
DOI: 10.2298/CSIS101019024Z

Extracting Minimal Unsatisfiable Subformulas in
Satisfiability Modulo Theories

Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

Dept. of Computer Science, National University of Defense Technology
410073 Changsha, China

{jmzhang,syshen,junzhang,wxxu,skli}@nudt.edu.cn

Abstract. Explaining the causes of infeasibility of formulas has practical
applications in various fields, such as formal verification and electronic
design automation. A minimal unsatisfiable subformula provides a suc-
cinct explanation of infeasibility and is valuable for applications. The prob-
lem of deriving minimal unsatisfiable cores from Boolean formulas has
been addressed rather frequently in recent years. However little attention
has been concentrated on extraction of unsatisfiable subformulas in Sat-
isfiability Modulo Theories(SMT). In this paper, we propose a depth-first-
search algorithm and a breadth-first-search algorithm to compute minimal
unsatisfiable cores in SMT, adopting different searching strategy. We re-
port and analyze experimental results obtaining from a very extensive test
on SMT-LIB benchmarks.

Keywords: Satisfiability Modulo Theories, minimal unsatisfiable subfor-
mula, depth-first-search, breadth-first-search.

1. Introduction

Formal verification has been based on efficient reasoning engines, such as
Binary Decision Diagrams(BDD), and more recently propositional satisfiabil-
ity(SAT) procedures, reasoning at Boolean level. Especially, during the last
decade of impressive advances in the efficiency of SAT solvers, SAT-based
method are now a fundamental technique in many industrial applications, in-
cluding many steps of design flows for VLSI chips, such as equivalence check-
ing, property verification, Auto Test Pattern Generation and static timing analy-
sis etc. However the source of hardware design and verification problems has
increasingly moved from Boolean level to higher levels: most designers work
at register transfer level or even higher levels. The formalism of plain propo-
sitional logic is often not suitable or expressive enough for representing many
real-world problems, including the verification of RTL or behavioral designs.
The high-level structural information is identified as a suitable representation
formalism for practical problems of many applications, and thus such problems
are more naturally expressible as satisfiability problems in first-order theories,
namely Satisfiability Modulo Theories (SMT).

Many real-life problems, arising in formal verification, electronic design, ar-
tificial intelligence and other areas, can be formulated as constraint satisfaction



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

problems, which can be translated into propositional or first-order formulas in
conjunctive normal form(CNF). Modern SAT or SMT solvers are able to deter-
mine whether a large formula is satisfiable or not. When a formula is unsatis-
fiable, we are generally interested in a minimal explanation of infeasibility that
excludes irrelevant information. Thus it is often required to find a minimal un-
satisfiable subformula, or called a minimal unsatisfiable core, that is, an unsat-
isfiable subset if it becomes satisfiable whenever any of its clauses is removed.
Localizing a minimal unsatisfiable subformula is necessary to determine the
underlying reasons for the failure, and is used in many practical applications,
including model checking on predicate abstraction[1], vacancy detection[2], er-
ror localization[3], and synthesizing circuits[4], etc.

In the past decade, there have been considerable research works in finding
Boolean unsatisfiable cores[5–29]. However propositional logic is often not ex-
pressive enough for representing many practical problems, which can be more
naturally addressed in the framework of SMT. The impressive advances of the
computational power of SMT solvers makes it possible to extract the unsatisfi-
able cores from the formulas in SMT. Consequently, the development of effec-
tive methods for computing unsatisfiable subformulas in SMT is highlighted as
an important goal for the research community. Although some SMT solvers sup-
port unsatisfiable subformulas generation, such as CVCLite[30], MathSAT[31]
and Yices[32]. A simple and flexible algorithm [33] is the first published works
on deriving unsatisfiable cores from formulas in SMT. However, as they said,
one limitation of all these approaches is that the resulting unsatisfiable core is
not guaranteed to be minimal.

In this paper, we tackle the problem of extracting minimal unsatisfiable cores
from practical problem instances in SMT, by the depth-first-search algorithm
(Depth-first-search Minimal Unsatisfiable Subformulas Extractor, DFS-MUSE)
and the breadth-first-search algorithm (Breadth-first-search Minimal Unsatisfi-
able Subformulas Extractor, BFS-MUSE). To the best of our knowledge, they
are the first works aiming at finding minimal unsatisfiable cores in SMT. Firstly,
we present the definitions of the searching graph, and the live node, the dead
node and the pending node in the searching graph. Next our algorithms con-
struct the subformulas of original instance as a searching graph, and then recur-
sively remove the clauses not included by the minimal unsatisfiable core from
the original formula, adopting depth-first-search or breadth-first-search strategy.
Simultaneously they change dynamically the order of variables in the subfor-
mula. Some pruning techniques are integrated into the algorithms to remove
those unnecessary satisfiability checks as soon as possible, such as conflict
clauses sharing and subformulas caching. To evaluate the efficiency of DFS-
MUSE and BFS-MUSE, we have performed many experimental tests, and com-
pared them on a large number of SMT-LIB problem instances coming from SMT
solver competition benchmarks of CAV 2009.

The binaries of DFS-MUSE and BFS-MUSE are available for downloaded
at http://www.ssypub.org/∼zjm/.

