
DOI: 10.2298/CSIS101228017O

Domain-Specific Language for Coordination
Patterns

Nuno Oliveira1, Nuno Rodrigues1,2, and Pedro Rangel Henriques1

1 University of Minho - Department of Computer Science,
Campus de Gualtar, 4715-057, Braga, Portugal

{nunooliveira,prh}@di.uminho.pt
2 IPCA – Polytechnic Institute of Cavado and Ave

Campus do IPCA, Barcelos, Portugal
nfr@ipca.pt

Abstract. The integration and composition of software systems requires
a good architectural design phase to speed up communications between
(remote) components. However, during implementation phase, the code
to coordinate such components often ends up mixed in the main business
code. This leads to maintenance problems, raising the need for, on the
one hand, separating the coordination code from the business code, and
on the other hand, providing mechanisms for analysis and comprehension
of the architectural decisions once made.
In this context our aim is at developing a domain-specific language, CoordL,
to describe typical coordination patterns. From our point of view, coordi-
nation patterns are abstractions, in a graph form, over the composition
of coordination statements from the system code. These patterns would
allow us to identify, by means of pattern-based graph search strategies,
the code responsible for the coordination of the several components in a
system. The recovering and separation of the architectural decisions for a
better comprehension of the software is the main purpose of this pattern
language.

Keywords: coordination patterns, software architectures, domain-specific
languages, CoordInspector.

1. Introduction

Software Architecture [17] is a discipline within Software Development [16] con-
cerned with the design of a system. It embodies the definition of the structure
and the organisation of components which will be part of the software system.
The architecture design also concerns the way these components interact with
each other as well as the constraints in their interactions. In their turn, software
components [12] may be seen as objects in the object-oriented paradigm, how-
ever, besides data and behaviour, they may embody whatever one prefers as
a software abstraction. Although they may have their own functionality (some-
times a component is a remote system), most of the times they are developed
to be composed with other components within a software system and to be

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

reused from one system to another, giving birth to component-based software
engineering methodology [14].

The definition of the interaction between the components of a system may
be seen from two perspectives: (i) integration and (ii) coordination. The dif-
ferences between these two perspectives is slightly none. The former is related
with the integration of some functionalities of a system into a second one, which
needs to borrow such a computation; the latter is concerned with the low level
definition of the communication and its constraints between the components of
a system. Such interaction definition between the components can be either
endogeneous or exogeneous. In the latter, the coordination of components is
made from the outside of a component, not needing to change its internals to
make possible the communication with other components [4], the former is the
dual methodology.

This rule of separating computational code from coordination code is not
always adopted by software developers. The code is often weaved in a single
layer where there is no space for separation of these kind of concerns. This
behaviour could raise problems in the future of the software system, namely in
maintenance phase. These problems are mainly concerned with the compre-
hension of both the code and the architectural decisions, which hampers their
analysis.

Reverse engineering [28] of legacy systems for coordination layer recovery
would play an important role on maintenance phases, diminishing the difficul-
ties on analysing the architectural decisions. But, extracting code dedicated to
the coordination of the system components from the entire intricate code is not
an easy task. There is not a standard (nor unique) way of programming the in-
teractions between the components. However, and fortunately, there is a great
number of code patterns, which the majority of the developers use to write coor-
dination operations. Once the code of a system can be represented as a graph
of dependencies between the statements and procedures, the so-called Sys-
tem Dependence Graph (SDG) [15], one is also able to represent code patterns
as graphs, allowing the search for these patterns in the SDG.

In this context, we define the notion of coordination patterns as follows:

Given a dependence graph G, as in [26], a coordination pattern is an
equivalence class, a shape or a sub-graph of G, corresponding to a
trace of coordination policies left in the system code.

In this paper we show how we developed a Domain-Specific Language (DSL)
[8, 21] named CoordL, to write coordination patterns. The main objective of this
language is to translate CoordL specifications into a suitable graph represen-
tation. Such representation would feed a graph-based search algorithm, to be
applied to a dependence graph, in order to find the coordination code weaved in
the system code. In Section 2 we address related work; in Section 3 we present
and describe the syntax of CoordL; in Section 4 we address its semantics; in
Section 5 we show how we used the AnTLR system to define the syntax and
the semantics of CoordL; in Section 6 we expatiate upon actual and future ap-

344 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

plications of the language and the patterns. Finally, Section 7 presents some
conclusions about the presented research.

