
DOI: 10.2298/CSIS110907042S

Context-sensitive Access Control Model for
Business Processes

Goran Sladić, Branko Milosavljević, and Zora Konjović

Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6
21000 Novi Sad, Serbia

{sladicg, mbranko, ftn zora}@uns.ac.rs

Abstract. This paper focuses on problems of access control for business
processes. The subject of the paper is a specification of the Context-
sensitive access control model for business processes (COBAC). In order
to efficiently define and enforce access control for different business pro-
cesses, the COBAC model is based on the RBAC (Role-based Access
Control) model which is extended with the following entities: context, busi-
ness process, activity and resource category. By using a context-sensitive
access control it is possible to define more complex access control poli-
cies whose implementation by existing access control models for business
processes is not possible or is very complicated. The COBAC’s context
model can describe rich context information and can be easily extended
for specific cases. The introduction of business process and activity en-
tities has facilitated the definition of access control policies for business
processes. The categorization of resources enables the definition of ac-
cess control policies for whole resource categories, and thus, potentially,
reduces the number of policies which need to be defined. The COBAC
model is applicable in different business information systems, and sup-
ports the definition of access control policies for both simple and complex
business processes. The model is verified by a case study on a real busi-
ness process.

Keywords: access control, RBAC, context-sensitive, workflow, business
process.

1. Introduction

Davenport and Short [14] define a business process as a set of logically related
tasks performed to achieve a defined business outcome. The Workflow Refer-
ence Model [26] extends the above definition by introducing the concept of a
role, stating that a business process is a set of one or more linked procedures
or activities that collectively realize a business objective or policy goal, normally
within the context of an organizational structure which defines functional roles
and relationships.

Workflow Management Coalition defines a workflow as a computerized fa-
cilitation or automation of a business process, in whole or in part [26]. In com-
puter science literature, business process and workflow terms are often used

Goran Sladić, Branko Milosavljević and Zora Konjović

interchangeably; in this paper we will use them as synonyms. Workflow man-
agement system (WfMS) is a system that completely defines, manages and
executes workflows through the execution of software whose order of execu-
tion is driven by a computer representation of the workflow logic [26]. Workflow
management systems (WfMS) are widely used in enterprises to automate and
facilitate their business processes. Because of the advantages of the workflow
technology, many companies build their business on a WfMS platform. At the
same time, the security is becoming more conspicuous. Secure workflows re-
quire that only authorized users should be able to perform specific tasks. The
set of authorized users is usually defined by the security policy of the workflow.

In the Role-based Access Control (RBAC) model, access to resources of a
system is based on the role of a user in the system [17]. The basic RBAC model
comprises the following entities: users, roles, permissions and sessions, where
permissions are composed of operations applied to objects. In RBAC, permis-
sions are associated to roles, and users are made members of roles [17]. A
user’s interaction with the system is modeled by a session, where a user acti-
vates a subset of the roles to which she/he is assigned. This greatly simplifies
management of access rights, so the RBAC model has generated great interest
in the security community. It is customary to use the role hierarchy to aggregate
permissions, i.e. a role is assumed to inherit the permissions assigned to its
parent roles in the hierarchy. In addition, the role hierarchy also determines the
roles that are available to a user, i.e. a user assigned to a particular role can
also activate any subordinate roles in the hierarchy.

The RBAC model has been widely applied to both commercial and research
workflow systems. In order to meet workflow access control requirements, the
RBAC model is extended with some workflow specific entities. Usually, a spe-
cific role is assigned to each task in a workflow. Thus, users can perform tasks
based on the privileges possessed by their own role or roles they inherit. How-
ever, there are still many problems in describing complex workflow access con-
trol authorization and constraints. One of the major problems is how to express
business character and phase authorization constraints in carrying out the task
between the roles and users. Traditional access control models, such as RBAC
are passive access control. They do not take into account contextual informa-
tion, such as processed data, location or time for making access decisions.
Consequently, these models are inadequate for specifying the access control
needs of many complex real-world workflows. As context data get involved, the
access decision no longer depends on user credentials only, it also depends on
the state of the system’s environment and the system itself. For example, a doc-
tor, during some task, can access to a patient record only if she/he treats the
patient; a judge can change a judgment only if she/he is involved in the given
trial proceedings and the trial proceedings is not finished. A possible solution
for such and similar cases is to extend the RBAC model to met the required
access control requirements. The extensions can be specific to cover just cer-
tain requirements, or they can be general to satisfy a wider range of access
control requirements. In the first case, extensions include only some contextual

940 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

information, while in the second case, extensions include wider range of context
information in the access control decision.

The following features of a workflow access model should be included, in
addition to standard ones, to successfully address different access control re-
quirements:

– it should support access control at a task level,
– a user can have different privileges for different workflow instances,
– during a time/workflow execution, a role can have different permissions,
– during a time/workflow execution, different roles can be assigned or unas-

signed to a user, and
– assignment of roles to user and/or assignment of permissions to roles may

depend on a context state (context information).

In this paper we propose the Context-sensitive access control model for
business processes (COBAC) that includes listed features. This model is based
on the RBAC model which is extended with the following entities: business pro-
cess, activity, context, and resource category. Our model is based on RBAC
because it simplifies role management and is the de facto access control model
for commercial organizations. By using entities business process and activities
in the model it is possible to efficiently define and enforce access control for
different business processes (workflows). Since it is possible that access con-
trol can be affected by different factors from the environment and the system,
the COBAC model explicitly introduces the notion of context. Categorization of
the resources enables the definition of access control policies for the whole
resource category, and thus, potentially, reduces the number of policies which
need to be defined.

The COBAC model is organized into two components: the Core component
defines core aspects of the model, and the Constraint component introduces
different constraints including static and dynamic separation of duties. In this
paper we present the Core component of the COBAC model.

The proof of concept for the proposed system is carried out through the
implementation of a representative real-world case study – Employment pro-
cedure for the Professor position at Faculty of Technical Sciences, University
of Novi Sad. While analyzing this business process we have identified some
of the security requirements that cannot be implemented using the standard
RBAC model since implementation of those requirements depends on the enti-
ties that are not part of RBAC. We have shown that it is possible to implement
those requirements using the COBAC model.

The rest of the paper is structured as follows. Section 2 reviews the related
work. Section 3 presents an overview of the Core component of the model. The
access control enforcement is presented in Section 4. A case study is presented
in Section 5. Section 6 concludes the paper and outlines further research direc-
tions.

ComSIS Vol. 10, No. 3, June 2013 941

Goran Sladić, Branko Milosavljević and Zora Konjović

2. Related Work

In this section two groups of research are presented. The topic of the first group
is research on RBAC-based access control models adopted for use in workflow
systems. The second group reviews latest results on context-sensitive access
control.

Many models for workflow access control are based on the RBAC model
extended with the entity representing the workflow task.

Russello et al. [38] present Workflow-Based Access Control (WBAC), an ac-
cess control mechanism that adapts the access rights of subjects to the actual
tasks that they have to fulfill. The requirements of entities’ duties are expressed
by means of workflows. WBAC ensures that entities can access the resources
associated to a workflow task but only while such a task is active. The pa-
per [54] introduces the TRBAC (Task-Role-Based Access Control) model which
is based on RBAC and TBAC (Task-Based Access Control) [46] models. The
TRBAC model is constructed by adding “Task” to the RBAC model. It’s cen-
tral idea is that the user has a relationship with a permission through a role
and a task. Permissions are assigned to tasks and tasks are assigned to roles.
This model supports the task classification. The task can be classified accord-
ing to the organization structure and characteristics of access control in enter-
prise environment. They can be divided into two groups according to whether
they belong to the workflow. Also, permissions can be divided into two groups:
permissions on workflow tasks and permissions on workflow task instances.
A similar model is presented by Oh and Park [35]. Their model is based on
the classification of job functions. Three different types of tasks are identified:
workflow tasks used for workflow oriented job functions, non workflow tasks
used for non workflow oriented functions, and supervision tasks used for su-
pervision job functions. Identically as the previous model, permissions are as-
signed to users through roles and tasks. Yao et al. [53] are also using tasks
to associate roles and permissions. The unit of task defines the permission
granularity. The authors propose constraints on user, role, task and session
so that an access control configuration will not result in the leakage of a right
to an unauthorized principal. A RBAC based workflow access control model
in which tasks and permissions are assigned to the roles is presented in [8].
In the paper [45] the notion of an activity represents the basic extension of
RBAC in order to provide efficient workflow access control. The activity is de-
fined as a 5-tuple (p set, r set, ant set, cur sta, a type) where p set is the set of
permissions which could be performed in the activity, r set is the set of roles
permitted to perform this activity, ant set is the set of its direct ancestor activi-
ties that satisfy sequential relation in any workflow. cur sta is the current state
of activity, and a type is the type of activity. To decouple the workflow access
control model from the workflow model, the authors in [52] propose the Service-
Oriented Workflow Access Control (SOWAC) model. In the SOWAC model, a
service is the abstraction of a task and the unit for applying access control.
Rather than associating roles to tasks directly, SOWAC binds them through a
service as an interface.

942 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

Although the previously described access control models are extended for
the use in workflow systems, they are not able to efficiently address all access
control requirements that often occur in workflow systems, including those de-
fined in Section 1. Therefore, the following researches, beside the notion of the
task introduce some other concepts in their access control models to address
some specific access control requirements.

