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Abstract. A new method for decision making that uses the ordered 
weighted averaging (OWA) operator in the aggregation of the 
information is presented. It is used a concept that it is known in the 
literature as the index of maximum and minimum level (IMAM). This 
index is based on distance measures and other techniques that are 
useful for decision making. By using the OWA operator in the IMAM, 
we form a new aggregation operator that we call the ordered weighted 
averaging index of maximum and minimum level (OWAIMAM) 
operator. The main advantage is that it provides a parameterized family 
of aggregation operators between the minimum and the maximum and 
a wide range of special cases. Then, the decision maker may take 
decisions according to his degree of optimism and considering ideals in 
the decision process. A further extension of this approach is presented 
by using hybrid averages and Choquet integrals. We also develop an 
application of the new approach in a multi-person decision-making 
problem regarding the selection of strategies. 

Keywords: decision making, OWA operator, aggregation operator, 
index of maximum and minimum level, selection of strategies. 

1. Introduction 

The index of maximum and minimum (IMAM) level [1] is a very useful 
technique that provides similar results with the Hamming distance with some 
differences that makes it more complete. It includes the Hamming distance 
and the adequacy coefficient [2-6] in the same formulation. Since its 
appearance, it has been used in a wide range of applications such as fuzzy 
set theory, business decisions and multicriteria decision making [7-8]. Often, 
we prefer to use the normalized IMAM (NIMAM) because we want an 
average result of all the individual comparisons. This type of index is also 
known as the weighted IMAM (WIMAM) when we prefer to give different 
degrees of importance to the individual comparisons instead of giving them 
the same importance. 
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Sometimes, when calculating the NIMAM, it would be interesting to 
consider the attitudinal character of the decision maker. A very useful tool for 
aggregating the information considering the attitudinal character of the 
decision maker is the ordered weighted averaging (OWA) operator [9]. The 
OWA operator is an aggregation operator that includes the maximum, the 
minimum and the average criteria, as special cases. It has been used in a 
wide range of applications [10-21]. 

The aim of this paper is to present a new type of IMAM operator that uses 
the OWA operator in the aggregation process. We call this new aggregation 
operator, the ordered weighted averaging index of maximum and minimum 
level (OWAIMAM) operator. The fundamental characteristic of this index is 
that it normalizes the IMAM with the OWA operator. Therefore, it is possible 
to develop a more general IMAM that includes the maximum, the minimum 
and the NIMAM, as special cases. The main advantage of the OWAIMAM is 
the possibility of over or under estimate the results of an aggregation in order 
to take a decision according to a certain degree of optimism. Then, in a 
decision making problem, the decision maker will be able to take decisions 
according to his degree of optimism. Some of its main properties and 
different families of OWAIMAM operators are studied.  

A further extension of this approach is presented by using the hybrid 
average [22-27]. The main advantage of this approach is that it uses the 
weighted average and the OWA operator in the same formulation. Thus, it is 
possible to consider the subjective probability and the attitudinal character of 
the decision maker. We call it the hybrid averaging IMAM (HAIMAM) 
operator. Moreover, we generalize this approach by using Choquet integrals 
[28-32] obtaining the Choquet integral IMAM aggregation (CIIMAMA). Thus, a 
more robust and general formulation of the IMAM operator is obtained. 

We also develop an application of this new method in a business multi-
person decision-making problem. This decision-making model can be 
summarized in one aggregation operator called the multi-person OWAIMAM 
(MP-OWAIMAM) operator. We apply it in the selection of strategies because 
this problem can be considered as a general one that includes a wide range 
of business situations. Note that other applications could be developed such 
as in human resource management, supplier selection and product 
management. For further information on other decision-making methods, 
refer, e.g., to [33-42]. 

This paper is organized as follows. In Section 2 some basic concepts such 
as the OWA operator and the IMAM are described. Section 3 presents the 
OWAIMAM operator and Section 4 analyzes some of its families. Section 5 
presents an extension by using the hybrid average and Section 6 a 
generalization by using Choquet integrals. In Section 7 a multi-person 
decision-making model is presented and in Section 8 an application of the 
new approach in the selection of strategies. Finally, Section 9 summarizes 
the main findings of the paper. 
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2. Preliminaries 

In this Section, we briefly review some basic concepts to be used throughout 
the paper such as the IMAM and the OWA operator. 

2.1. The Index of Maximum and Minimum Level 

The NIMAM [1] is an index used for calculating the differences between two 
elements, two sets, etc. In decision making, it is very useful for comparing 
alternatives in different business decision making problems such as financial 
management, human resource management, product management, etc. In 
fuzzy set theory, it can be useful, for example, for the calculation of distances 
between fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, etc. It 
is a very useful technique that provides similar results than the Hamming 
distance but with some differences that makes it more complete. Basically, it 
can be defined as a measure that includes the Hamming distance and the 
adequacy coefficient [2-6] in the same formulation. For two sets P and Pj, it 
can be defined as follows. 

 

Definition 1. A NIMAM of dimension n is a mapping K: [0, 1]
n
  [0, 1]

n 
→ 

[0, 1] such that: 

K (P, Pj) =  
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where µi and µi
(j)

 are the ith arguments of the sets P and Pj respectively, u and 
v are the number of elements used with the Hamming distance and with the 
dual adequacy coefficient, respectively, and u + v = n.  

Sometimes, when normalizing the IMAM it is better to give different 
weights to each individual element. Then, the index is known as the WIMAM. 
It can be defined as follows. 

