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Abstract. This work addresses the problem of relaxing spatial constraints
for pictorial queries having null answers in geographical databases. It fo-
cuses on the polygon-polyline topological relationship and proposes a
computational model which is based on the notions of Operator Concep-
tual Neighborhood (OCN) graph and the relative 16-intersection matrix.
The former is addressed to represent the conceptual topological neigh-
borhood between pairs of Symbolic Graphical Objects and indicates how
spatial constraints can be relaxed. The nodes of the OCN graph are la-
beled with geo-operators that have been formalized and their semantics
has been enriched in order to capture user query details. The latter is a 16-
intersection matrix which provides additional information about the query
with respect to the well-known 9-intersection matrix proposed in the liter-
ature. It has been conceived to identify, among the approximate answers,
the one closer to the user needs. In particular, it allows us to quantify the
difference among the user query and the configurations corresponding to
the proposed approximate answers on the basis of the OCN graph. The
main characteristics of our approach are highlighted through some query
examples.

Keywords: pictorial query languages, topological constraints, conceptual
neighborhood graph, constraint relaxation, intersection matrix.

1. Introduction

In the spatial domain, qualitative reasoning models are the most widely used
approach to represent commonsense reasoning [16]. Qualitative spatial rea-
soning research areas deal with the development of tools and techniques for
reasoning with non-metrical and incompletely specified spatial knowledge [4].
In this context, most studies focused on fundamental aspects of space such
as topology, orientation, size, and shape. These topics have been extensively
investigated since more than one decade both at mathematical level [5] [7] [10]
[43] and within Geographic Information Systems (GIS) [28] [31] [32] [38]. The
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remarkable amount of studies in these directions aimed at including qualitative
reasoning methods in standard GISs in order to overcome the key limitations
of these systems to be entirely based on numerical methods [4] [29]. Indeed,
numerical approaches for representing and reasoning on spatial information
are ineffective to process imprecise or uncertain data [46]. For this reason, ad-
vanced GISs must provide an effective and accessible query system to appro-
priately capture a user’s desired search criteria and a user’s mental model of
the query [19] [20] [21]. Specifically, the user’s mental model of the query is the
user’s perception regarding the semantics of the query in his/her mind.

In general, geographic queries can be better expressed by using graphical
metaphors in query languages which are powerful to express the user’s mental
model of the query [34]. In the field of spatial databases many authors studied
the way to formulate queries using graphical configurations, for instance [2]
[21] [35] [40]. In particular, in [21] and [22] the authors proposed a pictorial
query language, called Geographical Pictorial Query Language (GeoPQL) to
address the user’s mental model of the query. They defined a set of Symbolic
Graphical Objects (SGOs) to graphically represent the spatial configurations of
geographic entities (i.e., point, polyline, and polygon), the spatial relationships
between pairs of SGOs, as well as the spatial operators based on an Object-
Calculus.

In the case of null answers to queries do not matching with the content of the
database, often in the literature approximate answers are proposed to the user
by relaxing query constraints. In this paper we focus on techniques of qualitative
reasoning. Accordingly, the purpose of this work is the definition of an approach
that allows the user to solve queries with null answers, and supports him/her in
the selection of the spatial constraints to be relaxed or maintained.

In this paper, we refer to GeoPQL and we focus on the topological re-
lationship between a polygon and a polyline (the cases of polyline-polyline
and polygon-polygon will be investigated in a future work). First of all, with
respect to previous works of the authors, in this paper, we revise and formal-
ize the GeoPQL geo-operators. Then, we introduce the Operator Conceptual
Neighborhood (OCN) graph and the relative 16-intersection matrix. The former,
whose nodes are labeled with geo-operators, is addressed to represent the
conceptual topological neighborhood between pairs of SGOs and is used for
relaxing constraints. Specifically, in order to obtain approximate answers, it indi-
cates how the pictorial query can be modified through the transition from a given
topological relationship to the adjacent thereof. The latter is a 16-intersection
matrix which provides additional information about query details with respect to
the well-known 9-intersection matrix proposed in the literature [10].

