
DOI: 10.2298/CSIS101116008R

Solving Difficult LR Parsing Conflicts by
Postponing Them

C. Rodriguez-Leon1 and L. Garcia-Forte1

Departamento de EIO y Computación,
Universidad de La Laguna

casiano@ull.es, lgforte@ull.es,
http://nereida.deioc.ull.es

Abstract. Though yacc-like LR parser generators provide ways to solve
shift-reduce conflicts using token precedences, no mechanisms are pro-
vided for the resolution of difficult shift-reduce or reduce-reduce conflicts.
To solve this kind of conflicts the language designer has to modify the
grammar. All the solutions for dealing with these difficult conflicts branch
at each alternative, leading to the exploration of the whole search tree.
These strategies differ in the way the tree is explored: GLR, Backtrack-
ing LR, Backtracking LR with priorities, etc. This paper explores an en-
tirely different path: to extend the yacc conflict resolution sublanguage
with new constructs allowing the programmers to explicit the way the con-
flict must be solved. These extensions supply ways to resolve any kind of
conflicts, including those that can not be solved using static precedences.
The method makes also feasible the parsing of grammars whose ambigu-
ity must be solved in terms of the semantic context. Besides, it brings to
LR-parsing a common LL-parsing feature: the advantage of providing full
control over the specific trees the user wants to build.

Keywords: parsing, lexical analysis, syntactic analysis.

1. Introduction

Yacc-like LR parser generators [3] provide ways to solve shift-reduce conflicts
based on token precedence. No mechanisms are provided for the resolution of
difficult reduce-reduce or shift-reduce conflicts. To solve such kind of conflicts
the language designer has to modify the grammar. Quoting Merrill [5]:

Yacc lacks support for resolving ambiguities in the language for which
it is attempting to generate a parser. It does a simple-minded approach
to resolving shift/reduce and reduce/reduce conflicts, but this is not of
sufficient power to solve the really thorny problems encountered in a
genuinely ambiguous language

Some context-dependency ambiguities can be solved through the use of
lexical tie-ins: a flag which is set by the semantic actions, whose purpose is to
alter the way tokens are parsed [1, p. 106]. But it is not always possible or easy
to resort to this kind of tricks to fix some context dependent ambiguity.

C. Rodriguez-Leon and L. Garcia-Forte

A more general solution is to extend LR parsers with the capacity to branch
at any multivalued entry of the LR action table. For example, Bison [1], via the
%glr-parser directive and Elkhound [4] provide implementations of the
Generalized LR (GLR) algorithm [11]. In the GLR algorithm, when a conflicting
transition is encountered, the parsing stack is forked into as many parallel pars-
ing stacks as conflicting actions. The next input token is read and used to de-
termine the next transitions for each of the top states. If some top state does
not transit for the input token it means that path is invalid and that branch can
be discarded. Though GLR has been successfully applied to the parsing of am-
biguous languages, the handling of languages that are both context-dependent
and ambiguous is more difficult [10, p. 3]. The Bison manual [1] points out the
following caveats when using GLR:

. . . there are at least two potential problems to beware. First, always
analyze the conflicts reported by Bison to make sure that GLR splitting
is only done where it is intended. A GLR parser splitting inadvertently
may cause problems less obvious than an LALR parser statically choos-
ing the wrong alternative in a conflict. Second, consider interactions
with the lexer with great care. Since a split parser consumes tokens
without performing any actions during the split, the lexer cannot obtain
information via parser actions. Some cases of lexer interactions can be
eliminated by using GLR to shift the complications from the lexer to the
parser. You must check the remaining cases for correctness.

The strategy presented here extends yacc conflict resolution mechanisms
with new ones, supplying ways to resolve conflicts that can not be solved using
static precedences. The algorithm for the generation of the LR tables remains
unchanged, but the programmer can modify the parsing tables during run time.