 

Definition 2. A WIMAM of dimension n is a mapping K: [0, 1]
n
  [0, 1]

n 
→ 

[0, 1] that has an associated weighting vector W of dimension n with the 
following properties: 
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and such that: 

K (P, Pj) = (2) 
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where µi and µi
(j)

 are the ith arguments of the sets P and Pj respectively, u and 
v are the number of elements used with the Hamming distance and with the 
dual adequacy coefficient, respectively, and u + v = n. 

Note that if u = n, the WIMAM operator becomes the usual weighted 
Hamming distance (WHD) that can be defined as follows. 

 
Definition 3. A weighted Hamming distance of dimension n is a mapping 

WHD: [0, 1]
n
  [0, 1]

n 
→ [0, 1] that has an associated weighting vector W of 

dimension n with W =   n
j jw1 1 and wj  [0, 1], such that: 

WHD (A, B) = 
















n

i
iii baw

1

|| ,                                                         (3) 

where ai and bi are the ith arguments of the sets A and B respectively.  
Moreover, the WIMAM operator accomplishes similar properties than the 

distance measures [29] although it does not always accomplish 
commutativity, from the perspective of a distance measure, because it uses 
norms in the aggregation process. In this case we have that a WIMAM 
aggregation fulfils: 

 

Non-negativity: K (A1, A2)  0. 
Reflexivity: K (A1, A1) = 0. 

Triangle inequality: K (A1, A2) + K (A2, A3)  K (A1, A3). 

2.2. The OWA Operator 

The OWA operator [9] provides a parameterized family of aggregation 
operators which have been used in many applications. It can be defined as 
follows. 

 
Definition 4. An OWA operator of dimension n is a mapping OWA: R

n 
→ 

R that has an associated weighting vector W of dimension n having the 
properties: 

 

wj  [0, 1] 

  n
j jw1 1 

 
and such that: 
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OWA (a1, a2, …, an) = 


n

j
jjbw

1

, (4) 

where bj is the jth largest of the ai.  
From a generalized perspective of the reordering step it is possible to 

distinguish between the descending OWA (DOWA) operator and the 
ascending OWA (AOWA) operator. Note that the weights of these two 

operators are related by wj = w*nj+1, where wj is the jth weight of the DOWA 

and w*nj+1 the jth weight of the AOWA operator. For further properties and 
applications on the OWA operator, refer, e.g., to [10,21,43-45]. 

3. The OWAIMAM Operator 

In this Section, the use of the OWA operator in the IMAM operator is 
introduced. We call it the ordered weighted averaging index of maximum and 
minimum level (OWAIMAM). It can be defined as follows. 

 
Definition 5. An OWAIMAM operator of dimension n, is a mapping 

OWAIMAM: [0, 1]
n
  [0, 1]

n 
→ [0, 1] that has an associated weighting vector 

W, with  wj  [0, 1]  and   n
j jw1 1, such that:  

OWAIMAM (x1, y1, x2, y2, …, xn, yn) = 


n

j
jjKw

1

,                                      (5) 

where Kj represents the jth largest of all the |xi – yi| and the [0  (xi – yi)]. 
In the following, a simple numerical example concerning the aggregation 

process with the OWAIMAM operator is presented. 
 
Example 1. Assume the following arguments in an aggregation process: X 

= (0.3, 0.4, 0.8, 0.6), Y = (0.5, 0.7, 0.3, 0.7). Assume the following weighting 
vector W = (0.1, 0.2, 0.3, 0.4). If we calculate the similarity between X and Y 
using the OWAIMAM operator, we get the following. Assume that the first two 
arguments have to be treated with the Hamming distance and the other two 
with the dual adequacy coefficient. 

 

OWAIMAM (X, Y) = 0.1 × [0  (0.8 – 0.3)] + 0.2 × |0.4 – 0.7| + 0.3 × |0.3 – 

0.5| + 0.4 × [0  (0.6 – 0.7)] = 0.17. 
 
Note that from a generalized perspective of the reordering step it is 

possible to distinguish between descending and ascending orders. The 

weights of these operators are related by wj = w*nj+1, where wj is the jth 

weight of the descending OWAIMAM (DOWAIMAM) and w*nj+1 the jth weight 
of the ascending OWAIMAM (AOWAIMAM) operator.  
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If K is a vector corresponding to the ordered arguments Kj, we shall call 
this the ordered argument vector, and W

T
 is the transpose of the weighting 

vector, then the OWAIMAM can be expressed as:  

OWAIMAM (x1, y1, x2, y2, …, xn, yn) = KWT .                                    (6) 

Note that if the weighting vector is not normalized, i.e., W =  n
j jw1 1, 

then, the OWAIMAM operator can be expressed as: 

OWAIMAM (x1, y1, x2, y2, …, xn, yn) = 


n

j
jjKw

W 1

1
.                               (7) 

Analogously to the OWAIMAM operator, we can suggest a removal index 

that it is a dual of the OWAIMAM because Q (x1, y1, x2, y2, …, xn, yn) = 1 

– K (x1, y1, x2, y2, …, xn, yn). We refer to it as the ordered weighted 
averaging dual index of maximum and minimum level (OWADIMAM). Note 
that it can be seen as a dissimilarity measure. It is defined as follows. 