694 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

The paper is organized as follows. The next section surveys the related
work on computing unsatisfiable cores. Section 3 introduces the basic defini-
tions used throughout the paper. Section 4 gives the theoretical analysis for our
algorithms. Section 5 proposes DFS-MUSE adopting depth-first-search strat-
egy. Section 6 presents BFS-MUSE using breadth-first-search algorithm. Sec-
tion 7 shows and analyzes experimental results on the benchmarks used by
SMT solver competition of CAV 2009. Finally, Section 8 concludes the paper
and outlines future research work.

2. Related Work

There have been many different contributions to research on unsatisfiable sub-
formulas extraction in the last few years, owing to the increasing importance
in numerous practical applications. An algorithm[5, 6] for deriving small unsat-
isfiable cores are based on the ability of DPLL-based SAT solvers to produce
resolution refutations. In [7, 8], a method of adaptive core search guided by
clauses hardness is employed to extract small unsatisfiable subformulas, but in
[9] an exact minimal unsatisfiable core is obtained.

In [10], an algorithm of enumerating all possible subsets is suggested to
compute a minimum unsatisfiable core. Another approach is called AMUSE[11],
in which selector variables are added to each clause and the unsatisfiable core
is derived by a branch-and-bound algorithm on the updated formula. A different
algorithm that guarantees minimality is MUP[12], which is mainly a prover of
minimal unsatisfiability, as opposed to an unsatisfiable core extractor. Some
research works[13–18], based on a relationship between maximal satisfiability
and minimal unsatisfiability, have developed some sound techniques for finding
all minimal unsatisfiable cores or a minimum unsatisfiable core.

CoreTimmer[19, 20] iterates over each internal node that consumes a large
number of clauses and attempts to prove them without these clauses. A scal-
able algorithm[21], adopting a deeper exploration of resolution refutation, is pro-
posed for minimal unsatisfiable cores extraction. In [22–26], the authors present
the algorithms which tracks minimal unsatisfiable subformulas according to the
trace of a failed local search run for consistency checking.

A novel algorithm[27] to find minimal unsatisfiable cores is based on Brouwer’s
fixed point approximation theorem to satisfiability. In [28], the authors present a
new framework called constructive, which is based on a combination of a local
search procedure and an exhaustive DPLL-like algorithm. Two new resolution-
based algorithms are proposed in [29]. The algorithms is used to compute a
minimal unsatisfiable core or, if time-out encountered, a small non-minimal un-
satisfiable core. These algorithms can be applied to either standard clause-level
unsatisfiable subformulas extraction or high-level unsatisfiable subformulas ex-
traction, that is, an extraction of an unsatisfiable subformulas in term of propo-
sitional constraints supplied by user application.

However, existing works have very little concern in the literature regarding
extraction of unsatisfiable subformulas in SMT. In 2007, Cimatti et al[33] firstly

ComSIS Vol. 8, No. 3, June 2011 695



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

proposed an algorithm to compute the small unsatisfiable subformulas in SMT.
It combines a SMT solver and an external propositional core extractor: Firstly,
the SMT solver produces the theory lemmas found during the search; Secondly,
the propositional core extractor is called on the boolean abstraction of the orig-
inal SMT problem and of the theory lemmas, and then obtain a small unsatis-
fiable core of the original SMT formula. Just as the authors said, one limitation
of this algorithm is that the resulting unsatisfiable core in SMT is not guaran-
teed to be minimal, even if external propositional core extractor returns minimal
boolean unsatisfiable subformulas. Whereas up till now, there is no published
work devoted to the minimal unsatisfiable subformulas extraction from problem
instances in SMT.

3. Preliminaries

Satisfiability Modulo Theories arises in many industrial applications, especially
in formal verification and electronic design automation. SMT is defined as the
problem of determining the satisfiability of a quantifier-free first-order logic for-
mula with respect to one or more of decidable theories. In a number of practical
applications, SMT problem instances typically consist of logical combinations of
atoms from different theories, such as the theory of integer linear arithmetic, the
theory of arrays, the theory of equality with uninterpreted functions, set theory
and so on.

In recent years, a large number of researchers are actively exploring a vari-
ety of approaches for solving SMT problems. Most of these methods are clas-
sified as eager or lazy techniques. In eager techniques, the input formula is
translated using a satisfiability-preserving transformation into a propositional
formula which is then checked by a SAT solver for satisfiability. The lazy tech-
niques instead abstract each atom of the input formula by a distinct proposi-
tional variable, use a SAT solver to find a propositional model of the formula,
and then check that model against the theory solvers. In a word, the substantial
advances in algorithms and implementations of SMT solver for several years
have inspired the quest of efficient solutions for the problem of minimal unsatis-
fiable subformulas extraction.

Next some basic definitions and notations used throughout the paper are
given as follows:

Definition 1. (Unsatisfiable Subformula/Unsatisfiable Core). Given an un-
satisfiable formula φ, ψ is an unsatisfiable subformula(core) of φ iff ψ is an
unsatisfiable formula and ψ ⊆ φ.

Observe that an unsatisfiable core can be defined as any subset, which is
infeasible, of the original formula. Consequently, there may exist many differ-
ent unsatisfiable cores, with different number of clauses, for the same problem
instance, such that some of these cores are subsets of others.

Definition 2. (Minimal Unsatisfiable Subformula/Minimal Unsatisfiable Core).
Given an unsatisfiable formula φ, and ψ is an unsatisfiable subformula(core) of

696 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

φ. Then ψ is a minimal unsatisfiable subfromula(core) iff removing any clause
ω ∈ ψ from ψ implies that ψ−{ω} is satisfiable.