With respect to the well-known matrices proposed in the literature, where for
each cell only null or non-null intersections are given, our approach provides,
for a given topological relationship, the number of connected components that
are in the intersection between the SGOs. Our 16-intersection matrix allows us
to quantify the difference among the user query and the configurations corre-

1054 ComSIS Vol. 10, No. 3, June 2013



Constraint Relaxation of the Polygon-Polyline Topological Relation

sponding to the approximate answers proposed to the user on the basis of the
OCN graph.

As illustrated in the Related Work, Discussion and Conclusion Sections, the
benefits and the contributions of this work with respect to other approaches
(including previous proposals of the authors) are manyfold: (i) it allows us to
capture query details that the 9-intersection matrix proposed by Egenhofer is
not able to specify; (ii) it provides a framework where both the geo-operators
and the 16-intersection matrix have been formalized; (iii) it reduces the compu-
tational costs. In fact, with respect to the 9-intersection matrices proposed by
[8] [9], our 16-intersection matrix allows us to reduce the number of elements
to be evaluated from 27 to 10.

The paper is structured as follows. In Section 2, the GeoPQL operators are
revised and formalized, and the notion of OCN graph is given. In Section 3,
the 16-intersection matrix is formally defined. Successively, some examples are
provided in order to show our proposal. In Section 4, we describe how approx-
imate answers can be computed. In Section 5 the related work follows, which
also contains a subsection devoted to the comparison of our 16-intersection
matrix with other intersection matrices proposed in the literature. Finally in Sec-
tion 6 the discussion and conclusion are given.

2. GeoPQL operators and OCN Graph

In this paper, among the possible geographical pictorial languages proposed in
the literature, we focus on GeoPQL [21] [22]. We start by recalling the notion of
Symbolic Geographical Objects (SGOs) which has been introduced in [21].

Definition 1. [SGO]. Given a Geographic Information System, a Symbolic Ge-
ographical Object (SGO) is a 5-tuple ψ = ⟨id,geometric type,objclass, Σ,Λ⟩
where:

– id is the SGO identifier assigned by the system to uniquely identify the SGO
in a query;

– geometric type can be a point, a polyline or a polygon;
– objclass is the geographical concept name belonging to the database schema

and iconized by the SGO, identifying a geographical class (set of instances)
of the database;

– Σ represents the set of typed attributes of the SGO which can be associated
with a set of values by the user;

– Λ is an ordered set of pairs of coordinates, which defines the spatial extent,
and position of the SGO with respect to the coordinate reference system of
the working area.

The GeoPQL algebra consists of 12 binary geo-operators, which are logical
(Geo-union (UNI), Geo-any (ANY), Geo-alias (ALS)), metrical (Geo-difference
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(DIF), and Geo-distance (DIS)), and topological (Geo-disjunction (DSJ), Geo-
touching (TCH), Geo-inclusion (INC)1, Geo-crossing (CRS), Geo-pass-through
(PTH), Geo-overlapping (OVL), Geo-equality (EQL)). Our focus is on the polygon-
polyline relation, therefore in this paper we will consider a subset of the topolog-
ical operators, namely, disjoint (DSJ), inclusion (INC), touch (TCH), and pass
through (PTH). Indeed, the remaining operators are not considered because
in the case of the polygon-polyline relation they are not applicable (see for in-
stance CRS which is defined between two polylines, OVL which is defined be-
tween two polygons, or EQL which is defined for two polylines or two polygons).

The formal semantics of the above mentioned operators is formally given
in the Definition 2 below. Before introducing it, we present the notation we use
in our approach, which differs from the one usually adopted in the literature as
explained below.

Given a polygon P and a polyline L, in our approach, Pi, Pbp , Pbl , Pe denote
the interior, single boundary points, boundary lines and exterior of the polygon
P, respectively, and Lip , Lil , Lb, Le, denote single interior points, interior lines,
boundary points (or end points) and exterior of the polyline L.

With respect to the existing proposals, where there is no distinction between
isolated single boundary points and boundary lines of a polygon, and between
isolated single interior points and interior lines of a polyline, in our approach the
different notations, namely Pbp , Pbl for a polygon, and Lip , Lil for a polyline, are
respectively introduced. They allow us to distinguish different configurations,
as for instance the ones shown in Figure 1, where the intersection between
a polygon and a polyline consists of one isolated point, case (a), or a line,
case (b). These configurations correspond to two different pictorial queries that
the user can draw to represent the TCH geo-operator but they have different
computational models, as we will see in the next section.