A RBAC-based authorization workflow model which has a level request is
proposed in [55]. The concept of the privilege in this model has the attributes
of the time domain and the security level. It means that only in a certain period
of time, a user with the security level greater than or equal to the security level
of the privilege can implement some kind of operation. The proposed model
could be used in the field that has the higher security requirements like mil-
itary. Wainer et al. [50] propose a workflow access control model based on
RBAC model extended with case and organization unit entities and appropri-
ate relations. The entity case is added to be able to refer to an instance of a
process. Within organizations, and thus in workflow applications, the concept of
a hierarchy of people/organizations is prevalent. While workflow systems as a
rule include some form of organizational modeling capabilities, RBAC by itself
does not have such a hierarchy modeled. Therefore, the RBAC model is ex-
tended with the organization unit entity. The importance of using an organiza-
tion structure in workflow access control models is also noticed in [51]. Shafiq
et al. [40] propose an architecture for the adaptive real-time workflow-based
collaborative system. The authors indicate that a key security requirement for
a real-time workflow system is to provide the right data to the right person at
the right time. They use the Generalized Temporal Role-Based Access Control
(GTRBAC) model [31] to capture the real-time dependencies of such workflow
applications. Importance of the time factor in workflow access control models
is also noticed in [21] [27] [56]. Leitner et al. [32] propose an extended RBAC
model for adaptive workflow systems (AW-RBAC). This model enables workflow
systems to enforce access control under all different kinds of workflow changes.
Specifically, the AW-RBAC model enables the definition of permissions in order
to perform authorized control and data flow changes, administrative modifica-
tions and adaptations at the service level of a workflow system. In addition,
access rights based on AW-RBAC can be specified in fine granularities based
on the definition of constraints. Another research on access control for flexible
workflows has been presented in [28]. It analyses how to realize the dynamic
authorization relations of users, roles and permissions.

Another research direction is focused on covering wider range of access
control requirements (usually by extending the RBAC model with the notion of
context). Various definitions of the context have been proposed in literature [1]
[15] [19] [39] [47]. Broadly, the notion of context relates to the characterization
of environment conditions that are relevant for performing appropriate actions in
the computing domain. Probably the most widely accepted definition has been
given in [1] [15]:

ComSIS Vol. 10, No. 3, June 2013 943

Goran Sladić, Branko Milosavljević and Zora Konjović

“Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves”.

In order to enable the fine grained access control many context-sensitive ac-
cess control models have been proposed. The paper [25] describes a context-
sensitive access control model which consists of a context model, a context-
sensitive policy model and a context-sensitive request model. In the paper [3],
the Conditional Role Based Access Control (C-RBAC) model is presented. This
model relies on RBAC model and extends the notion of role by incorporating
attributes, and bases on the notion of system context. Covington et al. [12]
introduce the notion of environmental role, and provide a uniform access con-
trol framework that can be used to secure context-sensitive applications. Geor-
giadis et al. [22] discuss the integration of contextual information with team-
based and role-based access control. Filho and Martin [18] showed the use
of context information and its quality indicators to grant access permissions to
resources. The article [34] presents a context-dependant authorization model
for collaborative access control. The context model is based on the context
parameter which represents a certain property of the environment, capable of
influencing or controlling when and how a collaborative authorization policy is
enforced. The context condition is a Boolean expression that compares the cur-
rent value of a context parameter with either a predefined specific value, or the
current value of another context parameter, while the context constraint is de-
fined as a logical conjunction of context conditions. Koufi et al. [30] propose the
role-based workflow authorization model that provides the flexibility for granting
(revoking) fine-grained, context-dependent roles to (from) users dynamically at
workflow run time to ensure a tight matching of roles to actual need. To en-
capsulate sets of permissions that take into account the domain-dependent
context associated with each task, the concept of contextual role is defined.
The contextual role concept is also used as a mechanism that associates users
with contexts in a similar manner as the role concept is used as an interme-
diary between users and permissions. The authors use contextual rule-based
approach that enables automatic role changes on the occurrences of specific
events. The preliminary research results on context and privacy-aware access
control model for network monitoring workflows have been reported in [36]. The
presented model takes full advantage of the integration of contextual properties
and thus allows covering the definition of both simple and complex business
processes, as well as describing the rich contextual categorization of network
resources. Many authors [6] [24] [29] [41] propose a context-based access con-
trol model for web services. Their approach grants and adapts permissions to
users based on a set of contextual information collected from the environment
of the system. The use of the context-sensitive access control for controlling
XML documents is presented in the papers [7] [42] [43]. In the papers [11] [16]
[33] [37] the context-awareness is identified as a crucial principle for the design
of efficient access control models for the pervasive computing. The influence of

944 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

temporal constraints to access control is probably the most thoroughly analyzed
in [4] [31], while the influence of geospatial constraints is presented in [5] [13].

By analyzing the previously mentioned access control models for workflows,
we noticed that most of them are based on the RBAC model which is extended
with some other concepts specific for business processes. Although the litera-
ture recognizes a significant number of context-sensitive access control models,
most workflow access control models only partially support context-sensitive
access control, or do not support it at all. Most of models do not wholly sup-
port all features, given in Section 1, identified as important for workflow access
control systems. COBAC, the model presented in this paper, has the following
notable improvements over the aforementioned workflow access control mod-
els:

– It is based on the RBAC model which is extended with the concept of busi-
ness process and activity. By using the business process and the activity
concepts it is possible to bind certain access control segments with activi-
ties instead of binding them with the current session, and thus provide effi-
cient definition of different policies and constraints in different business sys-
tems. This ensures the independence of these segments from the number
of sessions in which activities are executed. Since a business process can
be viewed as an executing sequence of activities in our model, the roles are
assigned to activities that they can execute, while the permissions (to ex-
ecute operations on resources) needed for activity execution are assigned
to the activity. Thus, efficient and fine-grained control of least privileges is
achieved.

– The policies can be defined at the level of each specific process instance
(activity instance) and thus satisfy different protection requirements that dif-
ferent process instances may have. On the other hand, requiring the spec-
ification of authorizations for each single process instance would make the
authorization specification task too complex, therefore the COBAC model
supports policy definition at the process (activity) definition level. The poli-
cies defined at the process definition level will apply to all process instances.

– Since the real-world business processes may have sophisticated access
control requirements that depend on different factors from the environment,
we extend the assignment relations in the COBAC model with the context-
dependant condition and thus provide support for the context-sensitive ac-
cess control. Also, we extend the notion of the role with the context infor-
mation. In this way, the context can affects all segments of access control
model.

– The proposed context model is developed using ontologies in order to de-
scribe rich context information, to allow the semantic interoperability be-
tween different context-aware systems and to be easily extended for spe-
cific use cases.

– Resources in the COBAC model can be hierarchically organized thus low-
ering the number of policies that need to be defined.

ComSIS Vol. 10, No. 3, June 2013 945

Goran Sladić, Branko Milosavljević and Zora Konjović

3. COBAC Model

An overview of the basic concepts and their relations is presented in Figure
1. The solid lines are used to represent relations between the concepts, while
the dashed lines are used to represent the influence of the context on the rela-
tions/concepts. The given model is based on the standard RBAC model which
is extended with the following concepts: business process, activity, context and
resource category. In the proposed model the definition of the session is taken
from the standard RBAC model [17].

Users

U

Roles

R

Permissions

P

Categories

Cat

Resources

Res

Operations

Op

Complex Business

Process Definitions

CBPD

Complex Business

Process Instances

CBPI

Simple Business

Process Definitions

SBPD

Complex Activity

Definitions

CAD

Simple Activity

Definitions

SAD

Complex Activity

Instances

CAI

UR

RCAI

RCAD

RSAD
SADP

CADP

CAIP

CatH

Session

S

Context

Ctx

RH

Fig. 1. The COBAC model

The reason for introducing business process and activity is to achieve the
efficient use of the RBAC model in business processes, because certain ac-
cess control aspects need to be defined for a particular process (definition or
instance) or it’s activities (definition or instance). There are cases when a busi-
ness process can be fully executed within a single user’s session, but there are
also cases where the process execution is distributed across multiple users’
sessions. Therefore, it is necessary that an access control mechanism supports
both of these cases.

We propose two types of business processes in the COBAC model: a com-
plex business process and a simple business process. A complex business pro-
cess is defined as proposed in [26] [14]. It consists of a set of activities among
which there is a proper order relation. Since organizations usually carry out a
lot of “relatively simple” tasks which do not require a workflow for their execu-
tion we introduce a simple business process to represent them (e.g. create a

946 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

notification or create a report). A simple business process consists of only one
activity. In the COBAC model activities are assigned to roles which are autho-
rized to execute them. Although the use of two types of business processes
may be inappropriate from the information security perspective since it can be
viewed as unnecessary complexity, we decided to use this approach because of
the model efficiency and the practical model implementation. Since simple busi-
ness processes comprise a single activity, they do not require a workflow engine
for execution and access control in this case can be optimized by omitting some
steps and constraints verification which are necessary when the access control
is performed for complex business processes.

Access control policies in the COBAC model can be defined for definitions
and instances of business processes. If a policy is associated to a process defi-
nition, it will be applied to all instances of that process, while policies associated
to an instance will be applied only to that particular instance.

By analyzing different real-world business processes, we concluded that in
the case of complex business processes it is necessary to support the process
definition - CBPD (i.e. activity definition - CAD) and the process instance - CBPI
(i.e. activity instance - CAI) level of policies, while in the case of simple business
processes it is sufficient to support only policies at the process definition - SBPD
(i.e. activity definition - SAD) level.

During an activity execution it may be necessary to access some resources.
In order to execute an activity, proper permissions, required for the resources
being accessed, must be assigned to that activity.

Since access control may be influenced by some other factors from a system
and an environment, the COBAC model also includes the notion of a context.
By using context it is possible to define a context dependent constraint on as-
signment relations and on a role activation. Thus, an assignment relation with
such constraint will be established only if the context dependent constraint is
fulfilled. A similar case applies to a role activation.

Electronic resource (primarily documents) categorization is a crucial and
well-proven instrument for organizing large volumes of resources/information.
By grouping too many discrete items into understandable categories, users can
quickly eliminate what is irrelevant or not interesting, and just pay attention to
what matters most [9] [10] [20] [44]. Therefore the COBAC model explicitly in-
troduces resource category to support efficient access control administration
by defining permissions not only at the level of resources but also on the level
of categories (i.e. permission can be defined for the Sentence category, or for
the Sentence for Minor subcategory, or for the concrete judgment document).
The COBAC model is independent of the categorization process. Resources
may be classified according to their subjects or according to other metadata
attributes (such as resource type, author, printing year etc.) using manual, au-
tomatic or hybrid categorization process [10] [44]. The concrete installation can
be adjusted to the existing resource categorization in the information system.

