
DOI:10.2298/CSIS101231009K

From DCOM Interfaces to Domain-Specific

Modeling Language: A Case Study on the

Sequencer

Tomaž Kos
1
, Tomaž Kosar

2
, Jure Knez

1
, and Marjan Mernik

2

1 DEWESoft d.o.o., Gabrsko 11a, 1420 Trbovlje, Slovenia
{tomaz.kos, jure.knez}@dewesoft.si

2 University of Maribor, Faculty of Electrical Engineering and Computer Sciences,
Smetanova ulica 17, 2000 Maribor, Slovenia

{tomaz.kosar, marjan.mernik}@uni-mb.si

Abstract. Software development is a demanding process, since it
involves different parties to perform a desired task. The same case
applies to the development of measurement systems – measurement
system producers often provide interfaces to their products, after which
the customers’ programming engineers use them to build software
according to the instructions and requirements of domain experts from
the field of data acquisition. Until recently, the customers of the
measurement system DEWESoft were building measuring applications,
using prefabricated DCOM objects. However, a significant amount of
interaction between customers’ programming engineers and
measurement system producers is necessary to use DCOM objects.
Therefore, a domain-specific modeling language has been developed to
enable domain experts to program or model their own measurement
procedures without interacting with programming engineers. In this
paper, experiences gained during the shift from using the DEWESoft
product as a programming library to domain-specific modeling language
are provided together with the details of a Sequencer, a domain-specific
modeling language for the construction of measurement procedures.

Keywords: domain-specific modeling languages, data acquisition,
measurement systems.

1. Introduction

Data acquisition is the process of capturing and measuring physical data and
the conversion of these results into digital form that is further manipulated by
a computer program. Data acquisition systems, also called measurement
systems, are used in various fields, ranging from the automotive industry to
the aircraft industry, the space industry and electrical engineering. For
instance, Fig.1 shows data acquisition during a flight test with the DEWESoft
product. The measurements were made on a military helicopter to analyze the
vibrations on the human body. The measurements in this industry, as well as

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 362

others, are quite demanding, with many repetitions on different settings. Most
of the measurement procedures can be done automatically using the
prepared measurement programs; however some needed to be designed
manually at the time of measurement.

Fig. 1. Measurement system DEWESoft during helicopter vibration test

Many measurement system producers provide application programming
interfaces (APIs) to use their products. Those APIs are further used by the
customer’s programming engineers to build software according to their
specific needs. However, a customer’s programming engineers do not
necessarily posses knowledge about the problem domain; therefore they have
to work with domain experts to prepare the desired product. In this way,
prepared measurement procedures can be defined by programming
engineers and further used by domain experts. As stated before, sometimes
prepared measurement procedures are unsuitable and need to be repeated
with slightly different settings. In that case, domain experts need to work with
programming engineers to prepare another measurement procedure. Such
development is time-consuming. An ideal measurement system would be, if
domain experts could prepare the measuring procedures alone without the
interference of programming engineers.

To support domain experts in programming their own measurement
procedures and to be able to fine tune them during measurement, DEWESoft
developed a domain-specific modeling language (DSML) called Sequencer.
Our concrete motivation for this product was to enable domain experts to

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 363

program/model their own data acquisitions and tune them during
measurements without any help from programming engineers. Domain-
specific languages (DSLs) provide notations and constructs tailored toward a
particular application domain [1] and therefore are suitable for domain experts
that have minor programming experience and expertise in the target problem
domain [2]. Compared to general-purpose languages (GPLs), like C, C++,
Java, etc, DSLs are much more expressive and easy of use [3] for the domain
in question. However, DSL development is often accused of having
disadvantages, since it requires both domain knowledge and, in particular,
language development expertise, which is rare in the programming
engineering community. Therefore, it is important to present practical
evidence of developing DSLs in the industry [4] and provide results regarding
the end-users’ satisfaction. Also, the experiences gained through the
development of the Sequencer are reported in this paper.

The line between DSLs and DSMLs is often blurred and it is hard to
distinguish DSLs from DSMLs. The classification often depends on personal
viewpoint. Up to now, DSLs are usually textual [5, 6, 7, 8], while DSMLs
further raise abstraction level, expressiveness and ease of use, since models
are specified in a visual manner and coding phase is moved to specification
and design phase [9, 10]. With the Sequencer, measurement procedures are
possible to specify in both text and visual form. Both options are alternatives
to the previous one – to construct measurement procedures with an API,
which is a standard development method when using GPLs. From that
prospective, in this paper some of the experience are reported regarding
which notation is more popular among DEWESoft customers, as well as their
feedback.