The technique involves labelling the points in conflict in the grammar spe-
cification and providing additional code to resolve the conflict when it arises.
Crucially, this does not requires rewriting or transforming the grammar, trying to
resolve the conflict in advance, backtracking or branching into concurrent spe-
culative parsers. Instead, the resolution is postponed until the conflict actually
arises during parsing, whereupon user code inspects the state of the underlying
parse engine to decide the appropriate solution. There are two main benefits:
Since the full power of the native universal hosting language is at disposal, any
grammar ambiguity can be tackled. We can also expect - since the conflict han-
dler is written by the programmer - a more efficient solution which reduces the
required amount of backtracking or branching.

This technique can be combined to complement both GLR and backtrack-
ing LR algorithms [10] to give the programmer a finer control of the branch-
ing process. It puts the user - as it occurs in top down parsing - in control
of the parsing strategy when the grammar is ambiguous, making it easier to
deal with efficiency and context dependency issues. One disadvantage is that
it requires some knowledge of LR parsing. It is conceived to be used when
none of the available techniques - static precedences, grammar modification,

518 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

backtracking LR or Generalized LR - produces satisfactory solutions. We have
implemented these techniques in eyapp [7], a yacc-like LALR parser generator
for Perl [13, 6].

This paper is divided in six sections. The next section introduces the Post-
poned Conflict Resolution (PPCR) strategy. The following three sections illus-
trate the way the technique is used. The first presents an ambiguous grammar
where the disambiguating rule is made in terms of the previous context. The
next shows the technique on a difficult grammar that has been previously used
in the literature [1] to illustrate the advantages of the GLR engine: the declara-
tion of enumerated and subrange types in Pascal [12]. The last example deals
with a grammar that can not be parsed by any LL(k) nor LR(k), whatever the
value of k, nor for packrat parsing algorithms [2]. The last section summarizes
the advantages and disadvantages of our proposal.

2. The Postponed Conflict Resolution Strategy

The Postponed Conflict Resolution (PPCR) is a strategy to apply whenever
there is a shift-reduce or reduce-reduce conflict which is unsolvable using static
precedences. It delays the decision, whether to shift or reduce and by which
production to reduce, to parsing time. Let us assume the eyapp compiler an-
nounces the presence of a reduce-reduce conflict. The steps followed to solve a
reduce-reduce conflict using the PPCR strategy can be divided in two activities:
conflict identification and mapping (steps 1a to 1d) and writing the solver (step
2a).

1. Conflict Identification and Mapping
(a) Identify the conflict: What LR(0)-items/productions and tokens are invol-

ved?.
Tools must support that stage, as for example via the .output file gen-
erated by eyapp. Suppose we identify that the participants are the two
LR(0)-items A→ α↑ and B → β↑ when the lookahead token is @.

(b) Give a name to the productions: the software must allow the use of sym-
bolic labels to refer by name to the productions involved in the conflict.
Let us assume that production A → α has label :rA and production
B → β has label :rB. A difference with yacc is that in eyapp produc-
tions can have names and labels. In eyapp names and labels can be
explicitly given using the directive %name, using the following syntax:

%name :rA A → α

%name :rB B → β

(c) Give a symbolic name to the conflict. In this case we choose isAorB
as name of the conflict.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 519

C. Rodriguez-Leon and L. Garcia-Forte

(d) Inside the body section of the grammar, mark the points of conflict using
the new reserved word %PREC followed by the conflict name:

%name :rA A→ α %PREC IsAorB

%name :rB B → β %PREC IsAorB

2. Writing the Conflict Handler
(a) Introduce a %conflict directive inside the head section of the transla-

tion scheme to specify the way the conflict will be solved. The directive
is followed by some code - known as the conflict handler - whose mis-
sion is to modify the parsing tables. This code will be executed each
time the associated conflict state is reached. This is the usual layout of
the conflict handler:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }

else { $self->YYSetReduce(’@’, ’:rB’); }
}

The call to is_A represents the context-dependent dynamic knowledge
that allows us to take the right decision. It is usually a call to a nested
parser for A but it can also be any other contextual information we have
to determine which one is the right production.
Inside a conflict handler the Perl default variable $_ refers to the full
input text and $self refers to the parser object.
Variables in Perl - like $self - have prefixes like $ (scalars), @ (lists), %
(hashes or dictionaries), & (subroutines), etc. specifying the type of the
variable. These prefixes are called sigils. The sigil $ indicates a scalar
variable, i.e. a variable that stores a single value: a number, a string or
a reference. In this case $self is a reference to the parser object. The
arrow syntax $object->method() is used to call a method: it is the
equivalent of the dot operator object.method() used in most OOP
languages. Thus the call