 
Definition 6. An OWADIMAM operator of dimension n, is a mapping 

OWADIMAM: [0, 1]
n
  [0, 1]

n 
→ [0, 1] that has an associated weighting vector 

W, with  wj  [0, 1] and the sum of the weights is equal to 1, then: 

OWADIMAM (x1, y1, x2, y2, …, xn, yn) = 


n

j
jjQw

1

,                                 (8) 

where Qj represents the jth largest of all the [1  |xi – yi|] and the [1  (1 – xi + 
yi)]; with k = 1,2,…,m.  

The final result will be a number between [0, 1]. Note that in this case the 
recommendation is to select the lowest value as the best result. 

In this case, we can also distinguish between the descending OWADIMAM 
(DOWADIMAM) and the ascending OWADIMAM (AOWADIMAM) operator.  

Note also that the OWAIMAM operator follows the usual methodology of 
the aggregation operators. Thus, it is commutative, monotonic, bounded, 
idempotent, nonnegative and reflexive. As we can see, it accomplishes the 
usual properties excepting commutativity from the perspective of a distance 
measure because of the use of norms in the aggregation. These properties 
can be proved with the following theorems. 

 
Theorem 1 (Monotonicity). Assume f is the OWAIMAM operator, if |xi – yi| 

≥ |ui – vi|, for all i, then: 

f (x1, y1, x2, y2, …, xn, yn) ≥ f (u1, v1, u2, v2, …, un, vn). (9) 

Proof. Let 
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f (x1, y1, x2, y2, …, xn, yn) = 


n

j
jjKw

1

,                                            (10) 

f (u1, v1, u2, v2, …, un, vn) = 


n

j
jjQw

1

.                                          (11) 

Since |xi – yi| ≥ |ui – vi|, for all i, it follows that, Kj ≥ Qj, and then 

f (x1, y1, x2, y2, …, xn, yn) ≥ f (u1, v1, u2, v2, …, un, vn). ■ 

 
Theorem 2 (Commutativity). Assume f is the OWAIMAM operator, then: 

f (x1, y1, x2, y2, …, xn, yn) = f (u1, v1, u2, v2, …, un, vn).                      (12) 

where (x1, y1, x2, y2, …, xn, yn) is any permutation of the arguments (u1, 

v1, u2, v2, …, un, vn). 
 
Proof. Let 

f (x1, y1, x2, y2, …, xn, yn) = 


n

j
jjKw

1

,                                          (13) 

f (u1, v1, u2, v2, …, un, vn) = 


n

j
jjQw

1

.                                          (14) 

Since (x1, y1, x2, y2, …, xn, yn) is a permutation of (u1, v1, u2, v2, …, 

un, vn), we have Kj = Qj, for all j, and then 

f (x1, y1, x2, y2, …, xn, yn) = f (u1, v1, u2, v2, …, un, vn).                           ■ 

 

Theorem 3 (Idempotency). Assume f is the OWAIMAM operator, if |xi  yi| 

= |x  y|, for all i, then: 

f (x1, y1, x2, y2, …, xn, yn) = |x  y|.                                                                 (15) 

 

Proof. Since |xi  yi| = |x  y|, for all i, 

f (x1, y1, …, xn, yn) = 


n

j
jjKw

1

= ||
1

yxw
n

j
j 



 = 



n

j
jwyx

1

|| .                   (16) 

Since   n
j jw1 1, 

f (x1, y1, x2, y2, …, xn, yn) = |x  y|.                                                 ■ 
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Theorem 4 (Bounded). Assume f is the OWAIMAM operator, then: 

Min{|xi  yi|} ≤ f (x1, y1, x2, y2, …, xn, yn) ≤ Max{|xi  yi|}.                       (17) 

 

Proof. Let max{|xi  yi|} = b, and min{|xi  yi|} = a, then 

f (x1, y1, …, xn, yn) = 


n

j
jjKw

1

  


n

j
jbw

1

 = 


n

j
jwb

1

,                                (18) 

f (x1, y1, …, xn, yn) = 


n

j
jjKw

1

  


n

j
jaw

1

 = 


n

j
jwa

1

.                               (19) 

Since   n
j jw1 1, 

f (x1, y1, x2, y2, …, xn, yn)  b.                                               (20) 

f (x1, y1, x2, y2, …, xn, yn)  a.                                               (21) 

Therefore, 

Min{|xi  yi|} ≤ f (x1, y1, x2, y2, …, xn, yn) ≤ Max{|xi  yi|}.                       ■ 

 
Theorem 5 (Nonnegativity). Assume f is the IOWAD operator, then: 

f (x1, y1, …, xn, yn) ≥ 0.                                                       (22) 

 
Proof. Let 

f (x1, y1, …, xn, yn) = 


n

j
jjbw

1

,                                                 (23) 

Since |xi  yi| ≥ 0, for all i, we obtain 

f (x1, y1, …, xn, yn) ≥ 0.                                                            ■ 

 
Theorem 6 (Reflexivity). Assume f is the IOWAD operator, then: 

f (x1, x1, …, xn, xn) = 0.                                                        (24) 

 
Proof. Let 

f (x1, x1, …, xn, xn) = 


n

j
jjbw

1

,                                                 (25) 
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Since xi = xi, |xi  xi| = 0, for all i, therefore,  

f (x1, x1, …, xn, xn) = 0.                                                             ■ 

 
A further interesting feature to consider in the OWAIMAM operator is the 

unification point with distance measures. The unification point between the 

IMAM and the Hamming distance appears when xi  yi for all i. In the 
OWAIMAM operator, we find a similar situation with the difference that now 
the unification is with the ordered weighted averaging distance (OWAD) 
operator [6]. Then, we get the following.  