The organization of the paper is as follows. In Section 2 related work on
DSMLs is presented. The design details and characteristics of the Sequencer
are described in Section 3. In Section 4, development and deployment
together with our experiences are presented. Finally, contributions and
concluding remarks with an outline for future work are summarized in Section
5.

2. Related work

Currently, scientists and engineers in diverse areas of work, as well as end-
users with specific domain expertise, require computational processes to
complete a task. However, such users are typically unfamiliar with
programming languages and completing their task becomes a challenge.
Model-driven engineering (MDE) is an approach that provides higher levels of
abstraction to allow such users to focus on the problem, rather than the
specific solution on particular technology platforms. An important part of MDE
is a domain-specific (modeling) language DS(M)L that fit the domain of an
end-user by offering intentions, abstractions, and visualizations for domain

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 364

concepts. Many papers have been published recently on this topic and some
of the most relevant ones are discussed in this section.

Jimenez, et al, show that combining a DSML with an MDE approach can
enhance the quality and portability of home automation systems [11]. Most
home automation systems are currently developed using proprietary low-level
procedures that are platform dependent. To enhance productivity, flexibility,
interoperability and end-user programming, a visual modeling language called
Habitation has been designed and developed which enables the description
of home automation systems using only domain concepts. The Eclipse
Graphical Modeling Framework (GMF) has been used to automatically
generate a graphic editor, while transformations are defined using the graph
grammar approach (EMT - Eclipse Model Transformation). The main
difference with our work is domains (home automation systems vs.
measurement systems) and how both DSMLs have been developed. While
Habitation has been developed using already existing metamodeling tools, we
were not able to use them due to strong dependency on DEWESoft software.

Mathe, et al, present a Clinical Process Management Language (CPML) for
capturing health treatment protocols [12]. The CPML is a formally specified
visual modeling language developed using the metamodeling tool GME. The
semantics have been specified using operational behavioral semantics. The
semantics of the Sequencer is currently given by attribute grammars, which is
used in the implementation phase, but do not enable a high level verification
and analysis. In the future, our aim is to define Sequencer semantics using
graph grammars.

Venigalla, et al, present a domain specific modeling language BASSML
targeting spacecraft designers [13]. The BASSSML is a part of BASS, a
prototype modeling tool for spacecraft systems. BASS consists of a model
interpreter, which translates the captured spacecraft design models into
machine-readable CSP (Communication Sequential Processes) that can be
formally verified using a model checker. Using BASS, the authors show that
spacecraft subsystem interfaces and interactions can be rigorously specified
and analyzed. Hence, obscure subtle ambiguities and inconsistencies can be
detected much earlier, thereby reducing developing costs.

Merilinna presents an end-user driven development of navigation
applications for mobile phones [14]. For this purpose, a DSML was developed
using the modeling environment MetaEdit+. The authors provide yet another
piece of evidence that end-users, who are non-programmers, can actively
participate in the development of navigation applications or develop
applications completely by themselves using DSMLs within a narrow domain.

Živanov, et al, present KAG (Kiosk Application Generator), a DSL that can
generate applications to be deployed on kiosks with touch-screen monitors.
KAG is a nice example of DSL that upon textual specifications generates
graphical-user interfaces using standard compiler generator tools (lex/yacc).
Authors debate that comparing development of applications with KAG (and
previous way, with general-programming languages), reduced number of
programming errors and made kiosk applications development significantly
faster.

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 365

A DOMMLite is the next example of DSMLs [16]. DOMMLite is used for
definition of state structures of database applications. It was developed using
generator framework openArchitectureWare. The domain-specific notation is
defined with a metamodel supplemented by validation rules based on Check
language and extensions based on Extend language that are parts of the
openArchitectureWare framework. Semantics can be defined with
specifications through source code generation for the supported target
platforms. DOMMLite is supported with textual Eclipse editor.

DSMLs are prone to change much more often comparing to GPLs [17].
This is an emergent research area in MDE where models and modeling
languages are subject to change [18]. However, in some environments, like
DEWESoft, even dynamic language evolution might be necessary. In that
case a system requires run-time adaptation without stopping an application.
Possible solutions for adaptive DSML evolution are presented in [19, 20, 21].

3. Domain-specific modeling language Sequencer

Various implementation techniques to implement a DSL exist, such as:
preprocessing, embedding, compiler/interpreter, compiler generator,
extensible compiler/interpreter, and commercial off-the-shelf [1]. Of course,
the language designer has to choose the most suitable implementation
approach, according to the project influences [22]. In our case, the
development was influenced by the fact that DS(M)L has to be included in the
already-existing data acquisition software DEWESoft and that this product is
developed in Object Pascal, more specifically in Delphi [23]. These limitations
lead us to decide for compiler/interpreter implementation approach, where
some of the compiler generator tools were used.