$self->YYSetReduce(’@’, ’:rA’)

is a call to the YYSetReduce method of the object $self.
The method YYSetReduce provided by Parse::Eyapp receives a to-
ken, like ’@’, and a production label, like :rA. The call

$self->YYSetReduce(’@’, ’:rA’)

sets the parsing action for the state associated with the conflict IsAorB
to reduce by the production :rA when the current lookahead is @. The
token argument ’@’ is optional. If omitted, the set of conflictive tokens
will be used.

520 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

The procedure is similar for shift-reduce conflicts. Let us assume we have
identified a shift-reduce conflict between LR-(0) items A → α↑ and B → β ↑ γ
for some token ’@’. Only steps 1d and 2a change slightly:

1d’. Again, we must give a symbolic name to A → α and mark with the new
%PREC directive the places where the conflict occurs:

%name :rA A→ α %PREC IsAorB

B → β %PREC IsAorB γ

2a’. Now the conflict handler calls the YYSetShift method to set the shift
action:

%conflict IsAorB {
if (is_A) { $self->YYSetReduce(’@’, ’:rA’); }
else { $self->YYSetShift(’@’); }

}

The token argument ’@’ of YYSetShift is optional. If omitted, the set of
conflictive tokens is used instead.

In order to clarify the use of PPCR we will address three different kind of
conflicts:

– A simple case of dynamically changing the associativity to show the use of
the %conflict directive (section 3)

– The classical subrange/enum Pascal conflict [1, p. 21] presented in section
4 depicts the use of preparsing, the %explore directive and some details
of the eyapp compiler

– The parsing of a non LR(k) unambiguous grammar (section 5)

3. A Simple Example

The following example1 accepts lists of two kind of commands: arithmetic ex-
pressions like 4-2-1 or one of two associativity commands: left or right.
When a right command is issued, the semantic of the ’-’ operator is changed
to be right associative. When a left command is issued the semantic for ’-’
returns to its classic left associative interpretation. Here follows an example of
input. Between shell-like comments appears the expected output:

1 For the full examples used in this paper, see [8]

ComSIS Vol. 8, No. 2, Special Issue, May 2011 521

C. Rodriguez-Leon and L. Garcia-Forte

$ cat input_for_dynamicgrammar.txt
2-1-1 # left: 0 = (2-1)-1
RIGHT
2-1-1 # right: 2 = 2-(1-1)
LEFT
3-1-1 # left: 1 = (3-1)-1
RIGHT
3-1-1 # right: 3 = 3-(1-1)

We use a variable $reduce (initially set to 1) to decide the way in which the
ambiguity NUM-NUM-NUM is solved. If false we will set the NUM-(NUM-NUM)
interpretation. The variable $reduce is modified each time the input program
emits a LEFT or RIGHT command.

Following the steps outlined above, and after looking at the .output file,
we see that the items involved in the announced shift-reduce conflict are

expr → expr↑ − expr
expr → expr − expr↑

and the lookahead token is ’-’. We next mark the points in conflict in the
grammar using the %PREC directive (see Figure 1)

%%
p:

/* empty */ {}
| p c {}

;

c:
$expr { print "$expr\n"}

| RIGHT { $reduce = 0}
| LEFT { $reduce = 1}

;

expr:
’(’ $expr ’)’ { $expr }

| %name :M
expr.left %PREC LoR
’-’ expr.right %PREC LoR
{ $left - $right }

| NUM
;

Fig. 1. An Example of Context Dependent Ambiguity Resolution

The dollar and dot notation used in some right hand sides (rhs) like in
expr.left ’-’ expr.right and $expr is used to associate variable na-
mes with the attributes of the symbols.