The COBAC’s UML model is presented in Figures 2 and 3. The role as-
signment relation is represented with the UserRoleAssignment class. If the

ComSIS Vol. 10, No. 3, June 2013 947

Goran Sladić, Branko Milosavljević and Zora Konjović

context condition (modeled with the ContextCondition class) is associated
with UserRoleAssignment, then a role will be assigned to a user only if the
condition is satisfied. The definitions of complex business processes are rep-
resented by the ComplexBPDef class while complex process instances are
represented by the ComplexBPInst class. The class ComplexActivityDef
models complex activity definitions, while the class ComplexActivityInst
models complex activity instances. SympleBPDef and SimpleActivityDef
define simple business processes and simple activities. The assignments of ac-
tivities to roles are modeled with the RoleActivityAssignment specializa-
tions. Those assignment relations will be established only if the associated con-
text conditions are satisfied. The Category class represents categories of re-
sources that are modeled with the Resource class. Operations executed on re-
sources are defined using the Operation class. A permission to execute a cer-
tain operation can be defined at a resource and category level. The model de-
fines permissions (Permission) for resources (ResourcePermission) and
categories (CategoryPermission). A permission defined for a category ap-
plies to all category’s resources and subcategories. The specializations of the
PermissionAssignment class represent assignments of privileges to activ-
ities. The assignment of privileges to complex activities is defined using the
CAPermissionAssignment specializations (CADPermissionAssignment
and CAIPermissionAssignment), while the SAPermissionAssignment
class models assignment of permissions to simple activities.

1..10..* 0..* 0..1

assignmentCondition

0..*

1..1

0..*

1..1

0..*

1..1

1..1 1..*

1..1

0..*

0..*

0..1

assignmentCondition

1..1

1..*

1..1

1..*

1..1

1..*

1..1 0..*

1..1 0..*

0..* 1..1

0..*

0..*
activatedRoles

ComplexActivityDef ComplexActivityInst SimpleActivityDef

RoleActivityAssignment

{abstract}

RoleCADAssignment RoleCAIAssignment RoleSADAssignment

Role ContextCondition

User UserRoleAssignment

ComplexBPDef ComplexBPInst SimpleBPDef

Session

Fig. 2. User-role-activity assignment

948 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

0..* 1..1

0..*

1..1

0..*

1..1

0..*

1..1

1..1

0..*

1..1

0..*

1..1

0..*

0..1
parentCategory

0..*
subCategories

0..* 0..*

Permission

{abstract}

ComplexActivityDef ComplexActivityInst SimpleActivityDef

CAPermissionAssignment

{abstract}

SAPermissionAssignment

PermissionAssignment

{abstract}

CADPermissionAssignment CAIPermissionAssignment

Operation

ResourceCategory

CategoryPermission ResourcePermission

Fig. 3. Activity-permission assignment

In the rest of this section the complete description of the aforementioned
models concepts is given. The basic terms used in the rest of the section are:

– U - set of users
– R - set of roles
– S - set of users sessions
– CBPD - set of complex business process definitions
– CAD - set of complex activities definitions
– CBPI - set of complex business processinstances
– CAI - set of complex activities instances
– SBPD - set of simple business process definitions
– SAD - set of simple activities definitions
– P - set of permissions
– Op - set of operations
– Res - set of resources
– Cat - set of categories
– C - set of constraints
– Ctx - context
– CC - set of context conditions

3.1. The Model of Context

We chose the Web Ontology Language (OWL) [49] for the context modeling due
to several reasons. First, it enables a formal representation of context and sup-

ComSIS Vol. 10, No. 3, June 2013 949

Goran Sladić, Branko Milosavljević and Zora Konjović

ports rich representation of different contextual information. Second, it allows
the necessary semantic interoperability between different context-aware sys-
tems and also enables easy adjustment of the context model for use in different
systems. Finally, it provides a high degree of inference making by providing ad-
ditional vocabulary along with a formal semantics to define classes, properties,
relations and axioms.

Basic entities of the context ontology are presented in Figure 4. This model
defines domain ontology for a context in business systems. The domain ontol-
ogy models only basic concepts and relations among them. When the COBAC
model is used in the concrete case, the domain ontology model should be ex-
tended with the new concepts and relations which are specific for that case.

Two basic classes of the context model (see Figure 4) are ContextFact
and ContextExpression. The class ContextFact represents a basic context fact,
while the class ContextExpression represents the context expression. Different
context facts can be classified as ContextFact specializations.

The Actor class is used for representing different actors of events. Different
activities are modeled by the Action class, and resources are modeled by the
Resource class. Location is described by the Location class. The Time class is
used for modeling time factor in the model. Different purposes in this model are
represented by Purpose class, while means are described by the Means class.

The context expression (class ContextExpression) represents a semantic
binding of previously listed concepts, and it is based on 7 semantic dimensions
(relations). Each aforementioned context fact creates one semantic dimension.
Actually, the context expression describes events that took place and the condi-
tions under which these events occurred. We extend five semantic dimensions
defined in [2] [48] (“who”, “what”, “where”, “when” and “how”) with the notion
“why” which defines the purpose, and with the notion “related” which defines the
relation between different context expressions. We also define two specializa-
tions of the “what” concept. The specialization “what action” is used for defining
the “what” relation with an action, while the specialization “what resource” is
used for defining the “what” relation with a resource.

The context model relations are presented in Listing 1, while the context ex-
pression definition is presented in Listing 2. In our definition, the context expres-
sion must contain at least one “who” and “what” relation. We add this restriction
because it is necessary that the context expression contains the information
who/what did something, and what he/it did, in order to describe an event.

950 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

LogicalLocation

Actor

Location

owl:Thing

DeviceResource

HumanActor

ContextFact

TimeInstant

HumanAction

OrganizationalActor

SoftwareActor

PhysicalLocation

Resource

DeviceAction

SoftwareResource

ContextExpression

SoftwareAction

OrganizationalAction

TimeInterval

HumanResource

Means

Time

DeviceActor

OrganizationalResource

Purpose

Action

Fig. 4. The context model

ctx:hasWhoPart a owl:ObjectProperty.
ctx:hasWhatPart a owl:ObjectProperty.
ctx:hasWhatActionPart a owl:ObjectProperty; rdfs:subPropertyOf ctx:hasWhatPart.
ctx:hasWhatResourcePart a owl:ObjectProperty; rdfs:subPropertyOf ctx:hasWhatPart.
ctx:hasWhenPart a owl:ObjectProperty.
ctx:hasWherePart a owl:ObjectProperty.
ctx:hasWhyPart a owl:ObjectProperty.
ctx:hasHowPart a owl:ObjectProperty.
ctx:isRelatedTo a owl:ObjectProperty,

owl:SymmetricProperty;

Listing 1. The context model relations

ctx:ContextExpression a owl:Class;
owl:equivalentClass[a owl:Class; owl:intersectionOf(
[a owl:Restriction; owl:allValuesFrom ctx:Actor; owl:onProperty ctx:hasWhoPart]
[a owl:Restriction; owl:someValuesFrom ctx:Actor; owl:onProperty ctx:hasWhoPart]
[a owl:Restriction; owl:allValuesFrom ctx:Action;

owl:onProperty ctx:hasWhatActionPart]
[a owl:Restriction; owl:allValuesFrom ctx:Resource;

ComSIS Vol. 10, No. 3, June 2013 951

Goran Sladić, Branko Milosavljević and Zora Konjović

owl:onProperty ctx:hasWhatResourcePart]
[a owl:Restriction; owl:onProperty ctx:hasWhatPart; owl:someValuesFrom

[a owl:Class; owl:unionOf (ctx:Action ctx:Resource)]]
[a owl:Restriction; owl:someValuesFrom ctx:Event; owl:onProperty ctx:hasWhatPart]
[a owl:Restriction; owl:allValuesFrom ctx:Event; owl:onProperty ctx:hasWhatPart]
[a owl:Restriction; owl:allValuesFrom ctx:Means; owl:onProperty ctx:hasHowPart]
[a owl:Restriction; owl:allValuesFrom ctx:Time; owl:onProperty ctx:hasWhenPart]
[a owl:Restriction; owl:allValuesFrom ctx:Location; owl:onProperty ctx:hasWherePart]
[a owl:Restriction; owl:allValuesFrom ctx:Purpose; owl:onProperty ctx:hasWhyPart]
[a owl:Restriction; owl:allValuesFrom ctx:ContextExpression;

owl:onProperty ctx:isRelatedTo])].

Listing 2. The context expression definition

Context Condition We define the context condition as a logical expression
which may consist of queries for searching context ontology (like SPARQL),
context functions, logical operators {¬,∧,∨} and comparison operators {<,≤
, >,≥,=, ̸=}. The context functions are used to retrieve some current informa-
tion from a system, like who is current user, or what activity is being currently
executed. The context expression defined in the EBNF notation is presented in
Listing 3.

ContextCondition ::= Query
| Function
| ContextCondition BinaryOperator ContextCondition
| UnaryLogicalOperator ContextCondition
| "("ContextCondition")"
| "TRUE"
| "FALSE"
| String
| Number

BinaryOperator ::= ComparsionOperator|LogicalBinaryOperator
ComparsionOperator ::= "<"|"<="|">"|">="|"=="|"!="
LogicalBinaryOperator ::= "&&"|"||"
UnaryLogicalOperator ::= "!"
Query ::= "QUERY {" (String|Function){String|Function} "}"
Function ::= "$$"Name"("[Param{","Param}]")$$"
Param ::= String|Number|Function|Query

Listing 3. EBNF notation for the context condition

The function evalCond : CC → {⊤,⊥} verifies if the given context condition
is satisfied.