2. Related Work

CoordL is a DSL to write coordination patterns with the purpose of extracting
and separating the coordination layer from the source code of a component-
based software system. The main domain of this work is the reverse engineer-
ing (of legacy software systems architecture) and the idea of the code sepa-
ration between concern-oriented layers aims to recover architectural decisions
and ease the comprehension of the entire system and its architecture which
is one of the most important parts within the maintenance phase of software
engineering.

The recovery of the system architecture for software comprehension is not
a novelty. Tools like Alborz [27] or Bauhaus [24] recover the blueprints of an
object-oriented system. Bauhaus recovers architectures as a graph where the
nodes may be types, routines, files or components of the system, and the edges
model the relations between these nodes. Such architectural details are pre-
sented in different views for an easy understanding of the global architecture.
Alborz presents the architecture as a graph of components and keeps a relation
between this graph and the source code of the software system. Our main aim
is not at visualising the blueprints of a system, but to provide mechanisms for
understanding the rationale behind the architectural decisions once made. This
embodies the recovering of the coordination code. Although visualization is re-
ally important for architectural analysis, the tools mentioned before, and even
more recent and focused tools like [19] do not support the mentioned feature
and do not take advantage of code patterns to do the job.

Although we may reference Architectural Patterns [6] or Design Patterns [9]
as related work, because of the common methodology of patterns and the bor-
rowed notions and description topics, there is a huge difference between their
application. While coordination patterns are used to lead a reverse engineering
to recover architectural decisions, and are focused on low-level compositions of
code, the architectural/design patterns work at a higher level, being used to de-
fine the architecture of a system in earlier phases of the software development
process [16]. Patterns and patterns finding are a very interesting matter on data
mining discipline [5], and are being applied on several areas, with focus on so-
cial networks [18, 13]. Although the work reported in this paper is far from the
area of data mining and social networks, the purpose of CoordL is to extract
useful information based on patterns that are a result of previous knowledge on
how coordination of components is made. The recovering algorithms that we
may use may be based on those used to mine data on social networks since
they also rely on graph-based search. The applications of the recovering strate-
gies on data mining is specially concerned with optimization and adaptability to
new contexts. By recovering the architectural decisions, also optimizations and
adaptability (on a different perspective than that of data mining) may be also

ComSIS Vol. 8, No. 2, Special Issue, May 2011 345

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

a valuable application of the subject in this paper. In fact there is, somehow, a
parallel between data mining and our work that we may follow, but the essence
of both kind of works is very different. The same does not happen with process
mining [7], which, in fact, is very close to our work. The search for business pro-
cess workflows [1] makes heavy use of process mining techniques. Although
process mining is typically based on event logs, a dependence graph may also
uncover traces of a workflow. A workflow between components or modules is
what, at the end, we want to obtain for the coordination code separation.

Architecture Description Language’s (ADL), are languages used to formally
describe a system components’ and the interactions between them. Although
CoordL is not to be considered an ADL, we must acknowledge that there are
some similarities in the concepts embodied in these languages and those en-
capsulated in our. Some well-known examples of these languages are ACME [11],
ArchJava [2], Wright [3], and Rapide [20]. The great majority of these lan-
guages has tool support for analysing the described architecture. Such anal-
ysis, made at high level, allows one to reason about the correctness of the
system, and may provide important information about future improvements that
can, or can not, be done according to the actual state of the architecture.

According to our knowledge, there is no other language with the same spe-
cific purpose as CoordL.

3. CoordL - Design and Syntax

The design of a DSL is always a task embodying some well defined steps. As a
first step, one needs to collect all the information about the domain in which the
language will actuate. Afterwards, this information must be properly organised
using, for instance, ontologies [29]. Once the main concepts of the domain are
identified, one needs to choose those that are really needed to be encapsulated
in the syntax of the language; this leads to the last step which concerns the
choice of a suitable syntax for the language.

Figure 1 presents an ontology to organise the domain knowledge of the area
where we want to actuate. The main concept of this domain is the coordination
pattern. The majority of the concepts incorporated in this domain description
are wider than what we show, however, to keep the description limited to the
domain, we narrowed the possible relations between each concept, as well as
the examples they may have.

Note that in this ontology we use operational relations (marked as dashed
arrows) besides the normal compositional ones. This provides a deeper com-
prehension of how the concepts interact between each other in the domain.

The core of the knowledge base represented in Figure 1, describes that a
coordination pattern is a part of a coordination dependence graph (CDG) [26],
abstracting code which is seen as a composition of statements concerned with
coordination aspects, and are used to analyse architectures. As a novelty, the
web of knowledge shows that coordination patterns communicate with each
other through ports.