The conflict handler LoR defined in the header section is:

522 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

%conflict LoR {
if ($reduce) {$self->YYSetReduce(’:M’)}
else {$self->YYSetShift()}

}

If $reduce is true we set the parsing action to reduce by the production la-
belled :M, otherwise we choose the shift action.

Observe how PPCR allow us to dynamically change at will the meaning of
the same statement.

4. Nested Parsing

This section illustrates the technique through a problem that arises in the decla-
ration of enumerated and subrange types in the programming language Pascal.
The problem is taken from the Bison manual, (see section ‘Using GLR on Un-
ambiguous Grammars’ [1, p. 21]) where it is used as a paradigmatic example
of when to switch to the GLR engine [1]. Here are some cases:

type subrange = lo .. hi;
type enum = (a, b, c);

The original language standard allows only numeric literals and constant
identifiers for the subrange bounds (lo and hi), but Extended Pascal (ISO/IEC
10206) [12] and many other Pascal implementations allow arbitrary expressions
there. This gives rise to declarations like the following:

type subrange = (a) .. b; type enum = (a);

The corresponding declarations look identical until the ‘..’ token. With nor-
mal LALR(1) one-token lookahead it is not possible to decide between the two
forms when the identifier ‘a’ is parsed. It is, however, desirable for a parser to
decide this, since in the latter case ‘a’ must become a new identifier to repre-
sent the enumeration value, while in the former case ‘a’ must be evaluated with
its current meaning, which may be a constant or even a function call. The Bi-
son manual considers and discards several potential solutions to the problem
to conclude that the best approach is to declare the parser to use the GLR al-
gorithm. To aggravate the conflict we have added the C comma operator inside
expr, making room for the generation of declarations more difficult to parse as:

type subrange = (a, b, c) .. (d, e);
type enum = (a, b, c);

ComSIS Vol. 8, No. 2, Special Issue, May 2011 523

C. Rodriguez-Leon and L. Garcia-Forte

Here is our modification of the vastly simplified subgrammar of Pascal type
declarations found in [1].

%token ID = /([A-Za-z]\w*)/
%token NUM = /(\d+)/

%left ’,’
%left ’-’ ’+’
%left ’*’ ’/’

%%

type_decl : ’TYPE’ ID ’=’ type ’;’
;

type :
’(’ id_list ’)’

| expr ’..’ expr
;

id_list :
ID

| id_list ’,’ ID
;

expr :
’(’ expr ’)’

| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’,’ expr
| ID
| NUM

;

4.1. Identifying the problem

When used as a normal LALR(1) grammar, eyapp correctly complains about
two reduce/reduce conflicts:

$ eyapp -v pascalenumeratedvsrange.eyp
2 reduce/reduce conflicts

The generated .output file tell us that both conflicts occur in state 11. It also
give us the contents of state 11:

State 11:
id_list -> ID . (Rule 4)
expr -> ID . (Rule 12)
’)’ [reduce using rule 12 (expr)]
’)’ reduce using rule 4 (id_list)
’,’ [reduce using rule 12 (expr)]
’,’ reduce using rule 4 (id_list)

’*’ reduce using rule 12 (expr)
’+’ reduce using rule 12 (expr)
’-’ reduce using rule 12 (expr)
’/’ reduce using rule 12 (expr)