 

Theorem 7. Assume OWAD (x1, y1, x2, y2, …, xn, yn) is the OWAD 

operator and OWADIMAM (x1, y1, x2, y2, …, xn, yn) the OWADIMAM 
operator. If xi ≥ yi for all i, then: 

OWAD (x1, y1, x2, y2, …, xn, yn) = OWADIMAM (x1, y1, x2, 

y2, …, xn, yn). 
(26) 

Proof. Let 

OWAD (x1, y1, x2, y2, …, xn, yn) = j

n

j
jbw

1

,                                      (27) 

OWADIMAM (x1, y1, x2, y2, …, xn, yn) =  j

n

j
jQw

1

.                              (28) 

Since xi ≥ yi for all i, [0  (xi – yi)] = (xi – yi) for all i, then 

OWADIMAM (x1, y1, …, xn, yn) = )(
1

ii

n

j
j yxw 



= OWAD (x1, 

y1, …, xn, yn). 

■ 

 
As we can see, the unification with the Hamming distance is found with the 

dual IMAM. Note that it is possible to distinguish between different types of 
unifications depending on the problem analyzed such as partial and total 
unification point. The partial unification point appears if at least one of the 
alternatives but not all of them is in a situation of unification point and the 
total unification point appears if all the alternatives accomplish the conditions 
of the unification point. Note that it is straightforward to prove these 
unifications by looking to [5,46] and following Theorem 7. 

Another interesting issue to analyze is the different measures used to 
characterize the weighting vector of the OWAIMAM operator. Based on the 
measures developed for the OWA operator in [9,19], they can be defined as 
follows. For the attitudinal character, we get the following: 
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(W) = 













n

j
j

n

jn
w

1 1
.                                                              (29) 

It can be shown that   [0, 1]. Note that for the optimistic criteria (W) = 

1, for the pessimistic criteria (W) = 0, and for the average criteria (W) = 
0.5. 

The dispersion is a measure that provides the type of information being 
used. It can be defined as follows. 

H(W) = 



n

j
jj ww

1

)ln( .                                                             (30) 

For example, if wj = 1 for some j, then H(W) = 0, and the least amount of 
information is used. If wj = 1/n for all j, then, the amount of information used 
is maximum. The divergence can be defined as follows. 

Div(W) = 

2

1

)(
1
















n

j
j W

n

jn
w  .                                                     (31) 

Note that the divergence can also be formulated with an ascending order in 
a similar way as it has been shown in the attitudinal character. 

4. Families of OWAIMAM Operators 

The OWAIMAM operator provides a parameterized family of aggregation 
operators. Therefore, it includes a wide range of special cases. In Table 1, 
some of these families of OWAIMAM operators are presented. 

For more information on these and other families of OWAIMAM operators 
that are based on the OWA methodology, refer, e.g., to [9,15,17,47-49]. 

In the following, the main features of the families presented in Table 1 are 
commented.  

Table 1. Families of OWAIMAM operators. 

Basic families Weighting vector W 
 The OWA operator  Maximum and Minimum 
 The Hamming distance  NIMAM and WIMAM 
 The OWAD operator  Olympic-OWAIMAM 
 The adequacy coefficient  Window-OWAIMAM 
 The OWAAC operator  S-OWAIMAM  
 Etc.  Centered-OWAIMAM 
  BUM function – OWAIMAM 
  Nonmonotonic-OWAIMAM 
  Etc. 
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Remark 1. If the second set is empty, the OWAIMAM operator becomes 
the OWA operator. If all the individual similarities use the Hamming distance, 
we get the OWAD operator [6] and if all of them use the adequacy 
coefficient, we obtain the ordered weighted averaging adequacy coefficient 
(OWAAC) operator [5]. 

 

Remark 2. The maximum is obtained if w1 = 1 and wj = 0, for all j  1 and 

the minimum if wn = 1 and wj = 0, for all j  n. More generally, if wk = 1 and wj 

= 0, for all j  k, we get, OWAIMAM (x1, y1, x2, y2, …, xn, yn) = bk, where 
bk is the kth largest argument ai. The NIMAM is formed when wj = 1/n, and ωi 
= 1/n, for all ai. The WIMAM is obtained when wj = 1/n, for all ai. Note that the 
construction of the WIMAM from the OWAIMAM is artificial in the sense that 
it considers the importance of the attributes while the OWAIMAM focuses on 
the degree of optimism of the aggregation. 

 
Remark 3. The olympic-OWAIMAM is found when w1 = wn = 0, and for all 

others wj* = 1/(n  2). Note that it is possible to present a general form of the 

olympic-OWAIMAM considering that wj = 0 for j = 1, 2, …, k, n, n  1, …, n  

k + 1; and for all others wj* = 1/(n  2k), where k < n/2.  Note that if k = 1, 

then, this general form becomes the usual olympic-OWAIMAM. If k = (n  
1)/2, then, it becomes the median-OWAIMAM aggregation. That is, if n is odd 
we assign w(n + 1)/2 = 1 and wj* = 0 for all others. If n is even we assign for 
example, wn/2 = w(n/2) + 1 = 0.5 and wj* = 0 for all others. 

 
Remark 4. Additionally, it is also possible to form the contrary case of the 

general olympic-OWAIMAM operator. This case is obtained when wj = (1/2k) 

for j = 1, 2, …, k, n, n  1, …, n  k + 1; and wj = 0, for all others, where k < 
n/2. Note that if k = 1, then, the contrary case of the median-OWAIMAM is 
obtained. 

