
DOI: 10.2298/CSIS110111015S

Formalizing Business Process Specifications

Andreas Speck1, Sven Feja1, Sören Witt1, Elke Pulvermüller2,
and Marcel Schulz3

1 Christian-Albrechts-University Kiel
Olshausenstrasse 40, 24098 Kiel, Germany
{aspe,svfe,swi}@informatik.uni-kiel.de

2 University of Osnabrueck
Albrechtstr. 28, 49076 Osnabrueck, Germany

elke.pulvermueller@informatik.uni-osnabrueck.de
3 Intershop Communications AG

Intershop Tower, 07740 Jena, Germany
marcel.schulz@intershop.com

Abstract. The behavior of commercial systems is described with busi-
ness process models. There are different notations and formalism to ex-
press business processes. Many of these notations such as BPMN or
ARIS EPC models are widely used in commercial projects.
In the paper we focus on formalisms to express rules and specifications
for the business processes. Temporal logic in general is a suitable formal-
ism to express rules for dynamic processes. CTL is one kind of temporal
logic focusing on branches and paths in particular. With CTL it is possi-
ble to formulate rules about different paths in business processes. Since
the textual formulae of CTL are not very suitable in the development of
commercial systems we introduce a graphical notation (G-CTL) based on
the business process notation ARIS EPC. Moreover, we add to the CTL
semantics specializers to differentiate between the element types in busi-
ness process models and provide wildcards which allow the user to check
for unknown elements or elements with only partially known properties.

Keywords: formal business process rules, temporal logic, model check-
ing, extended graphical-CTL.

1. Introduction

Business process models are used to describe the behavior of commercial sys-
tems. There are different notations of business process models. Especially the
formal business process models may be the base of an automated checking.
In order to reach this goal we need also formalisms to express the rules or
specifications for the business processes.

Temporal logic in general and the Computational Tree Logic (CTL) [7] in
particular are promising in order to express business rules and temporal depen-
dencies of business processes. Since CTL focuses on the branches and paths
of processes it allows to distinguish between elements in different paths. More-
over, there are well established checking tools like the Symbolic Model Verifier
(SMV) [39] which may be applied or at least serve as base for extensions [43].

Andreas Speck et al.

In the following section 2 we examine business process characteristics and
the business process modeling. In the following section 3 first CTL as basic
notation is introduced and the more suitable graphical notation G-CTL is pre-
sented. In section 4 the extensions of the G-CTL (specializers and wildcards)
are motivated by checking examples and then presented. Section 5 gives an
overview about the related work.

2. Business Process Models

2.1. Business Process Modeling

There are different types of business process models. For instance, BPMN
(Business Process Model and Notation), ARIS (Architecture of integrated Infor-
mation Systems) or UML Activity Diagrams are well-known approaches sup-
porting the modeling of business systems in general. However, the basic ex-
pressiveness of these model types is quite similar. They provide functions (or
activities) and events, various types of connections (like control or sequence
flows or associations), splits and joins (mostly combined with logic operators
such as AND, OR or XOR) and different elements for further information. This
convergence of business process model types allows reducing the models to a
formal nucleus: an automaton model. Business process models may be trans-
formed or reduced to states and transitions between the states [38]. Further-
more, such automaton models may be subject of automated checking. Two
typical approaches for such transformations may be found in [3] and [42]. [3]
transforms the business processes to Petri nets, followed by a transformation
into Kripe structures which are then checked. [42] transforms the business pro-
cesses directly into Kripke structures. The Kripke structures are a base for
model checking.

In this paper we focus on the application domain of e-commerce systems in
general and in particular on one of the largest standard e-commerce systems:
Intershop Enfinity . Intershop Enfinity is modeled with an ARIS profile ARIS for
Enfinity [11].

Although, Enfinity-based e-commerce systems are modeled using various
model types, we concentrate on the model type mainly used to describe busi-
ness processes: the Event-driven Process Chains (EPCs). 4

The EPCs are used to model the business processes on a specific detail
level (cf. model elements description in figure 1). EPCs are more concrete than
value added chains and present the business aspects of the processes very
well. However, they are no concrete implementation models e.g. like UML se-
quence charts. The EPC models are ideal for the communication between the
domain experts (economists) and the computer scientists, since they are still
understood by both groups.

4 Further model types are value added chain models or function hierarchies. These
model types are not issue of the paper.

428 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Based on the EPC models the design of the implementation may start. In
the case of Intershop Enfinity, executable workflow models (called Pipelines)
represent the design and are executed by the system’s application server.