3.1. Construction of a textual concrete syntax

The development of DSML with the compiler/interpreter implementation
approach gave us more freedom and flexibility than using other
implementation approaches mentioned in [1]. In this approach, the standard
compiler/interpreter techniques are used to implement a DSML. In the case of
the compiler, a complete static analysis is done on the DSML
program/specification. The most important advantage of this implementation
approach is that the syntax is closer to the notation used by domain experts,
and good error reporting. The compiler generator approach is similar to the
previous one, except that some of the compiler/interpreter phases (lexical,
syntax, and semantic analysis) are implemented using language development
systems or so-called compiler writing tools (compiler-compilers) (e.g.
Lex/Yacc [24], ANTLR [25], LISA [17], YAJCo [26]). In this manner, the
implementation effort is minimized when compared to the previous approach.

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 366

Generally, the idea of a lexical analyzer is relatively simple. However, the
construction and implementation of a lexical analyzer is time-consuming.
Therefore, in the construction of a lexical analyzer, a compiler generator
implementation approach can be used to speed up this process. In the case
of the Sequencer, the help of DLex was used during the lexical analysis that
generated a lexical analyzer in the programming language Delphi. With
regular expressions, the formal description of the lexical analyzer was
provided. Part of the DLex formal description of the Sequencer is presented in
Fig. 2.

INTEGER [+-]?[0-9]+

FLOAT [+-]?[0-9]+(\.[0-9]+)?

BOOL "True"|"False"

STRING ['][a-zA-Z0-9.,

;:%!?{|}#$&()<>=+@[\\\]/_-]*[']

COMMENT [/]{2,2}.*

IGNORE \n|\r|\r\n|" "|\t|\b

SEPARATOR "("|")"|","

FUNC "Action" |"LoadSetup" |"If"

|"Loop" |"WaitFor" |"Delay"

|"AvdioVideo |"Formula"|"CustomBlock"

|"LaunchApplication" |"Macro"

SPECWORDS "Begin" |"End"

CONDTYPE "ctUser" |"ctValue" |"ctTrigger"

OPERATOR ">" | "<" | "=" | "!="

BOPERATOR "or" | "and"

LSTYPE "Static" | "Dynamic"

%%

{STRING} begin

TokenList.Add(TToken.Create(yytext, tString,

yycolNo, yyLineNo));

end;

...

Fig. 2. Lexical specification of Sequencer using DLex

The syntax and semantic analyzer has been developed independently of
existing compiler generator tools. The syntax of the Sequencer was described
using standard BNF notation. Part of the Sequencer’s BNF is presented in
Fig. 3. From the starting non-terminal NT_START, it can be seen that the
reserved words (Begin, End) embody DSL statements that represent
functionalities (non-terminal NT_LINE) to be performed from the
measurement system DEWESoft. There are various non-terminals derived
from the non-terminal NT_LINE: Action, LoadSetup, If, Loop, WaitFor, etc. For
example, Action represents the basic functionality of the Sequencers’ program
(load project, export data, print, etc). If the load project is specified with an
Action, then the hardware setup for a measurement procedure is performed.
The non-terminal NT_ACTION is defined with non-terminals NT_B_ITEM
(beginning parenthesis “(“), NT_PACTION (action properties), and
NT_E_ITEM (ending parenthesis “)“ with reference to the following

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 367

functionality: non-terminal NT_LINE). The non-terminal NT_PACTION
contains specific properties for the current functionality, while the non-terminal
NT_PROP contains generic properties. In non-terminal NT_PROP, first
terminal (#integer) presents the ID of a construct, then #string represents the
text info that will be presented to the Sequencer's user interface, #boolean
terminal carries information if the Sequencer will notify the end-user with text-
to-speech functionality, etc.

NT_START ::= "Begin" NT_LINE "End"

NT_LINE ::= "Action" NT_ACTION

 | "LoadSetup" NT_LOADSETUP

 | "If" NT_IF

 | "Loop" NT_LOOP

 | "WaitFor" NT_WAITFOR

 | "Delay" NT_DELAY

 | "AvdioVideo" NT_AVDIOVIDEO

 | "Formula" NT_FORMULA

 | "CustomBlock" NT_CUSTOM_BLOCK

 | "LaunchApplication" NT_LAUNCHAPP

 | "Macro" NT_MACRO

 | epsilon

NT_ACTION ::= NT_B_ITEM NT_PACTION NT_E_ITEM

NT_B_ITEM := "(" NT_PROP

NT_E_ITEM ::= ")" NT_LINE

NT_PROP ::= #integer "," #string "," #boolean "," #integer ","

 #integer "," #integer

...