From the set CC there are two specific conditions: σ (σ = TRUE) and σ̄
(σ̄ = FALSE). The condition σ is the condition which is always satisfied, i.e.
evalCond(σ) = ⊤. The condition σ̄ is the condition opposite to σ, i.e. it is never
satisfied, evalCond(σ̄) = ⊥.

The context conditions are used for the assignment relations (a proper as-
signment relation will be established if the assigned context condition is satis-
fied) and for roles definition in order to enable/disable roles. A detailed explana-
tion of the use of the context condition is given in the following sections.

Variability of Context Condition From the viewpoint of the context condition
variability we identify three types of the context condition:

952 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

– slowly varying (session safe) context conditions are those conditions whose
result is unchangeable during the user session.

– frequently varying (activity safe) context conditions are those conditions
whose result can be changed during the user session, but it is unchange-
able during the execution of the activity.

– constantly varying context conditions are those conditions whose result can
be changed during the user session or during the execution of the activity.

3.2. The model of Business Process

The i-th complex business process definition (cbpdi) is defined as the tuple:
cbpdi = (CADi, FBPDi

), where:

– CADi - The set of complex activity definitions of cbpdi, i.e.
CADi = {cadi1, cadi2, · · · , cadin}, where cadij is the definition of the j-th
complex activity of the i-th complex business process, 1 ≤ j ≤ n, and n is
a number of activity definitions of cbpdi.

– FBPDi - The flow control relation which defines the execution order of activ-
ities from the set CADi.

The given model specifies three types of complex activities:

– start - The first (starting) activity of a complex business process. Invoking
this activity will initiate a new instance of a complex business process. Each
complex business process definition must have exactly one activity of the
start type.

– end - The last (ending) activity of a complex business process. Invoking this
activity will end the current instance of a complex business process.

– regular - The regular activity which represents a part of the business logic
implemented by the business process.

The function typeOf : CADi → {start, regular, end} determines the type of
the complex activity.

The function instanceOfBP : CBPI → CBPD determines the definition of
the complex business process instance.

A similar function, instanceOfA : CAI → CAD, is used in the case of
determining the definition of the complex activity instance.

The function activityDefOf : CAD → CBPD determines the belonging of
CADs to CBPDs:

activityDefOf(cad) = cbpdi | cbpdi = (CADi, FBPDi) ∧ cad ∈ CADi

The k-th instance of the i-th complex business process (cbpiki) is defined as
a tuple: cbpiki = (CAIki , FBPIk

i
), where:

– instanceOfBP (cbpi
k
i) = cbpdi.

– CAIki - The set of complex activity instances of cbpiki ., i.e.
CAIki = {caiki1, caiki2, ·, caikin}, where instanceOfA(cai

k
ij) = cadij

ComSIS Vol. 10, No. 3, June 2013 953

Goran Sladić, Branko Milosavljević and Zora Konjović

– FBPIk
i

- The flow control relation which defines execution order of activities
from the set CAIki .

Similarly to the activityDefOf function, the function activityInstOf : CAI →
CBPI determines the belonging of CAIs to CBPIs:

activityInstOf(cai) = cbpii | cbpii = (CAIi, FBPIi) ∧ cai ∈ CAIi

As noted before, the i-th simple business process (spdi) consists of a simple
activity (sadi), e.g. spdi = (sadi).

3.3. The Model of User

Let U be the set of all users in the system, and S be the set of users’ sessions.
The predicate usersSession(u, s) verifies if the session s (s ∈ S) belongs to the
user u (u ∈ U).

Various previous researches have identified that access control may depend
on certain user’s properties. In the case of RBAC-based models, assignment of
roles to a user can depend on user’s properties. The COBAC model supports
this requirement by using context constraints in user-role assignment relation,
where context constraints include some user’s properties.

3.4. The Model of Role

Similar to [4] [31], roles can be in one of the three states:

– disabled - A user can not activate such roles in her/his current session.
Disabled roles can change their state to enabled.

– enabled - A user can activate such roles in her/his current session. An en-
abled role can switch to the disabled or active state.

– active - This state applies to each user individually. If a user activates a role
in her/his session, then that role changes state from enabled to active, but
only for that user. By deactivating a role, it changes the state from active
to enabled only if the role was active in exactly one session of the user,
otherwise the role will continue to be in the active state. From the active
state, a role can also change the state to disabled.

Whether a role will be in the enabled or disabled state depends on the cur-
rent context state. Therefore, we define the role as a tuple : (rn, sc, sct) where:

– rn - The role name,
– sc - The context condition for enabling/disabling the role (state condition),

and
– sct - The context condition type (state condition type). Possible values are

from the set {dc, ec}. It defines what the condition applies to: the condition
for disabling a role (dc) or the condition for enabling a role (ec).

954 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

Each rn can exist in only one tuple:

∀t1 = (rn1, sc1, sct1),∀t2 = (rn2, sc2, sct2) :

rn1 = rn2 ⇒ sc1 = sc2 ∧ sct1 = sct2 ∧ t1 = t2

If the condition sc is satisfied the role will be in the disabled state if sct = dc,
or in the enabled state if sct = ec. If the condition is not satisfied the role will be
in the opposite state then defined by sct.

In the specific case, the sc condition is defined as the context condition which
is always satisfied: (rn, σ, ec). This actually means that there is no context influ-
ence to disabling/enabling a role. A role is always enabled.

Although, it is possible to use the negation of the condition to accomplish
role enabling/disabling effect, we used the context condition type to increase
clarity of the specific role definition by explicitly stating if condition is used for
enabling or disabling of the role.

To determine the role state we introduce the following predicates:

– disabled(r) - Verify if the role is disabled,
– enabled(r) - Verify if the role is enabled, and
– active(r, u) - Verify if the role r is active for the user u.

The predicate disabled(r) is true if the role r is disabled at the current context
state:

disabled(r) ⇐ (r.sct = dc ∧ evalCond(r.sc)) ∨ (r.sct = ec ∧ ¬evalCond(r.sc))

The predicate enabled(r) is true if the role r is enabled at the current context
state:

enabled(r) ⇐ (r.sct = ec ∧ evalCond(r.sc)) ∨ (r.sct = dc ∧ ¬evalCond(r.sc))

The predicate active(r, u) is true if there is at least one session of u in which
the role r is active:

active(r, u) ⇐ usersSession(u, s) ∧ activeInSession(s, r)

where the predicate activeInSession(s, r) verifies whether the role r is active
in the session s.

3.5. User-Role Assignment

The proposed model supports two ways of assigning roles to users: static and
dynamic.

In the case of the static type, a user is assigned roles for which there are
assignment relations between them and the user. The sRoleAssign(r, u, cc) re-
lation defines static assignment of the role r to the user u if the context condition
cc is satisfied.

ComSIS Vol. 10, No. 3, June 2013 955

Goran Sladić, Branko Milosavljević and Zora Konjović

Some research identify cases when a predefined role-user relation is not
satisfactory, and it is necessary to assign certain roles only to the users who
satisfy certain conditions. This model of role assignment in the COBAC model
is supported by the dynamic type of assignment. In this case a role can be
assigned to any user if the assignment condition of the role is met.

The relation roleCondAssign(r, rac) defines the role assignment condition
(rac ∈ CC) which should be fulfilled in order to assign the role r to a user. This
condition (rac) may contain any context data including some user’s properties.
This way a user-role assignment depends on the user’s properties is supported.
The dynamic role assignment is defined with the following predicate:

dRoleAssign(r) ⇐ roleCondAssign(r, rac) ∧ evalCond(rac)

If the predicate dRoleAssign(r) is satisfied, the role r will be assigned to the
current user whose roles are loaded.

The predicate isRoleAssigned(u, r) verifies if the role r is assigned to the
user r, regardless of the assignment type:

isRoleAssigned(r, u) ⇐dRoleAssign(r)∨
(sRoleAssign(r, u, cc) ∧ evalCond(cc))

If cc = σ, it is a context free static user-role assignment and otherwise it is a
context influenced static user-role assignment (cc ̸= σ).

3.6. Role Hierarchy

The role hierarchy (RH) is defined as a partial order over the set of roles R
(RH ⊆ R×R), i.e. as an inheritance relation, marked as ≽, where if the role r1
inherits the role r2 then stands r1 ≽ r2.

The predicate canObtainRole(u, r) verifies if the role r can be assigned to
the user u in the presence of the role hierarchy:

canObtainRole(u, rj) ⇐isRoleAssigned(u, rj)∨
((ri ≽ rj) ∧ canObtainRole(u, ri))

The function usersRoles : U → 2R determines all roles assigned to a user
in the presence of the role hierarchy:

usersRoles(u) = {r | canObtainRole(u, r)}

3.7. Role-Activity Assignment

It is possible to assign a privilege to each role from the set of roles R to ex-
ecute certain business process activities. Since the COBAC model supports
privileges for definitions and instances of complex activities and for definitions
of simple activities, we introduce the following three role-activity assignment
relations:

956 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

– The expression rCADAssign(r, cad, cc) defines a relation which allows the
role r ∈ R to execute the complex activity definition cad ∈ CAD if the
context condition cc ∈ CC is fulfilled.

– The expression rCAIAssign(r, cai, cc) defines a relation which allows the
role r ∈ R to execute the complex activity instance cai ∈ CAI if the context
condition cc ∈ CC is fulfilled. Also, the type of the cai activity can not be
start, because it is meaningless to assign a privilege for an instance of
the start activity (cai ∈ CAI ∧ instanceOfA(cai) = cad ∧ typeOf(cad) ̸=
start). The start type of activity is used only to initiate a new instance of the
complex business process.

– The expression rSADAssign(r, sad, cc) defines a relation which allows the
role r ∈ R to execute the simple activity sad ∈ SAD if the context condition
cc ∈ CC is fulfilled.