 
Remark 5. Following the ideas of Yager [49], the window-OWAIMAM 

operator can be formed. It is obtained when wj* = 1/m for k  j*  k + m  1 
and wj* = 0 for j* > k + m and j* < k. Note that k and m must be positive 

integers such that k + m  1  n. Also note that if m = k = 1, the window-
OWAIMAM becomes the maximum and if m = 1, k = n, it becomes the 
minimum. And if m = n and k = 1, it is obtained the NIMAM. 

 
Remark 6. A further interesting family is the S-OWAIMAM operator [49]. It 

can be classified in three classes: the “orlike”, the “andlike” and the 
generalized S-OWAIMAM operator. The generalized S-OWAIMAM operator 

is obtained when  w1 = (1/n)(1  ( + )) + , wn = (1/n)(1  ( + )) + , and 

wj = (1/n)(1  ( + )) for j = 2 to n  1 where ,   [0, 1] and  +   1. Note 

that if  = 0, the generalized S-OWAIMAM operator becomes the “andlike” S-

OWAIMAM operator and if  = 0, it becomes the “orlike” S-OWAIMAM 

operator. Also note that if  +  = 1, we get the Hurwicz IMAM criteria. 
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Remark 7. Another family of aggregation operator that could be used is the 
centered-OWAIMAM operator. An OWAIMAM operator is defined as a 
centered aggregation operator if it is symmetric, inclusive and strongly 

decaying. It is symmetric if wj = wj+n1. It is inclusive if wj > 0. It is strongly 

decaying when i < j  (n + 1)/2 then wi < wj and when i > j  (n + 1)/2 then wi 
< wj. Note that it is possible to consider a softening of the third condition by 

using wi  wj instead of wi < wj and it is possible to remove the second 
condition.  

 
Remark 8. Another interesting method for determining the OWAIMAM 

weights is the functional method. It can be described as follows. Let  be a 

function : [0, 1]  [0, 1] such that (0) = (1) and (x)  (y) for x > y. We 
call this function a basic unit interval monotonic function (BUM). Using this 
BUM function we form the OWAIMAM weights wj for j = 1 to n as 








 











n

j
f

n

j
fw j

1
.                  (32) 

It is easy to see that using this method, the wj satisfy that the sum of the 

weights is 1 and wj  [0,1]. 
 
Remark 9. Another interesting family is the nonmonotonic-OWAIMAM 

operator based on [18]. It is possible to form it when at least one of the 

weights wj is lower than 0 and   n
j jw1 1. Note that a key aspect of this 

operator is that it does not always accomplish the monotonicity property. 
Then, this property could not be included in this special type of the 
OWAIMAM operator. 

5. Using the Hybrid Average in the IMAM Operator 

A further generalization of the OWAIMAM operator can be introduced by 
using the HA operator [26]. Thus, we can use in the IMAM operator, the 
weighted average and the OWA operator, considering both the attitudinal 
character of the decision maker and its subjective probability (or degree of 
importance). This new approach is called the hybrid averaging IMAM 
(HAIMAM) operator. Before defining the HAIMAM operator, let us briefly 
recall the definition of the HA operator. 

 
Definition 7. A HA operator of dimension n is a mapping HA: R

n 
→ R that 

has an associated weighting vector W of dimension n with   n
j jw1 1 and wj 

 [0, 1], such that:                                      
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HA (a1, a2, …, an) =  


n

j
jjbw

1

,                                                      (33) 

where bj is the jth largest of the âi (âi = niai, i = 1,2,…,n),  = (1, 2, …, n)
T
 

is the weighting vector of the ai, with i  [0, 1] and the sum of the weights is 
1. 

With this introduction, the HAIMAM operator can be introduced as follows. 
Note that the main advantage of this approach is that the WIMAM and the 
OWAIMAM operators can be used in the same formulation. 

 
Definition 8. A HAIMAM operator of dimension n is a mapping HAIMAM: 

[0, 1]
n
  [0, 1]

n 
→ [0, 1] that has an associated weighting vector W of 

dimension n with   n
j jw1 1 and wj  [0, 1], such that:                                      

HAIMAM (a1, a2, …, an) =  


n

j
jjKw

1

,                                               (34) 

where Kj represents the jth largest of all the |xi – yi|* = nI |xi – yi| and the [0  

(xi – yi)]* = ni [0  (xi – yi)], with i = 1, 2, …,n,  = (1, 2, …, n)
T
 is the 

weighting vector of the ai, with i  [0, 1] and the sum of the weights is 1. 

As we can see, if wj = 1/n, for all j, we obtain the WIMAM operator and if I 

= 1/n, for all i, the OWAIMAM operator. If wj = 1/n and I = 1/n, for all i and j, 
the NIMAM operator is obtained. 

The HAIMAM operator accomplishes similar properties than the 
OWAIMAM operator. However, it is not idempotent nor commutative. 
Moreover, we can also study a wide range of families of HAIMAM operators 
following the methodology explained in Section 4. 

6. Choquet Integrals in the IMAM Operator 

By using Choquet integrals [28-32], another generalization of the IMAM 
operator can be developed. It is called the Choquet integral IMAM 
aggregation (CIIMAMA). Before introducing this new result, let us define the 
concept of fuzzy measure and the discrete Choquet integral. The fuzzy 
measure was introduced by Sugeno [50] and it can be defined as follows. 