346 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

Fig. 1. Ontology Describing the Coordination Pattern Domain Knowledge

ComSIS Vol. 8, No. 2, Special Issue, May 2011 347

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

From this description, and knowing that the main objective of CoordL is
to define a graph over the composition of statements in the source code of a
system, one needs some kind of graph representation to be embodied in the
language. An obvious reference for representing graphs in a textual form is the
DOT language [10], so, CoordL borrows some aspects from that language. The
notion of communication ports (in and out) came from the ACME language [11],
although the notion of ports is very different in these two contexts. To know
which ports exist in a pattern, the notion of arguments – taken from any general-
purpose programming language (GPL) – was adopted . The description of what
are these ports led to the introduction of declarations and initialisations in the
language. Declarations describe the types of statements represented as nodes
in the graph, while initialisations describes the service call which is performed
by the node.

From this textual description we defined a syntax by means of a context free
grammar (partially) shown in Listing 1.1.

Listing 1.1. Partial grammar for CoordL
1 lang → pa t te rn +
2 pa t t e rn → ID ‘ (’ po r t s ‘ | ’ po r t s ‘) ’ ‘{ ’ dec ls roo t graph ‘} ’
3 por t s → l s t I D
4 decls → (dec l ‘ ; ’) +
5 dec l → ‘ node ’ l s t I D ‘= ’ nodeRules | ‘ f o rk ’ l s t I D | ‘ j o i n ’ l s t I D |
6 ‘ t t r i g g e r ’ l s t I D | ID ins tances
7 i ns tances → i ns tance (‘ , ’ i ns tance)∗
8 i ns tance → ID ‘ (’ po r t s ‘ | ’ po r t s ‘) ’
9 . . .

10 r oo t → ‘ root ’ ID ‘ ; ’
11 graph → aggregat ion | connect ions
12 aggregat ion → p a t t r e f (‘ + ’ p a t t r e f)∗
13 p a t t r e f → cnode | ‘ (’ aggregat ionn ‘) ’ connect ion
14 . . .
15 cnode → node | ID ‘ . ’ propTT
16 . . .
17 connect ion → ‘{ ’ opera t ions ‘} ’ ‘@’ ‘ [’ p o r t s a l i v e ‘ | ’ p o r t s a l i v e ‘] ’
18 . . .
19 opera t ion → cnode l i n k cnode | f o r k | j o i n | t t r i g g e r
20 . . .
21 f o r k → node s p l i n k ‘{ ’ cnode ‘ , ’ cnode ‘} ’
22 . . .
23 l i n k → ‘− ’ ID ‘− ’ ‘> ’ | ‘− ’ ‘ (’ ID ‘ , ’ ID ‘) ’ ‘− ’ ‘> ’
24 . . .

Figure 2 presents two examples of patterns written with CoordL. Pattern a),
known as the Asynchronous Sequential Pattern, is a pattern often used when
the system has to invoke a series of services but the order of the answer is not
important. Pattern b), known as the Joined Asynchronous Sequential Pattern,
is a transformation of the first pattern to impose order in the responses.

Both of these patterns address different aspects of the syntax, but the main
structure of the patterns is the same. Moreover, they address the composition
and reuse of patterns.

Regard, for instance, the pattern in Figure 2.a). It has a unique identifier
(pattern 1) and declares in and out ports, identified by p0 and p1, p2 and p3
respectively. The in ports go on the left side of the ‘|’ (bar) symbol, and the
out ports on the right. Then, a space is reserved for node declarations and

348 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

initialisations. There are 5 types of nodes in CoordL, namely node, fork, join,
ttrigger and pattern instance. In Figure 2.a) we use the node and fork types,
and in Figure 2.b) we use node, join and pattern instance types. The ttrigger
type is similar to fork and join.

Nodes of type node require an initialisation, describing a list of rules ad-
dressing the corresponding coordination code fragment, the type of interaction
and the calling discipline. These rules are composed using the && (and) and/or
|| (or) logical operators, and the list must, at least, embody one of the following:
(i) Statement (st), presents the code fragment of the statement responsible by
the coordination request. This statement may be described by a regular ex-
pression or may be a complete sentence; (ii) Call Type (ct), defines the type
of service requested. The options are not limited, but some of the most used
are web services, RMI or .Net Remoting; (iii) Call Method (cm), defines the
method in which the request is made. It can be either synchronous or asyn-
chronous, and (iv) Call Role (cr), describes the role of the component that is
requesting the service. It can be either consumer or producer.

