
DOI:10.2298/CSIS101231014M

An Approach to Assess and Compare

Quality of Security Models

Raimundas Matulevičius1, Henri Lakk
1
, and Marion Lepmets

2

1 Institute of Computer Science, University of Tartu,
J. Liivi 2, 50409 Tartu, Estonia

rma@ut.ee, henri.lakk@gmail.com
2 Centre for Public Research Henri Tudor – SSI

29 Av. John F. Kennedy, L-1855 Luxembourg,
Marion.Lepmets@tudor.lu

Abstract. System security is an important artefact. However security is
typically considered only at implementation stage nowadays in industry.
This makes it difficult to communicate security solutions to the
stakeholders earlier and raises the system development cost, especially
if security implementation errors are detected. On the one hand
practitioners might not be aware of the approaches that help represent
security concerns at the early system development stages. On the other
hand a part of the problem might be that there exists only limited support
to compare different security development languages and especially
their resulting security models. In this paper we propose a systematic
approach to assess quality of the security models. To illustrate validity of
our proposal we investigate three security models, which present a
solution to an industrial problem. One model is created using PL/SQL, a
procedural extension language for SQL; another two models are
prepared with SecureUML and UMLsec, both characterised as
approaches for model-driven security. The study results in a higher
quality for the later security models. These contain higher semantic
completeness and correctness, they are easier to modify, understand,
and facilitate a better communication of security solutions to the system
stakeholders than the PL/SQL model. We conclude our paper with a
discussion on the requirements needed to adapt the model-driven
security approaches to the industrial security analysis.

Keywords: model-driven security development, modelling quality,
PL/SQL, secureUML, UMLsec.

1. Introduction

Nowadays, computer software and systems play an important role in different
areas of everyday life. They deal with different type of information including
the one (e.g., bank, educational qualification, and health records) that must be
secured from the unintended audience. Thus, ensuring system security is a
necessity rather than an option. Security analysis should be performed

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 448

throughout the whole system development cycle starting from the early stages
(e.g., requirements engineering and system design) and leading to the late
stages (e.g., implementation and testing). However this is not the case in
practice [13], [32] where security is considered only when the system is about
to be implemented (e.g., at implementation stage) or deployed (e.g., at
installation stage). This is a serious limitation to the secure system
development, since it is the early stages where security requirements should
be discovered and communicated among stakeholders, security trade-offs
should be considered, and security concerns should be clearly differentiated
among different system aspects (e.g., data, functionality, and etc).

One possible suggestion to solve the above problem is an approach called
model driven architecture (MDA). MDA provides a solution for the system
development process based on models [5] that are the simplified
representations of reality. Although MDA is certainly useful for the general-
purpose system and software development [14], [20], [33], [34], the current
state of the art gives little evidence (we identified only one study – [3]) on how
model driven security (MDS) could help developers to improve the security
definition and implementation process.

A part of the problem could be a lack of the systematic support to assess
the security development languages both at the systems modelling and
system implementation stages. In this paper we have proposed a systematic
approach to evaluate quality the security models following the instantiation of
the Semiotic Quality (SEQUAL) framework [15] [16]. To validate our proposal
we have performed a case study (carried on at the Software Technology and
Application Centre in Estonia), where we compare quality of the security
model prepared using PL/SQL [9] (a procedural programming language), and
quality of the security model prepared using MDS approaches, namely
SecureUML [2], [19] and UMLsec [11]. All the security models define a role-
based access control [8] on the data model provided to us by our industrial
partner. Our case study results in a higher quality for the security models,
created at the requirements engineering and design stages of the systems
development. However we also highlight a set of requirements that are
necessary to fulfil in order the MDS approaches were applicable in practice.

The structure of the remaining paper is as follows: in Section 2 we
introduce the background of our research. We present the general RBAC
model, the quality framework, and the approaches that help express system
security concerns. In Section 3 we introduce an approach to assess quality of
the security models. Next in Section 4 we illustrate the application of our
proposal to evaluate quality of three languages, namely PL/SQL, SecureUML
and UMLsec. Hence, we list our observations regarding model semantic,
syntactic and pragmatic quality types. Finally, in Section 5 we discuss the
results against the related work, and we also conclude our study.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 449

2. Background

In this section we provide the background for our study. Firstly, we discuss the
principles of the role-based access control. Secondly, we survey an
evaluation framework that helps to assess model quality. Finally, we discuss
development languages to represent system security.

2.1. Role-based Access Control

In this work we adapt the core role-based access control (RBAC) model [8].
This model defines a minimum set of concepts and relationships in order to
define a role-based access control system. The basic concept of RBAC is that
users are assigned to roles, permissions are assigned to roles, and users
acquire permissions by being members of roles. The same user can be
assigned to many roles and a single role can have many users. Similarly, for
permissions, a single permission can be assigned to many roles and a single
role can be assigned to many permissions.

The basic concepts of the RBAC model are illustrated in Fig. 1. The main
elements of this model are Users, Roles, Objects, Operations, and
Permissions. A User is typically defined as a human being or a software
agent. A Role is a job function within the context of an organisation. Role
refers to authority and responsibility conferred on the user assigned to this
role. Permissions are approvals to perform one or more Operations on one or
more protected Objects. An Operation is an executable sequence of actions
that can be initiated by the system entities. An Object is a protected system
resource (or a set of resources). Two major relationships in this model are
User assignment and Permission assignment. User assignment relationship
describes how users are assigned to their roles. Permission assignment
relationship characterises the set of privileges assigned to a Role.

Fig. 1. Role-based Access Control Model (adapted form [8])

In Section 3 we propose an assessment of the quality for security models.
There, the RBAC model suggests the criteria that help to judge about the
model semantic properties as we illustrate in Section 4.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 450

2.2. Modelling Quality

Evaluations of a model quality [30] could be performed (i) using detailed
qualitative properties or (ii) through general quality frameworks. A systematic
survey of these approaches could be found in [28]. In this study we combine
both approaches: firstly, we follow guidelines of the semiotic quality
(SEQUAL) framework [15], [16] to select the quality types of interest.
Secondly, we identify a set of qualitative properties that are used to compare
two security models.

The SEQUAL framework (Fig. 2) is an extension of the Lindland et al,
(1994) quality framework [18], which includes discussion on syntax, semantics
and pragmatics. It adheres to a constructivistic world-view that recognises
model creation as part of a dialog between the participants whose knowledge
changes as the process takes place. The framework distinguishes between
quality goals and means to achieve these goals. Physical quality pursues two
basic goals: externalisation, meaning that the explicit knowledge K of a
participant has to be externalised in the model M by the use of a modelling
language L; and internalisability, meaning that the externalised model M can
be made persistent and available, enabling the stakeholders to make sense of
it. Empirical quality deals with error frequencies when reading or writing M, as
well as coding and ergonomics when using modelling tools. Syntactic quality
is the correspondence between M and the language L in which M is written.
Semantic quality examines the correspondence between M and the domain
D. Pragmatic quality assesses the correspondence between M and its social
as well as its technical audiences’ interpretations, respectively, I and T.
Perceived semantic quality is the correspondence between the participants’
interpretation I of M and the participants’ current explicit knowledge KS. Social
quality seeks agreement among the participants’ interpretations I. Finally,
organisational quality looks at how the modelling goals G are fulfilled by M. In
the second case the major quality types include physical, empirical, syntactic,
semantic, pragmatic, social and organisational quality.