When the domain experts want to check the business process descriptions
of an e-commerce system, this is generally performed on the level of EPC mod-
els. Therefore, business rules, regulations and system specific requirements
which have to be implemented by the system should be verified on this busi-
ness process (EPC) level, too. If the EPC models do not represent the required
rules and regulations correctly then the resulting system will hardly meet the
needs. Therefore it is essential to verify the EPC models.

Fig. 1. Basic Elements of Event-driven Process Chains (EPCs).

The main elements in the EPC models are (cf. figure 1):

– Functions are considered as active elements in EPCs. They describe func-
tionality such as tasks or activities. Functions represent transformations
from one state to another, follow-up state. If different follow-up states can
occur, the selection of the respective follow-up state can be modeled explic-
itly by logical connectors (as described below). Functions may be refined
into another EPC (hierarchical functions). In the EPC model rounded rect-
angles represent functions.

– Events are passive elements which describe the conditions or circumstances
which result from functions or are triggering the execution of functions. An
event is represented by a hexagon.

– The control flow connects events, functions or logical connectors creat-
ing a chronological sequence and depicts the logical interdependencies be-
tween them. Control flows are represented by arrows.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 429

Andreas Speck et al.

– Logical connectors express the logical relationships between elements in
the control flow (events and functions). The relationships correspond to the
logical operations AND, OR and XOR. Figure 1 depicts the graphical repre-
sentation of an XOR relationship. The notation elements for AND or OR are
similar and with the corresponding Boolean symbol within the circle.
An XOR in a control flow defines a branching point or branch, respectively.
There, a decision is required which follow-up state (or path, respectively)
is to be taken exclusively. The counterpart of a branch is a merge which
means that different branches are merged into one. Branches as well as
splits use the same symbol.
An AND may represent the split or join in the control flow. A split activates
the outgoing control flows in parallel. The join synchronizes incoming control
flows.
OR is the weakest relation. An opening OR connector activates one or more
control flows and deactivates the rest of them. The counterpart of this is the
closing OR connector which activates the control flow when at least one of
the incoming control flows is activated.

Besides these EPC model elements there are several others. A further re-
markable element is the organizational unit and its assignment which de-
scribes the connection between an organizational unit (a person or an orga-
nization responsible for a specific function) and the function it is responsible
for.

Fig. 2. Example of a Function Flow in an eProcurement System.

430 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

2.2. Commercial Information System Models

As all comparatively large systems commercial information systems may be
modeled on several levels of abstraction. This approach is backed by the mod-
eling concepts such as ARIS. Overview models are used to express the major
parts of the system on a very abstract level. Figure 2 depicts an abstract func-
tion flow. Here, the details of the complete process are hidden.

These comparatively abstract process models may be further detailed and
transformed into EPC models with different sub-processes. Finally, we will end
up in very detailed sub-process models. In table 1 three examples of detailed
sub-processes are presented which are typical for the e-commerce domain:
Login Sub-Process, Search Sub-Process and Invoice Sub-Process.

Table 1. Detailed Business Process Patterns for eCommerce Systems.

Login Sub-Process Search Sub-Process Invoice Sub-Process

Looking at the representation of processes in a commercial information sys-
tem then there are mainly two alternatives to present the model: either a large
printout as a wall paper or as comparatively small models of sub-processes in
a modeling tool (such as ARIS). When we look at the wall paper we have to
search manually.

However, in each case it is difficult to keep the overview as well as the
knowledge of the (important) details and the interactions between these de-

ComSIS Vol. 8, No. 2, Special Issue, May 2011 431

Andreas Speck et al.

tails. The verification or checking of such systems is quite hard for human be-
ings and requests automated assistance. An assistance which is able to read
rules which have to be fulfilled by the commercial information system and to
check the model automatically.

3. Formal Specifications

Formal specifications express the rules to be checked. In the following subsec-
tions we present temporal logic as base to represent the business rules.

Table 2. Examples of some basic CTL Operators EF, EG, AF and AG [18].

S1
{ }

S3
{ }

S4
{ }

S2
{ }

S5
{ }

S6
{p}

S0
{ }

S1
{p}

S3
{ }

S4
{ }

S2
{ }

S5
{p}

S6
{p}

S0
{ }

s0 |= EF p s0 |= AF p

S1
{ }

S3
{ }

S4
{ }

S2
{p}

S5
{ }

S6
{p}

S0
{p}

S1
{p}

S3
{p}

S4
{p}

S2
{p}

S5
{p}

S6
{p}

S0
{p}

s0 |= EG p s0 |= AG p

432 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

3.1. Computational Tree Logic (CTL)

Temporal logic as extension of Boolean logic may be used as formal language
to express the rules. Computational Tree Logic (CTL) is the logic we use in our
research.

