are performed where they should take place using no
parsing stack. The parse of the same string by the shift-resolve, as given in
[7] and by our approach, as given in Example 8, shows a reduction in
parsing-table size as well as in parsing steps.

7. Conclusion

In this paper, we have proposed and implemented a new parsing approach
that is characterized by its soundness, generality and efficiency. The parsing
approach is based on an extended version of a recently developed position
parsing automaton (PPA). The states and the transitions of the PAA are
defined based on concepts from the LR (0) items, the finite deterministic
automata and a newly introduced concept of the so called state instantiations.
The PAA constitutes a nondeterministic bottom–up automaton that is
transformed into a reduced one (RBA) in efficient way. Such automaton
simulates the parsing behavior of tree automata as well as the shift-reduce
automata. Due to their simplified construction principle, the construction
overhead for both PPA and RBA is maintained to a minimum. Considering
grammars used by similar approaches, both have been shown as powerful
parsing models for ambiguous context-free grammar as well as for regular
tree grammars. Although, the considered grammars are not as sophisticated
as real languages, they are representative ones. Compared to similar
approaches, their respective parsing by the proposed one has produced less
parser size and fewer shifts-reduce parsing steps. In fact, RBA is a finite
automaton that is dynamically extended to incorporate recursion. Such

A Generic Parser for Strings and Trees

ComSIS Vol. 9, No. 1, January 2012 409

extension is based on embedded semantic actions to create instances of the
RBA states and transitions. Hence, it constitutes an additional overhead
during parsing. However, this overhead is reduced due to the instantiation
approach. According to such an approach, each RBA state is attached an
index and subsequently several state instances can be created and
terminated by appending and deleting different instance identifiers atop of the
state’s attached index. Thus, the space required by state instantiations is
minimized and a trade off is made between space, RBA construction and
parsing time. As a future work, further experiments well be performed toward
achieving more deterministic behavior for the ambiguous grammars at a
further reduction of the instantiation cost.

References

1. Aho A.V., Lam M., Sethi R. and Ullman J.D: Compilers Principles, Techniques
&Tools, Second edition. Addison Wesley (2007)

2. Ayock J., Horspool R. N.: Faster Generalized LR Parsing. Compiler Construction,
LNCS 1575, 32-46 (1999)

3. Ayock J., Horspool R. N., Janousek J., Melichar B.: Even Faster Generalized LR
Parsing. Acta Infomatica 37(9), 633-651 (2001)

4. Borchardt B.: Code selection by tree series transducers. LNCS 3317, 57-67 (2005)
5. Cleophas L., Hemerik K. and Zwaan C.: Two related algorithms for root-to frontier

tree pattern matching. International Journal of Foundation of Computer Science
17(6),1235-1272 (2006)

6. Ferdenand C., Seidi H., and Wilhelm R.: Tree automata for code selection. Acta
Informatica 31(80), 741-760 (1994)

7. Galves J. F., Schmitz S., Farree J.:Shift-Resolve Parsing: Simple, Unbounded
Lookahead, Linear Time. Lecture Notes in Computer Science 4094: 253-264
(2006)

8. Jabri S.: Pattern Matching Based on Regular Tree Grammars. International
Journal of Electrical

9. Janousek J., Melichar B.: On Regular Tree Language and Deterministic
Pushdown Automata. Acta Infomatica 46(7), 533-547 (2009)

10. Johnstone A. and Scott E.: Automatic recursion engineering of reduction
incorporated parsers. Science of Computer Programming 68, 95-110 (2007)

11. Katoen J.-P., Nymeyer A.: Pattern-matching algorithm based on terms rewriting
systems. Theoretical Computer Science 2378, 237-251 (2000)

12. Madhaven M. et al.: Techniques for Optimal Code Generation. ACM Transaction
on Programming Languages and Systems 22(6),972-1000 (2000)

13. Nymeyer A., Katoen J.P.: Code generation based on formal BURS theory and
heuristic search. Acta Infomatica 34(8), 597-635 (1997)

14. Scott E. and Johnstone A.: Generalized Bottom- up parsers with reduced stack
activity. The Computer Journal 48 (5),565-587 (2005)

15. Shankar P., Ganttati A. , Yuvraj A.R. and Madhaven M.: A new algorithm for linear
tree pattern matching. Theoretical Computer Science, 242, 125-142 (2000)

Riad S Jabri

ComSIS Vol. 9, No. 1, January 2012 410

Riad Sadeddeen Jabri. Received the M.E. and Ph.D. in Computer
Engineering from Higher Institute for Mechanical and Electrical Engineering/
Bulgaria in 1976 and 1981 respectively. He is currently a Professor and dean
of Faculty of Science at Philadelphia University on leave from University of
Jordan. His research interests are compilers, formal and programming
languages, software systems and networks.

Received: November 9, 2010; Accepted: March 30, 2011.