(a)                                                         (b)

Fig. 1. Boundary point vs boundary line intersections

For the sake of simplicity, in the rest of this paper we will consider the
geometric type component of a SGO. In particular, due to the focus of our pa-
per, we will concentrate on the polygon and polyline geometric types.

1 Note that in our approach the operators cover and covered-by, extensively used in the
literature, can be represented by using the INC geo-operator.
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Definition 2. [Geo-operators]. Let SGO be the set of all possible SGOs. Given
a polygon P, and a polyline L both in SGO, the binary geo-operations DSJ, INC,
TCH, and PTH are formally defined as follows, where k ∈ {i,bp,bl,e}, and j ∈
{ip,il,b,e}:

– DSJ (geo-disjunction):
Pk DSJ Lj iff Pk ∩ Lj = ∅ j, k ̸= e

– INC (geo-inclusion):
Pk INC Lj iff Pk ∩ Lj= Lj , j, k ̸= e

– TCH (geo-touching):
assume S = Lj ∩ Pk ̸= ∅ where j ̸= e and k = bl, bp. Pk TCH Lj iff ∀ x ∈
S, and ∀ I(x), where I(x) is a neighborhood of x, only one of the following
holds:
I(x) ∩ Lj ∩ Pe = ∅ or I(x) ∩ Lj ∩ Pi = ∅.

– PTH (geo-pass-through):
Pk PTH Lj iff Pk ∩ Lil ̸= ∅, k = i, e.

According to the definition above, for instance, both the configurations given
in Figure 1 correspond to the TCH operator, where in the case (a) one single
interior point of the polyline is in common to the boundary of the polygon, and
in case (b) one interior line of the polyline is in common to the boundary of
the polygon. Note that, in the case (b) we assume that the number of isolated
single points which are in common between the boundary of the polygon and
the polyline is zero.

In the following, we address the notion of deformation in line with [12]. It is
a unary operation consisting of one among movement, rotation, size or shape
modifications. Indeed, in this paper we prefer to use the term modification rather
than deformation because the latter, in our opinion, is more appropriate to de-
scribe only the size and shape modifications. Furthermore, we assume that the
size modification of a polygon/polyline has upper and lower bounds in order
to guarantee that the polygon/polyline remains invariant and neither coincides
with or subsumes the entire embedding space, i.e., R2/R1, nor collapses to a
point.

The notion of modification allows us to introduce below the definition of Op-
erator Conceptual Neighborhood graph for topological relations, whose ratio-
nale is the same underlying the conceptual neighborhood graph defined in [12].

Definition 3. [OCN graph]. Given two SGOs, the related Operator Conceptual
Neighborhood (OCN) graph is a graph where nodes represent one (or more)
geo-operator(s), and an arc directly connects two nodes if and only if it is pos-
sible to obtain one (or more) geo-operator(s) from the other(s) by applying one
modification operation.

In essence, two nodes are adjacent if and only if the operations they de-
note can be transformed into one another by continuously modifying the related
SGOs [12]. The OCN graph related to the polygon-polyline topological relation
is shown in Figure 2. Note that in our approach any pictorial query expressed
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by the user, involving one polygon and one polyline, will be associated with one
of the OCN graph nodes.

DSJTCHOVLTCH+OVLTCH+INCINCEQ

DSJ

TCH

PTH TCH+PTH

TCH+INC

INC

Fig. 2. OCN Graph of the polygon-polyline relation

Now we give a brief description about the rationale underlying the OCN
graph shown in Figure 2. From the DSJ node it is possible to transit only to the
TCH node. Depending on the configuration of the polyline, we have 11 possi-
ble basic situations (see Figure 3) classified according to three main groups on
the basis of the following elements of the polyline which are in common to the
boundary of the polygon.

Group I - There is no boundary point of the polyline in common to the boundary
of the polygon. The boundary of the polygon contains:

– one single internal point of the polyline (3-(a));
– one internal segment of the polyline (3-(b)).