1 pa t t e rn 1 (p0 | p1 , p2 , p3){
2 node p0 , p3 { s t == ”∗ ” }
3 node p1 , p2 {
4 s t == ” c a l l i n g (∗) ” &&
5 c t == webservice &&
6 cm == sync &&
7 cr == consumer
8 } ;
9 f o r k f1 , f2 ;

10 r oo t p0 ;
11

12 { f2 − (x ,w)−> (p3 , p2)}
13 { f1 − (x , y)−> (f2 , p1)}
14 {p0 −x−> f1}
15 }

(a)

1pa t t e rn 2 (p1 | p2){
2node p1 , p2 , pa = {s t == ”∗ ”} ;
3pa t t e rn 1 p a t t (i 1 | o1 , o2 , o3) ;
4j o i n j1 , j 2 ;
5r oo t p1 ;
6

7(p1 + p a t t + p2)
8{p1 −x−> p a t t (i 1) ,
9(p a t t (o1) , p a t t (o3)) − (x , y)−> j 1}
10{(j1 , p a t t (o2)) − (x ,w)−> j 2}
11{ j 2 −x−> p2}
12}

(b)

Fig. 2. Definition of Two Coordination Patterns with CoordL

Pattern instance nodes have the type of an existent pattern. In Figure 2.b),
line 3, it is declared an instance of pattern pattern 1. Each instance of a
pattern must be initialised with unique identifiers referring to all the in and out
ports of the pattern typing it.

In CoordL, we define patterns by giving them a name, defining the ports
and their body. However, nodes and other anonymous structures used (within
the body) to define a pattern are also seen as patterns (or pseudo-patterns
for disambiguation purposes). The main operations over patterns (including
pseudo-patterns) are the aggregation and the connection. Aggregation3 is the

3 Aggregation may be used alone in a pattern body definition, but will never define a
usable pattern.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 349

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

combination of two or more patterns by putting them side-by-side, this is, not
making any connection between their ports. The syntax for the aggregation op-
eration is presented at line 7 of Figure 2.b). Connection is the combination of
two nodes by means of an edge with the identification of, at least, a running
thread. Examples may be seen in lines 12, 13 and 14, of pattern 1 and 8, 9,
10 and 11 of pattern 2.

These two operations are used to build the pattern graph, which comes
after all node declarations and identification of the root node4. There are two
ways of defining the graph: (i) the implicit composition, where there are only
connection operations and (ii) the explicit composition, where aggregation and
connection operations are used simultaneously. The graph of pattern 1 uses
implicit composition, while pattern 2 uses explicit composition.

The connection operation uses one or more out nodes and one or more
in nodes (depending on the type of in and out nodes). When the connection
uses these nodes, their implicit in or out ports are closed, meaning that no
newer connection can use these nodes as in or out ports again. Sometimes
one needs to reuse a node as an in or an out port of a connection. This leads
to the re-opening of a port to be used in the sequent connections. In order to
facilitate this, we introduce the ‘@’ (alive) operator.

We acknowledge that with all the operators and the associated syntax, the
pattern code is not easily readable. This way, we define a visual notation with a
suitable “translation” from the textual notation of CoordL. In Figure 3 we present
the components of the visual notation, corresponding to the textual elements
that define the graph.

In Figure 4 we present how the patterns in Figure 2 look like in this notation.

Node Fork Join

T trigger Instance Edges

Fig. 3. Components of the Visual Notation for CoordL

4 The root node identifies the start node of the pattern and is only useful for graph-
based search of these patterns in a CDG. It must be one of the in ports of the pattern,
chosen nondeterministically, by the pattern definer.

350 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

pattern 1 pattern 2

Fig. 4. Visual Representation of Two Coordination Patterns

4. CoordL - The Semantics

The constructs presented in Section 3 have a precise meaning in CoordL. In
some cases it is possible to draw a mapping between the meaning of a con-
struct and the dependence graph, which is extracted from the source code of
the system being analysed. The following paragraphs provide an informal se-
mantics of each construct in the language.
Bar: |
This construct separates a list of identifiers into two. The identifiers on the left
side list are called in ports and those on the list at the right side are called out
ports. It may appear in the signature of a pattern, or in the graph of a pattern,
whenever it is needed to keep ports opened for further use.
Aggregation: pp1 + pp2
This construct sets two patterns side by side, but it doesn’t connect them. This
is used to reinforce the existence of the patterns in the graph, before connect-
ing their ports. The aggregation operation (meaning collecting patterns, in our
standpoint) is not required to build a graph, however, for completeness of the
language and for a calculus of CoordL language (as envisaged as future work),
this would be an important operation.
Connection: n1 –x–> n2