According to the definition, an unsatisfiable subformula is minimal if it be-
comes satisfiable whenever any of its clauses is removed, in other words, all of
its proper subsets are satisfiable. We should note that in many cases the size
of an unsatisfiable subformula may be much larger than the size of a minimal
unsatisfiable subformula, because the non-minimal unsatisfiable subformulas
probably contain many redundant clauses which cannot be found by simple
resolution rules.

4. Theoretical Analysis

We propose two algorithms to extract minimal unsatisfiable cores from the for-
mulas in SMT. The searching strategy of two algorithms are respectively depth-
first and breadth-fist. An efficient SMT decision procedure, which is based on
the DPLL(T ) decision scheme[34], is integrated into the algorithms of deriv-
ing unsatisfiable subformulas. Our algorithms thoroughly utilizes the information
generated by the SMT solving process. The algorithms construct the subformu-
las of original instance in SMT as a searching graph, and derive the minimal
unsatisfiable cores adopting different search ways. Firstly, the definition of the
searching graph of a formula in SMT is given as follows:

Definition 3. (Searching graph). Given an unsatisfiable formula φ in SMT, if a
directed acyclic graphG(V,E, s) satisfies the following conditions: (a) it contains
only one sink node, which is on behalf of φ; (b) ∀p ∈ V \ {s}, the node p
represents the formula ψ = ∧n

1Ci; If v is the k-th child node of p, the node v
denotes the formula ϕk = ∧n

1Ci \ Ck, where v ∈ V ,1≤k≤n; epv is an edge from
the parent node p to the child node v, where epv ∈ E. Then G(V,E, s) is called
a searching graph of φ.

Suppose φ is an unsatisfiable formula in SMT, G(V,E, s) is the searching
graph of φ. Furthermore, we can classify all of the nodes of G(V,E, s) into
three categories: the live nodes, the dead nodes and the pending nodes. The
following shows the definitions of the three types of nodes.

Definition 4. (live node). Given an unsatisfiable formula φ in SMT, andG(V,E, s)
is the searching graph of φ. Suppose v ∈ V , and ϕ denoted by v, where ϕ ⊆ φ.
Then v is a live node iff ϕ is unsatisfiable.

Definition 5. (dead node). Given an unsatisfiable formula φ in SMT, andG(V,E, s)
is the searching graph of φ. Suppose v ∈ V, and ϕ represented by v, where
ϕ ⊆ φ. Then v is a dead node iff ϕ is satisfiable.

Definition 6. (pending node). Given an unsatisfiable formula φ in SMT, and
G(V,E, s) is the searching graph of φ. Suppose v∈V. If the search process has
not reach the node v, v is called a pending node.

ComSIS Vol. 8, No. 3, June 2011 697



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

Next the definition of transition relation of the live nodes, the dead nodes
and the pending nodes is given as follows:

Definition 7. (the transition of nodes). Given an unsatisfiable formula φ in
SMT, and G(V,E, s) is the searching graph of φ. In G(V,E, s), the transitions
from pending nodes to dead nodes and live nodes are defined as: (a) pending
nodes → dead nodes: When a subformula corresponding to a pending node
is proved to be satisfiable, the pending node is changed to a dead node; (b)
pending nodes → live nodes: When a subformula denoted by a pending node
is unsatisfiable, the pending node is changed to a live node.

Fig. 1. An example of a searching graph including three types of nodes

Fig.1 shows the sketch of a searching graph including three types of nodes.
Suppose φ is an unsatisfiable formula in SMT, and then DFS-MUSE or BFS-
MUSE builds a searching graph G(V,E, s), in which the original formula φ is
represented by the sink node s, and each internal node corresponds to one of
the subformulas of φ. However, what is the relationship between the minimal
unsatisfiable cores of a formula and the nodes of the corresponding search-
ing graph? According to the above definitions, we may come to the following
conclusions.

Theorem 1. Given an unsatisfiable formula φ in SMT, and G(V,E, s) is the
searching graph of φ. Then the subgraph, in which the sink corresponds to
a dead node, cannot contain an unsatisfiable subformula.

698 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

Proof. Proof by contradiction. Given a dead node v ∈ V , and ψ is the sub-
formula corresponding to v, where ψ ⊆ φ. According to Definition 5, ψ is
satisfiable. We assume there exists an unsatisfiable subformula ϕ ⊆ ψ. Fur-
ther n clauses {ω1, · · ·, ωn} are joined into ϕ, and then we get η=ϕ ∪{ω1, · · ·,
ωn} , where {ω1, · · ·, ωn} ⊆ {ψ − ϕ}. Since η contains all clauses belonging
to ϕ, namely ϕ ⊆ η, the truth assignment to the literals in η will eventually
lead to a conflict. It indicates that η is unsatisfiable. Eventually, when {ω1, · · ·,
ωn}={ψ − ϕ}, η= ϕ∪{ψ − ϕ}=ψ is unsatisfiable. However, v is a dead node and
ψ is satisfiable. Therefore, it results in a contradiction, and the assumption is
false.

Theorem 2. Given an unsatisfiable formula φ in SMT, and G(V,E, s) is the
searching graph of φ. Then a subformula ϕ denoted by the live node v is a
minimal unsatisfiable core, iff all children of v are the dead nodes, where ϕ ⊆ φ
and v ∈ V .