As already mentioned CTL is based on Boolean logic:

Φ ::= ⊥ | > | p | (¬Φ) | (Φ ∧ Ψ) | (Φ ∨ Ψ) | (Φ→ Ψ) 5

Additionally, there are temporal operators in CTL. These operators are called
Temporal Connectives and are used pairwise:

Φ ::= AXΦ | EXΦ | A [Φ U Ψ] | E [Φ U Ψ] | AGΦ | EGΦ | AFΦ | EFΦ

A means Always
E means Eventually
G means Globally
X means Next
U means Until

Table 2 shows four general CTL operators. EFΦ means that Φ potentially
holds. AFΦ means that Φ will occur on each potential path. EGΦ expresses
that Φ is true in each states of one complete path. AGΦ is an invariant: Φ is true
in each state [16].

Table 2 omits the operator pairs with Next and Until operators. Examples for
these operator pairs are the following:
EXΦ means that there is a path in which in the next state Φ holds.
AXΦ means that in all paths in the next state Φ becomes true.
E(ΦUΨ) means that there is a path in which Φ is true until Ψ holds.
A(ΦUΨ) means that in all paths Φ is true until Ψ becomes true.

When we apply CTL for expressing rules for business processes these may
look like the examples below:

– Customer may always Catalog Browse
AF Catalog Browse
(Always in the Future Catalog Browse)

– There is a path to Product Search
EF Product Search
(it Exists in the Future Product Search)

– Centralized Buyer will get a Personal Content and Personalized Offer
AG (Customer is Centralized Buyer ->
AF (Personal Content ∧ Personalized Offer))
(Always Globally if Customer is Centralized Buyer is true implies that Always
in the Future Personal Content and Personalized Offer will be true)

– User not logged in until User login successful
AG (¬User logged in U User login successful)
(Always Globally User logged in is false Until User login successful)

5 Φ→ Ψ is a logic implication.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 433

Andreas Speck et al.

– Login Data is inserted next Login Data Check
AG (Login Data is inserted -> AX Login Data Check)
(Always Globally Login Data is inserted Always neXt state will be Login
Data Check)

3.2. Visualization of Graphical Specifications

Considering the examples in the previous section the CTL formula does not look
very convenient. The likelihood that business modelers will accept the temporal
CTL formulae is rather low. This leads us to a more suitable notation for the
business modeling community: the graphical representation of CTL on base of
EPC models: the Temporal Logics Visualization Framework (TLVF). TLVF de-
scribes how graphical specifications of the rules are derived from the business
process models [23]. Our business process models are EPCs. However, the
graphical notation may also be applied on other notations such as BPMN.

Fig. 3. G-CTL Operators.

The EPC-based definition of the TLVF language elements of Graphical CTL
(G-CTL) is shown in figure 3. G-CTL operators are based on CTL operators
[17], [7]. Like CTL (introduced in the previous section 3.1) there are two types
of operators which are combined pairwise: Path quantifiers always (A) and ex-
ists (E) which indicate the occurrence within a path. The temporal operators
determine the temporal order. The G-CTL temporal operators are: in the future
(F), globally (G), next (X) and until (U). Examples for pairwise combinations are:
AG always globally or EX exists next.

434 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

These operators are represented by graphical symbols which may be com-
bined with EPC notation elements in order to describe a specification.

Table 3. Examples of G-CTL Specification Patterns in the Search Sub-process.

CTL format: AG Initiate search → EF Insert simple search item

CTL format: AG Select search type → ! AF Present search result

An example of two simple rules formatted in G-CTL graphical notation are
depicted in table 3. Boolean logic operators (the implication in this case) are
represented by symbols which may be connected with other operators (logical
or temporal logical operators) and model elements such as events or functions.
Temporal logical operators like the AG (always globally) and EF (exists in the
future) are realized as containers since they embrace a sub-formula or element
as operand.
The informal semantics of the two rules is:

1. Rule (top of table 3): Always globally it has to be true that when the event
Initiate search has occurred (became true) there exists in the future the
function Insert simple search item (logical implication).
Or in other words: When the event Initiate search occurred in the following
of the process there must be at least one branch with the function Insert
simple search item.

2. Rule (below): Always globally it has to be true that if the function Select
search type has occurred (became true) always in the future the event
Present search result becomes not true (logic implication).

ComSIS Vol. 8, No. 2, Special Issue, May 2011 435

Andreas Speck et al.

Or in other words: When the function Select search type occurred (which
means that the search function is activated by the user) in the following of
the process there is a branch in which the event Present search result does
not occur. This means that we are looking for counterexamples of actually
desired behavior: We want to assure that at least an empty search result is
presented to the user when s/he has initiated a search.

4. Enhanced Checking

The visualization of rules is part of the user front end. The checking algorithms
of the checking system are another issue. Basically, we rely on the CTL model
checking algorithms e.g. like realized in the SMV model checker [39].