This construct creates a link between two nodes in the graph of the pattern. It
means that in the dependence graph G, where the pattern will be applied, there
is a path of one or more edges going from n1 to n2 through one or more edges
in a thread identified by x.
Fork Connection: f –(x, y)–> (n1, n2)
This construct creates a link between three nodes in the graph of the pattern,
where the start node is a fork. It means that in the dependence graph G, where
the pattern will be applied, there are two parallel paths (p1 and p2) going from f
to n1 through one or more edges in a thread identified by x, and from f to n2 in a
freshly spawned thread identified by y, respectively. A necessary pre-condition

ComSIS Vol. 8, No. 2, Special Issue, May 2011 351

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

is that in the dependence graph, there is some path p0 from any node to f in a
thread identified by x.
Join Connection: (n1, n2) –(x, y)–> j
This construct creates a link between three nodes in the graph of the pattern,
where the end node is a join. It means that in the dependence graph G, where
the pattern will be applied, there are two parallel paths (p1 and p2) going from
n1 to j through one or more edges in a thread identified by x, and from n2 to j
in a thread identified by y, respectively. A necessary pre-condition is that in the
dependence graph, there are two paths (p0 and p′0) from a fork node to n1 in a
thread identified by x and from the same fork node to n2 in a thread identified
by y, respectively.
Thread Trigger Connection: (n1, n2) –(x, y)–> tt.sync, (n1, n2) –(x, y)–> tt.fail
This construct creates a link between three o nodes in the graph of the pattern,
where the end node is a ttrigger. It means that in the dependence graph G,
where the pattern will be applied, there are two parallel paths (p1 and p2) going
from n1 to tt through one or more edges in a thread identified by x, and from n2

to tt in a thread identified by y, respectively. This meaning aims at expressing
what happens when the threads synchronise (tt.sync), or when the threads syn-
chronisation fails (tt.fail). A necessary pre-condition is that in the dependence
graph there are two paths (p0 and p′0) from a fork node to n1 in a thread identified
by x and from the same fork node to n2 in a thread identified by y, respectively.
List of Connections: { connection, . . . }
This construct creates a list of independent connections. That is, a connection
inside this list does not depend on any node, node property or even on other
connections that are used and defined in the list. This independence resorts to
the fact that there is no order between the connections inside a list of connec-
tions. Subsequent lists of connections may, but are not obliged to, depend on
previous lists.

Along with this construct comes the notion of fresh nodes. A fresh node is
a control node (like a fork, join or ttrigger) that is firstly used in a connection,
and cannot be reused in the same list because of the dependence order. For
instance, a fork node must be used as an out port in a connection before being
used as a in node.
Alive: @
This construct instructs that a list of identifiers is kept alive as in and out ports.
Ports need to be reopened because once a connection uses a node, the implicit
port of such node is killed. The ‘@’ construct is followed by a list of identifiers
divided into two by the bar construct.

5. CoordL - Compiling & Transforming

We used AnTLR system [23] to produce an attribute-grammar-based parser
for CoordL. Taking advantage of AnTLR features we adopted a separation of
concerns method to generate the full-featured compiler. Figure 5 shows the
architecture of the compiler system. The main piece of the compiler system is

352 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

the syntax module where we specify both the concrete and abstract syntax for
CoordL, using the context free grammar presented in Listing 1.1. Based on
the abstract syntax, AnTLR produces an intermediate structure of that grammar
known as a tree-grammar.

Fig. 5. CoordL Compiler Architecture

From the tree-grammar (using attribute grammars methodology) we were
able to define new modules that do not care about the concrete syntax. These
modules embody the semantics checker, the graph drawer and the unimagin-
able number of possible transformations applied to that tree-grammar.

The following hierarchical dependence on these modules is observed: the
semantics module depends on the syntax module; the graph drawer and the
transformation modules depend on the semantics module, so, by transitivity,
they also depend on the syntax module. This holds the requirement that some
modules may only be used if the syntax and the semantics of the CoordL sen-
tence are correct.

We recognise that the separation of concerns in the modules and the de-
pendence between them may be seen as a problem in maintaining the com-
piler. For instance, if something in the abstract syntax of the language changes,
these changes must be performed in every dependent module. Nevertheless,
this method also brings positive aspects: (i) the number of code lines in each
file decreases, easing the comprehension of the module for maintenance; (ii)
since each module defines an operation over the coordination patterns’ code,

ComSIS Vol. 8, No. 2, Special Issue, May 2011 353

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

the compiler may be integrated in a software system providing independent
features to manipulate the patterns and (iii) the separation of concerns into
modules eases the maintenance of each feature.