Group II - There is one boundary point of the polyline in common to the bound-
ary of the polygon. The boundary of the polygon contains:

– one boundary point of the polyline (3-(c));
– one internal segment including one boundary point of the polyline (3-(d));
– one internal segment and one boundary point of the polyline (3-(e));
– one single internal point and one boundary point of the polyline (3-(f)).

Group III - Both boundary points of the polyline are in common to the boundary
of the polygon. The boundary of the polygon contains:
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– both the polyline boundary points (3-(g));
– one internal segment including one boundary point of the polyline, and the

other polyline boundary point (3-(h));
– one internal segment of the polyline and both the polyline boundary points

(3-(i));
– the entire polyline (3-(j))
– one single internal point of the polyline and both the polyline boundary

points (3-(k)).

Due to space limitations, the details about the transitions among the remain-
ing nodes of the OCN graph are skipped.

3. Polygon-Polyline computational model

In this section we introduce the 16-intersection calculi matrix (16-intersection
matrix for short) which is on the basis of our approach. The 16-intersection ma-
trix differs from the classical 9-intersection matrix for two main reasons. First, it
extends the 9-intersection matrix by introducing the distinction between isolated
single boundary points (Pbp) and boundary lines (Pbl ) of the polygon, as well
as the distinction between isolated single interior points (Lip ) and interior lines
(Lil ) of the polyline. Second, each cell in the matrix contains a number providing
additional information with respect to the 9-intersection matrix, corresponding
to the number of connected components that are in the intersection between
the pair of SGOs. Below, the formal definition of the 16-intersection matrix is
given.

Definition 4. [16-intersection matrix]. Given a polygon P ∈ SGO, and a poly-
line L ∈ SGO, the 16-intersection matrix is defined as follows:


Pi Pbp Pbl Pe

Lip − 0 . . . n − −
Lil 0 . . . n − 0 . . . n 0 . . . n
Lb 0, 1, 2 0, 1, 2 − 0, 1, 2
Le 1 . . . n − 1 . . . n 1 . . . n


where each element (Lj ,Pk), j ∈ {ip, il, b, e} and k ∈ {i, bp, bl, e} is defined as
follows:

(Lj ,Pk) =

 | I | (j = ip, k = bp), (j = b, k ̸= bl)
| C | (j = e, il, k ̸= bp)
− incomparable

and:
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from DSJ                                                               to TCH

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(i)

(j)

(k)

(h)

Fig. 3. Transition from DSJ to TCH
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– I is the set of isolated single points in Lj ∩ Pk;
– C is the set of connected components in Lj ∩ Pk.

Note that, since the end points of a polyline are two, in any 16-intersection
matrix the sum of the numbers in the third row is always equal to two.

For instance, the element (Le,Pi) of the matrix above denotes the number
of connected components (polygons) contained in the intersection between the
internal points of the polygon and the external points of the polyline. Similarly,
the element (Lip ,Pbp) denotes the number of isolated single points contained in
the intersection between single interior points of the polyline and single bound-
ary points of the polygon.

In six cases the elements of the matrix are incomparable. In fact, in three
cases, namely (Lip ,Pbl), (Lil ,Pbp), (Lb,Pbl), the comparison is performed be-
tween isolated single points and lines, and in the other three cases, namely
(Lip ,Pi), (Lip ,Pe), (Le,Pbp), the comparison is between isolated single points
and portions of the R2 space.

In order to further clarify the issue, in the following subsection a query ex-
ample is shown.

3.1. Query Example

Let us consider the following user mental model of a query, for short here re-
ferred to as q:

Find all the regions that are passed through by a river.

Fig. 4. A pictorial query representing q

This mental model of the query, which involves the PTH operator, can be spec-
ified in GeoPQL by using different pictorial representations. For instance, the
one shown in Figure 4 is a possible pictorial query of q. The 16-intersection
matrix corresponding to the configuration given in Figure 4 is the following:

(m1)


Pi Pbp Pbl Pe

Lip − 6 − −
Lil 3 − 0 4
Lb 0 0 − 2
Le 4 − 6 3


In fact, we have:
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– six points which are single boundary points of the polygon and single interior
points of the polyline (element (Lip ,Pbp) of the matrix, see Figure 5-(a));

– three connected components (polylines) which belong to the polyline and
interior of the polygon (element (Lil ,Pi) of the matrix, see Figure 5-(b));