Fig. 3. Syntax specification of Sequencer

function TSeqParser.NT_LINE(Lexer : TLexer; Group :

TSeqGroup) : Boolean;

var

 Item : TSeqItem;

 I : Integer;

begin

 Result := False;

 Item := nil;

 if (Lexer.CurrentToken.AType = tFunc) then

 begin

 if (Lexer.CurrentToken.Lexem = 'Action') then

 begin

 Lexer.NextToken;

 Item := Group.SeqItems.AddNewItem(it_Action);

 Result := NT_ACTION(Lexer, Group, Item);

 end

 else if (Lexer.CurrentToken.Lexem = 'LoadSetup') then

 begin

...

Fig. 4. Semantic of the Sequencer’s non-terminal NT_LINE

The semantics of the Sequencer is described using attribute grammars
from which a compiler is automatically generated. In the semantic part,

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 368

attributes carry the values of actions defined in a DSL program and are
responsible for calling functionalities from DEWESoft environment. Fig. 4
presents the part of the Pascal code for production NT_LINE. First, the token
has to be checked which should be “tFunc” and the lexem should be “Action”.
After that the lexical analyzer goes to the next token and to the next
production which is in our case NT_ACTION.

The language processing effort is usually divided into syntax and semantic
parts. In the syntax, the lexical analyzer and syntax analyzer size has been
checked and 2,787 lines of code (LOC) have been generated or written. The
semantic part of a code that contains all library calls to the DEWESoft
framework contains 5,102 LOC. All together, the Sequencer DSL contains
7,889 LOC, which was developed in six engineer months. Since the
Sequencer’s first release, new features and updates were occasionally
introduced over the following six months, which were not counted as
development time.

3.2. Transformations in the Sequencer

Fig. 5. Sequencer’s code in XML

Transformations in the Sequencer are an important part of the tool. Their
purpose is to transform programs into execution code that is further executed
in the Sequencer’s framework. In the case of the Sequencer, the

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 369

transformation occurs when a program is transformed into another
presentation, execution model or vice versa. The transformation is carried out
according to the selected initial and final model.

All transformations are in the group of exogenous transformations [27],
because a model could never be transformed in the same model.
Transformations enable one to change programs from XML to text or visual
notation without any loss.

XML is also used in the Sequencer as an export and saving format (Fig. 5).
Execution code in transformed into XML and with that feature, the portability
and ability to exchange sequences between end-users and customers is
supported.

3.3. Construction of visual concrete syntax

Beside textual notation, also visual notation has been developed for the
Sequencer. For this purpose metamodels are often used. Usually, the
metamodel is constructed using a standalone metamodeling tool [28, 29], a
specialized software for the construction of DSMLs. However, DSML can
have an implicit metamodel and in the case of the Sequencer, it was decided
to prepare a fixed metamodel where the models were transferred to the
execution model. In the Sequencer's metamodel the following domain
concepts have been defined:

 a set of classes,

 associated attributes for each class,

 the relationship between classes, and

 constraints between classes.
Regarding the constraints in the Sequencer: there are no constraints on

relations in the modeling language – each class can be connected to the
others.

For each class a building block (concrete syntax) has been defined. In
general, building blocks are separated into shapes and links. Each shape has
a unique presentation in the form of a color, size and shape type (rectangle,
diamond, ellipse, etc.). In the Sequencer, links have a unified form (line with
arrow). Each shape belongs to exactly one building block and the link
corresponds to a relationship. Each building block represents an action from a
measurement system. Actions start their execution in the initial building block
(marked with a circle) and continue to the next building block that is
connected with the link.

Building blocks also contain local and global variables (that represent
channels in DEWESoft). Their purpose is to store specific values in
measurements. History is available for those variables and this is further used
to plot graphs after the measurement is finished.

Regarding the Sequencer’s visual notation, a custom block has been
introduced, that embodies several building blocks in a single one. When there
are a lot of building blocks in a measurement procedure, a model can become

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 370

unmanageable. With custom blocks, larger sequences can become more
readable.

Nowadays, most measurement software is designed for capturing, storing
and analyzing the measured data and do not allow the manual construction of
the measuring process. They provide customizations, where you can tune the
measurement procedure with only a few options. With the Sequencer,
DEWESoft has decided to step forward and has developed a powerful DSML
for the purpose of measurement procedures.