524 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

From the inspection of state 11 we can conclude that the two reduce-reduce
conflicts occur between productions id_list -> ID and expr -> ID in the
presence of tokens ‘)’ and ‘,’. To solve the conflict we label the two involved
productions and set the %PREC directives:

id_list :
%name ID:ENUM
ID %PREC rangeORenum

| id_list ’,’ ID
;
expr : ’(’ expr ’)’

| %name ID:RANGE
ID %PREC rangeORenum

| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’,’ expr
| NUM

;
%%

4.2. Pre-parsing the Incoming Input

To find which production applies we will pre-parse the input at the point where
a range or a enumerated type is expected. To achieve it, we introduce an auxi-
liary syntactic variable Lookahead marking the point where the nested parsing
starts:

type_decl : ’type’ ID ’=’ type ’;’ ;

type :
%name ENUM
Lookahead ’(’ id_list ’)’

| %name RANGE
Lookahead expr ’..’ expr

;

The semantic action associated with Lookahead is to check if the incoming
input matches a range:

Lookahead: /* empty */
$is_range = $self->YYPreParse(’range’);

;

The call to the method $_[0]->YYPreParse(’range’) uses a range parser
to parse the input from the current position. It returns true if the range parser
finds a conformant substring starting at that point.

The range parser recognizes the language defined by the subgrammar:

ComSIS Vol. 8, No. 2, Special Issue, May 2011 525

C. Rodriguez-Leon and L. Garcia-Forte

range: expr ’..’ expr ’;’

where the definition of expr is as in the previous grammar.
The conflict handler in the head section decides which production must be

used in terms of the value of $is_range:

%{
my $is_range = 0;

%}
%conflict rangeORenum {
if ($is_range)
{ $self->YYSetReduce(’ID:RANGE’); }

else
{ $self->YYSetReduce(’ID:ENUM’); }

}

The eyapp compiler uses these token definitions

%token ID = /([A-Za-z]\w*)/
%token NUM = /(\d+)/

to automatically generate the lexical analyzer. The rest of the head section of
the grammar set the classic static priorities for the arithmetic operators:

%left ’,’
%left ’-’ ’+’
%left ’*’ ’/’

4.3. Compiling the Grammar

To produce the parser, we start compiling the auxiliary grammar:

$ eyapp -P range.eyp

The -P option used when compiling range tells eyapp to produce parsing
tables that will accept if a prefix of the input belongs to the language generated
by the range grammar2. We then proceed to compile the full grammar3:

$ eyapp -TC enumvsrange.eyp

The eyapp compiler provides a default main which will be used if no main
is provided. The default main accepts several command line arguments:

$./enumvsrange.pm -t -i -m 1 -c ’type e = (x, y, z);’

2 By default, the generated parser only accepts if the full input conforms to the grammar
3 Option -T tells the compiler to insert semantic actions in order to produce the syntax

tree. Option -C is used to generate an executable

526 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

Option -t tells the main to print the result returned by the parser: a descrip-
tion of the syntax tree will be printed. Options -i and -m 1 control the way the
syntax tree is shown. Option -c is followed by the input for the parser. It indi-
cates that the input is given in the command line. The execution of the former
command produces the following output:

typeDecl_is_type_ID_type(
TERMINAL[e],
ENUM(

idList_is_idList_ID(
idList_is_idList_ID(ID(TERMINAL[x]), TERMINAL[y]),
TERMINAL[z])))

4.4. The %explore Directive

In the previous grammar we explicitly introduced a new syntactic variable Lookahead
to set the point for nested parsing. The eyapp programmer can use the

%explorer conflictName { CODE }

directive inside the head section to declare the code in charge of the nested
parsing:

%explorer rangeORenum {
$is_range = $_[0]->YYPreParse(’range’);

}

Then the point where the exploration starts is marked inside the grammar
body using the %conflictname? syntax:

type :
%name ENUM
%rangeORenum? ’(’ id_list ’)’

| %name RANGE
%rangeORenum? expr ’..’ expr

;

The eyapp compiler will mimic the technique outlined in the previous sec-
tion, creating a new syntactic variable, let us call it Lh, whose only empty pro-
duction has as associated semantic action the code defined in the %explorer
directive:

Lh: /* empty */ { $is_range = $_[0]->YYPreParse(’range’) }

The points where the %rangeORenum? directive appears are substituted by
that variable:

ComSIS Vol. 8, No. 2, Special Issue, May 2011 527

C. Rodriguez-Leon and L. Garcia-Forte

type :
%name ENUM
Lh ’(’ id_list ’)’

| %name RANGE
Lh expr ’..’ expr

;

forcing the execution of the exploration code at that points.