– four connected components (polylines) which belong to the polyline and the
exterior of the polygon (element (Lil ,Pe) of the matrix, see Figure 5-(c));

– two boundary points of the polyline which are exterior points of the polygon
(element (Lb,Pe) of the matrix, see Figure 5-(d));

– four connected components (polygons) that are internal to the polygon and
external to the polyline (element (Le,Pi) of the matrix, see Figure 5-(e));

– six connected components (polylines) that are external to the polyline and
are the boundary lines of the polygon (element (Le,Pbl) of the matrix, see
Figure 5-(f));

– three connected components (polygons) that are external to the polygon
and external to the polyline (element (Le,Pe) of the matrix, see Figure 5-
(g)).

A simpler pictorial representation of q is, for instance, shown in Figure 6.
Indeed q can be represented in an equivalent way by one of the two picto-
rial queries shown in Figures 4 and 6 representing the PTH operator, but the
corresponding 16-intersection matrices are different. The 16-intersection matrix
corresponding to the simpler pictorial query of Figure 6 is shown below:

(m2)


Pi Pbp Pbl Pe

Lip − 1 − −
Lil 1 − 0 1
Lb 1 0 − 1
Le 1 − 1 1


In the next section this matrix will be used to show an example clarifying how

it can be employed in the case the user query has a null answer. In particular, we
will see how it allows us to determine, if there exists, a satisfactory approximate
answer to the user needs.

Figure 7 illustrates the pictorial formulation of the query, shown in Figure 6
in the GeoPQL working area, on the geographical database of Italy. This query
then is translated and visualized to the user in an eXtended SQL language,
called XSQL [21]. Note that during the drawing phase which involves modifi-
cations, deletions and shift of the pictorial representation, the textual query is
continuously updated. The query is translated into ArcViewr [17] and executed
on ArcMapr (the geographical database of ArcViewr) [18]. Figure 8 shows the
highlighted regions which are the answer to the query. As we can see the pic-
torial query is translated to XSQL and shown in the top-left working area. Note
that in the implemented system, all ArcViewr basic browsing and drawing func-
tions are integrated with the pictorial functions developed in GeoPQL. These
functionalities facilitate the visual analysis and geo-processing of the query in
the system.

1062 ComSIS Vol. 10, No. 3, June 2013



Constraint Relaxation of the Polygon-Polyline Topological Relation

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

(a)

(b)

1
2

3
4

5

6

1

2

3

(c)

(d)

(e)

(f)

(g)

1

2

3
4

1

2

x
x
x
x

x
x

x
x
x

x
x

x

x
x
x
x

x
x

xxxxxxxxxxxxxxxxxxxxxx
x
x
x
x

1

2

3

4

5

6

1
2

3

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

1

2

3

4

Fig. 5. Graphical representation of the elements of the matrix m1
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Fig. 6. A simpler pictorial representation of q

Fig. 7. Pictorial formulation of query q

Fig. 8. Visual representation of the query results
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4. Computation of approximate answers

Consider again the user query q of the previous subsection. Suppose the user
draws the simpler pictorial query shown in Figure 6 and that there is no answer
in the database to this query. In our approach, in order to provide an answer,
we identify the possible configurations that can approximate the user query,
according to the semantics of the geo-operators given in Definition 2, and the
OCN graph of Figure 2. Successively, we compute the 16-intersection matrices
of the configurations corresponding to the user query and the possible identified
approximations. Each identified matrix is compared with that corresponding to
the user query and one, among the identified matrices, is selected on the basis
of the less number of different cells’ contents. For instance, in this example four
possible approximations of the user query are identified, which are shown in
Figure 9. They are obtained by continuously modifying the polygon or the poly-
line represented in Figure 6 by applying one unary operation among movement,
rotation, size or shape modifications, as already mentioned in Section 2. The
pictorial query drawn in Figure 9-(a) corresponds to the TCH+PTH node, both
the pictorial queries given in Figure 9-(b) and Figure 9-(c) correspond to the
TCH node, whereas the one shown in (d) corresponds to the TCH+INC node.

In the following, the 16-intersection matrices (i), (ii), (iii), and (iv) correspond-
ing to the pictorial representations (a), (b), (c), and (d) of Figure 9 are given,
respectively.