However, before we are able to apply model checkers (or any other checking
concepts) we have to transform the models (the EPC business process models
in our case) and the specifications to the formal representations used by the
checkers.

The result of a checking is either that the specification is fulfilled or violated.
If the model is correct according to the specification only the notification of ”true”
is reported. In an error case the model checker answers with a textual descrip-
tion of a counter example. The result may be presented in the format of a textual
description as in [26] .

4.1. Extended Model Checking

In general, model checkers need automata models as input for the checking
procedure. Actually, the automata models are represented in a specific struc-
ture – the Kripke structure. Kripke structures may be considered as a specific
expression of ordinary automata representations [7].

If we consider a direct transformation of the EPC models we might trans-
form the elements event and function directly into states which are connected
according to the control flow. This straight-forward approach is not necessar-
ily wrong. In some cases it is sufficient and temporal specifications may be
checked in a correct manner in compliance to the semantics.

However, there may be cases in which we would like to distinguish between
the different model elements when we develop a specification. We propose an
extension of the CTL notation with specializers which characterize the specific
model elements.

Two examples in which a specification without distinction between the el-
ement types leads to an error are presented in figure 4. Both examples are
supplemented with textual specifications. In both examples the upper specifica-
tion is without additional specializers and the lower specification makes use of
the two additional specializers F and E 6.

6 These additional specializers are not to be confused with the operators Future and
Exists which are always used in a pairwise manner.

436 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Fig. 4. Specializers in Temporal Logic.

1. In the example on the left upper specification (without specializers) of the
model at the left requires that directly after the function Select search type
the functions Insert simple search item or Insert search attributes have to
follow. The model on which this rule is applied is the already known search
example. Such a specification or rule may be defined in the situation when
we would like to keep the denomination of the events after Select search
type open (e.g. for customizing at design time) and are only interested that
they are followed by standard functions (such as Insert simple search item
or Insert complex search item). The second specification contains the spe-
cializer F (for function) directly after the Always neXt (AX). This indicates
that only function elements have to be considered in the checking. An event
(or an element of another type) is ignored. This specification is true (as we
would expect it in the domain semantics).

2. The example on the right side of figure 4 contains a loop. The process is a
price alert process. If a price falls below (or rises upon) a certain threshold
there is a price alert and the system purchases.
It may be of interest if the process Check(s) all current offers is performed
until the price threshold is met and the Offer (is) accepted. The first speci-
fication without specializers turns out to be false although the model meets
the requirement. When we use the specializers then the specification is cor-
rect. In our example Always the function Check(s) all current offers (due to

ComSIS Vol. 8, No. 2, Special Issue, May 2011 437

Andreas Speck et al.

the specializer only functions are considered) Until the event Offer accepted
becomes true. The event Offer not accepted is in the loop back to the func-
tion Check all current offers. Since Offer not accepted is an event and not a
function as indicated by the specializer the checker does not care about it.

With this specializer concept in temporal logic specifications we are able
to select specific element types and focus on these. This is an extension of
the temporal logic CTL we call ECTL1 (Extended CTL). In order to handle the
specializers the algorithm of the model checker has to be modified. A more
detailed description of the modified checking algorithm may be found in [43].

Fig. 5. Example of graphical Representation of Specializers (EG-CTL).

An example of a graphical representation of Extended Graphical-CTL (EG-
CTL) specification is depicted in figure 5. In the figure the rule of the left example
in figure 4 is a little improved: An AG operator is added:
AG (Select search type → AX F [(Insert simple search item ∨ Insert search attributes)])

Due to the specializers the specification may be more precise. The expres-
siveness of the temporal logic is extended and captures different types of ele-
ments. This leads to the question to introduce uncertainty in the way of using
wildcards in specifications.

4.2. Wildcards

The previous specifications of rules require that we know there must be a cer-
tain function or an event occurs at a specific moment. In other cases the explicit
expected element is not clear. Figure 6 depicts an example: the payment pro-
cess with some alternative payment functions. This is one possible implemen-
tation of the payment process. However, it is up to the wishes of the later shop
owner which payment function is realized. E.g. in our example the payment via
Pay Pal is not considered.

If we use wildcards we are able to specify rules which expect specific el-
ement types of business process models not knowing the explicit element. It
is most likely that all web shops use a specific payment function or a set of

438 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

Fig. 6. Payment Process with alternative Payment Functions.

payment functions or at least in case of a free download a specific interaction
function with the customer. We may express this function which is at the time
of rule specification unknown by a wildcard. Of course a completely open wild-
card may be critical since it may be meaningless. However, in our example we
know that it is important to interact with the customer, that the function is cus-
tomer driven. The relation of the unknown function to the organization customer
expresses this.