 
Definition 9. Let X be a universal set X = {x1, x2, …, xn} and P(X) the 

power set of X. A fuzzy measure on X is a set function on m: P(X) → [0, 1], 
that satisfies the following conditions: 

 

m() = 0, m(X) = 1 (boundary conditions) and 

If A, B  P(X) and A  B, then m(A) ≤ m(B) (monotonicity). 
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The discrete Choquet integral [28] can be defined in the following way. 
 
Definition 10. Let f be a positive real-valued function f: X → R

+
 and m be 

a fuzzy measure on X. The (discrete) Choquet integral of f with respect to m 
is: 

Cm (f1, f2, …, fn) =  )()( )1()(
1

)( 


 ii

n

i
i AmAmf ,                                       (35) 

where (·) indicates a permutation on domain and range X such that f(1) ≥ f(2) ≥ 
… ≥ f(n), i.e. f(i) is the ith largest value in the finite set { f1, f2, …, fn}, A(i) = 

{x(1),…, x(i)} i ≥ 1 and A(0) =  being {x(1),…, x(i)} in the domain of f such that 
f(xi) = fi. 

With this information, we can present the CIIMAMA operator as an 
aggregation operator that uses the Choquet integral and the IMAM operator in 
the same formulation. It can be defined as follows. 

 
Definition 11. Let m be a fuzzy measure on X. A Choquet integral index of 

maximum and minimum level aggregation (CIIMAMA) operator of dimension 

n is a function CIIMAMA: R
n
  R

n
  R, such that: 

CIIMAMA (x1, y1, x2, y2, …, xn, yn) = 

 



n

j
iij AmAmb

1
)1()( )()( ,                   (36) 

where bj is the jth largest of all the |xi – yi| and the [0  (xi – yi)], the xi and the 
yi are the argument variables of the sets X = {x1, …, xn} and Y = {y1, …, yn}, 

A(i) = {x(1) . . . , x(i)}, i ≥ 1 and A(0) = . 
This approach can be generalized by using generalized and quasi-

arithmetic means [15,17]. For example, by using quasi-arithmetic means, we 
get the quasi-arithmetic Choquet integral index of maximum and minimum 
level aggregation (Quasi-CIIMAMA) operator. It can be defined as follows. 

 
Definition 12. Let m be a fuzzy measure on X. A Quasi-CIIMAMA operator 

of dimension n is a function QICDIA: R
n
  R

n
  R

n
  R, such that: 

QICDIA (u1, x1, y1, …, un, xn, yn) = 

 



















n

j
iij AmAmbgg

1
)1()(

1 )()()( ,                 
(37) 

where g is a strictly continuous monotonic function, bj is the jth largest of all 

the |xi – yi| and the [0  (xi – yi)], the xi and the yi are the argument variables 
of the sets X = {x1, …, xn} and Y = {y1, …, yn}, A(i) = {x(1) . . . , x(i)}, i ≥ 1 and 

A(0) = . 
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7. Multi-Person Decision Making with the OWAIMAM 

Operator 

The OWAIMAM operator can be applied in a wide range of fields. In this 
paper, we consider a decision-making application in the selection of 
strategies by using a multi-person analysis. Note that in the literature we find 
a wide range of methods for decision making [43,45,51-53]. The process to 
follow can be summarized as follows.  

Step 1: Let A = {A1, A2, …, An} be a set of finite alternatives, C = {C1, C2, 
…, Cn} a set of finite characteristics (or attributes), forming the matrix (xhi)m×n. 
Let E = {E1, E2, …, Ep} be a finite set of decision makers. Let V = (v1, v2, …, 
vp) be the weighting vector of the decision makers such that   p

k kv1 1 and vk 

 [0, 1]. Each decision maker provides his own payoff matrix (xhi
(k)

)m×n.   
Step 2: Calculate the ideal values of each characteristic in order to form 

the ideal strategy shown in Table 2. Note that the ideal strategy is an unreal 
strategy where we imagine an optimal situation where we are able to reach all 
our objectives, perfectly. 

Table 2. Ideal strategy. 

 C1 C2 … Ci … Cn 

I = y1 y2 … yi … yn 

 
where I is the ideal strategy expressed by a fuzzy subset, Ci is the ith 

characteristic to consider and yi  [0, 1], i = 1, 2, …, n, is a number between 0 
and 1 for the ith characteristic. Each decision maker provides his own ideal 
strategy yi

(k)
.   

Step 3: Calculate the weighting vector W to be used in the OWAIMAM 
aggregation for each alternative h and characteristic i. Note that W = (w1, w2, 

…, wn) such that   n
j jw1 1 and wj  [0, 1].    

Step 4: Comparison between the ideal strategy and the different 
characteristics considered using the OWAIMAM operator for each expert 
(person). 

Step 5: Use the weighted average (WA) to aggregate the information of 
the decision makers E by using the weighting vector V. The result is the 

collective payoff matrix (xhi, yhi)m×n. Thus,  
 p

k
k
hi

k
hikhihi yxvyx 1 ),(),( . Note 

that (xhi, yhi) represents either |xhi – yhi| or [0  (xhi – yhi)], for the comparison 
of each tuple of arguments. 

Step 6: Calculate the aggregated results by using the OWAIMAM operator 
explained in Eq. (4). Consider different types of OWAIMAM operators by 
using different expressions in the weighting vector as it has been explained in 
Section 4.  