Proof. Given a live node v ∈ V , and ψ is the subformula corresponding to v,
where ψ = ∧n

1Ci and ψ ⊆ φ. According to Definition 4, ψ is an unsatisfiable core
of φ. Firstly, suppose ϕ is a minimal unsatisfiable core of φ, and we try to prove
all children of v are the dead nodes. According to Definition 2, ϕi = ψ − {Ci} is
satisfiable, where ∀1 ≤ i ≤ n, Ci ∈ ψ. Moreover from Definition 3, the i-th child
node of v is represented by the subformula ϕi. Therefore, all children of v are the
dead nodes. Secondly, we assume all children of v are the dead nodes, and try
to prove ϕ denoted by the live node v is a minimal unsatisfiable core. According
to Definition 3 and 5, ∀1 ≤ k ≤ n, each ϕk = ∧n

1Ci−{Ck}, corresponding to the
k-th child node of v, is satisfiable. Eventually from Definition 2, ϕ is a minimal
unsatisfiable core of φ.

Suppose φ is an unsatisfiable formula in SMT, our algorithms construct a
searching graph G(V,E, s) for φ, where the original formula φ is represented by
the sink node, and each internal node corresponds to a subformula of φ. Ac-
cording to the above theorems, the algorithms recursively remove the clauses
not included by the minimal unsatisfiable core from the original formula φ, re-
spectively adopting depth-first-search or breadth-first-search strategy, until a
live node with all children being dead nodes is found. Simultaneously they
change dynamically the order of variables in the subformula. Some pruning
techniques are integrated into the algorithms to remove those unnecessary
satisfiability checks as soon as possible, such as conflict clauses sharing and
subformulas caching.

5. Depth-first-search Algorithm

The depth-first-search algorithm, also called DFS-MUSE to compute the min-
imal unsatisfiable subformulas introduces the searching graph as an organiz-
ing framework. Based on the theorems, DFS-MUSE firstly builds a searching
graph for the input formula in SMT. Then adopting the depth-first-search strat-
egy, the algorithm heuristically remove the clauses not included by the minimal

ComSIS Vol. 8, No. 3, June 2011 699



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

unsatisfiable core from the original formula. During the search, a SMT deci-
sion procedure using lazy techniques is called to determine the satisfiability of
subformulas. Simultaneously some techniques are employed to accelerate the
searching process that the dead nodes are cached and the conflict clauses are
shared among different subformuals. Moreover, the algorithm changes dynam-
ically the order of variables in the subformula. The depth-first-search algorithm
iterates over and over, and will not stop, until a living node with all children be-
ing dead nodes is found. Then the subformula denoted by this living node is a
minimal unsatisfiable core. Fig.2 provides the pseudo code of DFS-MUSE.

DFS MUSE(formula)
1 SmallUS = ComputeUS(formula)
2 if (SmallUS == formula) then
3 return formula
4 else
5 IsMinUS = VerifyMinimalUS(SmallUS)
6 if (IsMinUS) then
7 return SmallUS
8 else
9 MinimalUS = DFS MUSE(SmallUS)
10 return MinimalUS

ComputeUS(formula)
1 ite = EliminateITE(formula)
2 abs = AbstratExpression(ite)
3 for (arity = 0; arity < formula.size; arity++) do
4 interim = abs
5 for (count = formula.size; count > 0; count−−) do
6 SmallUS = GraphPruning(interim)
7 cnf = BooleanConversion(SmallUS)
8 IsSAT = SATSolve(cnf )
9 if (!IsSAT) then
10 return SmallUS
11 abs = DynamicVarOrder(abs)
12 return formula

Fig. 2. Pseudo code of the depth-first-search algorithm

The depth-first-search algorithm employs an incremental way: Firstly, it com-
putes an unsatisfiable subformula; Further, it derives the minimal unsatisfi-
able subformula. The function called ComputeUS returns an unsatisfiable core
of the input formula. After getting an unsatisfiable core, DFS-MUSE judges
and branches. If the returned unsatisfiable core is the input subformula named
formula, formula is the derived minimal unsatisfiable core. Otherwise, accord-
ing to the above conclusion, the function called V erifyMinimalUS is used to
determine whether the unsatisfiable core SmallUS is minimal or not. If SmallUS

700 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

is the derived minimal unsatisfiable core, DFS-MUSE will stop; or else the ap-
proach regards SmallUS as the new input formula, and recursively computes
the minimal unsatisfiable core in the depth-first-search way. When the order of
branches changes, the depth-first-search algorithm may obtain different mini-
mal unsatisfiable subformulas.

Fig.2 also shows the process of ComputeUS to extract an unsatisfiable core
from input formula in SMT. This function firstly builds a searching graph for
the input formula, and then finds a live node in the depth-first-search way. The
function called EliminateITE is to remove the ITE(If-Then-Else) terms from the
formulas. Next AbstratExpression replaces the literals in the formula by the ab-
stract variables. Then an unsatisfiable subformula is explored in the space of
the searching graph. The function named GraphPruning is used to prune the
redundant subformulas and clauses from the subgraph, by the way of sharing
the conflict clauses and caching dead nodes to avoid the unnecessary satisfi-
ability checks. BooleanConversion converts the formula to a Boolean formula,
and a SAT solver with DPLL procedure engages in determining satisfiability of
the Boolean formula. If unsatisfiable, we get an unsatisfiable subformula de-
noted by that live node. Otherwise the current node is dead and should be
abandon. The function called DynamicVarOrder changes the order of variables
in current subformula according to the frequency of false assignment. Finally,
if the iteration is finished, the function will return the input formula itself as the
derived unsatisfiable subformula. In Fig.2, EliminateITE, AbstratExpression and
BooleanConversion are the functions belonging to a SMT decision procedure
based on the DPLL(T ) techniques.