Depending if cc = σ there are context free static role-activity assignment
and context influenced static role-activity assignment (cc ̸= σ).

Verification if the role r is allowed to execute the complex activity instance
cai (cai ∈ CAI) is defined with the following predicate:

canExecCAI(r, cai) ⇐ (rCAIAssign(r, cai, cc) ∧ evalCond(cc))∨
(rCADAssign(r, cad, cc) ∧ evalCond(cc) ∧ instanceOfA(cai) = cad)

In a similar manner, the predicates for verification whether the role r is al-
lowed to execute a complex activity definition or a simple activity definition are
defined as follows:

canExecCAD(r, cad) ⇐ rCADAssign(r, cad, cc) ∧ evalCond(cc)

canExecSAD(r, sad) ⇐ rSADAssign(r, sad, cc) ∧ evalCond(cc)

A certain role can create a new complex business process instance if the
role has permission to execute the start type activity of the process. The func-
tion assignedCompProcToStartR → 2CAD determines all start type activities
assigned to the given role:

assignedCompProcToStart(r) =

{cad | canExecCAD(r, cad) ∧ typeOf(cad) = start}

The function assignedCompActToExec : R → 2CAI determines all complex
activity instances which the role can execute. The role can execute the com-
plex activity instance if the role has a permission to execute it (the predicate
canExecCAI(r, cai)) and if the complex activity instance is next in the order
of execution. The order of execution is verified with the nextToExec predicate.
This actually provides an order (sequence) of events, i.e. activities are executed
in the order defined by a business process to which they belong to:

assignedCompActToExec(r) =

{cai | nextToExec(cai) ∧ canExecCAI(r, cai)}

ComSIS Vol. 10, No. 3, June 2013 957

Goran Sladić, Branko Milosavljević and Zora Konjović

The set of simple activities that the role can execute is the return value of
the function assignedSimpActToExecR → 2SAD:

assignedSimpActToExec(r) = {sad | canExecSAD(r, sad)}

3.8. The Model of Permission

In order to improve the COBAC administration, resources can be organized into
categories, where each resource can be classified into more categories. The
relation assignCat(res, cat) classifies the resource res ∈ Res into the cat ∈ Cat
category.

Like roles, resource categories can also be hierarchically organized. The
resource hierarchy is defined as a partial order over the categories set Cat
(CatH ⊆ Cat × Cat), i.e. as inheritance relation, marked as ≽cat, where if the
category cati inherits the category catj then stands cati ≽cat catj . All resources
that belong to the category cati also belong to the category catj . The predicate
belongsToCat verifies whether the resource res belongs to the category cat:

belongsToCat(res, catj) ⇐assignCat(res, catj)∨
(cati ≽cat catj ∧ belongsToCat(res, cati)

A permission to execute a certain operation can be defined for resources
and for categories. A permission defined for a category applies to all the cat-
egory’s resources and subcategories. The resource permission is defined as:
rp = (res, op), res ∈ Res, op ∈ Op, while the category permission is defined as:
cp = (cat, op), cat ∈ Cat, op ∈ Op. Let RP be the set of all permissions defined
for resources and CP be the set of all permissions defined for categories than:
P = RP ∪ CP .

In order to successfully execute a business process activity it is necessary to
assign it the required permissions. In the COBAC model, the activity-permission
assignment is specified with the following relations:

– cadPermissionAssign(cad, p, cc) - The permission p ∈ P is assigned to the
complex activity definition cad ∈ CAD if the context condition cc ∈ CC is
fulfilled,

– caiPermissionAssign(cai, p, cc) - The permission p ∈ P is assigned to the
complex activity instance cai ∈ CAI if the context condition cc ∈ CC is
fulfilled, and

– sadPermissionAssign(sad, p, cc) - The permission p ∈ P is assigned to the
simple activity definition sad ∈ SAD if the context condition cc ∈ CC is
fulfilled.

Similary to the role-activity assignment, if cc = σ it is a context free activity-
permission assignment and if cc ̸= σ it is a context influenced activity-permission
assignment.

958 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

The functions which determine the privileges (defined for the corresponding
operation) associated to a complex activity definition, complex activity instance
or simple activity definition are defined as follows:

cadPermission : CAD ×Op → 2P

cadPermission(cad, op) = {p | p.op = op ∧ cadPermissionAssign(cad, p, cc)}

caiPermission : CAI ×Op → 2P

caiPermission(cai, op) = {p | p.op = op ∧ caiPermissionAssign(cai, p, cc)}

sadPermission : SAD ×Op → 2P

sadPermission(sad, op) = {p | p.op = op ∧ sadPermissionAssign(sad, p, cc)}

The permission p1 is contained in the permission p2 (p1 ⊑ p2) if:

– p1 and p2 are defined for the same operation and resource (p1 = p2), or
– p1 and p2 are defined for the same operation and the p1 category is a sub-

category of the p2 category, or
– p1 and p2 are defined for the same operation and the p1 resource belongs

to p2 category.

This can formally be noted as follows:

p1 ⊑ p2 ⇒(p1 ∈ RP ∧ p2 ∈ RP ∧ p1.op = p2.op ∧ p1.res = p2.res)∨
(p1 ∈ CP ∧ P2 ∈ CP ∧ p1.op = p2.op ∧ p1.cat ≽cat p2.cat)∨
(p1 ∈ RP ∧ p2 ∈ CP ∧ p1.op = p2.op ∧ belongsToCat(p1.res, p2.cat))

If an activity possesses the permission p2, and if that activity needs the
permission p1 to execute a certain operation on a resource, than the activity will
be able to execute the operation only if p1 ⊑ p2.

4. Access Control Enforcement

In this section, access control enforcement defined by the COBAC model with-
out constraints enforcement is presented. The process of the access control
enforcement is performed through four phases:

– role activation,
– creation of activity (task) list that a user can execute,
– verification if the user is allowed to perform the activity in the moment when

she/he initiate execution of the given activity, and
– verification if it is allowed to access the required resources during the exe-

cution of the activity.

In order to define access control enforcement in the consistent way we as-
sume that the context conditions specified in the user-role assignment relations
and the context conditions used for enabling/disabling roles are slowly varying,

ComSIS Vol. 10, No. 3, June 2013 959

Goran Sladić, Branko Milosavljević and Zora Konjović

while the conditions in the role-activity relations and in the activity-permission
relations are frequently varying.

Based on the previous assumptions, roles assigned to a user in here/his
session are not changed during the session duration, but it is possible that
privileges, to execute certain activities, assigned to those role are changed.

4.1. Roles Activation

The first step in the roles activation is loading of the roles assigned to the user,
and then, from the set of the loaded roles, the disabled roles are removed. The
algorithm for the activation of roles in this phase can be changed in order to
meet the requirements of different systems. Algorithm 1 uses simple way of
role activation where all roles assigned to the user are activated.

Algorithm 1 An example of role activation
NAME: ActivateRoles
INPUT: u ∈ U - user
s ∈ S - session of u
OUTPUT: ARS - activated roles
URS := usersRoles(u)
for each r ∈ URS do

if disabled(r) then
removeFromSet(r, URS)

ARS := activateAllRolesForSession(URS, s)

4.2. Activity List Creation

The creation of the activity list for the user is the process of selection of activ-
ities which are allowed to be executed by the user. The created activity list is
represented as the tuple (SCPS,ECAS,ESAS) where:

– SCPS ⊆ CAD ∧ ∀cad ∈ SCPS, typeOf(cad) = start (Start Complex Pro-
cess Set) represents the set of the complex activity definitions of the “start”
type which user can execute, i.e. the user can create a new instance of the
complex business process.

– ECAS ⊆ CAI (Execute Complex Activity Set) represent the complex activ-
ity instances set which user can execute.

– ESAS ⊆ SAD (Execute Simple Activity Set) represent the simple activities
set which user can execute.

Algorithm 2 describes the process of the activity list creation for the given
user. The creation of the SCPS set includes loading of all complex activity
definitions of the “start” type which are assigned to user’s active roles. The
function assignedCompProcToStart(r) determines all the start type activities
which are assigned to the given role. The set ECAS is formed from all activity
instances which are assigned to the user’s active roles and which are next in

960 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

Algorithm 2 Activity list creation
NAME: CreateActivityList
INPUT: u ∈ U - user
ARS ⊆ R - active roles of user in session
OUTPUT: (SCPS,ECAS,ESAS) - user’s actitivty list

{Create Start Complex Process Set (SCPS)}
SCPS :=

∪
r∈ARS assignedCompProcToStart(r)

{Create Execute Complex Activity Set (ECAS)}
ECAS :=

∪
r∈ARS assignedCompActToExec(r)

{Create Execute Simple Activity Set (ESAS)}
EAS :=

∪
r∈ARS assignedSimpActToExec(r)

order to be executed. The function assignedCompActToExec(r) determines all
the complex activity instances which the role r can execute. The set SCPS is
formed from simple activities which are assigned to the users active roles. The
set of simple activities that the role can execute is return value of the function
assignedSimpActToExec.

4.3. Verification of Privilege to Execute Action

When a user from the activity list selects an activity to execute, it is necessary to
verify once more whether the user is allowed to execute that activity. The reason
for this verification is the existence of the frequently varying context conditions
which may be changed between the creation of activity list and the execution of
the activity.

Verification whether it is allowed to execute a complex activity instance is
presented in Algorithm 3. The user can execute the activity instance if she/he
has an active role with a privilege to execute that activity (the predicate
canExecCAI). The similar algorithm is used for verification whether it is allowed
to execute simple activities or to create a new process instance.