4. Results

In this section, the experience of using the Sequencer is discussed. Firstly,
the Sequencer DSML is compared to other selected DSLs to observe its size
and complexity. Then, Sequencer programs are compared to previous
applications developed with DCOM objects. In the end, some experiences are
reported from the end-users and numbers are given about how many
customers are already using the Sequencer; the new feature of a DEWESoft
product.

4.1. Sequencer complexity

From the language developer’s point of view, it is worthwhile to observe the
size of a language. The easiest way to do this is to compare it to other
languages. It has been decided to compare just the Sequencers’ textual
notation and the following DSLs were chosen for comparison with Sequencer:

 Production Grammars (PG) for software testing [6],

 A DSL that allows experimentation for the different regulation of traffic
lights (RoTL) and supports the domain-specific analysis of junctions
[7],

 Context-Free Design Grammar (CFDG)1, designed for generating
pictures from specifications,

 GAL, a well-known DSL used to describe video device drivers [8].
One can get grammar examples with various compiler tools; however these

are unsuitable for a comparison with the ones used in practice, since they are
usually small owing to the fact that their value is in learning a specific tool
notation. Our aim was to compare the Sequencer’s grammar with the ones
already applied in practice. In existing literature, those grammars are often
partially presented, since they are usually too long to fit in the paper.
Therefore, the above grammars were selected for comparison since they are
used in practice and a full grammar was available to the authors of this paper.

1 Context-Free Design Grammar, available at

http://www.chriscoyne.com/cfdg/index.php

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 371

The size of a DSL can be compared to others using grammar metrics [30,
31]. In [30] grammar metrics are divided into size and structural metrics. For
the purpose of our comparison we took the following size metrics:

 term – number of terminals,

 var – number of non-terminals,

 avs – average of right hand side size,

 mcc – McCabe cyclomatic complexity, and

 hal – Halstead effort.
Let us briefly discuss the above-mentioned metrics. A greater maintenance

is expected if a grammar has a large number of non-terminals (var). The
metrics mcc measure the number of alternatives for grammars' non-terminals.
A high value indicates a potentially larger effort for grammar testing and a
greater potential for parsing conflicts. A big avs value usually means that
grammar is less readable. The Halstead effort metric (hal) estimates the effort
required to understand the grammar. Grammar metric comparisons between
the Sequencer and selected DSLs were obtained by the tool gMetrics [31]
(Table 1). From the results of the size metrics, it can be concluded that the
Sequencer is comparable to many of the selected DSLs. Of course, DSL
complexity depends on the domain and can be much larger than other DSLs
(observe GAL results on grammar metrics in Table 1).

Table 1. Comparison of Sequencer with other DSLs

DSL TERM VAR AVS MCC HAL

Sequencer 24 31 4.61 0.52 16.21
PG 10 5 3.80 1 0.89
RoTL 23 12 4.83 0.5 3.89
CFDG 24 13 6 2.38 6.57
GAL 71 74 3.88 1.20 33.36

4.2. Comparison of DCOM applications with the Sequencer’s

programs

The advantage of Sequencer over application development with DCOM
objects can be observed when comparing a program from Fig. 6 with the
DCOM application in Fig. 7. The advantages compared to APIs are obvious in
respect to the clarity and understandability of the code.

Both programs (Fig. 6 and 7) describe the procedure (sequence) which is
prepared to guide one through the entire car acceleration test maneuver.
Besides the acceleration test, in the automotive industry, different
measurements are applied to cars, like brakes, tires, a fuel consumption test,
etc. The sequence in programs (Fig. 6 and 7) starts with the project and setup
file load and the setup screen is shown. The start and stop speed can be set
here. The next step is file details. Here the end-user has to set the file name
and some test details (car type, driver, place, road surface, etc.). After this,
the end-user starts driving. When reaching certain conditions (speed,

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 372

temperature, pressure, distance) that are necessary to perform the
acceleration test, the system advises the user to accelerate to the target
speed. During the measurement process, the end-user can observe vehicle
speed, vehicle acceleration, acceleration distance, temperature, etc. When
the measurement is finished the end-user has the option of repeating the test
or continuing to analyze and then printing out the stored data.