6. Breadth-first-search Algorithm

The principles of the breadth-first-search algorithm are similar to the depth-first-
search algorithm. BFS-MUSE firstly builds the searching graph for the original
formula, and then explores a live node, of which all children are dead nodes, in
the breadth-first way. The main difference between BFS-MUSE and DFS-MUSE
is the searching strategy. BFS-MUSE moves horizontally on the branches of
the graph. All of the same size of subformulas are firstly evaluated, and then
the smaller ones are considered. DFS-MUSE instead decides the satisfiability
of all subformulas with the size decreasing in the same subgraph at first, and
then moves to the neighborhood subgraph. The pseudo code of BFS-MUSE,
detailed in the later, is given in Fig.3.

The input of the breadth-first-search algorithm is a formula in SMT. The ap-
proach constructs a searching graphG(V,E, s) for the original formula, and tries
to find a live node with all children being dead nodes, adopting the breadth-first-
search strategy. Some functions of the breadth-first-search algorithm, such as
EliminateITE and AbstratExpression, are almost as same as the depth-first-
search algorithm. The recursive function called ComputeMinUS is employed
to extract a minimal unsatisfiable core from the input formula in SMT. There
are some differences on the GraphPruning function between BFS-MUSE and

ComSIS Vol. 8, No. 3, June 2011 701



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

BFS MUSE(formula)
1 ite = EliminateITE(formula)
2 abs = AbstratExpression(ite)
3 MinimalUS = ComputeMinUS(abs)
4 return MinimalUS

ComputeMinUS(formula)
1 IsMinUS = true
2 for (arity = 0; arity < formula.size; arity++) do
3 interim = GraphPruning(formula, arity)
4 cnf = BooleanConversion(iterim)
6 IsSAT = SATSolve(cnf )
5 if (!IsSAT) then
7 IsMinUS = false
8 break
9 if (IsMinUS) then
10 return formula
11 else
12 reordered = DynamicVarOrder(interim)
13 MinUS = ComputeMinUS(reordered)
14 return MinUS

Fig. 3. Pseudo code of the breadth-first-search algorithm

DFS-MUSE. In Fig.3, a parameter named arity is added into the GraphPruning
function, and indicates the clause from which the function begins to prune the
searching graph.

Then the ComputeMinUS function converts the pruned subgraph to Boolean
formulas, and calls a SAT solver to check its satisfiability. If the formula is unsat-
isfiable, a child of current live node is also a live node, that is to say, a smaller
unsatisfiable core is detected. Therefore, the subformula denoted by the cur-
rent live node is not a minimal unsatisfiable core. Then the function makes the
smaller live node as the new input, and recursively searches a minimal unsat-
isfiable subformula. The function will not halt until a live node with all children
being dead nodes is found. That live node is the derived minimal unsatisfiable
core. Similar to the depth-first-search algorithm, the breadth-first-search algo-
rithm also can derive different minimal unsatisfiable subformulas while changing
the order of branching.

7. Experimental Results and Analysis

To experimentally evaluate the effectiveness of our algorithms, we have se-
lected a large number of problem instances from the well-known benchmark
family[35], which is used in SMT solvers competition affiliated with CAV confer-
ence. We compare the depth-first-search algorithm with the breadth-first-search
algorithm on these benchmarks. The inputs of two algorithms are the formulas

702 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

in SMT-LIB format. The experiments were conducted on a 2.5 GHz Athlon*2
machine having 2 GB memory and running the Linux operating system.

The depth-first-search algorithm and the breadth-first-search algorithm to
find minimal unsatisfiable subformulas are implemented in C++. Some func-
tions of an open-source SMT solver called ArgoLib[36] are integrated in our
algorithms. The Argolib currently can solve satisfiability of the formulas, which
consist of logic combination of atoms from some theories such as the theory of
integer and real linear arithmetic(LIA/LRA), the theory of integer and real differ-
ential logic(IDL/RDL). The runtime is in seconds, and the value of timeout was
set to 1800 seconds.

The experimental results1 of the depth-first-search algorithm and the breadth-
first-search algorithm on 15 typical formulas are listed in Table 1. Table 1 shows
the number of variables (vars) and the number of clauses (clas) for each prob-
lem instance. Table 1 also provides the runtime in seconds (DFS-MUSE time)
of DFS-MUSE and the number of clauses (DFS-MUSE size) in the derived min-
imal unsatisfiable subformula. The last two columns present the runtime in sec-
onds (BFS-MUSE time) and the size of the minimal unsatisfiable subformula(BFS-
MUSE size) extracted by BFS-MUSE.