The wildcard functionality may be expressed as:
AG (E[Transition initiated] → AF F [∗ ∧ O[Customer]])

Fig. 7. Wildcard in Payment Function Rule.

The graphical representation of the rule is shown in figure 7. The specializ-
ers are indicated by a capital E, F and O 7. The asterisk character symbolizes
the wildcard.

7 The O specializer represents an organizational unit which is by default connected to
its function by a logical AND.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 439

Andreas Speck et al.

5. Related Work

Software models have been issue of verification like model checking for a rather
long period. Examples for early approaches based on model checking are [21]
or [39].

However, base of all the checking is the formalization of business process
models like [32] (graph grammar based approach) and [8] which enable to apply
formal methods for business processes. The transformation of EPC models to
Petri nets also formalize them ([35] and [36]). In this case the semantics are
restricted. The formalization proposed in [30] uses a fix-point-semantics-based
definition of the semantics of EPCs which is also used for model checking.

The mapping of business process models on ASM (Abstract State Ma-
chines) allows to operate the business processes on an abstract level [9]. Many
approaches (also the majority of the here referenced approaches) consider
BPMN. However, executable models like BPEL are object of formalization as
well [13]. Further formalization approaches are based on the pi calculus [37].
An issue of research to be addressed by formalization approaches are the joins
after branching [8]. In the EPC model [45] the semantics as base of the for-
malization have been analyzed e.g. by [2] and [40]. An example for the BPMN
analysis may be found at [28].

Examples for approaches employing model checking on business processes
are [22], [33], [5] or [6]. [33] evaluates different checking technologies for being
applied on business processes. [5] and [6] focus on the aspect of transactions
in e-commerce systems. In [22] a large number of business processes have
been investigated and different checking concepts are applied. One important
conclusion is that several concepts could be combined in order to improve their
effect.

An example of an approach for the verification of business process systems
based on Petri nets is [19] using BPMN. With Petri nets the business processes
are mapped to the Petri net elements similar to Kripke structure mapping. An
alternative approach for Petri net based verification is based on bi-simulation
and algebraic solutions (e.g. [41]).

The approach presented in this paper relies directly on the push-button
model checking technology and temporal logic requirement specifications. Most
approaches applying formal methods to business process models for the pur-
pose of checking use straight-forward model transformations. These transfor-
mations result in a loss of information and, therefore, verification precision. The
reason is the incompatible semantics of the business process models and the
verification models which causes several problems resulting in different alterna-
tive approaches to tackle them [20]. Moreover, additional information (such as
organizational units in EPC models) is lost during the transformation due to a
surjective mapping. Two approaches transforming business process models to
verification models are [42] (SMV Kripke structures) or [1] (Petri nets).

An approach which proposes a graphical representation of models and spec-
ifications is [26]. In this approach the business process notation are UML activ-

440 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

ity diagrams and the result of the LTL-based checking is presented in a textual
manner.

In the domain of formal methods approaches may be found which concen-
trate on an increase of semantic expressiveness of the specification languages
(e.g. the µ-calculus [10] and [34] or in the multi-valued logic research as in [15]).
Extensions to the temporal logic for LTL have been proposed in [14] or [29], for
instance. In these approaches a link to software models or business process
models is missing and the general idea of a specialization on different model
elements is not considered. In contrast to [14], [29], [27] and [31] we are able
to explicitly distinguish and mix specializers (and thus views) for different model
elements.

6. Conclusions and Future Work

Most business process models are very large and consist of a large number
of elements and flows. The checking of these large models by hand is time
consuming and still not satisfying in all cases 8.

Formal verification methods may help to automate at least some kinds of
checking (e.g. routine checks). The formal method we apply in our work is model
checking. The rules to be verified must be able to express the temporal relations
between the process elements (e.g. the control flow).

Due to this we use the temporal logic CTL (Computational Tree Logic) as a
base. However, the pure CTL has some drawbacks.
It does not support a graphical notation and the semantics of CTL may be ex-
tended. We present G-CTL as a graphical notation of CTL supporting a similar
element notation than EPC models and combining them with the temporal op-
erators of CTL.
Due to the lack of expressiveness of CTL we extend the semantics of CTL by
specializers (Extended Graphical-CTL, EG-CTL). These specializers allow dis-
tinguishing between different model element types (in our case EPC events,
functions, organizational units and others). With the help of the specializers it is
possible to check on the existence of a specific type in the process not consid-
ering elements of other types. In order to support the specializers the checking
algorithm has been modified. Moreover, we introduced wildcard which allows
defining a rule in a moment when the concrete modeling of a process is not
clear. The wildcards keep the position in the process open. Nevertheless, by
some additional information, e.g. the knowledge which concrete organizational
unit will be related to the unknown element represented by a wildcard it is pos-
sible to complete the rule.