Fig. 6. Sequencer program in textual notation

unit Unit2;

interface

uses

 Windows, Messages, SysUtils, Variants, Classes, Graphics,

Controls,

Forms, Dialogs, AdvGlowButton, AdvToolBar, StdCtrls,

AdvCaptionPanelUnit, DEWEsoft_TLB, ExtCtrls;

const

 bt_Yes = 1;

 bt_No = 2;

 bt_Continue = 4;

 SVSFlgAsync = $00000001;

type

 TForm2 = class(TForm)

 SequencerControlPanel: TAdvCaptionPanel;

 SequenceInfoLabel: TLabel;

 SequenceSeparator: TAdvToolBarSeparator;

 SequencePlayButton: TAdvGlowButton;

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 373

 ...

 procedure FormCreate(Sender: TObject);

 procedure FormDestroy(Sender: TObject);

 procedure Panel1Resize(Sender: TObject);

 ...

 private

 DeweApp : App;

 CurrState : Integer;

 oVoice : OLEVariant;//TTS

 procedure KillProcess(const ProcName : string);

 procedure SetHeader(Caption : string; Buttons : Integer);

 public

 end;

var

 Form2: TForm2;

implementation

uses

 Registry, TlHelp32, ComObj;

{$R *.dfm}

procedure TForm2.Panel1Resize(Sender: TObject);

begin

 if Assigned(DeweApp) then

 begin

 DeweApp.Left := 0;

 DeweApp.Top := 0;

 DeweApp.Width := panel1.Width;

 DeweApp.Height := panel1.Height;

 end;

end;

...

Fig. 7. DCOM application

Table 2. Comparison of Sequencer applications with DCOM applications in LOC

DSL DCOM
application

Sequencer Ratio

Application 1 308 22 14
Application 2 298 15 19,86
Application 3 301 23 13,09
Application 4 280 20 14
Application 5 325 15 21,66

Another advantage can be observed if the Sequencer programs are
compared with the DCOM application with the number of lines of code. In
Table 2, the size of code (LOC) is presented for five different applications
developed with Sequencer and DCOM objects. All Sequencer programs and
DCOM applications have the same functionality. Table 2 confirms the
advantage of Sequencer compared to the API solution (observe the ratio
column in Table 2), since the Sequencer programs were at least 13 times
shorter than the same DCOM applications. Similar productivity increase has

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 374

been reported also elsewhere (e.g., [28]). Note, that applications in Table 2
are case study problems.

4.3. Customers’ experiences

The DEWESoft product has already been successfully applied to the car
industry. For example, the DEWESoft product is used by TÜV, an
independent German consultant organization that validates the safety of
products, like motor vehicles. Also, DEWESoft’s measurement units (together
with its software solution) are used in aviation, construction, electric and even
aerospace industry. NASA awarded the DEWESoft product as “Product of the
year” in 2009. From Table 3, it can be observed that DEWESoft has over 500
end-users who are using measurement systems for their specific
measurements. Also, there are over 40 programming engineers who are
using our DCOM objects to develop measurement procedures for their end-
users.

Since January 2010, when Sequencer was released with DEWESoft ver. 7,
over 150 end-users have already used the measurement procedures with the
Sequencer. More than 30 domain experts are already developing sequences
with the new feature of DEWESoft.

The real value of the Sequencer can be found in the last column of Table 3,
which shows how many new domain experts have started using DEWESoft
since the product became easier to use.

Table 3. DEWESoft customers

DCOM
application
end-users

DCOM
programmers

Sequencer
end-users

Sequencer
domain
experts

New domain
experts on
Sequencer

500 40 150 30 20

4.4. Sequencers’ textual vs. visual notation

Both textual as well as visual concrete syntaxes have implemented the exact
same functionalities and can therefore be transformed from one notation to
another, as described in subsection 3.3. From the Sequencer developers’
point of view, both notations are available to customers of the measurement
system DEWESoft and they were not encouraged to use either of them.

Fig. 8 presents the Sequencers' modeling environment. The building blocks
are on the left side of the environment. On the right side of the environment
there are variables that can be selected for each individual building block. In
the middle of the environment, the end-user can construct the measuring
sequence with visual notation. Visual building blocks are used with "drag and
drop" functionality. The Sequencer leads the end-user through a

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 375

measurement procedure using static analysis, thereby reducing the possibility
of human error and increasing the efficiency of the test itself.

Fig. 8. Sequencer's modeling environment

Studying the Sequencers’ domain experts revealed that most of them are
using this visual notation rather than the text version of the Sequencer. The
most probable explanation for this lies in the abstraction level of both
notations. Also, there appears to be a general opinion that in order to use
textual notation, the end-user needs a certain degree of programming
experience. Both reasons, probably influenced end-users to prefer using the
visual version of the Sequencer.