Table 1. Performance results on 15 typical problem instances

Problem vars clas DFS-MUSE BFS-MUSE
Instances time size time size

bad echos ascend.base 58 259 5.18 11 5.03 11
sc init frame gap.base 58 265 5.11 13 5.14 13

good frame update.induction 89 439 29.00 161 28.74 161
good frame update.base 89 467 72.81 311 67.75 311

windowreal-safe2-2 37 404 0.73 188 0.68 188
windowreal-safe-2 37 404 0.75 195 0.68 195

lpsat-goal-1 83 1345 1.67 17 1.69 17
lpsat-goal-2 142 2650 12.30 1283 17.16 1283
lpsat-goal-3 201 3955 43.47 2548 68.55 2548

windowreal-no t deadlock-15 219 2933 176.96 1351 179.53 1351
windowreal-no t deadlock-16 233 3128 208.13 1441 236.58 1441
windowreal-no t deadlock-17 247 3323 293.38 1531 303.32 1531
windowreal-no t deadlock-18 261 3519 347.24 1622 391.02 1622
windowreal-no t deadlock-19 275 3714 463.78 1712 497.97 1712
windowreal-no t deadlock-20 289 3909 547.44 1802 633.77 1802

Fig.4 shows the experimental results of DFS-MUSE as compared with BFS-
MUSE on inf-bakery-mutex benchmarks, coming from SMT solver competition

1 More detailed performance results of two algorithms are available for downloaded at
http://www.ssypub.org/∼zjm/

ComSIS Vol. 8, No. 3, June 2011 703



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

benchmarks. The size of 20 problem instances of inf-bakery-mutex benchmarks
ranges from 65 to 1053 clauses.

0 200 400 600 800 1000 1200

0.01

0.1

1

10

100

1000
ru

n
ti

m
e

number of clauses

DFS-MUSE

BFS-MUSE

Fig. 4. Experimental results on inf-bakery-mutex benchmarks

Fig.5 shows the experimental results of the depth-first-search algorithm as
compared with the breadth-first-search algorithm on windowreal-no t deadlock
benchmarks, coming from SMT solver competition benchmarks. The size of 20
instances of windowreal-no t deadlock benchmarks ranges from 203 to 3908
clauses.

Fig.6 shows the experimental results of DFS-MUSE as compared with BFS-
MUSE on pursuit-safety benchmarks, which comes from SMT solver competi-
tion benchmarks. The size of 16 instances of pursuit-safety benchmarks ranges
from 113 to 1763 clauses.

Fig.7 shows the experimental results of the depth-first-search algorithm as
compared with the breadth-first-search algorithm on gasburner-prop3 bench-
marks, coming from SMT solver competition benchmarks. The size of 20 in-
stances of gasburner-prop3 benchmarks ranges from 28 to 522 clauses.

From Fig.4 to Fig.7, there is a data point for a result of each formula com-
puted by the depth-first-search algorithm and the breadth-first-search algorithm
labelled with different icons, with the position along the vertical axis indicating
the runtime in seconds of the algorithms, and the horizontal position indicating
the number of clauses contained by every instance. Note that vertical axis has
a logarithmic scale. The results of DFS-MUSE are denoted by box icon, and
the results of BFS-MUSE are instead denoted by dot icon. The two curves re-

704 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

0 500 1000 1500 2000 2500 3000 3500 4000

0.01

0.1

1

10

100

1000

r
u

n
ti

m
e

number of clauses

DFS-MUSE

BFS-MUSE

Fig. 5. Experimental results on windowreal-no t deadlock benchmarks

0 200 400 600 800 1000 1200 1400 1600 1800

0.01

0.1

1

10

100

1000

ru
n

ti
m

e

number of clauses

DFS-MUSE

BFS-MUSE

Fig. 6. Experimental results on pursuit-safety benchmarks

ComSIS Vol. 8, No. 3, June 2011 705



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

0 100 200 300 400 500 600

0.01

0.1

1

10

100

1000

r
u
n

ti
m

e

number of clauses

DFS-MUSE

BFS-MUSE

Fig. 7. Experimental results on gasburner-prop3 benchmarks

spectively are represented as the trends of runtime of two algorithms, with the
increment of number of clauses included by the benchmarks.

Fig.8 gives the performance results of the depth-first-search algorithm and
the breadth-first-search algorithm on more than 200 problem instances of SMT
solver competition benchmarks. This figure is a log-log scatter plot that charts
the runtime of DFS-MUSE along on the x-axis against the runtime of BFS-
MUSE on the y-axis. In other words, each dot in this figure is denoted by the
ratio of runtime of the depth-first-search algorithm and the breadth-first-search
algorithm. The time unit of two axes is second, and the limit time of both tools
was 1800 seconds.

From Table 1, we may observe the following. For all problem instances, the
percentage of clauses in the minimal unsatisfiable subformulas is quite small, in
most cases from 1% to 50%. Therefore, the minimal unsatisfiable subformulas
can generally provide more succinct explanations of infeasibility, and is more
valuable for a variety of practical applications.

From Table 1, we also can directly observe that the runtime of the depth-
first-search algorithm and the breadth-first-search algorithm has only a little dif-
ference. From Fig.4 to Fig.7, we may come to the same conclusion, because
two curves respectively corresponding to different approaches are close. Fur-
thermore, the scatter dots are distributed closely around the diagonal in Fig.8.
Then we may conclude that DFS-MUSE and BFS-MUSE effectively extract the
minimal unsatisfiable cores from the formulas in SMT, and the performance of
two approaches is at the same order of magnitude.