The transformation modules have, as main objective, to provide perspec-
tives about the coordination patterns, namely, their transformation into Orc [22]
or REO [4] specifications. The transformation of the patterns in Orc is more or
less simple since it may be used an algorithm similar to that presented in [26]
adapted to CoordL (since it is originally adapted to the CDG). Concerning REO,
adequacy of transforming these patterns into REO circuits cares for deep re-
search, since the paradigms are, somehow, different.

An important module to be considered is the transformation of the pattern
code into a suitable input to search for these patterns in the dependence graph
of a system’s code. As for the syntax and the semantic modules, their main out-
put is the syntactic and semantic errors, respectively. The graph drawer module
outputs the visual representation of the coordination patterns.

The transformation of the patterns in their visual notation is the most direct
and easy transformation from the mentioned ones. Technically, it was defined
a new module using the tree-grammar for CoordL that is created by AnTLR.
The main idea of the transformation is to define visual representation of all
(complete) patterns sent as input of that module. This way, the module receives
a string with CoordL patterns and outputs a list of visual representations. Then,
on the interesting parts of the CoordL abstract grammar, we introduce blocks
of code that define the visual representation of each single pattern. To be more
precise, the graph of a pattern is constructed, in several productions of the
grammar, using C# objects that are synthesized as attributes of the grammar.
Later, these objects are encapsulated in a Graph object and set into a slot of the
output list. Each of these Graph objects will be processed (by the GLEE/MSAGL
library mechanisms) in order to produce the visual representation of the pattern.
An example of a visual representation can be viewed on Figure 6. Although with
different objectives, the main process for all the other modules is similar to this
one. In fact, this one is imposed by the attribute grammar methodology, and is
very efficient and intuitive and with good support on AnTLR.

6. Applications and Further Work

Being a DSL, the range of possible applications of CoordL is very narrow. Its
precise objective of matching coordination traces in a dependence graph re-
duces its applicability to other areas. Nevertheless, the area of architectural
analysis and comprehension allows a deep application of this language.

CoordInspector [25] is a tool to extract the coordination layer of a system
and to represent it in suitable visual ways. In a fast overview, CoordInspector
processes common intermediate language (CIL), meaning that systems writ-
ten in more than 40 .NET compliant languages can be processed by the tool.
The tool works by transforming CIL code into an SDG which is sliced to produce
a CDG. The tool then uses ad-hoc graph notations and rules to perform a blind

354 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

search for non-formalised patterns in the CDG. Here is where CoordL has its
relevance. Due to its systematisation and robust formal semantics, the process
of matching patterns in the code can be more reliable than using the ad-hoc
rules. The integration of CoordL in CoordInspector led to the development
of an editor to deal with the language. Figure 6 presents an overview of the edi-
tor integrated in CoordInspector. The editor makes heavy use of the CoordL
compiler system, namely the syntax and semantics modules in order to check
whether there are or there are not errors in the patterns’ specification, and also
performs transformations of the patterns into their visual representation.

Fig. 6. CoordInspector with CoordL editor

CoordInspector is used for integration of complex information systems,
resorting to the recovering of coordination patterns. The use of CoordL in this
task is crucial for a faster and systematised search for such parts of code. Al-
though the graph-based search is not finished yet, there is a contract to follow,
as close as possible, the algorithm defined in [26], that is the same used to
perform the searching for those ad-hoc patterns mentioned before.

In order to avoid the repetition of writing recurrent patterns, we decided to
create a repository of coordination patterns. The repository may be accessed
by means of web services from the editor in CoordInspector. The repository
main objective is to give developers and analysts the possibility of expressing

ComSIS Vol. 8, No. 2, Special Issue, May 2011 355

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

recurrent coordination problems in a CoordL pattern and documenting them
with valuable information5. The existence of the repository of coordination pat-
terns and the fact of being possible the definition of a calculus over the lan-
guage, allows the creation of relations between the patterns, defining an order
of patterns.

In what concerns to further work, we believe that the development of a cal-
culus over the language would allow the development of a model checker for
analysing the properties of these patterns. Also, the application of these pat-
terns to pursuit the work of van der Aalst [1] in workflow mining, but applied on
a low-level dependence-graph-based search is an interesting perspective for
later work. The completion of the graph-based search algorithm and the extrac-
tion of code to a newly separated layer is the most important and urgent work
to do, in order to finish our approach and start to work in other perspectives.

7. Conclusion

In this paper we introduced a domain-specific language named CoordL. This
language is used to describe coordination patterns for posterior use in finding
and extracting recurrent coordination code compositions in the tangled source
code of a software system.