5. Conflicts Requiring Unlimited Look-ahead

The following unambiguous grammar can not be parsed by any LL(k) nor LR(k),
whatever the value of k, nor by packrat parsing algorithms [2].

%%
T: S ;
S: x S x | x ;
%%

Though it is straightforward to find equivalent LL(1) and LR(1) grammars (the
language is even regular: /x(xx)*/), even GLR [11] and Backtrack LR parsers
[5] for this grammar will suffer of a potentially exponential complexity in the input
size. The unlimited number of look-aheads required to decide if the current x is
in the middle of the sentence, leads to an increase in the number of branches
to explore. To make the problem more difficult and more representative, let us
assume x is not a token but defines the language of the arithmetic expressions.

The challenge is to make the parser work without changing the grammar.
As in the previous example we start identifying the conflict - which we name
isInTheMiddle -, labelling as :MIDx the reduction item and marking the ex-
ploration point:

%token NUM = /(\d+)/
%token OP = /([-+*\/])/

%%
T: %isInTheMiddle? S ;

S:
x %PREC isInTheMiddle S x

| %name :MIDx
x %PREC isInTheMiddle

;

x: NUM | x OP NUM
;
%%

528 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

The exploration code uses the auxiliary parser ExpList to compute the
number of xs in the list. Variable $nxr is then used to store the mid position:

%explorer isInTheMiddle {
($nxr) = $self->YYPreParse(’ExpList’);
$nxr = int ($nxr/2);

}

When YYPreParse is called in a list context like above - observe the paren-
thesis around $nxr - it returns the semantic value computed by ExpList. The
ExpList.eyp grammar computes the number of xs:

%%
S: $S x { $S + 1 } | x { 1 } ;
%%

Where the definition of x is as in the previous grammar.
The conflict solver code is quite simple: it keeps the position of the current

x inside the state/persistent variable $nxs. The reduction is called when the
middle point is reached:

%conflict isInTheMiddle {
state $nxs = 0;

$nxs++;
if ($nxs == $nxr+1) {

$self->YYSetReduce(’:MIDx’);
$nxr = $nxs = 0;

}
else { $self->YYSetShift() }

}

6. Conclusions

The strategy presented in this paper extends the classic yacc precedence me-
chanisms with new dynamic conflict resolution mechanisms. These new me-
chanisms provide ways to resolve conflicts that can not be solved using static
precedences. They also provides finer control over the conflict resolution pro-
cess than other alternatives. There are no limitations to PPCR parsing, since
the conflict handler is implemented in a universal language and it then can
resort to any kind of nested parsing algorithm. The conflict resolution mecha-
nisms presented here can be introduced in any LR parsing tools, since they
are independent of the implementation language and the language used for the
expression of the semantic actions. One disadvantage of PPCR is that it re-
quires more effort than branching methods like GLR or backtracking LR. With

ComSIS Vol. 8, No. 2, Special Issue, May 2011 529

C. Rodriguez-Leon and L. Garcia-Forte

some effort, the PPCR methodology can be extended to be merged with GLR
and backtracking LR, allowing for a mixed exploration that uses both branching
(GLR) and correct pruning (PPCR). This research line seems worth to explore.

LR conflict removal is a laborious task. The number of conflicts in a progra-
mming language can reach tens and even hundreds: The original grammars of
Algol-60 and Scheme result in 61 and 78 conflicts respectively with an average
density of one conflict for each two productions. By adding Postponed Conflict
Resolution to the classical precedence and associativity settings we can fix the
conflicts in such grammars without modifying the grammars. Removing conflicts
while preserving the grammar is preferable to rewriting the grammar in several
situations: When using a conflict removal tool like the one described in [9], since
the language designer will be still familiar with the resulting grammar, when the
original grammar better reflects the author ideas about the syntax and semantic
of the language, when the original grammar is easier to read and to understand
(size matters) and when such unambiguous grammar is hard or impossible to
find. As future work, we intend to address the building of tools assisting the pro-
cess of conflict identification and conflict removal without modifying the original
grammar.