In Fig.4, Fig.5 and Fig.6, the breadth-first-search algorithm is generally out-
performs the depth-first-search algorithm, when the number of clauses con-

706 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

0.01 0.1 1 10 100 1000

0.01

0.1

1

10

100

1000

B
F

S
-
M

U
S

E

DFS-MUSE

Fig. 8. Performance results on more than 200 instances

tained by original formula is small. However, with the size of formulas increas-
ing, DFS-MUSE is more efficient, and the gap between DFS-MUSE and BFS-
MUSE is enlarging. Moreover, in Fig.7, BFS-MUSE always outperforms DFS-
MUSE since the size of all problem instances is comparatively small. In Fig.8,
more and more scatter dots lie above the diagonal with the runtime increas-
ing. Then we can reach a conclusion: When the size of the original formulas
is small, BFS-MUSE is faster in most cases; But while the clauses in the for-
mulas become more and more, DFS-MUSE is instead more efficient. The main
causes are that BFS-MUSE is more simple for implementation and performs
more moves per second, especially for those formulas with less clauses. On
the other hand, after finding an unsatisfiable subformula, DFS-MUSE will con-
tinue to search the smaller ones along this subgraph, until reaching a minimal
unsatisfiable subformula. This searching way of DFS-MUSE determines that it
is more and more efficient while the problem instances containing more and
more clauses.

8. Conclusion

We introduce the notation of a searching graph for a SMT formula, and three
types of nodes in a searching graph: the live node, the dead node and the pend-
ing node. Using the searching graph as an organizing framework, we present

ComSIS Vol. 8, No. 3, June 2011 707



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

two algorithms called DFS-MUSE and BFS-MSUE to extract the minimal unsat-
isfiable cores from the formulas in SMT, respectively adopting depth-first-search
and breadth-first-search strategy. DFS-MUSE and BFS-MUSE try to recursively
remove the redundant clauses from the searching graph and derive a live node
with all children being dead nodes. Some pruning techniques are integrated into
the approaches, such as conflict clauses sharing and dead nodes caching.

A very extensive tests on SMT-LIB benchmarks are executed to evaluate
the effectiveness and performance of DFS-MUSE and BFS-MUSE. The results
show that the breadth-first-search algorithm generally outperforms the depth-
first-search algorithm on smaller instances, and the depth-first-search algorithm
is more efficient than the breadth-first-search algorithm while the formulas con-
tain more and more clauses. The future works is to explore more aggressive
techniques to prune the unnecessary satisfiability checks.

Acknowledgments. The authors would like to thank Filip Maric for his good sugges-
tions and kind helps about using ArgoLib. The authors also thank all peer reviewers for
their valuable comments and suggestions.This work is supported by the National Natural
Science Foundation of China under grant No. 60603088.

References

1. Jain H, Kroening D.: Word level predicate abstraction and refinement for verifying
RTL Verilog. In: Proceedings of the 42nd Design Automation Conference (DAC’05),
pp. 445–450 (2005)

2. Simmonds J, et al.: Exploiting resolution proofs to speed up LTL vacuity detection
for BMC. In: Proceedings of the 7th International Conference on Formal Methods in
Computer Aided Design (FMCAD’07), pp. 3–12 (2007)

3. Stuckey PJ, Sulzmann M, Wazny J.: Improving Type Error Diagnosis. In: Proceed-
ings of the 2004 ACM SIGPLAN workshop on Haskell, pp. 80–91 (2004)

4. Shen, S.Y., Qin, Y., Wang K.F., Xiao L.Q., Zhang J.M., Li, S.K.: Synthesizing com-
plementary circuits automatically. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2010, 29(8): 1191–1202.

5. Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean
formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919,
Springer, Heidelberg (2004)

6. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: practical implementations and other applications. In: Proceedings of 2003
Design, Automation and Test in Europe Conference (DATE2003), pp. 10880–10885
(2003)

7. Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by
finding small unsatisfiable subformulae. Electronic Notes in Discrete Mathematics,
2001, 9: 162–173.

8. Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive
core search. Discrete Applied Mathematics, 2003, 130(2): 85–100.

9. Bruni, R.: On exact selection of minimally unsatisfiable subformulae. Annals for
Mathematics and Artificial Intelligence, 2005, 43: 35–50.

10. Lynce, I., Marques-Silva, J.P.: On computing minimum unsatisfiable cores. In: Hoos,
H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 305–310. Springer, Hei-
delberg (2005)

708 ComSIS Vol. 8, No. 3, June 2011



Extracting Minimal Unsatisfiable Subformulas in Satisfiability Modulo Theories

11. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: a
minimally-unsatisfiable subformula extractor. In: Proceedings of the 41st Design Au-
tomation Conference (DAC’04), pp. 518–523 (2004)

12. Huang, J.: MUP: A minimal unsatisfiability prover. In: Proceedings of the 10th
Asia and South Pacific Design Automation Conference (ASPDAC’05), pp. 432–437
(2005)

13. Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In:
Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer,
Heidelberg (2005)

14. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL 2005.
LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

15. Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.P., Sakallah, K.A.: A
branch and bound algorithm for extracting smallest minimal unsatisfiable formulas.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 393–399. Springer,
Heidelberg (2005)

16. Zhang, J.M., Li, S.K., Shen, S.Y.: Extracting minimum unsatisfiable cores with a
greedy genetic algorithm. In:Sattar, A., Kang, B.H. (eds.) AI 2006. LNCS, vol. 4304,
pp. 847–856. Springer, Heidelberg (2006)

17. Liffiton, M.H., Sakallah, K.A.: Algorithms for Computing Minimal Unsatisfiable Sub-
sets of Constraints. Journal of Automated Reasoning. 2008, 40(1): 1–30.