2.3. System Security

In order to define the system security policy in a systematic way it is important
to understand the need for security within an organisation. One of the possible
ways is to apply the security risk management process [26]. This process
begins with the identification of the secure assets and the determination of the
security objectives (in terms of confidentiality, integrity, and availability).
During the next step security risks and their harm to the secured assets and
their security objectives, are identified. Once the risk assessment is
performed, risk treatment decisions (e.g., risk avoidance, risk reduction, risk
transfer or risk retention) are taken. Following these decisions, the developers
formulate the security requirements in order to mitigate the identified risks.
Security requirements are, finally implemented into the security controls.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 451

Fig. 2. The SEQUAL framework (adapted from [15], [16])

In order to support security modelling various research groups have
proposed a variety of different approaches. For instance abuse frames [17]
suggest means to consider security during early requirements engineering
stage. Secure i* [6] addresses security trade-offs. KAOS’ extension to security
[35] was augmented with anti-goal models designed to elicit attackers’
rationales. Tropos has been extended with the notions of ownership,
permission and trust [10]. Another version of Secure Tropos [29] defines
security through the security constraints. Abuse cases [27], misuse cases [32]
and mal-activity diagrams [31] are the extensions for the modelling languages
from the UML family. Another UML extension (through the stereotypes,
tagged values and constraints) towards security is UMLsec [13]. This
language is, basically, used to address the security concerns during the
system design stage. Although the majority of those approaches contribute to
a proper definition of the security requirements, but they discuss little on how
these security requirements should be implemented into the security controls.

Furthermore there is little support to assess these languages before their
actual application to solve problems of system and software development.
Thus, in this paper we propose a systematic approach, which could guide
evaluation of the security languages through the hands-on testing. To
illustrate application of the approach we have executed a case study where
we have selected three languages – PL/SQL [9], SecureUML [2], [19],
UMLsec [13]. We have investigated how these languages could contribute to
the implementation of the security controls. More specifically we use these
three approaches to define a role based access control (RBAC) policy for the
data that needs to be secured.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 452

3. An Assessment of Quality for Security Models

In this paper we introduce a systematic and hands-on-based approach to
assess and compare quality of the security models. Our proposal consists of
six steps as illustrated in Fig. 3. During the first step one needs to define the
evaluation goal. With respect to the security models, the assessment goal
could be understanding of the nature of the security needs, learning about the
scope of the security models, learning about the quality of the security
models, comparing different security models according to the quality criteria
identified in the second step and similar.

Fig. 3. An Assessment of Quality for Security Models

The second and the third steps of our proposal could be executed in
parallel. The second step is identification of the quality evaluation criteria.
Although, as illustrated in Section 2.2, the SEQUAL framework provides
fundamental principles to evaluate model quality, firstly, it remains abstract,
and, secondly, it is dedicated to the models of the general purpose, but not to
the security models. As we show in Section 4.2, we select a set of qualitative
properties that instantiates SEQUAL for the security model assessment based
on the literature [4], [15] and on our experience of assessing the requirements
engineering tools [21], development guidelines [11], goal modelling languages
and models [24].

As discussed in Section 2.3, the security concerns could be represented
using different languages. Thus, depending on the goal defined in the first

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 453

step, one needs to select or to create security models, which quality will be
executed assessed in the subsequent steps.

The fourth step is about performance of the evaluation of the
selected/created (in step 3) security models. This includes the investigation of
the models and assignment of the subjective and objective values to the
predefined (in step 2) model measures.

Expressing security quality is not an easy task. Thus we introduce the fifth
step where evaluators have to validate the quality evaluation results. This
typically means consultation of the received measures to the experts or to the
model developers (see for instance Section 4.5.2). The final step of the
security model assessment is the summary and report on the evaluation
results.

In Section 4 we are reporting on a case study where we use our proposal
to assess quality of three security models, created using PL/SQL [9],
SecureUML [2] [19] and UMLsec [13].

4. A Case Study

Two researchers have followed the steps of the assessment of the quality for
security models. They have defined the evaluation goals, identified the quality
evaluation criteria and created the security models for evaluation. The model
assessment results were communicated to the model developers in order to
validate their correctness. The overall application of the method is illustrated
in the following subsections.

4.1. Defining the Evaluation Goals

The goal of this case study is twofold:

 Firstly, we are interested in learning about the quality of the security
models created using different languages. More specifically we will
compare the models created at the software system design stage and
software system implementation stage. In both cases our model will
be defining the role-based access control polity for the system data.

 Secondly, we are interested in performance and feasibility of the
method introduced in Section 3. Through the case study we will
record our observations on the method application.

4.2. Identifying the Quality Evaluation Criteria

Although being influenced by the overall theoretical background of the
SEQUAL framework, in our study we specifically focus only on three quality
types, namely semantics, pragmatics, and syntax. Hence we will introduce a

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 454

set of measures in order to understand the quality of the security models. In
fact in [25] we have already defined a set of subjective measures that helped
us to address the model quality by its relative level (there we applied the
ordinal scale consisting of Low, Partial, and High values). In this work we
extend the quality model by introducing measures that allow developers to
estimate quality quantitatively. The instantiation of the SEQUAL framework for
the security model is illustrated in Fig. 4 and presented below.

Fig. 4. Instantiation of the SEQUAL framework

Semantic quality is a correspondence between a model and its semantic
domain. We assess semantic quality through the following qualitative
properties and their measures:
Semantic completeness. It means that everything that the software is

supposed to do is included in the model. With respect to the security
domain, we say that the security model should include concepts
corresponding to the RBAC domain, which is presented in Section 2.1. The
Percentage of the RBAC domain coverage is calculated as a division
between the number of RBAC concepts presented in the model and the
number of RBAC concepts.

Semantic correctness. It means that a model should represent something that
is required to be developed. With respect to the security domain this
qualitative property requires separation between data- and security-related
concerns – only the security-related knowledge is required in the security
model. Percentage of security related statements describe the degree of
security statements with respect to the overall model is.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 455

Traceability. It requires that the origin of the model and its content should be
identifiable. The security model should clearly present the rationale why
different security solutions are included in the model. We define a measure
Number of traceability links, which characterise a count of links traced to
the origin of the model.

Annotation. It means that a reader is easily able to determine which elements
are most likely to change. This is especially important in the security model
because system security policy might be changed often. A measure of
Number of annotation elements gives the count of annotations used in the
model.