5. Conclusion and future work

The purpose of the Sequencer was to enable the easier construction of
measurement procedures inside the measurement system DEWESoft. The
main goal of the Sequencer is to push the development of the application from
using DCOM objects to a specialized tool that enables domain experts to
develop measurement sequences efficiently in a simple manner, without the
need of support from programming engineers. Sequences can be developed
in a textual or visual mode, which are customized for application development

Building blocks DSML program Variables

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 376

in the measurement domain. In this paper, the experiences in the
development of Sequencer as well as experience with end-users were
presented. According to the opinion of domain experts, the construction of the
Sequencer has been a good step in simplifying complicated measurement
development in many different fields.

From a usability point of view, the Sequencer’s next feature is to record a
sequence execution and save it in text format. In this manner, sequences can
be analyzed in time to see more details. Currently, the system enables users
to study the final results of the measurement test. From a DSML point of view,
the next development effort will be to support domain experts with domain-
specific debugging facilities similar to one presented by Wu, et al [32].

DS(M)Ls are promising for the future development of software, since
current software development, centered on GPLs, is becoming more and
more complex and software customization usually involves a larger effort on
the part of programming engineers. On the other hand, DSLs enable domain
experts to program and make changes in software and with that they can
quicken development and reduce maintenance costs.

References

1. Mernik M., Heering J., Sloane A.M.: When and how to develop domain-specific
languages. ACM Computing Surveys, Vol. 37, No. 4, 316–344. (2005)

2. Sprinkle J., Mernik M., Tolvanen J.-P., Spinellis D.: Guest Editors' Introduction:
What Kinds of Nails Need a Domain-Specific Hammer? IEEE Software, Vol. 26,
No. 4, 15-18. (2009)

3. Kosar T., Oliveira N., Mernik M., Varanda Pereira M.J., Črepinšek M., da Cruz D.,
Henriques P.R.: Comparing General-Purpose and Domain-Specific Languages:
An Empirical Study. Computer Science and Information Systems, Vol. 7, No. 2,
247-264. (2010)

4. Ferreira E., Paulo R., da Cruz D., Henriques P.R.: Integration of the ST Language
in a Model-Based Engineering Environment for Control Systems – An Approach
for Compiler Implementation. Computer Science and Information Systems, Vol. 5,
No. 2, 87-101. (2008)

5. Arora R., Bangalore P., Mernik M.: Raising the level of abstraction for developing
message passing applications, The Journal of Supercomputing, (2010). Accepted
for publication, doi: 10.1007/s11227-010-0490-3

6. Sirer E. G., Bershad B.N.: Using production grammars in software testing. In:
Proceedings of the 2nd Conference on Domain-Specific Languages, pages 1-14.
USENIX Association (1999)

7. Mauw S., Wiersma W.T., Willemse T.A.C.: Language-driven system design.
International Journal of Software Engineering and Knowledge Engineering, Vol. 6,
No. 14, 625-664. (2004)

8. Thibault S., Marlet R., Consel C.: Domain-specific languages: from design to
implementation - application to video device drivers generation. IEEE Transactions
on Software Engineering, Vol. 25, No. 3, 363-377. (1999)

9. Schmidt C.: Guest Editor's Introduction: Model-Driven Engineering. IEEE
Computer, Vol. 39, No. 2, 25-31. (2006)

From DCOM Interfaces to Domain-Specific Modeling Language: A Case Study on the
Sequencer

ComSIS Vol. 8, No. 2, Special Issue, May 2011 377

10. Gray J., Tolvanen J.-P., Kelly S., Gokhale A., Neema S., Sprinkle J.: Domain-
Specific Modeling. Handbook of Dynamic System Modeling. Boca Raton, Florida:
CRC Press (2007)

11. Jimenez M., Rosique F., Sanchez P., Alvarez B., Iborra A.: Habitation: A Domain-
Specific Language for Home Automation. IEEE Software, Vol. 26, No. 4, 30-38.
(2009)

12. Mathe J., Ledeczi A., Nadas A., Sztipanovits J., Martin J., Weavind l., Miller A.,
Miller P., Maron D.: A Model-Integrated, Guideline-Driven, Clinical Decision
Support System. IEEE Software, Vol. 26, No. 4, 54-61. (2009)

13. Venigalla S., Eames B., McInnes A.: A Domain Specific Design Tool for
Spacecraft System Behavior. In DSM, Nashvile, TN (2008)

14. Merilinna J.: Domain-Specific Modelling Language for Navigation Applications on
S60 Mobile Phones. In DSM Nashvile, TN (2008)

15. Živanov Ž., Rakić P., Hajduković M.: Using Code Generation Approach in
Developing Kiosk Applications. Computer Science and Information Systems, Vol.
5, No. 1, 41-59. (2008)

16. Dejanović I., Milosavljević G., Perišić B., Tumbas M.: A Domain-Specific
Language for Defining Static Structure of Database Applications. Computer
Science and Information Systems, Vol. 7, No. 3, 409-440. (2010)