Step 7: Select the alternative/s that provides the best result/s. Moreover, 
establish a ranking of the alternatives from the most to the less preferred 
alternative in order to be able to consider more than one selection. 
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Note that this decision-making process can be summarized using the 
following aggregation operator that it is called the multi-person – OWAIMAM 
(MP-OWAIMAM) operator. 

 
Definition 13. A MP-OWAIMAM operator is an aggregation operator that 

has a weighting vector V of dimension p with  
p

k kv1 1 and vk  [0, 1] and a 

weighting vector W of dimension n with   n
j jw1 1 and wj  [0, 1], such that: 

f ((x1
1
, …, x1

p
), (y1

1
, …, y1

p
), …, (xn

1
, …, xn

p
), (yn

1
, …, yn

p
)) = 




n

j
jjbw

1

,            (38) 

where bj is the jth largest of all the similarities (xi, yi) (either |xi – yi| or [0  (xi 

– yi)]),   p
k

k
i

k
ikii yxvyx 1 ),(),( , (xi, yi) is the argument variable provided by 

each person (or expert) represented in the form of individual similarities.  
The MP-OWAIMAM operator has similar properties than those explained in 

Section 3 such as the measures for characterizing the weighting vector W, 
the distinction between descending and ascending orders, and so on. 

The MP-OWAIMAM operator includes a wide range of particular cases 
following the methodology explained in Section 4. Thus, we can find as 
special cases: 

 
The multi-person – normalized Hamming distance (MP-NHD) operator. 
The multi-person – weighted Hamming distance (MP-WHD) operator. 
The multi-person – OWAD (MP-OWAD) operator. 
The multi-person – normalized adequacy coefficient (MP-NAC) operator. 
The multi-person – weighted adequacy coefficient (MP-WAC) operator. 
The multi-person – OWAAC (MP-OWAAC) operator. 
The multi-person – NIMAM operator. 
The multi-person – OWA (MP-OWA) operator. 
 

Additionally, it is possible to consider more complex formulations by using 
other types of aggregation operators in the aggregation of the experts opinion 
because in Definition 12, we assume that the experts opinions are 
aggregated by using the WA operator. Moreover, note that it is possible to 
develop a similar model by using Choquet integrals obtaining the multi-
person – CIIMAMA (MP-CIIMAMA) operator and by using hybrid averages, 
obtaining the multi-person – HAIMAM (MP-HAIMAM) operator. 

8. Numerical Example 

In the following, we are going to present an illustrative example where we will 
see the applicability of the new approach. We consider a decision making 
problem regarding the selection of strategies. Different types of OWAIMAM 
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operators such as the NIMAM, the WIMAM, the OWAIMAM, the AOWAIMAM 
and the olympic-OWAIMAM are used. The dual results are also considered. 

Assume an enterprise that operates in Europe and in North America is 
considering an expansion for the next year and they consider 5 strategies to 
follow. 

A1: Expand to Asian market. 
A2: Expand to the South American market. 
A3: Expand to the African market. 
A4: Expand to the Oceanian market. 
A5: Expand to the 4 continents. 
A6: Do not develop any expansion. 
In order to evaluate these strategies, the company has brought together a 

group of experts. They consider different characteristics about the strategies 
that can be summarized in the following ones: C1 = Risk of the strategy; C2 = 
Difficulty; C3 = Benefits in the short term; C4 = Benefits in the mid term; C5 = 
Benefits in the long term; C6 = Other characteristics.  

Table 3. Payoff matrix – Expert 1. 

 C1 C2 C3 C4 C5 C6 

A1 0.7 0.8 0.9 0.9 0.3 0.6 
A2 0.9 0.7 0.7 0.5 0.5 1 
A3 1 0.5 0.7 0.8 0.6 0.7 
A4 0.7 0.5 0.6 0.7 0.8 0.8 
A5 0.9 0.7 0.2 0.7 0.8 0.8 
A6 0.6 0.8 0.7 0.8 0.7 0.7 

Table 4. Payoff matrix – Expert 2. 

 C1 C2 C3 C4 C5 C6 

A1 0.6 0.7 0.8 0.9 0.7 0.6 
A2 0.8 0.6 0.7 0.6 0.5 1 
A3 0.9 0.7 0.6 0.8 0.6 0.7 
A4 0.6 0.5 0.6 0.7 0.8 0.9 
A5 0.6 0.7 0.5 0.8 0.8 0.7 
A6 0.7 0.8 0.7 0.9 0.5 0.7 

Table 5. Payoff matrix – Expert 3. 

 C1 C2 C3 C4 C5 C6 

A1 0.4 0.7 0.8 0.8 0.7 0.8 
A2 0.8 0.7 0.7 0.6 0.5 1 
A3 0.8 0.7 0.6 0.8 0.5 0.8 
A4 0.6 0.5 0.6 0.8 0.6 0.9 
A5 0.5 0.7 0.4 0.8 0.7 0.8 
A6 0.7 0.8 0.6 0.9 0.6 0.6 
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The group of experts of the company is constituted by three persons that 
give its own opinion regarding the results obtained with each strategy. The 
results are shown in Tables 3, 4 and 5. Note that the results are valuations 
(numbers) between 0 and 1. 

According to the objectives of the decision-maker, each expert establishes 
his own ideal strategy. The results are shown in Table 6. 

Table 6. Collective results. 