8 The checking of large models may result in state explosion problems. However, there
are different approaches to deal with this problem. One used by most model checking
tools is to optimize the model structure by applying Ordered Binary Decision Diagrams
(OBDD) [12]. Other approaches are abstraction or partial evaluation and composi-
tional model checking [25]. These different approaches are known to the authors and
taken into account. Although, these approaches are not issue of the paper.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 441

Andreas Speck et al.

The different techniques of the graphical representation of specifications and
the extension of CTL in order to represent different model element types as
well as the introduction of wildcards are integrated in the Business Application
Modeler (BAM) in order to improve the usability of this business process model
checking concept.

At the moment we are developing a presentation tool on the base of Eclipse
the Business Application Modeler (BAM) [24]. In detail, BAM is based on the
Eclipse Graphical Editing Framework (GEF) [4]. GEF has been chosen since
it supports the required presentation functions and is comparatively portable
which means that the BAM editor runs on different operating system platforms.
The goal of this Eclipse-based implementation is a high degree of portability
and the ability to integrate transformation and checking systems as simple as
possible.

In our future work we intend to support further notations (e.g. BPMN). Al-
ready now we are working on an i* model support [44]. The interoperability be-
tween our BAM and other modeling tools like ARIS or ViFlow has not yet been
realized. An intermediate (probably XML-based) data format may be useful.

References

1. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41(10), 639–650 (1999)

2. van der Aalst, W.M.P., Desel, J., Kindler, E.: On the semantics of EPCs: A
vicious circle. In: EPK 2002 - Geschäftsprozessmanagement mit Ereignisges-
teuerten Prozessketten, Proceedings des GI-Workshops und Arbeitskreistreffens
(Trier, November 2002). pp. 71–79 (2002)

3. van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41(10), 639–650 (1999)

4. Anders, E.: Modellierung und Validierung von Prozessmodellen auf Basis variabler
Modellierungsnotationen und Validierungsmethoden als Erweiterung für Eclipse,
Diploma Thesis (2010)

5. Anderson, B.B., Hansen, J.V., Lowry, P.B., Summers, S.L.: Model checking for de-
sign and assurance of e-Business processes. Decision Support Systems 39(3),
333–344 (2005)

6. Anderson, B.B., Hansen, J.V., Lowry, P.B., Summers, S.L.: The application of model
checking for securing e-commerce transactions. Communications of the ACM 49(6),
97–101 (2006)

7. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebe-
len, P.: Systems and Software Verification – Model-Checking Techniques and Tools.
Springer, Berlin, Germany (2001)

8. Börger, E., Sörensen, O., Thalheim, B.: On Defining the Behavior of OR-joins in
Business Process Models. The Journal of Universal Computer Science (J. UCS)
15(1), 3–32 (2009)

9. Börger, E., Thalheim, B.: Modeling Workflows, Interaction Patterns, Web Services
and Business Processes: The ASM-Based Approach. In: Proceedings of Abstract
State Machines, B and Z, First International Conference (ABZ 2008). pp. 24–38.
Springer LNCS 5238 (2008)

442 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

10. Bradfield, J., Stirling, C.: Modal logics and mu-calculi: an introduction. In: Handbook
of Process Algebra, pp. 293–33. Elsevier Science Publishers (2001)

11. Breitling, M.: Business Consulting, Service Packages & Benefits. Tech. rep., Inter-
shop Customer Services, Jena (2002)

12. Bryant, E., R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

13. Cámara, J., Canal, C., Cubo, J., Vallecillo, A.: Formalizing WSBPEL Business Pro-
cesses Using Process Algebra. Electronic Notes in Theoretical Computer Science
154(1), 159–173 (2006)

14. Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-Based
Software Model Checking. In: Proceedings of the 4th International Conference on
Integrated Formal Methods (IFM). pp. 128–147. Springer, LNCS 2999 (2004)

15. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-Valued Symbolic
Model-Checking. ACM Transactions on Software Engineering Methodology 12(4),
371–408 (October 2003)

16. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite-State Con-
current Systems Using Temporal Logic Specifications. ACM Transactions on Pro-
gramming Languages and Systems 8(2), 244 – 263 (April 1986)

17. Clarke, E.M., Grumberg, O., McMillan, K.L., Zhao, X.: Efficient generation of coun-
terexamples and witnesses in symbolic model checking. In: DAC ’95: Proceedings
of the 32nd ACM/IEEE conference on Design automation. pp. 427–432 (1995)

18. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cam-
bridge, Massachusetts; London, England, 3 edn. (2001)

19. De Backer, M., Snoeck, M.: Business Process Verification: a Petri Net Approach.
Tech. rep., Catholic University of Leuven, Belgium (2008)

20. van Dongen, B.F., Jansen-Vullers, M., Verbeekm, H.H.M.W., van der Aalst, W.M.P.:
Verification of the SAP reference models using EPC reduction, state-space analysis,
and invariants. Computers in Industry 58(6), 578–601 (2007)

21. Emerson, E.A., Clarke, E.M.: Characterizing Correctness Properties of Parallel Pro-
grams Using Fixpoints. In: ICALP 1980, Automata, Languages and Programming,
7th Colloquium. pp. 169–181. Springer LNCS 85 (1980)

22. Fahland, D., Favre, C., Jobstmann, B., Köhler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous Soundness Checking of Industrial Business Process Models. In:
Proceedings of the 7th International Conference on Business Process Management
(BPM 2009). pp. 278–293. Springer, LNSC 5701 (2009)

23. Feja, S., Fötsch, D.: Model Checking with Graphical Validation Rules. In: Proceed-
ings of the 15th IEEE International Conference on the Engineering of Computer-
Based Systems (ECBS 2008). pp. 117–125. IEEE (2008)

24. Feja, S., Speck, A., Witt, S., Schulz, M.: Checkable Graphical Business Pro-
cess Representation. In: Proceedings of the 14th East-European Conference on
Advances in Databases and Information Systems (ADBIS 2010,). pp. 176–189.
Springer, LNCS 6295 (2010)

25. Fisler, K., Krishnamurthi, S.: Decomposing Verification by Features. In: IFIP Working
Conference on Verified Software: Theories, Tools, Experiments (October 2005)

26. Förster, A., Engels, G., Schattkowsky, T., Van Der Straeten, R.: Verification of Busi-
ness Process Quality Constraints Based on Visual Process Patterns. In: Proceed-
ings of the First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software
Engineering (TASE ’07). pp. 197–208 (2007)

27. Giannakopoulou, D., Magee, J.: Fluent Model Checking for Event-based Systems.
In: Proceedings of the 9th European Software Engineering Conference (ESEC) held

ComSIS Vol. 8, No. 2, Special Issue, May 2011 443

Andreas Speck et al.

jointly with 10th ACM SIGSOFT International Symposium on Foundations of Soft-
ware Engineering (FSE). pp. 257–266. ACM Press (2003)

28. Grosskopf, A.: xBPMN. Formal control flow specification of a BPMN based process
execution language, Master’s thesis (2007)

29. Jonsson, B., Khan, A.H., Parrow, J.: Implementing a Model Checking Algorithm by
Adapting Existing Automated Tools. In: Proceedings of the International Workshop
on Automatic Verification Methods for Finite State Systems. pp. 179–188. Springer,
LNCS 407 (1989)

30. Kindler, E.: On the Semantics of EPCs: A Framework for Resolving the Vicious Cir-
cle. In: Proceedings fo Business Process Management: Second International Con-
ference, (BPM 2004). pp. 82–97. Springer LNCS 3080 (2004)

31. Kindler, E., Vesper, T.: ESTL: A Temporal Logic for Events and States. In: Proceed-
ings of the 19th International Conference on Application and Theory of Petri Nets
(ICATPN). pp. 365–384. Springer LNCS 1420 (1998)

32. Klauck, C., Müller, H.J.: Formal business process engineering based on graph gram-
mars. International Journal on Production Economics 50, 129–140 (1999)

33. Köhler, J., Tirenni, G., Kumaran, S.: From Business Process Model to Consistent
Implementation: A Case for Formal Verification Methods. In: 6th International Enter-
prise Distributed Object Computing Conference (EDOC 2002). pp. 96–106 (2002)

34. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science
3(27), 333–354 (December 1983)

35. Langner, P., Schneider, C., Wehler, J.: Prozeßmodellierung mit ereignisges-
teuerten Prozeßketten (EPKs) und Petri-Netzen. Wirtschaftsinformatik 39(5), 479–
489 (1997)

36. Langner, P., Schneider, C., Wehler, J.: Petri net based certification of event-driven
process chains. In: Proceedings of Application and Theory of Petri Nets 1998, 19th
International Conference (ICATPN ’98). pp. 286–305. Springer, LNI 1420 (1998)

37. Ma, S., Zhang, L., He, J.: Towards Formalization and Verification of Unified Busi-
ness Process Model Based on Pi Calculus. In: Proceedings of the 6th ACIS Inter-
national Conference on Software Engineering Research, Management and Appli-
cations (SERA). pp. 93–101. IEEE Computer Society (2008)