We explained how the language was designed resorting to (i) the applica-
tion domain description, by means of an ontology, and (ii) existing program-
ming language and associated knowledge. We proceed showing how we took
advantage of AnTLR to define a full-featured and concern-separated compiler
for the language. The adoption of this systematic development of modules for
the compiler and the dependencies between them may raise some discussions
about the flexibility at maintenance phase. We are aware of such problems,
nevertheless we argue that the separation of concerns by modules allows for a
better use of the compiler when integrated in other tools, and the problems of
maintenance are not that numerous, since the comprehension of the modules
is easier due to having a small number of lines of code, and the issue solved in
these lines is known a priori.

Finally, we argue for the applicability of CoordL along with CoordInspec-
tor6, a tool to aid in architectural analysis and systems reengineering, and the
creation of a pattern repository for (i) cataloguing of valuable information about
these coordination patterns and (ii) allowing their adoption reuse by developers
and analysts.

References

1. van der Aalst, W., van Dongen, B., Herbst, J., Maruster, L., Schimm, G., Wei-
jters, A.: Workflow mining: A survey of issues and approaches. Data & Knowl-

5 http://gamaepl.di.uminho.pt/coordinspector/patternlist.aspx
6 http://gamaepl.di.uminho.pt/coordinspector/

356 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

edge Engineering 47(2), 237–267 (Nov 2003), http://dx.doi.org/10.1016/
S0169-023X(03)00066-1

2. Aldrich, J., Chambers, C., Notkin, D.: Archjava: connecting software architecture
to implementation. In: ICSE ’02: Proceedings of the 24th International Conference
on Software Engineering. pp. 187–197. ACM, New York, NY, USA (2002), http:
//dx.doi.org/10.1145/581339.581365

3. Allen, R.: A Formal Approach to Software Architecture. Ph.D. thesis, Carnegie Mel-
lon, School of Computer Science (January 1997)

4. Arbab, F.: Reo: a channel-based coordination model for component composition.
Mathematical. Structures in Comp. Sci. 14(3), 329–366 (June 2004), http://dx.
doi.org/10.1017/S0960129504004153

5. Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin, 1st edn.
(2006)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented
Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester, UK
(1996)

7. Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based
data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (Jul 1998), http://dx.
doi.org/10.1145/287000.287001

8. van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated bib-
liography. ACM SIGPLAN Notices 35, 26–36 (2000), http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.33.8207

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional (1995)

10. Gansner, E.R., North, S.C.: An open graph visualization system and its applications
to software engineering. Softw. Pract. Exper. 30(11), 1203–1233 (2000)

11. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural description of component-
based systems. In: Leavens, G.T., Sitaraman, M. (eds.) Foundations of Component-
Based Systems, pp. 47–68. Cambridge University Press (2000)

12. Goguen, A.J.: Reusing and interconnecting software components. Computer 19(2),
16–28 (1986), http://dx.doi.org/10.1109/MC.1986.1663146

13. Goldberg, M., Hayvanovych, M., Hoonlor, A., Kelley, S., Magdon-Ismail, M., Mert-
salov, K., Szymanski, B., Wallace, W.: Discovery, analysis and monitoring of hidden
social networks and their evolution. In: IEEE Conference on Technologies for Home-
land Security (2008). pp. 1–6 (Oct 2008), http://dx.doi.org/10.1109/THS.
2008.4637294

14. Heineman, G.T., Councill, W.T. (eds.): Component-based software engineering:
putting the pieces together. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2001)

15. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
In: PLDI ’88: Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation. vol. 23, pp. 35–46. ACM, New York, NY, USA
(July 1988), http://dx.doi.org/10.1145/53990.53994

16. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999), http:
//portal.acm.org/citation.cfm?id=309683

17. Jen, L.r., Lee, Y.j.: IEEE Recommended Practice for Architectural Description of
Software-intensive Systems. IEEE Architecture pp. 1471–2000 (2000), http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.102.9904

ComSIS Vol. 8, No. 2, Special Issue, May 2011 357

Nuno Oliveira, Nuno Rodrigues, and Pedro Rangel Henriques

18. Lauw, H., Lim, E.P., Pang, H., Tan, T.T.: Social network discovery by mining Spatio-
Temporal events. Computational & Mathematical Organization Theory 11(2),
97–118 (Jul 2005), http://dx.doi.org/10.1007/s10588-005-3939-9