Modifiability. It means that the structure and the content are easy to change.
When security policies change it should be easy to change the security
concerns quickly in the model. To estimate modifiability we define a
measure of Time spent to modify. It indicates how long it takes to change
security policy in the system.
The last two qualitative properties are important when the new system

security policies are introduced. Knowing the place and being able to
implement the new security concerns quickly might substantially reduce the
maintenance cost of overall system.

Syntactic quality is a correspondence between a model and a modelling
language. The major goal of the syntactic quality is syntactic correctness. The
following qualitative properties and their measures are defined:
Syntactic validity. It means that the grammatical expressions used to create a

model should be a part of the modelling language. The measure defined for
this qualitative property is a Number of syntactically invalid statements. If
the value for this measure is higher the syntactical validity of the model is
worse.

Syntactic completeness. It means that all grammar constructs and their parts
are present in the model. We define a measure Number of syntactically
incomplete statements. Similarly to syntactic validity measure, the syntactic
completeness estimates high if Number of syntactically incomplete
statements results in null.
To test the syntactic correctness of the security models we need to

investigate the concrete syntax of the languages used to create these models.
Pragmatic quality is a correspondence between a model and an

interpretation of social and technical audience. The social audience of security
model is typically security engineer, but it also includes the system analysts,
the software developers, the stakeholders (actors who pay for the
development of the secure system), and even the direct users, who should
also be involved in the security requirements definition process. With respect
to the social actors we define the following qualitative properties and their
measures:
Understandability. It means that a reader is able to understand the model with

minimum explanations. To estimate the understandability of the security
model we can count number of the explanations needed for the social
audience. On the other hand here we define a measure Time spent to
understand the model.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 456

Cross-referencing. It means that the different pieces of model content are
linked together. A measure of Number of cross-reference links provides a
count of cross-referenced links between model components.

Organisation. It means that the model content should be arranged so that a
reader could easily locate information and logical relationships among the
related information. This could be done by the table of content, division of
the model to different sections/chapters, inclusion of the glossary and
similar. A measure of Number of organisation elements returns a count for
the elements, which could help in arrangement of the logical information.
For the technical model interpretation we define that the model should be

estimated according to executability property, meaning that there should exist
technology capable of inputting the model and resulting in its implementation.
The existence of technology is characterised by a measure Technology
capable to execute the model.

4.3. Selecting / Creating Security Models

In order to understand the quality of the security models we have selected
three languages: PL/SQL [9], SecureUML [2] [19], and UMLsec [13]. We have
applied these languages to create the models following the RBAC policy. In
fact in our models we were solving the industrial problem; however the actual
data and security models could not be presented here due to the privacy
concerns of our industrial partner. But here we include an extract of a meeting
scheduling system [7]. This example closely corresponds to the industry
models used in the assessment. Our observations are the same for the
industrial problem and for the meeting scheduler system.

Security problem. Meeting scheduling system [7] is described as follows:
there is a need to organise a top-secret meeting in the way that only intended
users would know when the meeting starts and ends, what meeting owner
and location are. In our example users are allowed adding information about
new meetings and viewing information about all existing meetings. But one
can delete or change meeting information if and only if he/she is an owner
(e.g., meeting initiator) of the meeting. We will present solutions to this
problem in the PL/SQL, SecureUML and UMLsec security models.

PL/SQL. Oracle PL/SQL is a procedural language extension [9] to the
standard query language (SQL). PL/SQL was introduced by Oracle
Corporation to overcome some limitations of SQL and to provide a more
complete implementation solution to develop the mission-critical applications,
which run on the Oracle database. PL/SQL is an embedded language and
could not be used as a standalone language. The language ensures that the
programs can stay entirely within the operating-system independent Oracle
environment. One of the important aspects of the language is its tight
integration with SQL. This means the programs do not rely on intermediate
software (e.g. Open Database Connectivity (ODBC) or Java Database
Connectivity (JDBC)) in order to run SQL statements. Among other features,

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 457

PL/SQL deals with control flows, exception handling, and advanced data
types.

Fig. 5. Excerpt of the PL/SQL security model

The PL/SQL security model is prepared using the EditPlus1 tool. In general
the security model consists of the library that accumulates different security
procedures written in PL/SQL. In our example this library contains three
procedures that define different security policies for three RBAC roles –
Admin, SuperUser, and User. For example in Fig. 5 we illustrate a procedure
of meeting_permissions that describes a set of permissions, which are
defined on the meeting for one RBAC role, called User (e.g., the role is
checked through the condition if sec.is_role(‘User’)). Here we see that if a
certain condition (e.g., a user is a meeting owner and the meeting end date
has not yet passed) holds, it is possible to edit meeting attributes (e.g., start,
end, location, and owner); otherwise editing is not allowed. In order to receive
a running application one needs to compile the PL/SQL source code.

1 http://www.editplus.com/

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 458

SecureUML. The SecureUML modelling language [2] [19] adapts the
RBAC model. At the concrete syntax level SecureUML is a “lightweight
extensions” of the UML, namely through stereotypes, tagged values and
constraints. It introduces the concepts and the stereotypes for User, Role, and
Permission as well as the relationships between them (RoleAssignment and
PermissionAssignment). Here the secured objects and the operations are
expressed through the protected objects, which are modelled using the
standard UML elements.

The semantics of Permission is defined through ActionType elements used
to classify permissions. Here every ActionType represents a class of security-
relevant operations (e.g., specific security actions: select, change, insert, and
delete) on a particular type of protected resource. An AuthorisationConstraint
is a part of the access control policy. It expresses a precondition imposed to
every call to an operation of a particular resource. This precondition usually
depends on the dynamic state of the resource, the current call, or the
environment. The authorisation constraint is attached either directly or
indirectly, via permissions, to a particular model element representing a
protected resource.

The SecureUML security model was prepared using MagicDraw2. The
overall model consists of five diagrams. A top-level diagram is a content
diagram as shown in Fig. 6. Other four diagrams present four aspects of the
security model. For instance, diagram SecurityResource-Views describes the
data, which need to be secured, diagrams RolePermissions-Admin,
RolePermissions-SuperUser, and RolePermissions-User present the security
permissions with respect to the roles Admin, SuperUser, and User.

Fig. 6. SecureUML content diagram

In Fig. 7 we present an excerpt of the Meeting Scheduling system (User

permissions). Here two security permissions (e.g., UserSelectAllMeetings and
UserUpdateOwnMeeting) are defined for the role User over the resource
Meeting. Similarly like in the PL/SQL model, an authorisation constraint
UserOwnDataConstraint defines that only an owner is allowed to update or
delete meeting information if the meeting date has not yet passed.

2 http://www.magicdraw.com/

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 459

In order to receive an executable application, the SecureUML model is
automatically transformed to the PL/SQL code (see illustration in the
Appendix of this paper). The transformed PL/SQL code is then compiled to a
running application.

In our case study we have selected to analyse the model created using
SecureUML, but not its PL/SQL transformation. The reason is that we intend
to analyse the model, which is editable by the system developers directly.