38. Mahleko, B., Wombacher, A.: Indexing Business Processes based on Annotated
Finite State Automata. In: IEEE International Conference on Web Services (ICWS
2006). pp. 303–311. IEEE Computer Society, Los Alamitos, CA, USA (2006)

39. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)
40. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the Occurrence of

Errors in Process Models Based on Metrics. In: On the Move to Meaningful Internet
Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated Inter-
national Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007. pp. 113–130
(2007)

41. Morimoto, S.: A Survey of Formal Verification for Business Process Modeling. In:
ICCS 2008, 8th International Conference. pp. 514–522. Springer LNCS 5102 (2008)

42. Pulvermüller, E.: Composition and correctness. Electronic Notes in Theoretical
Computer Science (ENTCS) 65(4) (2002)

43. Pulvermüller, E.: Reducing the Gap between Verification Models and Software De-
velopment Models. In: The 8th International Conference on Software Methodolo-
gies, Tools and Techniques (SoMeT 2009). pp. 297–313. IOS Press (2009)

44. Rusnjak, A., El Kharbili, M., Hristov, H., Speck, A.: Managing the Dynamics of
E/mCommerce with a Hierarchical Overlapping Business-Value-Framework. In: 24th

444 ComSIS Vol. 8, No. 2, Special Issue, May 2011

Formalizing Business Process Specifications

IEEE International Conference on Advanced Information Networking and Applica-
tions Workshops (AINA Workshops), WAINA 2010. pp. 461–466. IEEE Computer
Society (2010)

45. Scheer, A.W.: ARIS - Modellierungsmethoden, Metamodelle, Awendungen.
Springer, Berlin, Germany (1998)

Prof. Dr. Andreas Speck is head of the ”Business Information Technology” re-
search group at Christian-Albrechts-University of Kiel, Germany. Previously he
headed the research group ”Application Systems (Software Engineering and
eCommerce)” at the Friedrich-Schiller-University of Jena and led the research
group of the Intershop Communications AG at Jena. His main research inter-
ests are the modeling and verification of commercial application systems and
electronic and mobile commerce systems. Andreas Speck is member of the
German Computer Society (GI).

Sven Feja studied Business Informatics at the Friedrich-Schiller-University of
Jena, Germany, and received his degree in Business Informatics in 2006. Af-
ter his graduation he joined the research group ”Application Systems (Software
Engineering and eCommerce)” at the Friedrich-Schiller-University of Jena. Cur-
rently he is a research assistant at the Christian-Albrechts-University of Kiel,
Germany, researching in the field of business process modeling and validation
and verification of correctness of process models (including functional and non-
functional aspects). Sven Feja is member a member of the German Computer
Society (GI).

Sören Witt studied Computer Engineering at the Christian-Albrechts-University
of Kiel, Germany. He received his degree as Computer Engineer in 2009. After
his graduation he joined the ”Business Information Technology” research group
at Christian-Albrechts-University of Kiel as research assistant. Soeren Witt is
researching in the area of business process model verification and validation
on basis of graphically represented specifications.

Prof. Dr.-Ing. Elke Pulvermüller is a professor (Jun.Prof.) in the Department
of Mathematics & Computer Science at the University of Osnabrueck, Ger-
many. There, she is head of the Software Engineering research group. Between
September 2009 and March 2010 she has been temporarily appointed as an
Acting Full Professor of the Institute of Software Technology and Programming
Languages at the University Luebeck, Germany. Previous to her appointments
at Luebeck and Osnabrueck she has been a senior researcher / research as-
sistant at the University of Luxembourg (2006 - 2007), at the Friedrich Schiller-
University of Jena (Germany) and at the Universitaet Karlsruhe (Germany). She
received her doctoral degree from the Friedrich Schiller-University of Jena in
2006. Her research focuses on new approaches in software and quality engi-
neering. Elke Pulvermueller is a member of the German Computer Society (GI)
and the ACM.

ComSIS Vol. 8, No. 2, Special Issue, May 2011 445

Andreas Speck et al.

Marcel Schulz studied Business Informatics at the Friedrich-Schiller-University
of Jena, Germany, and received his degree in Business Informatics in 2009.
He gained interactional experience as project manager for commercial informa-
tion systems in Shanghai, China working for American customers from 2007 till
2009. Currently he is member of the Intershop Commuincations research group.
His research interests are business intelligence, data mining and simulation.

Received: January 11, 2011; Accepted: May 5, 2011.

446 ComSIS Vol. 8, No. 2, Special Issue, May 2011

	Formalizing Business Process Specifications
	Andreas Speck, Sven Feja, Sören Witt, Elke Pulvermüller, and Marcel Schulz