Algorithm 3 Verification if it is allowed to execute an activity instance
NAME: ExecOfComplexActivityAllowed
INPUT: cai ∈ CAI - complex activity instance to execute
u ∈ U - user
ARS ⊆ R - active roles of user in session
OUTPUT: result - result, can user execute taks

result := false
for each r ∈ ARS do

if canExecCAI(r, cai) then
return result := true

return result

ComSIS Vol. 10, No. 3, June 2013 961

Goran Sladić, Branko Milosavljević and Zora Konjović

4.4. Verification of Permission to Access to Resource

An activity can access to resources only if it has necessary permissions. Veri-
fication if the complex activity instance cai can execute the operation op on the
resource res is presented in Algorithm 4. The activity instance cai can execute
the operation op on the resource res if the permission that allows execution is
contained in the permission assigned to the instance (caiPermission) or its
definition (cadPermission). The similar algorithm is used for simple activities.

Algorithm 4 Permission verification
NAME: CanExecOperation
INPUT: cai ∈ CAI - complex activity instance
op ∈ Oper - operation
res ∈ Res - resource
OUTPUT: result - result, can operation be executed on resource

result := false
p := (res, op)
RPS := caiPermission(cai, p.op) ∪ cadPermission(instanceOfA(cai), p.op)
for each rp ∈ RPS do

if p ⊑ rp ∧ evalCond(rp.cc) then
return result := true

return result

5. A Case Study

The verification of the COBAC model is carried out through the analysis and
implementation of the security segment of the workflow-based information sys-
tem. The model is tested on the real-world business process - Employment
procedure in the Professor position at Faculty of Technical Sciences, University
of Novi Sad. This process is implemented using a document-oriented workflow
system.

The process includes cases where user’s privileges depend on a current
task/workflow instance being executed, and cases where access control deci-
sion depends on the elements outside standard access control entities, pre-
cisely it depends on the content of a document being involved in the executed
workflow instance. We decided to choose this process as a case study be-
cause it has security requirements that can not be fully implemented with ex-
isting workflow access control models, but it is possible to implement them us-
ing COBAC. Therefore, security requirements of this process are suitable to
demonstrate full capacity of the COBAC model.

The simplified version of the given process is presented in Figure 5. The
whole process initiates a certain Department which requests a new employment
in the Professor position. Then Dean approves or disapproves the Department’s
request. If the request is approved, Dean forms the commission whose task is
to select the best candidate for the job position. After this, Human Resources
publishes the job vacancy in the papers, and accepts candidates’ applications.

962 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

Commission analyzes accepted applications, ranks all candidates, and sug-
gests the most suitable one. At the end, Dean creates a job contract for the
candidate chosen by Commission.

Dean Human Resources Commission Department

[no] [yes]

Request for
employment in the
Professor position

Approve request

Publish
request

Accept
applications

Form
commission

Create report

Create job contract

Fig. 5. The simplified version of the employment procedure process

Due to paper limitation and for better clarity, without the loss of generality,
we will present two representative access control requirements and show how
to implement them by COBAC.

The first requirement presented in this case study demonstrates the purpose
of extending RBAC with the notion of activities. It proves that COBAC prototype
can be used for “simple” access control requirements when context condition is
not required.

The second requirement demonstrates the use of context conditions. It rep-
resents the cases when certain roles are dynamically assigned to users based
on the information contained in documents that participate in the workflow. Also,
these roles will have the permissions to execute certain activities only for the
specific process instances depending on users who acquire these roles. To the
best of our knowledge this requirement cannot be implemented by any of the
workflow access control models presented in Section 2 or its implementation
can be overly complicated.

The proof of some other COBAC concepts can be found in [23]. The article
[23] demonstrated the use of the COBAC prototype implementation for enforc-
ing access control in workflow systems supporting judicial processes.

Requirement 1 In order to form the commission, the Dean role must be as-
signed the privilege to execute the activity Form commission. Also, this activity

ComSIS Vol. 10, No. 3, June 2013 963

Goran Sladić, Branko Milosavljević and Zora Konjović

must be assigned the permission to create, read and modify the document that
represents the formal act of forming the commission.

Requirement 2 The role Commission Member is inappropriate to be statically
assigned to the users, but it is necessary to assign this role to the users selected
as the commission members by the dean. The role Commission Member must
be assigned the privilege to execute the activity Create report with the condition
that commission members can execute this activity only for the process instance
for which they are selected. In order to create a report, the activity Create report
must have permissions to read received applications for this job position and to
create, read and modify the document that represents the commission report.

By analyzing the roles that appear in the process we notice that it is not
necessary to introduce a context condition for their enablement/disablement.
Therefore, all roles are always enabled: sc = σ ∧ sct = ec. For this case study
we used the role activation algorithm presented in Section 4.1, i.e. all roles
assigned to the user are activated when a user logs in to the application.

Requirement 1 represents an example where a context condition is not re-
quired for the implementation. Listing 4 shows the COBAC access control policy
which represents the implementation of Requirement 1. The Dean role has a
privilege to execute the activity definition Form commission. This activity has
the permissions to read, create and modify all documents that belong to the
Formed commission category.

/* role-activity assignment */
CAD1 - activity definition set for the given process
cad ∈ CAD1 ∧ cad = Formed commission
r ∈ R ∧ r.rn =Dean
cc ∈ CC ∧ cc = σ
rcdActivityAssign(r, cad, cc)

/* activity-permission assignment */
cat ∈ Cat ∧ cat = Formed commission
opr ∈ Op ∧ opr = read document
opc ∈ Op ∧ opc = create documnet
opm ∈ Op ∧ opm = modify document
pr ∈ CP ∧ pr = (cat, opr)
pc ∈ CP ∧ pc = (cat, opc)
pm ∈ CP ∧ pu = (cat, opm)
cadPermissionAssign(cad, pr, cc)
cadPermissionAssign(cad, pc, cc)
cadPermissionAssign(cad, pm, cc)

Listing 4. Access control policy for Requirement 1

Requirement 2 represents an example where it is needed to use a context
condition in the requirement implementation. In order to define the required
context conditions we extend the context model presented in Section 3.1 with
information about the process and users (commission members).

The users are represented with the class User (see Listing 5). This class is
defined as a subclass of the HumanResource and HumanActor classes. A user
is assigned an ID using the hasUID relation.

964 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

@prefix ctx: <http://informatika.ftn.uns.ac.rs/cobac/context.owl#>.
@prefix ep: <http://informatika.ftn.uns.ac.rs/cobac/employ-prof-context.owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

ep:User a owl:Class; rdfs:subClassOf ctx:HumanResource, ctx:HumanActor.
ep:hasUID a owl:DatatypeProperty; rdfs:domain ep:User; rdfs:range xsd:string.

Listing 5. The context model of a user

The given process is modeled by the EPProces class which is a subclass of
the SoftwareActor and SoftwareResource classes (see Listing 6). A process is
assigned an ID using the hasPID relation.

@prefix ctx: <http://informatika.ftn.uns.ac.rs/cobac/context.owl#>.
@prefix ep: <http://informatika.ftn.uns.ac.rs/cobac/employ-prof-context.owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

ep:EPProces a owl:Class; rdfs:subClassOf ctx:SoftwareActor, ctx:SoftwareResource.
ep:hasPID a owl:DatatypeProperty; rdfs:domain ep:EPProces; rdfs:range xsd:string.

Listing 6. The context model of a process

Besides the aforementioned context entities, we also define a specializa-
tion of the context expression - CommissionForProcess (see Listing 7). This
specialization actually contains information who are the commission members
for the given process instance. To define this class we introduce the relations
commissionMemberIs and forProcess (see Listing 7).

@prefix ctx: <http://informatika.ftn.uns.ac.rs/cobac/context.owl#>.
@prefix ep: <http://informatika.ftn.uns.ac.rs/cobac/ employ-prof-context.owl#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

ep:commissionMemberIs a owl:ObjectProperty; rdfs:subPropertyOf ctx:hasWhoPart.
ep:forProcess a owl:ObjectProperty; rdfs:subPropertyOf ctx:hasWhatResourcePart.

ep:CommissionForProcess a owl:Class;
rdfs:subClassOf ctx:ContextExpression;
owl:equivalentClass[a owl:Class;
owl:intersectionOf(

[a owl:Restriction; owl:allValuesFrom ep:User;
owl:onProperty ep:commissionMemberIs]

[a owl:Restriction; owl:someValuesFrom ep:User;
owl:onProperty ep:commissionMemberIs]

[a owl:Restriction; owl:allValuesFrom ep:EPProces;
owl:onProperty ep:forProcess]

[a owl:Restriction; owl:someValuesFrom ep:EPProces;
owl:onProperty ep:forProcess])].

Listing 7. The CommissionForProcess context expression

The implementation of Requirement 2 using the COBAC model demon-
strates one of the key features of COBAC - role assignment relations that are
context-dependent and evaluated at run-time separately for each process in-
stance. This feature facilitates the efficient implementation of workflow systems

ComSIS Vol. 10, No. 3, June 2013 965

Goran Sladić, Branko Milosavljević and Zora Konjović

where access control rights depend on context (in this case, data stored in doc-
uments being handled by the workflow). Requirement 2 is implemented with the
COBAC policy presented in Listing 8.

Since the commission members for each process instance are users se-
lected by the dean for that specific process instance, the role Commission Mem-
ber is inappropriate to be statically assigned to the users. Therefore the context
condition for the Commission Member role assignment must be defined. The
role Commission Member will be assigned to all users who satisfies the context
condition ccr. This context condition, beside necessary namespaces, defines
a query which verifies whether there is an instance of the CommissionForPro-
cess context expression, in context data, which assigns the current user as a
commission member for any process instance. The identifier of the current user
is retrieved using the context function $$currentUserID()$$.

The user who possesses the Commission Member role cannot execute the
activity Create report for all process instances, but only for process instances
for which she/he has been appointed as a commission member. The privilege
to execute the instance of the activity Create report is assigned to the role Com-
mission Member if the context condition ccra is satisfied. This condition requires
that a user with the role Commission Member must be a commission member
for the current process instance. It defines a query which verifies whether con-
text data contains the CommissionForProcess instance which assigns the cur-
rent user as a commission member for the current process instance. The query
of the condition ccra contains context functions $$currentUserID()$$ and $$cur-
rentProcessID()$$. The last one returns the identifier of the current process
instance.