Fig. 7. Excerpt of the SecureUML security model

UMLsec. The UMLsec modelling language [13] is defined as a UML profile
extension using stereotypes, tagged values and constraints. Constraints
specify security requirements. Threat specifications correspond to actions
taken by the adversary. Thus, different threat scenarios can be specified
based on adversary strengths.

A subset of UMLsec that is directly relevant to this study is the role-based
access control stereotype – <<rbac>> – its tagged values and constraints.
This stereotype enforces RBAC in the business process specified in the
activity diagram. It has three associated tags {protected}, {role}, and {right}.
The tag {protected} describes the states in the activity diagram where the
access to the activities should be protected. The {role} tag may have a list of
pairs (actor, role) as its value, where actor is an actor in the activity diagram,
and role is a role. The tag {right} has a list of pairs (role, right) as its value,
where role is a role and right represents the right to access a protected
resource. The associated constraint requires that the actors in the activity
diagram only perform actions for which they have the appropriate rights.

In Fig. 8 we define an activity diagram, which describes an interaction
between User and Meeting. The diagram specifies that User can Insert data
(e.g., meeting start- and end-dates, meeting owner, and meeting location).
Next, User is able to Select data in order to check if data are correct. If these
are not OK User is able to Update data. After the meeting is over, User is able
to Delete data about this meeting.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 460

Fig. 8. Meeting Scheduler with UMLsec

This diagram carries an <<rbac>> stereotype, meaning that the security
policy needs to be applied to the protected actions. For instance, the User’s
actions lead to the secured actions executed by the Meeting. For example,
Insert data is executed if and only if there exists an associated tag that
defines the following: (i) Insert data is a protected action, (ii) there exists a
user (e.g., Bob) who plays role User, and (iii) User enforces the action Insert
data. In the activity diagram this associated tag is defined as follows:
 {protected = Insert data}

 {role = (Bob, User)}

 {right = (User, Insert data)}

Similarly, the sets of associated tags are defined for other three protected
actions Select data, Update data, and Delete data. Like in the SecureUML
model, using UMLsec we need to define activity diagrams (with the models
<<rbac>> stereotype) for other two actors – Admin and SuperUser.

4.4. Performing Evaluation of the Security Models

In this section we will subsequently discuss the results of our assessment of
the security models. We will see the results on semantic, syntactic and
pragmatic quality types.

4.4.1. Assessment of Semantic Quality

Our analysis of the semantic quality for the security models is summarised in
Table 1. As defined in Section 4.2 we considered semantic quality according

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 461

to semantic completeness, semantic correctness, traceability, annotation, and
modifiability.

Table 1. Semantic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Semantic
completeness

Percentage of the
RBAC domain
coverage

42,86%
71,43%
(100%)

85,71%

Semantic
correctness

Percentage of
security related
statements

7,69% 100% 33%

Traceability
Number of traced
links

0 0 0

Annotation
Number of
annotation elements

0 5 1

Modifiability
Time spent to
modify

Not-known 5-10 minutes 5-10 minutes

PL/SQL security model. Semantic completeness is assessed through a

model correspondence to the RBAC domain (see Section 2.1). In the first
condition the PL/SQL model explicitly defines the role (e.g., User in Fig. 5) for
which security permission is defined. Next the PL/SQL model focuses partially
on the presentation of the security permissions (e.g., see the second condition
expression in Fig. 5), which are defined for the attributes of secured objects
(e.g., statements like meeting.start, meeting.end, and others shown in Fig. 5).
However it does not define on which operations the security permissions are
placed. Also the PL/SQL model does not express users and user assignment
relationships. We estimate 42.86% (expresses 3 RBAC concepts out of 7) of
the RBAC domain coverage.

The semantic correctness of the PL/SQL model is low, because it does not
separate the data and programmable concerns from the security concerns. In
PL/SQL diagram we found only two statements that are defining security
concerns (see two conditions defined in Fig. 5). All other 24 statements are
defining different programmable variables or user interface components (e.g.,
DO.item_enable(‘meeting.new_meeting’) is enabling the item of the user
interface). We estimate only 7,69% (2 statements out of 26) of the security
related statement in the diagram presented in Fig. 5.

The PL/SQL model is not traced. This means that origin and rationale for
the security decisions are not provided in the model and we did not observe
any traceable links in this model. The PL/SQL model is not annotated, thus it
is difficult to determine which elements are most likely to change.

Modifiability is estimated by the time used to modify different aspects of the
model. To estimate this characteristic it was rather difficult because it directly
correlates to the understandability property (see discussion below). However
we acknowledge that, once the model is understood, time spent to modify the
model might depend on the scope of the changes and skills of the developer.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 462

SecureUML security model. SecureUML is developed to design the
RBAC-based solutions. This means that SecureUML could fully correspond to
the semantic domain, thus resulting in high semantic completeness. However
in our analysed diagram (see Fig. 7) we did not identify RBAC concept of
User and relationship User assignment. Thus we result in 71,43% of the
RBAC domain coverage (however we should note that definition of User and
User assignment is not a problem using SecureUML, thus possibly resulting in
100% of semantic completeness).

We identify high semantic correctness, because only security solutions are
presented in the SecureUML model. We assess percentage of security
related statements as 100%.

Like in the PL/SQL security model, in the SecureUML model we did not
observe any rationale for security decisions, thus it results in a low traced
property.

The Secure UML model is partially annotated. This annotation is achieved
through SecureUML stereotypes (e.g., <<secuml.permission>>,
<<secuml.role>>, etc.) and class names given to the permissions (e.g.,
UserSelectAllMeetings and UserUpdateOwnMeeting) and the authorisation
constraints (e.g., UserOwnDataConstraint). These class names are not
directly used in the transformation of the model to code, but they provide
additional information to the model reader. They also identify the places in the
model where security policy is most likely to be changed. We counted 5
annotation examples in the SecureUML model.

The SecureUML model is modifiable. The model implies a certain
presentation pattern – Role-Permission-Resource, which facilitates the
changing of the model. Like for the PL/SQL model we acknowledge that
modifiability much depends on the change requirements and on the skills of
the developer, but we also observe that the average time of one change might
vary from 5 to 10 minutes.

UMLsec security model. The RBAC principles are expressed through the
activity diagram using UMLsec. Using UMLsec the majority of the RBAC
concepts are defined in the associated tags. For example, User and Roles are
associated in the {role} tag, thus, expressing the RBAC user association link),
Roles and Operations are combined in the {right} tag, thus, defining the RBAC
Permission association link. The only RBAC concept that is not expressed in
the UMLsec model is Permission, i.e., what the Roles are allowed to do with
the secure Objects. We result in 85,71% (6 concepts out of 7) of the RBAC
domain coverage.

Regarding semantic correctness, in the UMLsec diagram we can observe
actions related to business/work description (e.g., Create new meeting, Check
if meeting information is correct, Correct meeting information, and Erase
information after the meeting) and actions that needs to support the
business/work actions (e.g., ones executed by Meeting – Insert data, Select
data, Update data, and Delete data). The later ones each needs security-
related treatment defined through the association tags. Thus we result in 33%
of security related statements (actions and association tags) in the UMLsec
model.