18. Liffiton, M.H., Mneimneh, M.N., Lynce, I., Andraus, Z.S., Marques-Silva, J.P.,
Sakallah, K.A.: A branch and bound algorithm for extracting smallest minimal un-
satisfiable formulas. Constraints, 2009, 14(4) 415–442.

19. Gershman, R., Koifman, M., Strichman, O.: Deriving small unsatisfiable cores with
dominator. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 109–122.
Springer, Heidelberg (2006)

20. Gershman, R., Koifman, M., Strichman, O.: An approach for extracting a small un-
satisfiable core. Formal Methods in System Design, 2008, 33(1): 1–27.

21. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable
core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
36–41. Springer, Heidelberg (2006)

22. Gregoire, E., Mazuer, B., Piette, C.: Tracking MUSes and strict inconsistent covers.
In: Proceedings of the the Sixth Conference on Formal Methods in Computer-Aided
Design (FMCAD’06), pp. 39–46 (2006)

23. Gregoire, E., Mazuer, B., Piette, C.: Extracting MUSes. In: Proceedings of the 17th
European Conference on Artificial Intelligence (EAI’06), pp. 387–391 (2006)

24. Gregoire, E., Mazuer, B., Piette, C.: Local-search extraction of MUSes. Constraints,
2007, 12(3): 325–344.

25. Gregoire, E., Mazuer, B., Piette, C.: Boosting a complete technique to find MSS and
MUS thanks to a local search oracle. In: Proceedings of the 20th International Joint
Conference on Artificial Intelligence(IJCAI’07), pp. 2300–2305 (2007)

26. Gregoire, E., Mazuer, B., Piette, C.: Using local search to find MSSes and MUSes.
European Journal of Operational Research, 2009, 199(3): 640–646.

27. Maaren H, Wieringa S.: Finding guaranteed MUSes fast. In: Buning HK, Zhao X,
(eds.) SAT 2008. LNCS, vol. 4996, pp. 291–304. Springer, Heidelberg (2008)

28. Pitte, C., Hamadi, Y., Sais, L.: Efficient combination of decision procedures for MUS
computation. In: Ghilardi, S., Sebastiani, R. (eds.) FroCos 2009, LNCS, Vol. 5749,
pp. 335–349. Springer, Heidelberg (2009)

ComSIS Vol. 8, No. 3, June 2011 709



Jianmin Zhang, Shengyu Shen, Jun Zhang, Weixia Xu, and Sikun Li

29. Nadel, A.: Boosting minimal unsatisfiable core extraction. In: Proceedings of the
10th International Conference on Formal Methods in Computer Aided Design (FM-
CAD’10), pp. 221–229 (2010)

30. Barrett, C., Berezin, S.: CVC Lite: A New Implementation of the Cooperating Validity
Checker. In: Alur, R., Peled, D.A. (eds.) CAV 2004, LNCS, Vol. 3114, pp. 515–518.
Springer, Heidelberg (2004)

31. Bozzano M., Bruttomesso R., Cimatti A., Junttila T., van Rossum P., Schulz S., and
Sebastiani R.: An incremental and Layered Procedure for the Satisfiability of Linear
Arithmetic Logic. In: Halbwachs, N., Zuck, L. (eds.) TACAS 2005, LNCS, Vol. 3440,
pp. 317–333. Springer, Heidelberg (2005)

32. Dutertre B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T ). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006)

33. Cimatti A, Griggio A, Sebastiani R. A simple and flexible way of computing small
unsatisfiable cores in SAT modulo theories. In: Marques-Silva J, Sakallah K, (eds.)
SAT 2007. LNCS, vol. 4501, pp. 334–339. Springer, Heidelberg (2007)

34. Nieuwenhuis R, Oliveras A, Tinelli C. Solving SAT and SAT modulo theories: from
an abstract Davis-Putnam-Logemann -Loveland procedure to DPLL(T ). Journal of
the ACM, 2006, 53(6): 937–977.

35. Barret C, Deters M, Oliveras A, et al.: http://www.smtcomp.org/2009/bench-
marks.shtml, accessed in 2010.

36. Maric F, Janicic P.: Argo-lib: a generic platform for decision procedures. In: Basin,
D., Rusinowitch, M. (eds.) IJCAR 2004, LNCS, vol. 3097, pp. 231–217. Springer,
Heidelberg (2004)

Jianmin Zhang was born in China in 1979. He is a lecturer in computer sci-
ence at National University of Defense Technology. He received Ph. D. degree
in computer science from National University of Defense Technology, Chang-
sha, China, in 2008. His major fields of study include constraint satisfaction and
formal verification of hardware.

Shengyu Shen was born in China in 1975. He is a associate professor in com-
puter science at National University of Defense Technology. He received Ph. D.
degree in computer science from National University of Defense Technology,
Changsha, China, in 2005. His major fields of study include formal verification
of hardware.

Jun Zhang was born in China in 1975. He is Ph. D. candidate in computer
science, at National University of Defense Technology, Changsha, China, from
2007. His major fields of study include formal verification of VLSI chips.

Weixia Xu was born in China in 1963. He is a professor in computer science
at National University of Defense Technology. His major fields of study include
computer architecture and VLSI verification.

Sikun Li was born in China in 1941. He is a professor in computer science
at National University of Defense Technology. His major fields of study include
VLSI designing and verification.

Received: October 19, 2010; Accepted: March 12, 2011

710 ComSIS Vol. 8, No. 3, June 2011