Acknowledgments. This work has been supported by the EC (FEDER) and the Spanish
Ministry of Science and Innovation inside the ’Plan Nacional de I+D+i’ with the contract
number TIN2008-06491-C04-02. It has also been supported by the Canary Govern-
ment project number PI2007/015.

References

1. Donnelly, C., Stallman, R.M.: Bison: the yacc-compatible parser generator. Techni-
cal report, Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139 (2010)

2. Ford, B.: Functional pearl: Packrat parsing: Simple, powerful, lazy, linear time. Mas-
sachusetts Institute of Technology. Cambridge, MA (2002)

3. Johnson, S.C.: Yacc: Yet another compiler compiler. AT&T Bell Laboratories Techni-
cal Report July 31, 1978 2, 353–387 (1979)

4. Mcpeak, S.: Elkhound: A fast, practical GLR parser generator (2004), [Online]. Avail-
able: http://scottmcpeak.com/elkhound/

5. Merrill, G.H.: Parsing Non-LR(k) Grammars with Yacc. Software, Practice and Ex-
perience 23(8), 829–850 (1993)

6. Randal, A., Sugalski, D., Totsch, L.: Perl 6 and Parrot Essentials. O’Reilly Media
(2004)

7. Rodrı́guez-León, C.: Parse::Eyapp Manuals (2007), [Online]. Available at CPAN:
http://search.cpan.org/dist/Parse-Eyapp/

8. Rodrı́guez-León, C., Garcı́a-Forte, L.: Grammar Repository (2010), [Online]. Avail-
able at google-code: http://code.google.com/p/grammar-repository/

9. Teixeira Passos, L., Bigonha, M.A., Bigonha, R.: A methodology for removing
LALR(k) conflicts. In: Journal of Universal Computer Science. pp. 735–752 (2007)

10. Thurston, A.D., Cordy, J.R.: A backtracking LR algorithm for parsing ambiguous
context-dependent languages. In: 2006 Conference of the Centre for Advanced
Studies on Collaborative Research (CASCON 2006). pp. 39–53. Toronto (2006)

530 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Solving Difficult LR Parsing Conflicts by Postponing Them

11. Tomita, M.: The generalized LR parser/compiler - version 8.4. In: Proceedings of
International Conference on Computational Linguistics (COLING’90). pp. 59–63.
Helsinki, Finland (1990)

12. van der Veen, V.: Extended pascal iso 10206:1990, [Online]. Available:
http://www.standardpascal.org/iso10206.txt

13. Wall, L., Christiansen, T., Schwartz, R.: Programming Perl. O’Reilly & Associates
(1996)

C. Rodriguez-Leon is a full professor of Computer Science at Universidad de
La Laguna, Spain. He received his Diploma in Mathematics and his Doctorate
(Ph. D.) in 1978 and 1987, respectively, both from the same University. He is
in the Editorial Board of journals like Parallel Computing, International Jour-
nal of Computational Science and Engineering (IJCSE), etc. and has been in
the Program Committee of several parallel computing conferences including
EuroPVM/MPI, HeteroPar, EuroPar, HLPP, CIT, ICA3PP, CACIC, INFORUM,
WGISD, etc. His research interest includes Parallel Algorithms, Evolutionary
Computation, Combinatorial Optimization, Distributed Computing, Language
Processing and High Level Programming.

L. Garcia-Forte is a Ph. D. student of the Department of Statistics, Operation
Research and Computation at Universidad de La Laguna, Spain. He received
his Diploma in Computer Engineering in 1997. His main research interests fo-
cus on Programming Languages and Parallel Systems.

Received: November 16, 2010; Accepted: April 19, 2011.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 531