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 463

In the UMLsec model we find only one annotation element, i.e., the
<<rbac>> (see Fig. 8) stereotype that the modelled security aspect. Similar
like in the SecureUML model, we observed no traceability from/to the UMLsec
model. In addition, we identify, that depending on the needs for changes, we
can modify the UMLsec model in 5-10 minutes.

4.4.2. Assessment of Syntactic Quality

Syntactic quality is expressed through syntactic validity and syntactic
completeness, as defined in Section 4.2. We summarise our analysis of the
security models in Table 2.

Table 2. Syntactic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Syntactic
validity

Number of
syntactically invalid
statements

0 1 0

Syntactic
completeness

Number of
syntactically
incomplete
statements

0 0 0

PL/SQL security model. The PL/SQL model is of high syntactic validity

and syntactic completeness, because the model is created using the PL/SQL
language, a programmable language. We did not observe any syntactically
invalid or syntactically incomplete statements. Syntactically this model is also
correct because otherwise it would not be possible to compile it to the
application.

SecureUML security model. In the current model of the SecureUML we
can identify a case of syntactic invalidity. For instance the SecureUML
documentation [2] [19] identify that authorisation constraints need to be
written in OCL (Object Constraint Language). However in our model (see Fig.
7) the SQL-based authorisation constraints are used (e.g., see class
UserOwnDataConstraint constraint {owner=sec.get_username(),
end>SYSDATE}). On the other hand the model is syntactically complete – it
includes only UML extensions and their relationships proposed by the authors
of SecureUML, thus we did not observe any syntactically incomplete
statements.

UMLsec security model. We did not observe any syntactically invalid or
syntactically incomplete statements in the UMLsec model. However we
should note that this model was checked only manually. For the UMLsec
model investigated by us, we were not running any transformations to the
application code (like we did with the PL/SQL or SecureUML models).

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 464

4.4.3. Assessment of Pragmatic Quality

We summarise the analysis of the pragmatic quality for the security models in
Table 3. Pragmatic quality is defined in terms of understandability,
organisation, cross-referencing, and executability, as presented in Section
4.2.

Table 3. Pragmatic quality of the security models

Qualitative
property

Measure PL/SQL
security
model

SecureUML
security
model

UMLsec
security
model

Understand
a-bility

Number of
explanations

More than
45 minutes

10-15
minutes

10-15
minutes

Organisation
Number of elements
for model
organisation

2 4 4

Cross
referencing

Number of cross-
reference links

1 3 3

Executability
Tools to execute the
model

Yes Yes No

PL/SQL security model. We found the PL/SQL model of low

understandability. We were not able to understand the PL/SQL model without
a proper explanation provided by the model developers. All together it took us
more than 45 minutes to grab some security concerns defined in the PL/SQL
model. On the one hand the reason might be that we as the evaluators, were
not the experts in the PL/SQL language. But, on the other hand, taking into
account that the security models should be used to communicate with the
users of the software systems (who are not familiar with PL/SQL neither), the
time spent to understand security concerns could be even longer.

As presented in Section 4.3, the PL/SQL model is organised into the library
that accumulates different security-oriented procedures. Thus, this model
contains a structure, which could guide finding the relevant security concerns.

Furthermore the PL/SQL model is presented as a plain-text source code,
thus it does not contain any hyperlinks that would cross-reference related
security concerns (but also see Section 4.5.2). On the other hand the library
structure could be used to follow from one security procedure to another (in
our case between three procedures, defined regarding to the user role).
However these links could be used only manually; no tool support for them is
provided.

Finally, regarding the PL/SQL model executability, it is possible to compile
this model using the Oracle database management system resulting in a
running application.

SecureUML security model. The Secure UML model is well understood
by those readers familiar with the UML modelling notation. This also opens
the way to communicate this model to a larger audience, including various
project stakeholders, potential direct users of the system, the systems
analysts, and the developers. Our personal experience is that this model is

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 465

quite intuitive and did not require a big effort (around 10-15 minutes) to
understand it.

As described in Section 4.3, the SecureUML model consists of several
diagrams. It is also supported by a modelling tool (in our case – MagicDraw),
which simplifies managing the model itself and support the model
organisation. The tool provides the containment view and zoom means (see
Fig. 9), which developer could use to find the relevant model elements,
navigate between and within the model diagrams. As illustrated in Fig. 6 the
navigation map diagram helps to navigate from the content diagram to
diagrams presenting different security concerns.

Fig. 9. Means to support SecureUML model organisation provided by the tool

Model cross-references includes links between the navigation map and
separate diagrams, between the containment views and separate diagrams
and model elements. It is also possible to define cross-references between
the separate model diagrams (however this possibility was not used in our
case).

The SecureUML model is executable: there exists a number of the
transformation rules defined using the Velocity3 language (interpretable by the
MagicDraw tool).These rules define how to transform the model to PL/SQL
code, which could be executed through Oracle database management
system.

UMLsec security model. Regarding the social actor interpretation, we
result in the same assessment of the UMLsec model as for the SecureUML
model. For instance, we found that both models can be understood in 10-15
minutes. The UMLsec contains 4 elements for its organisations (since it is

3 http://velocity.apache.org/engine/devel/user-guide.html

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 466

created using MagicDraw, the same modelling tool as the SecureUML
security model). Similarly it includes three means to cross reference inter-
related parts.

However we were not able to execute the UMLsec model – there are no
means to generate the PL/SQL code from this model (at least using the
MagicDraw tool). Thus there exist a potential field for improvement regarding
the technical interpretation aspect.

4.5. Validating the Evaluation Results

After performing the evaluation of the security models, next step is to validate
the received results. In this section we will characterise the potential threats to
validity. We will also describe what feedback we received from the models
authors regarding our evaluation scores.

4.5.1. Threats to Validity

In our case study only two evaluators assessed the security models according
to their knowledge and experience. This certainly raises the level of
subjectivity and influences the internal validity of the case study. To mitigate
this threat the evaluation results were communicated to the model developers.

In our case the SEQUAL framework was instantiated with a certain set of
qualitative properties (and their measures). This certainly affects the
conclusion validity, because if any other qualitative properties were applied, it
might result in different outcome. But this threat is rather limited because
these qualitative properties are theoretically sound and the selection is based
on the previous experience (i.e., [4], [11], [15], [21], [24]).

In this case study we analysed only three different security models and
these models were quite limited in their size. This might influence the external
validity by a fact, that different results might be received if some other security
models (created either using PL/SQL, SecureUML, UMLsec or any other
language) would be analysed. However our research subject is providing a
solution to an industry problem; thus, we believe that our analysis is
generalisable in similar situations.

Finally, we try to avoid a use of single type of measuring that might affect
the construct validity. The evaluation of the security models is followed with
the communication of the received results to the models developers (see
Section 4.5.2). This certainly reduces a risk of the mono-interpretation.