17. Mernik M., Žumer V.: Incremental programming language development. Computer
Languages, Systems & Structures, Vol. 31, No. 1, 1-16. (2005)

18. Meyers B., Vangheluwe H.: A framework for evolution of modeling languages,
Science of Computer Programming, doi:10.1016/j.scico.2011.01.002. (2011)

19. Kollár J., Václavík P., Wassermann Ľ.: Data driven Executable Language Model.
In: Proceedings of the International Multiconference on Computer Science and
Information Technology, pages 667-675, Polish Information Processing Society
(2009)

20. Forgáč M., Kollár J.: Adaptive Approach for Language Modification. Journal of
Computer Science and Control Systems, Vol. 2, No. 1, 9-12. (2009)

21. Kollár J., Forgáč M.: Combined Approach to Program an Language Evolution.
Computing and Informatics, Vol.29, 1103-1116. (2010)

22. Kosar T., Martínez López P.E., Barrientos P.A., Mernik M.: A preliminary study on
various implementation approaches of domain-specific language. Information and
Software Technology, Vol. 50, No. 5, 390-405. (2008)

23. Cantù M.: Mastering Delphi 7. Sybex Inc. Alameda, CA. 2003
24. Levine J. R., Mason T., Brown D.: Lex & Yacc. O'Reilly, Cambridge, MA. 1992
25. Parr T.: The Definitive ANTLR Reference: Building Domain-Specific Languages.

Pragmatic Bookshelf. 2007
26. Porubän J., Forgáč M., Sabo M., Běhálek M.: Annotation Based Parser Generator.

Computer Science and Information Systems, Vol. 7, No. 2, 291-307. (2010)
27. Bézivin J.: From Object-Composition to Model-Transformation with the MDA. In:

TOOLS-USA’2001, Santa Barbara, USA. (2001)
28. Kelly S., Tolvanen J.-P.: Domain-Specific Modeling Enabling Full Code

Generation. John Wiley & Sons, Inc. (2008)
29. Buchwalder O.: MEtaGile: An Agile Domain-Specific Modeling Environment.

(2008)
30. Power, J. F. and Malloy, B. A.: A metrics suite for grammar-based software.

Journal of Software Maintenance and Evolution: Research and Practice, Vol. 16,
No. 6, 405–426. (2004)

31. Črepinšek M., Kosar T., Mernik M., Cervelle J., Forax R., Roussel G.: On
Automata and Language Based Grammar Metrics. Journal on Computer Science
and Information Systems, Vol. 7, No. 2, 310-329. (2010)

Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik

ComSIS Vol. 8, No. 2, Special Issue, May 2011 378

32. Wu H., Gray J. G., Mernik M.: Grammar-driven generation of domain-specific
language debuggers. Software practice and experience, Vol. 38, No. 10, 1073-
1103. (2008)

Tomaž Kos has graduated at the Faculty of Electrical Engineering and
Computer Science, University of Maribor, in 2009. Currently, he is a PhD
student and he works for DEWESoft company as a researcher. His main
research interests include programming languages, domain-specific
(modeling) languages, testing, data acquisition, and measurement systems.

Tomaž Kosar received the Ph.D. degree in computer science at the
University of Maribor, Slovenia in 2007. His research is mainly concerned with
design and implementation of domain-specific languages. Other research
interest in computer science include also domain-specific modelling
languages, empirical software engineering, software security, generative
programming, compiler construction, object oriented programming, object-
oriented design, refactoring, and unit testing. He is currently a teaching
assistant at the University of Maribor, Faculty of Electrical Engineering and
Computer Science.

Jure Knez received the M.Sc. adn Ph.D degrees in mechanical engineering
from the University of Ljubljana in 1999 and 2002 respectively. He is currently
employed as CTO of Dewesoft d.o.o. in Trbovlje, Slovenia. The company is
developing the software and measurement instrument widely used in
automotive, aerospace, industrial, power distribution and civil engineering
applications.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science
from the University of Maribor in 1994 and 1998 respectively. He is currently a
professor at the University of Maribor, Faculty of Electrical Engineering and
Computer Science. He is also a visiting professor at the University of Alabama
at Birmingham, Department of Computer and Information Sciences, and at the
University of Novi Sad, Faculty of Technical Sciences. His research interests
include programming languages, compilers, domain-specific (modelling)
languages, grammar-based systems, grammatical inference, and evolutionary
computations. He is a member of the IEEE, ACM and EAPLS.

Received: December 31, 2010; Accepted: March 24, 2011.