19. Lee, L., Kruchten, P.: A Tool to Visualize Architectural Design Decisions. In: Becker,
S., Plasil, F., Reussner, R. (eds.) Quality of Software Architectures. Models and
Architectures, Lecture Notes in Computer Science, vol. 5281, chap. 3, pp. 43–54.
Springer Berlin / Heidelberg, Berlin, Heidelberg (2008), http://dx.doi.org/
10.1007/978-3-540-87879-7_3

20. Luckham, D.C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Speci-
fication and analysis of system architecture using rapide. IEEE Trans. Softw. Eng.
21(4), 336–355 (1995), http://dx.doi.org/10.1109/32.385971

21. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (December 2005), http://dx.
doi.org/10.1145/1118890.1118892

22. Misra, Jayadev, Cook, William: Computation orchestration: A basis for wide-area
computing. Software and Systems Modeling (SoSyM) 6(1), 83–110 (March 2007),
http://dx.doi.org/10.1007/s10270-006-0012-1

23. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. The Pragmatic Bookshelf, Raleigh (2007), http://www.amazon.de/
Complete-ANTLR-Reference-Guide-Domain-specific/dp/0978739256

24. Raza, A., Vogel, G., Plödereder, E.: Bauhaus - a tool suite for program analysis and
reverse engineering. In: Reliable Software Technologies - Ada-Europe 2006, pp. 71–
82. LNCS (4006) (June 2006), http://dx.doi.org/10.1007/11767077_6

25. Rodrigues, N.: Slicing Techniques Applied to Architectural Analysis of Legacy Soft-
ware. Ph.D. thesis, Engineering School, University of Minho (October 2008)

26. Rodrigues, N.F., Barbosa, L.S.: Slicing for architectural analysis. Science of Com-
puter Programming (March 2010), http://dx.doi.org/10.1016/j.scico.
2010.02.002

27. Sartipi, K., Ye, L., Safyallah, H.: Alborz: An interactive toolkit to extract static and
dynamic views of a software system. In: ICPC ’06: Proceedings of the 14th IEEE In-
ternational Conference on Program Comprehension. pp. 256–259. IEEE Computer
Society, Washington, DC, USA (2006), http://dx.doi.org/10.1109/ICPC.
2006.8

28. Storey, M.A.: Theories, tools and research methods in program comprehension:
past, present and future. Software Quality Journal 14(3), 187–208 (September
2006), http://dx.doi.org/10.1007/s11219-006-9216-4

29. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-
specific languages. Models in Software Engineering pp. 332–342 (2009), http:
//dx.doi.org/10.1007/978-3-642-01648-6_35

358 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Domain-Specific Language for Coordination Patterns

Nuno Oliveira received, from University of Minho, a degree in Computer Sci-
ence (2007) and a M.Sc. in Informatics (2009), for his thesis “Improving Pro-
gram Comprehension Tools for Domain Specific Languages”. He is a member
of the Language Processing group at CCTC (Computer Science and Technol-
ogy Center) , University of Minho. He participated in several projects with focus
on Visual Languages and Program Comprehension. Currently, he is starting his
PhD studies on Architectural Reconfiguration of Interacting Services, under a
research grant funded by FCT.

Nuno F. Rodrigues got a degree in “Mathematics and Computer Science”, at
University of Minho, and finished a Ph.D. thesis in “Software Architectures” also
at University of Minho. Currently he is an Assistant Professor at the Polytechnic
Institute of Cavado and Ave, where he is also the director of the Digital Games
Development Degree and head of the Digital Games Research Centre.

Pedro Rangel Henriques got a degree in “Electrotechnical/Electronics Engi-
neering”, at FEUP (Porto University), and finished a Ph.D. thesis in “Formal Lan-
guages and Attribute Grammars” at University of Minho. In 1981 he joined the
Computer Science Department of University of Minho, where he is a teacher/re-
searcher. Since 1995 he is the coordinator of the “Language Processing group”
at CCTC (Computer Science and Technologies Center). He teaches many dif-
ferent courses under the broader area of programming: Programming Lan-
guages and Paradigms; Compilers, Grammar Engineering and Software Anal-
ysis and Transformation; etc. Pedro Rangel Henriques has supervised Ph.D.
(11), and M.Sc. (13) thesis, and more than 50 graduating trainingships/pro-
jects, in the areas of: language processing (textual and visual), and structured
document processing; code analysis, program visulaization/animation and pro-
gram comprehension; knowledge discovery from databases, data-mining, and
data-cleaning. He is co-author of the “XML & XSL: da teoria a prática” book,
published by FCA in 2002; and has published 3 chapters in books, and 20 jour-
nal papers.

Received: December 28, 2010; Accepted: May 10, 2011.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 359