4.5.2. Communicating Results to Developers

We reviewed our results together with the developers of the security models.
Firstly, the developers noted that the overall quality of both models could be
improved if these evaluation results were taken into account. For example, the

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 467

traceability, annotation, and understandability of the PL/SQL model could be
easily improved using code comments. However, the developers
acknowledged that this is not the case in the common practice; or the code
comments, even if they are present, are not sufficient.

Secondly, developers provided few remarks regarding some qualitative
properties. For instance, semantic completeness could be improved by
presenting concrete instances in the models (similarly as done in [2] and [19]).
This means hard coding in the PL/SQL model and object presentation in the
SecureUML model; however, doing so we would neglect the principle of
generosity in modelling.

In order to improve syntactic validity of the SecureUML model we could
write the authorisation constraints in OCL instead of SQL. However the
current approach to transform the SecureUML model does not have rules for
the OCL interpretation. Further, it is not possible to perform transformation
from the UMLsec security model to the executable code. Certainly the
targeted transformation templates (as they are provided for the models
created in SecureUML) could improve the executability of UMLsec.

On the one hand, a tool used to make the PL/SQL model, does not support
hyper-linking. Although there exist several PL/SQL editing tools (e.g., Oracle
SQLDeveloper or Quest Software Toad for Oracle, actually used by our
industrial partner) that supports cross-references between various model
elements, these were not used in this case study. On the other hand,
developers also indicated that PL/SQL grammar principles, the ones, which
allow expressing procedures (e.g., PROCEDURE meeting_permissions in
Fig. 5) and referring to them from the main code, could also be seen as
textual cross-referencing. We took this in mind when scoring for the Number
of cross-reference links.

4.6. Reporting on the Quality of the Security Models

Table 4 shows the summary of the overall comparison of the security models.
We found that three qualitative properties (i.e., traceability, syntactic
completeness, and executability) score equally for the PL/SQL and
SecureUML models. One qualitative property – syntactic validity – is found to
be better in the PL/SQL model. The seven remaining qualitative properties
(i.e., semantic completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated to be
higher in the SecureUML model.

Regarding models in PL/SQL and UMLsec, we see that PL/SQL was
scoring better for executability qualitative property. Three qualitative
properties – traceability, syntactic validity and syntactic completeness – are
assessed equally. The remaining seven qualitative properties (semantic
completeness, semantic correctness, annotation, modifiability,
understandability, organisation, and cross-referencing) are evaluated better
for the security model created in UMLsec.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 468

Table 4. Summary of quality assessment for the security models

Model A
created in

Model B
created in

Model A
is better in

Two models score
equal in

Model B
is better in

PL/SQL SecureUML

Syntactic validity Traceability,
syntactic
completeness,
executability

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, and cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

PL/SQL UMLsec

Executability Traceability,
syntactic validity,
syntactic
completeness

Semantic completeness,
semantic correctness,
annotation, modifiability,
understandability,
organisation, cross-
referencing

1 qual. property 3 qual. properties 7 qual. properties

SecureUML UMLsec

Semantic
completeness,
semantic
correctness,
annotation,
executability

Traceability,
modifiability,
syntactic
completeness,
understandability,
organisation, cross-
referencing

Syntactic validity

4 qual. properties 6 qual. properties 1 qual. property

Six qualitative properties, namely traceability, modifiability, completeness,

understandability, organisation, and cross referencing – are evaluated equally
both for the SecureUML and for the UMLsec security models. One qualitative
property – syntactic validity – is found better for the UMLsec model. The
remaining four qualitative properties (semantic completeness, semantic
correctness, annotation, and executability) are evaluated better for the
SecureUML security model.

5. Discussion

In this section we finalise our work. Firstly, we discuss the related work
regarding the link between the RBAC, security languages and the model-
driven security. Next, we conclude our paper and highlight few future research
directions.

5.1. RBAC and Security Languages

In [1] the BRAC0 pattern is applied for comparison of security modelling
approaches. The survey shows that, on the one hand, SecureUML does not
explicitly model security criteria (such as confidentiality, integrity, and
availability) but it focuses on modelling the solutions to security problems
guided by the RBAC nature. With SecureUML, a modeller can define assets,
however, the language does not allow expressing attacks or harms to the
assets. On the other hand, UMLsec is guided by security criteria, however it

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 469

does not have means to model them explicitly. The UMLsec application is
driven by analysis of system vulnerabilities: (i) once security vulnerabilities
have been identified, the system design is progressively refined to eliminate
the potential threats; (ii) the refinement of the design might be continued until
the system satisfies the security criteria. Although UMLsec was analysed
based on the BRAC0 pattern, authors does not specifically indicate how well
this approach is suitable for the RBAC modelling.

In [12] Jayaram and Mathur investigate how the practice of software
engineering blends with the requirements of secure software. The work
describes a two-dimensional relationship between the software lifecycle
stages and modelling approaches used to engineer security requirements. A
part of the study is dedicated to the RBAC modelling using SecureUML and
UMLsec. Authors indicate that UMLsec is rather general approach than
specific, thus it cannot be used to model access control policies solely. On the
other hand SecureUML is suggested as the means to specify access control
policies. However SecureUML cannot describe protected resources (system
design), thus, it has to be used in conjunction with a base modelling language.

Elsewhere in [22] [23] the SecureUML and UMLsec are compared in order
to determine the transformation points between models of these languages. It
was noticed the limitation of SecureUML to indicate security criteria, but this
language is well suited to engineer security controls after the security
decisions are done. It was also observed that the UMLsec application follows
the standard security modelling methods [26] and it could provide means for
the RBAC modelling: it helps defining the dynamic characteristics of the
secure system. The analysis suggests that both SecureUML and UMLsec can
complement each other and result in more complete specifications of secure
information systems (where both static and dynamic system characteristics
are understood).

Although the identified works are useful regarding their timely comparison
of the modelling languages against the RBAC model, these studies remain
theoretical. It is suggested that such an approach could be used at the initial
stage of the languages selection, but for the deeper understanding one needs
more fine-grained analysis of the development means. Thus our current
proposal – an approach to assess the quality of the security models –
suggests the means for the hands-on testing of the modelling and
development languages for security. Using our proposal the developers are
encouraged to apply the modelling and development languages in order to
understand the quality of the resulting security models.

5.2. Model-driven Security

We found none empirical studies that would compare quality of security
models prepared using approaches from different development stages. The
literature reports on a number of case studies [5], [33], [34] analysing different
characteristics of the model-driven development. Mostly these studies focus
on the benefits and on the infrastructure needed for the model-driven

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 470

development. Similarly to [3], [20], [34] we observe that security model
facilitates automatic code generation, i.e., the SecureUML security model is
executable through its generation to PL/SQL code. We also argue that the
security models should be prepared with the high-quality modelling language
[5] that ensures the model semantic completeness, and tools [20] that
guarantee model syntactic validity and syntactic completeness. Only then one
could expect that model-driven security could yield a higher productivity with
respect to a traditional development [34].