The permissions to read received applications for this process instance and
permissions to read, create and modify the Commission report document are
assigned to the instance of the activity Create report (see Listing 8).

The appropriate CommissionForProcess instance will be inserted into con-
text data upon completion of the Form commission activity. After the condition
is inserted, it will not be changed until current process instance is completed,
when it will be deleted. Therefore we can assume that the both context condi-
tions are at least activity safe because their result is unchangeable during the
execution of the activity Create report.

/* dynamic user-role assignment */
CAIk

1 - activity instances of the k-th process instance

cai ∈ CAIk
1 ∧ cai = Create report

r ∈ R ∧ r.rn =Commission Member
ccr ∈ CC

ccr = QUERY {
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
PREFIX ep: <http://informatika.ftn.uns.ac.rs/cobac/

employ-prof-context.owl#>.
ASK ?X
WHERE { ?X rdf:type ep:CommissionForProcess.

?X ep:commissionMemberIs ?Y.
?Y ep:hasUID $$currentUserID()$$ }

}

966 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

roleCondAssign(r, ccr)

/* role-activity assignment */
ccra ∈ CC
ccra = QUERY {

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
PREFIX ep: <http://informatika.ftn.uns.ac.rs/cobac/employ-prof-context.owl#>.
ASK ?X
WHERE {?X rdf:type ep:CommissionForProcess.

?X ep:commissionMemberIs ?Y.
?Y ep:hasUID $$currentUserID()$$
?X ep:forProcess ?Z.
?Z ep:hasPID $$currentProcessID()$$ }

}
rciActivityAssign(r, cai, ccra)

/* activity-permission assignment */
doc1 ∈ Res ∧ doc1 = Job application (for the k-th process instance)
doc2 ∈ Res ∧ doc2 = Commission report (for the k-th process instance)
opr ∈ Op ∧ opr = read document
opc ∈ Op ∧ opc = create document
opm ∈ Op ∧ opm = modify document
p1r ∈ RP ∧ p1r = (doc1, opr)
p2r ∈ RP ∧ p2r = (doc2, opr)
p2c ∈ RP ∧ p2c = (doc2, opc)
p2m ∈ RP ∧ p2m = (doc2, opm)
ccp ∈ CC ∧ cc = σ
caiPermissionAssign(cai, p1r, ccp)
caiPermissionAssign(cai, p2r, ccp)
caiPermissionAssign(cai, p2c, ccp)
caiPermissionAssign(cai, p2m, ccp)

Listing 8. Access control policy for Requirement 2

Since this case study covers only one business process, the activity list in
the prototype application will contain only activity instances of the given process
which are allowed to be executed at the given time by the logged in user. The
activity list is created as presented in Section 4.2.

6. Conclusion

Beside standard features, the workflows access control should support task
level access control with possibility to assign different roles to users and dif-
ferent permissions to roles during process execution. In some cases, access
control policies should be defined on a process definition (task definition) level,
while in other cases they should be defined on a process instance (task in-
stance) level. Also, access control may depend on different context factors,
which may vary form process to process. In this paper we present the Context-
sensitive access control model for business processes (COBAC) that supports
these requirements.

The COBAC model is the RBAC-based model which is extended for use
in workflow-oriented business systems. Beside RBAC entities, we introduce the
following entities: business process, activities, context and resource categories.
Since the model is based on RBAC, all advantages of the RBAC model are used
in COBAC. By introducing the business process and activities entities it is pos-
sible to define access control policies for business processes more efficiently.

ComSIS Vol. 10, No. 3, June 2013 967

Goran Sladić, Branko Milosavljević and Zora Konjović

The context is used to handle access control requirements which depend on
factors from the system and from the system’s environment. The categoriza-
tion of the resources enables the definition of access control policies for whole
resource category, and thus, potentially, reduces the number of policies which
need to be defined.

The most notable features of the COBAC model are:

– It is based on the RBAC model which is extended with the concept of busi-
ness process and activity in order to bind certain access control segments
with activities instead of binding them with the current session, and thus
provide efficient definition of different policies and constraints in different
business systems. This ensures the independence of these segments from
the number of sessions in which activities are executed. Also the business
process and the activity provide a mechanism for the fine-grained control of
least privileges.

– The policies can be defined at the level of each specific process instance
(activity instance) and at the process (activity) definition level. The policies
defined at the process definition level will apply to all process instances.

– During the time/workflow execution, different roles can be assigned/
unassigned to a user and roles can have different permissions.

– The assignment relations in the COBAC model are extended with the
context-dependant condition and thus provide support for the
context-sensitive access control. Also, the notion of the role is extended
with the context information. The proposed context model is developed us-
ing ontologies.

– Resources in the COBAC model can be hierarchically organized thus low-
ering the number of policies that need to be defined.

The COBAC model is verified on a real workflow system based on the ex-
change of documents. The presented verification represents the proof of the
proposed model practical value.

Our experience in using the COBAC prototype in the case study presented
in Section 5 and for the judicial process presented in [23] showed that defin-
ing contexts using ontologies can be difficult for the most information security
officers due to lack of experience in the use of ontologies. Therefore research
on a DSL (domain specific language) for describing context in order to enable
easy context definition is in progress. The proposed COBAC model does not
consider the quality of the context information, like accuracy, reliability, etc. This
information can be very important for access control in certain cases. A further
direction in the development of the COBAC model includes the use of the con-
text quality in access control enforcement. Since there is a large number of in-
terorganizational business processes today, the distributed version of COBAC is
another further research direction. Also, we plan to investigate how policies can
be represented using XACML (eXtensible Access Control Markup Language)
and executed using XACML implementations.

968 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards a
better understanding of context and context-awareness. In: HUC ’99: Proceedings
of the 1st international symposium on Handheld and Ubiquitous Computing. pp.
304–307. Springer-Verlag, London, UK (1999)

2. Abowd, G.D., Mynatt, E.D., Rodden, T.: The human experience. IEEE Pervasive
Computing 1(1), 48–57 (2002)

3. Bao, Y., Song, J., Wang, D., Shen, D., Yu, G.: A role and context based access
control model with UML. In: International Conference for Young Computer Scientists.
vol. 0, pp. 1175–1180. IEEE Computer Society, Los Alamitos, CA, USA (2008)

4. Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based access control
model. ACM Trans. Inf. Syst. Secur. 4(3), 191–233 (2001)

5. Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC: a spatially aware
RBAC. In: SACMAT ’05: Proceedings of the tenth ACM symposium on Access con-
trol models and technologies. pp. 29–37. ACM, New York, NY, USA (2005)

6. Bhatti, R., Bertino, E., Ghafoor, A.: A trust-based context-aware access control
model for web-services. Distributed and Parallel Databases 18(1), 83–105 (2005)

7. Bhatti, R., Bertino, E., Ghafoor, A., Joshi, J.B.: XML-based specification for web
services document security. Computer 37(4), 41–49 (2004)

8. Botha, R.A., Eloff, J.H.P.: Access control in document-centric workflow systems –
an agent-based approach. Computers & Security 20(6), 525 – 532 (2001)

9. Buettcher, S., Clarke, C., Cormack, G.: Information Retrieval: Implementing and
Evaluating Search Engines. MIT Press (2010)

10. Cohen, H., Lefebvre, C.: Handbook of Categorization in Cognitive Science. Elsevier
(2005)

11. Corradi, A., Montanari, R., Tibaldi, D.: Context-based access control for ubiquitous
service provisioning. Proceedings of the 28th Annual International Computer Soft-
ware and Applications Conference (COMPSAC) 1, 444–451 (2004)

12. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.:
Securing context-aware applications using environment roles. In: Proceedings of
the 6th ACM Symposium on Access Control Models and Technologies (SACMAT).
pp. 10–20. ACM, New York, NY, USA (2001)

13. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A spatially aware
RBAC. ACM Trans. Inf. Syst. Secur. 10(1), 2 (2007)

14. Davenport, T.H., Short, J.E.: The new industrial engineering: Information technology
and business process redesign. Sloan Management Review 31(4), 11–27 (1990)

15. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7
(2001)

16. Emami, S.S., Amini, M., Zokaei, S.: A context-aware access control model for per-
vasive computing environments. Proceedings of the IEEE International Conference
on Intelligent Pervasive Computing (IPC) 0, 51–56 (2007)

17. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information and
System Security (TISSEC) 4(3), 224–274 (2001)

18. Filho, J.B., Martin, H.: Using context quality indicators for improving context-based
access control in pervasive environments. In: EUC ’08: Proceedings of the 2008
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing. pp.
285–290. IEEE Computer Society, Washington, DC, USA (2008)

ComSIS Vol. 10, No. 3, June 2013 969

Goran Sladić, Branko Milosavljević and Zora Konjović

19. de Freitas Bulcao Neto, R., da Graca Campos Pimentel, M.: Toward a domain-
independent semantic model for context-aware computing. In: Proceedings of the
3rd Latin American Web Congress (LA-WEB). pp. 61–70. IEEE Computer Society,
Washington, DC, USA (2005)

20. Frey, T., Gelhausen, M., Saake, G.: Categorization of concerns: a categorical pro-
gram comprehension model. In: Proceedings of the 3rd ACM SIGPLAN workshop
on Evaluation and usability of programming languages and tools. pp. 73–82. ACM,
New York, NY, USA (2011), http://doi.acm.org/10.1145/2089155.2089171

21. Gao, L., Zhang, L., Xu, L.: Access control scheme for workflow. In: ICCET ’09: Pro-
ceedings of the 2009 International Conference on Computer Engineering and Tech-
nology. pp. 215–217. IEEE Computer Society, Washington, DC, USA (2009)

22. Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible team-based ac-
cess control using contexts. In: SACMAT ’01: Proceedings of the sixth ACM sympo-
sium on Access control models and technologies. pp. 21–27. ACM, New York, NY,
USA (2001)

23. Gostojic, S., Sladic, G., Milosavljevic, B., Konjovic, Z.: Context-sensitive access con-
trol model for government services. Journal of Organizational Computing and Elec-
tronic Commerce 22(2), 184–213

24. Haibo, S., Fan, H.: A context-aware role-based access control model for web ser-
vices. Proceedings of the IEEE International Conference on e-Business Engineering
(ICEBE) 0, 220–223 (2005)

25. Han, W., Zhang, J., Yao, X.: Context-sensitive access control model and implemen-
tation. Proceedings of the 5th International Conference on Computer and Informa-
tion Technology (CIT) 0, 757–763 (2005)

26. Hollingsworth, D.: Workflow management coalition the workflow reference model.
Workflow Management Coalition, Technical Report, TCOO-1003 (1995)

27. Irwin, K., Yu, T., Winsborough, W.H.: Enforcing security properties in task-based
systems. In: SACMAT ’08: Proceedings of the 13th ACM symposium on Access
control models and technologies. pp. 41–50. ACM, New York, NY, USA (2008)

28. Jian-Min, Z., Xiao-Chun, L.: A modified model for flexible workflow access control.
In: International Symposium on Computational Intelligence and Design. pp. 279–
282. IEEE Computer Society (2011)

29. Kapsalisa, V., Hadellisb, L., Karelisb, D., Koubiasc, S.: A dynamic context-aware
access control architecture for e-services. Computers & Security 25(7), 507–521
(2006)

30. Koufi, V., Malamateniou, F., Mytilinaiou, E., Vassilacopoulos, G.: An event-based,
role-based authorization model for healthcare workflow systems. In: Szomszor, M.,
Kostkova, P. (eds.) Electronic Healthcare, Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering, vol. 69,
pp. 221–228. Springer (2012)

31. Latif, U., Joshi, J.B.D., Bertino, E., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Trans. on Knowl. and Data Eng. 17(1), 4–23 (2005)

32. Leitner, M., Rinderle-Ma, S., Mangle, r.: Aw-rbac: Access control in adaptive work-
flow systems. In: International Conference on Availability, Reliability and Security.
pp. 27–34. IEEE Computer Societ (2011)

33. Liscano, R., Wang, K.: A context-based delegation access control model for per-
vasive computing. In: AINAW ’07: Proceedings of the 21st International Conference
on Advanced Information Networking and Applications Workshops. pp. 44–51. IEEE
Computer Society, Washington, DC, USA (2007)

970 ComSIS Vol. 10, No. 3, June 2013

Context-sensitive Access Control Model for Business Processes

34. Ma, C.h., Lu, G.d., Qiu, J.: An authorization model for collaborative access control.
Journal of Zhejiang University SCIENCE C (Comput & Electron) 11(9), 699–717
(2010)

35. Oh, S., Park, S.: Task-role-based access control model. Information Systems 28(6),
533–562 (2003)

36. Papagiannakopoulou, E., Koukovini, M., Lioudakis, G., Garcia-Alfaro, J., Kaklamani,
D., Venieris, I.: A contextual privacy-aware access control model for network moni-
toring workflows: Work in progress. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) Foun-
dations and Practice of Security, Lecture Notes in Computer Science, vol. 6888, pp.
208–217. Springer Berlin / Heidelberg (2012)

37. Pigeot, C.E., Gripay, Y., Scuturici, M., Pierson, J.M.: Context-sensitive security
framework for pervasive environments. In: ECUMN ’07: Proceedings of the Fourth
European Conference on Universal Multiservice Networks. pp. 391–400. IEEE
Computer Society, Washington, DC, USA (2007)

38. Russello, G., Dong, C., Dulay, N.: A workflow-based access control framework for
e-health applications. In: AINAW ’08: Proceedings of the 22nd International Con-
ference on Advanced Information Networking and Applications - Workshops. pp.
111–120. IEEE Computer Society, Washington, DC, USA (2008)

39. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Proc of
IEEE Workshop on Mobile Computing Systems and Applications. pp. 85–91. IEEE
Computer Society, Washington, DC, USA (1994)

40. Shafiq, B., Samuel, A., Ghafoor, H.: A GTRBAC based system for dynamic workflow
composition and management. In: Proceedings of the 8th IEEE International Sym-
posium on Object-Oriented Real-Time Distributed Computing (ISORC). pp. 284–
290. IEEE Computer Society, Los Alamitos, CA, USA (2005)

41. Shang, C., Yang, Z., Liu, Q., Zhao, C.: A context based dynamic access control
model for web service. In: International Conference on Embedded and Ubiquitous
Computing, IEEE/IFIP. vol. 2, pp. 339–343. IEEE Computer Society, Los Alamitos,
CA, USA (2008)

42. Sladić, G., Milosavljević, B., , Surla, D., Konjović, Z.: Flexible access control frame-
work for MARC records. The Electronic Library 30(5), 623–652 (2012)

43. Sladić, G., Milosavljević, B., Konjović, Z., Vidaković, M.: Access control framework
for XML document collections. Computer Science and Information Systems (Com-
SIS) 8(3), 591–609 (2011)

44. Soergel, D.: Organizing Information: Principles of Data Base and Retrieval Systems.
Academic Press Professional, Inc., San Diego, CA, USA (1985)

45. Sun, Y., Pan, P.: PRES: a practical flexible RBAC workflow system. In: ICEC ’05:
Proceedings of the 7th international conference on Electronic commerce. pp. 653–
658. ACM, New York, NY, USA (2005)

46. Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (TBAC): A family
of models for active and enterprise-oriented autorization management. In: Proceed-
ings of the IFIP TC11 WG11.3 11th International Conference on Database Securty
XI. pp. 166–181. Chapman & Hall, Ltd., London, UK, UK (1998)

47. Tripathi, A.R., Kulkarni, D., Ahmed, T.: A specification model for context-based col-
laborative applications. Pervasive Mob. Comput. 1(1), 21–42 (2005)

48. Truong, K.N., Abowd, G.D., , Brotherton, J.A.: Who, what, when, where, how: Design
issues of capture & access applications. In: Ubicomp 2001: Ubiquitous Computing.
pp. 209–224. Springer-Verlag, New York, NY, USA (2001)

49. W3C: Web Ontology Language (OWL). W3C Recommendation (2004),
http://www.w3.org/TR/owl-features/

ComSIS Vol. 10, No. 3, June 2013 971

Goran Sladić, Branko Milosavljević and Zora Konjović

50. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model incor-
porating controlled overriding of constraints. International Journal of Cooperative
Information Systems 12(4), 455–485 (2003)

51. Wang, B., Zhang, S.: An organization and task based access control model for work-
flow system. In: Advances in Web and Network Technologies, and Information Man-
agement. pp. 485–490. SpringerLink, Berlin, DE (2007)

52. Xu, W., Wei, J., Liu, Y., Li, J.: SOWAC: A service-oriented workflow access con-
trol model. In: COMPSAC ’04: Proceedings of the 28th Annual International Com-
puter Software and Applications Conference. pp. 128–134. IEEE Computer Society,
Washington, DC, USA (2004)

53. Yao, L., Kong, X., Xu, Z.: A task-role based access control model with multi-
constraints. In: NCM ’08: Proceedings of the 2008 Fourth International Conference
on Networked Computing and Advanced Information Management. pp. 137–143.
IEEE Computer Society, Washington, DC, USA (2008)

54. Zhang, L., Luo, L., Zhang, L., Geng, T., Yue, Z.: Task-role-based access control in
application on MIS. In: Proceedings of the 2006 IEEE Asia-Pacific Conference on
Services Computing (APSCC). pp. 153–159. IEEE Computer Society, Washington,
DC, USA (2006)

55. Zhang, W., Zhang, K.: A role-based workflow access control model. In: ETCS ’09:
Proceedings of the 2009 First International Workshop on Education Technology and
Computer Science. pp. 1136–1139. IEEE Computer Society, Washington, DC, USA
(2009)

56. Zhao, H., Fang, Z., Xu, P., Zhao, L., Liu, J., Wang, T.: An improved role-based work-
flow access control model. Information Technology: New Generations, Third Inter-
national Conference on 0, 551–556 (2008)

Goran Sladić is holding the assistant professor position at the Faculty of Tech-
nical Sciences, Novi Sad, Serbia since 2011. Mr. Sladić received his Bachelor
degree (2002), Master degree (2006) and and PhD degree (2011) all in Com-
puter Science from the University of Novi Sad, Faculty of Technical Sciences.
Since 2002 he is with the Faculty of Technical Science in Novi Sad. His re-
search interests include access control, document management systems, XML
technologies, context-aware computing and workflow systems.

Branko Milosavljević is holding the associate professor position at the Faculty
of Technical Sciences, Novi Sad, Serbia since 2008. Mr. Milosavljević received
his Bachelor degree (1997), Master degree (1999), and PhD degree (2003)
all in Computer Science from the University of Novi Sad, Faculty of Technical
Sciences. Since 1998 he is with the Faculty of Technical Science in Novi Sad.

Zora Konjović is holding the full professor position at the Faculty of Technical
Sciences, Novi Sad, Serbia since 2003. Mrs. Konjović received her Bachelor de-
gree in Mathematics from the University of Novi Sad, Faculty Science in 1973,
Master degree (1985) and Ph. D. degree (1992) both in Robotics from the Uni-
versity of Novi Sad, Faculty of Technical Sciences. Since 1973 till 1980 she was
with the Faculty of Science in Novi Sad, and since 1980 she is with the Faculty
of Technical Sciences, University of Novi Sad.

Received: September 7, 2011; Accepted: April 11, 2013.

972 ComSIS Vol. 10, No. 3, June 2013