 C1 C2 C3 C4 C5 C6 

A1 0.28 0.07 0.07 0.11 0.38 0.26 
A2 0 0.13 0.2 0.4 0.46 0 
A3 0.03 0.16 0.27 0.17 0.4 0.2 
A4 0.2 0.3 0.3 0.23 0.24 0.07 
A5 0.18 0.1 0.53 0.2 0.2 0.17 
A6 0.16 0 0.24 0.1 0.36 0.28 

 
With this information, we can aggregate it in order to make a decision. 

First, the information of the three experts is aggregated in order to obtain a 
collective matrix represented in the form of individual similarities between the 
available alternatives and the ideal ones. We use the WA to obtain this 
matrix and assuming that V = (0.2, 0.4, 0.4). The results are shown in Table 
7. 

Table 7. Ideal strategy. 

 C1 C2 C3 C4 C5 C6 

E1 0.9 0.8 0.9 0.9 1 0.9 
E2 0.8 0.8 0.9 1 1 0.9 
E3 0.8 0.8 0.9 1 0.9 1 

 
The group of experts considers the following weighting vector for all the 

cases: W = (0.1, 0.1, 0.1, 0.2, 0.2, 0.3). In this example, we assume that the 
group of experts considers the three first characteristics with the Hamming 
distance and the other three with the adequacy coefficient. The usefulness of 
the IMAM is that we can use the Hamming distance or the adequacy 
coefficient depending on the particular interests of the decision maker in the 
analysis. 

With this information, we can aggregate the expected results in order to 
obtain a representative result for each alternative. First, we consider the 
NIMAM, the WIMAM, the OWAIMAM, the AOWAIMAM and the olympic-
OWAIMAM. Note that in the olympic-OWAIMAM, we consider w1 = w6 = 0, 

and for all others wj = 1/(n  2). Then, in this case, we have: w2 = w3 = w4 = 
w5 = 0.25. The results are shown in Table 8. 
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Table 8. Aggregated results 1. 

 NIMAM WIMAM OWAIMAM AOWAIMAM Olympic 

A1 0.195 0.218 0.149 0.247 0.18 
A2 0.198 0.205 0.132 0.271 0.1825 
A3 0.205 0.22 0.162 0.25 0.2 
A4 0.223 0.195 0.191 0.248 0.2425 
A5 0.23 0.212 0.193 0.284 0.1875 
A6 0.19 0.216 0.14 0.238 0.195 

 
Now, the results obtained by using the OWADIMAM operator are 

considered. Obviously, the results obtained are the dual of the previous ones. 
The results are shown in Table 9. 

Table 9. Aggregated results 2. 

 NDIMAM WDIMAM OWADIMAM AOWADIMAM Olympic 

A1 0.805 0.782 0.851 0.753 0.82 
A2 0.802 0.795 0.868 0.729 0.8175 
A3 0.795 0.78 0.838 0.75 0.8 
A4 0.777 0.805 0.809 0.752 0.7575 
A5 0.77 0.788 0.807 0.716 0.7125 
A6 0.81 0.784 0.86 0.762 0.805 

 
As we can see, depending on the aggregation operator used the results are 

different. A6 is optimal choice with the NIMAM and the AOWAIMAM operator, 
A1 with the olympic-OWAIMAM, A4 with the WIMAM and A2 with the 
OWAIMAM operator. Obviously, the same results are found with the dual 
indexes. 

Another interesting issue is to establish an ordering of the alternatives. 
Note that this is useful when we want to consider more than one alternative. 
The results are shown in Table 10.  

Table 10. Ordering of the strategies. 

 Ordering  Ordering 

NIMAM A6A1A2A3A4A5 NDIMAM A6A1A2A3A4A5 

WIMAM A4A2A5A6A1A3 WDIMAM A4A2A5A6A1A3 

OWAIMAM A2A6A1A3A4A5 OWADIMAM A2A6A1A3A4A5 

AOWAIMAM A6A1A4A3A2A5 AOWADIMAM A6A1A4A3A2A5 

Olympic A1A2A5A6A3A4 Olympic A1A2A5A6A3A4 

 
As we can see, depending on the aggregation operator used, the ordering 

of the strategies is different. Thus, these results may lead to different 
decisions. 
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9. Conclusions 

We have analyzed the use of the OWA operator in the index of maximum 
and minimum level. As a result, we have obtained a new aggregation 
operator: the OWAIMAM operator. This operator is very useful because it 
provides a parameterized family of aggregation operators in the IMAM 
operator that includes the maximum, the minimum and the average. The 
main advantage of the OWAIMAM is that we can manipulate the neutrality of 
the aggregation so the decision maker can be more or less optimistic 
according to his interests. We have studied some of its main properties.  

We have further extended the OWAIMAM operator by using the HA 
operator, obtaining the HAIMAM operator. We have seen that this operator is 
more general because it includes the weighted average and the OWA 
operator in the same formulation. 

We have also studied another extension by using the Choquet integral. We 
have called it the CIIMAMA operator. Moreover, we have presented a further 
generalization by using quasi-arithmetic means, the Quasi-CIIMAMA 
operator. 

We have applied the new approach in a multi-person decision-making 
problem about selection of strategies. We have seen that sometimes, 
depending on the particular type of OWAIMAM operator used, the results are 
different. Thus, the decisions of the decision maker may be also different. 
Moreover, we have developed the MP-OWAIMAM operator as a more 
general aggregation operator for the multi-person decision-making process. 

In future research, we expect to develop further extensions of the 
OWAIMAM operator by adding new characteristics in the problem such as 
the use of order inducing variables and applying it to other decision making 
problems such as product management and investment selection.  
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