We identified only one case study performed by Clavel et al [3], reporting
on the SecureUML application in practice. Here authors observe that although
the security models are integrated with the data models, the security design
remains independent, reusable and evolvable. In our work we also observe
that semantic correctness of SecureUML and UMLsec models is high,
because the representation is oriented to the security aspects. We also
observe that SecureUML and UMLsec models are modifiable, which means
the first step towards model evolvability. Like in [3] we identify that the
SecureUML and UMLsec models are understandable at least to readers who
are familiar with UML. This might ease communication of requirements and
design solutions to project stakeholders [20].

5.3. Conclusion and Future Work

In this paper we have developed a systematic approach to compare quality of
security models. Our approach is based on the instantiation of the SEQUAL
framework [15] [16]. To illustrate the performance of our proposal we have
executed a cases study, where we have compared quality of three security
models. One model is prepared at the implementation stage using PL/SQL
[9]; other two models are developed at the system design stage using
SecureUML [2] [19] and UMLsec [13]. We resulted in (i) a higher quality for
the SecureUML security model regarding UMLsec and PL/SQL; and (ii) higher
quality for the UMLsec security model regarding PL/SQL. Thus, it suggests
that practitioners should consider security analysis at the earlier stages (at
least design or maybe even requirements engineering) of the software system
developing. However we also note that executability of the UMLsec model is
worse than executability of the PL/SQL model. Thus, if one wishes to create
executable models he would prefer PL/SQL (or SecureUML) instead of
UMLsec.

Our comparison also identifies important directions [33] for improvement of
the security analysis at the early stages. For example, a mature security
modelling method needs to be introduced in order to guide discovery of the
early security requirements and to support security quality assurance through
overall project planning. This would allow improving the traceability qualitative
property, also facilitating recording of the rationales for security decisions.

Another concern includes development and improvement of the modelling
tools (e.g., MagicDraw and Velocity interpreter) that would support the
translation of the design models (e.g., SecureUML) to the implementation

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 471

code (e.g., PL/SQL). For instance, we need to define guidelines and
transformation rules for the OCL-based authorisation constraints. This would
also improve the syntactic validity of the SecureUML model. On the other
hand executability of the UMLsec security model is not supported at all – this
might result in that practitioners would select the PL/SQL language instead.

For the successful adoption by practitioners, model driven security analysis
should be compatible with the working processes. We plan to perform another
case study where we would investigate quality of processes to develop
security models at the system design stage (e.g., using SecureUML, UMLsec
or other modelling language) against quality of processes to develop security
models at the system implementation stages (e.g., using PL/SQL).

Finally, we need to support a goal-driven process [33], where we would
define goals to introduce security model-driven development systematically. In
this paper we specifically focused on the security policy for the data model.
Our future goal is to develop transformation rules that would facilitate
implementation of the security concerns at the system application and
presentation levels.

Acknowledgment. This research was conducted while the first and third authors were
at the Software Technology and Applications Competence Centre (STACC) and the
second author was at Logica Estonia. The research is partly funded by the EU
Regional Development Funds via Enterprise Estonia. We also thank the anonymous
referee for the helpful comments and suggestions.

References

1. Bandara, A., Shinpei, H., Jurjens, J., Kaiya, H., Kubo, A., Laney, R., Mouratidis,
H., Nhlabatsi, A., Nuseibeh, B., Tahara, Y., Tun, T., Washizaki, H., Yoshioka, N.,
Yu, Y.: Security Patterns: Comparing Modelling Approaches. Technical Report No
1009/06, Department of Computing Faculty of mathematics, Computing
Technology, The Open University (2009)

2. Basin, D., Doser, J., Lodderstedt, T.: Model Driven Security: from UML Models to
Access Control Infrastructure. ACM Transactions on Software Engineering and
Methodology (TOSEM), 15 (1), 39--91. (2006)

3. Clavel, M., Silva, V., Braga, C., Egea, M.: Model-driven Security in Practice: an
Industrial Experience, In Proceedings of the 4th European Conference on Model
Driven Architecture: Foundations and Applications, Springer-Verlag, pp. 326--337.
(2008)

4. Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Srimani, P., Ta, A., Theofanos, M.: Identifying and
Measuring Quality in a Software Requirements Specification. In Proceedings of
the 1st International Software Metrics Symposium, pp. 141--152. (1993)

5. de Miguel, M., Jourdan, J., Salicki, S.: Practical Experiences in the Application of
MDA. In Proceedings of the 5th International Conference on The Unified Modeling
Language, Springer-Verlag, 128--139, (2002)

6. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security
Trade-Offs, In: Parent et al. (eds.), Proceedings of the 26th International
Conference on Conceptual Modelling (2007)

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 472

7. Feather, M.S., Fickas, S., Finkelstein, A., van Lamsweerde A.: Requirements and
Specification Exemplars. Automated Software Engineering, 4: 419--438. (1997)

8. Ferraiolo D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST Standard for Role-based Access Bontrol. ACM Transactions on Information
and System Security (TISSEC), 4(3), 224--274. (2001)

9. Feuerstein, S., Pribly, B.: Oracle PL/SQL Programming. O'Reilly Media Inc, 4th
edition edition (2005)

10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security
Requirements Through Ownership, Permision and Delegation. In Proceedings of
the 13th IEEE International Conference on Requirements Engineering, IEEE
Computer Society (2005)

11. Hakkarainen S., Matulevičius R., Strašunskas D., Su X. and Sindre G.: A Step
Towards Context Insensitive Quality Control for Ontology Building Methodologies.
In Proceedings of the CAiSE 2004 Open INTEROP-EMOI Workshop, 205--216.
(2004)

12. Jayaram, K.R., Mathur, A.P.: Software Engineering for Secure Software – State of
the Art: a Survey. Technical report CERIAS TR 2005-67, Department of Computer
Sciences & CERIAS, Purdue University (2005)

13. Jurjens, J.: Secure Systems Development with UML. Springer-Verlag Berlin
Heidelberg, (2005)

14. Knodel, J., Anastasopolous, M., Forster, T., Muthig, D.: An Efficient Migration to
Model-driven Development (MDD). Electronic Notes in Theoretical Com puter
Science 137 17--27. (2005)

15. Krogstie, J.: A Semiotic Approach to Quality in Requirements Specifications. In
Proceedings of IFIP 8.1 working Conf. on Organisational Semiotics, 231--249.
(2001)

16. Krogstie, J.: Using a Semiotic Framework to Evaluate UML for the Development
for Models of High Quality. In: Siau, K., Halpin, T. (eds.) Unified Modelling
Language: Sys- tem Analysis, Design and Development Issues, IDEA Group
Publishing, pp. 89--106. (1998)

17. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using Abuse Frames to Bound the
Scope of Security Problems. In Proceedings of the 12th IEEE International
Conference on Requirements Engineering, IEEE Computer Society 354--355.
(2004)

18. Lindland, O. I., Sindre, G., Sølvberg, A.: Understanding Quality in Conceptual
Modelling. IEEE Software, 11(2), pp. 42--49. (1994)

19. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: A UML-based Modeling
Language for Model-driven Security. In Proceedings of the 5th International
Conference on The Unified Modeling Language, LNCS, vol. 2460 Springer-Verlag,
426--441. (2002)

20. MacDonald, A., Russell, D., Atchison, B.: Model-driven Development within a
Legacy System: An Industry Experience Report. In Proceedings of the 2005
Australian Software Engineering Conference (ASWEC’05). IEEE Computer
Science. (2005)

21. Matulevičius, R.: Process Support for Requirements Engineering: A Requirements
Engineering Tool Evaluation Approach. PhD theses. Norwegian University of
Science and Technology. (2005)

22. Matulevičius, R., Dumas, M.: A Comparison of SecureUML and UMLsec for Role-
based Access Control, Proceedings of the 9th Conference on Databases and
Information Systems, 171--185. (2010)

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 473

23. Matulevičius, R., Dumas, M.: “Towards Model Transformation between
SecureUML and UMLsec for Role-based Access Control,” Databases and
Information Systems VI, IOS Press, 339--352. (2011)

24. Matulevičius, R., Heymans, P.: Comparison of Goal Languages: an Experiment. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2007), Trondheim, Norway, Springer-
Verlag, 18--32. (2007)

25. Matulevičius, R., Lepmets, M., Lakk, H., Sisask, A.: Comparing Quality of Security
Models: a Case Study. In Local Proceedings of the 14th East-European
Conference on Advances in Database and Information Systems. University of Novi
sad, Serbia, 95 - 109. (2010)

26. Mayer N.: Model-based Management of Information System Security Risk. PhD
Thesis, University of Namur (2009)

27. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements
Analysis. In Proceedings of the 15th Annual Computer Security Applications
Conference (1999)

28. Moody, D.L.: Theoretical and Practical Issues in Evaluating the Quality of
Conceptual Models: Current State and Future Directions. Data and Knowledge
Engineering 55 (3) 243--276. (2005)

29. Mouratidis, H.: Analysing Security Requirements of Information Systems using
Tropos. In Proceedings 1st Annual Conference on Advances in Computing and
Technology 55--64. (2006)

30. Piattini, M., Genero, M., Poels, G., Nelson, J.: Towards a Framework for
Conceptual Modelling Quality. In: Genero, M., Piattini, M., Calero, C. (eds.)
Metrics for Software Conceptual Models, Imperial College Press, London 1--18.
(2005)

31. Sindre, G.: Mal-activity Diagrams for Capturing Attacks on Business Processes. In
Proceedings of the Working Conference on Requirements Engineering:
Foundation for Software Quality, Springer-Verlag Berlin Heidelberg 355--366.
(2007)

32. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases.
Requirements Engineering Journal 10 (1) 34--44. (2005)

33. Staron, M.: Adopting Model Driven Software Development in Industry – A Case
Study at Two Companies. In the 9th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2006). Springer-Verlag 57--72.
(2006)

34. The Middleware Company: Model Driven Development for J2EE Utilizing a Model
Driven Architecture (MDA) Approach: Productivity Analysis, MDA Productivity
case study. (2003)

35. van Lamsweerde, A.: Elaborating Security Requirements by Construction of
Intentional Anti-models. In Proceedings of the 26th International Conference on
Software Engineering, IEEE Computer Society 148--157. (2004)

Appendix

In order to get the impression on how the SecureUML security model (e.g.,
see Fig. 7) is transformed into the PL/SQL code, we included a sample of the
transformation outcome with respect to the Update security action. Similarly
the PL/SQL code is generated for other three security actions – Select, Insert
and Delete.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 474

-- Imported common-sql.vtl
CREATE OR REPLACE TRIGGER Meeting_sec_update_trg
 INSTEAD OF UPDATE ON Meeting_v
 REFERENCING NEW AS NEW OLD AS OLD
 FOR EACH ROW
DECLARE
 self Meeting%ROWTYPE;
 ex_denied EXCEPTION;
BEGIN
 SELECT *
 INTO self
 FROM Meeting res
 WHERE res.ID = :OLD.ID;
 IF util.null_eq(:NEW.start, :OLD.start) != 'Y' -- start updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.start := :NEW.start;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.end, :OLD.end) != 'Y' -- end updated
 THEN
 IF 1 != 1 OR sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.end := :NEW.end;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;
 IF util.null_eq(:NEW.owner, :OLD.owner) != 'Y' -- owner updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.owner := :NEW.owner;
 ELSE
 RAISE ex_denied;
 END IF;

An Approach to Assess and Compare Quality of Security Models

ComSIS Vol. 8, No. 2, Special Issue, May 2011 475

 END IF;
 IF util.null_eq(:NEW.location, :OLD.location) != 'Y' -- location updated
 THEN
 IF 1 != 1 OR
 sec.is_role('User') = 'Y' AND
 self.owner = sec.get_username() AND
 self.end > SYSDATE -- Permission from UserUpdateOwnMeeting
 THEN
 self.location := :NEW.location;
 ELSE
 RAISE ex_denied;
 END IF;
 END IF;

 UPDATE Meeting res
 SET ROW = self
 WHERE res.ID = :OLD.ID;
EXCEPTION
 WHEN ex_denied THEN
 raise_application_error(-20000, 'Access denied!');
END;
/

Dr. Raimundas Matulevičius received his PhD diploma from the Norwegian
University of Science and Technology, Norway in the area of computer and
information science. Currently Matulevičius holds an associated professor
position at the Institute of Computer Science, University of Tartu, in Estonia.
Matulevičius’ research interests cover information systems and requirements
engineering, system and software development processes, model-driven
development, system and software security, and security risk management.
Currently, the publication record includes more than 50 articles published in
the peer-reviewed international journals, conferences and workshops.
Matulevičius was invited for multiple times to co-review papers for the
international journals (e.g., REJ, TOSEM, SoSyM, COSE). Few years in a row
he is invited to be a program committee member at the international
workshops and conferences (e.g., CAiSE, REFSQ, PoEM and other).

Henri Lakk is a master’s degree student at University of Tartu, where he is
also giving labs and lectures. His study and research interest includes model
driven security of information system. Lakk is working also in Webmedia
Estonia as a PL/SQL programmer.

Raimundas Matulevičius, Henri Lakk, and Marion Lepmets

ComSIS Vol. 8, No. 2, Special Issue, May 2011 476

Dr. Marion Lepmets is a recognised researcher on software and IT service
quality, process improvement and assessment. She is currently a Post-
Doctoral fellow in Public Research Centre Henri Tudor conducting research
on IT service quality measurement and process improvement impact on IT
service quality. She is a technical program committee member at SPICE,
EuroSPI and Baltic IT&DB conferences, and Luxembourgish representative to
ISO/IEC JTC1 SC7 (software and systems standards subcommittee).

Received: December 31, 2010; Accepted: April 29, 2011.