(i)


Pi Pbp Pbl Pe

Lip − 1 − −
Lil 1 − 0 1
Lb 0 1 − 1
Le 2 − 2 1



(ii)


Pi Pbp Pbl Pe

Lip − 0 − −
Lil 0 − 0 1
Lb 0 1 − 1
Le 1 − 1 1



(iii)


Pi Pbp Pbl Pe

Lip − 0 − −
Lil 0 − 1 1
Lb 0 1 − 1
Le 1 − 1 1



(iv)


Pi Pbp Pbl Pe

Lip − 0 − −
Lil 1 − 0 0
Lb 1 1 − 0
Le 1 − 1 1
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 (a)                                        (b)  

  (c)                                         (d)

Fig. 9. Possible approximations of the query q

In order to select, among the four configurations given in Figure 9, the one
that better approximates the user query q, the matrices (i), (ii), (iii), and (iv) are
compared with the matrix m2 (see Subsection 3.1). Given a matrix j, j = i,ii,iii,iv,
∆(m2, j), denotes the number of cells with different contents between m2 and
j. For instance, in the case j = i, ∆(m2, i) = 4 because the matrices differ for
4 elements, which are (Lb,Pi), (Lb,Pbp ), (Le,Pi), and (Le,Pbl ). Note that in
the case of the matrix m2, the first two elements are, respectively, 1 (because
only one boundary point of the polyline is an interior point of polygon), and 0
(because there is no boundary point of the polyline that belongs to the boundary
points of the polygon), while in the matrix (i) they are 0, and 1. In the last row
of the matrix (i), the first two elements are increased by 1 with respect to the
matrix m2.
Similarly, we obtain the following results by comparing the matrix m2 with the
matrices (ii), (iii) and (iv), respectively:

∆(m2, ii)=4
∆(m2, iii)=5
∆(m2, iv)=4

The user can choose indifferently among the configurations corresponding to
the minimal values, in this case ∆(m2, i)=∆(m2, ii)=∆(m2, iv)=4, which corre-
sponds to one among the configurations shown in Figure 9-(a), 9-(b), and 9-(d),
respectively. Finally, if the answers to these configurations are still null, the fur-
ther configuration shown in Figure 9-(c) can be chosen.

5. Related Work

In the last few years, a number of proposals focused on the problems regarding
the topological relations between SGOs. Some papers study the conceptual
neighborhood of topological relations between polylines [41] or the evaluation of

1066 ComSIS Vol. 10, No. 3, June 2013



Constraint Relaxation of the Polygon-Polyline Topological Relation

semantic similarity between concepts [23] [27] [45], which is widely addressed
in the context of the Semantic Web [11] [24] [25] [26]. Similarly, other proposals
discuss conceptual neighborhoods [12], qualitative spatial reasoning [1] [46],
models [36] [37] [49], metric refinements [13].

Some authors address the topic from the ontological [47], the user interface
and human interaction points of view [22] [36] [44], as well as the general theory
of geographical representation in GISs [30]. Similarly, other authors discuss
the integrity constraint problem in spatial databases [48]. With regard to the
operators and algebras for geographical data, in [22] the authors introduce the
oriented polylines and extend the set of operators proposed in [19] [20] [21]
[29]. In [42] the authors discuss the extension of GeoPQL to the cardinal and
positional operators, as well as the OLAP operators.

With regard to binary topological relations the 4-Intersection, and 9-Intersection
models [10] have been proposed, and a comparison between them has been
made [15]. Regarding the 9-intersection model, the definition of binary topolog-
ical relationships based on the interior (A◦), boundary (∂A), and exterior (A−)
of a 2-dimensional point set embedded in R2 have been introduced [14].

Concerning the topological relationships between geographical features, there
is a number of different proposals in the literature, see for instance [3] [6] [8]
[9] [12] [14] [37]. For instance, in [3] the authors refer to the calculus-based
method and investigate 17 relationships between polyline-polygon relations in
which some configurations, such as the relationship between a polyline entirely
lying on the boundary of the polygon, are not considered. In [37] the authors
present an extended model for describing topological relations between sets
(objects) in GISs and they focus on two polygons. However, they do not con-
sider the relationships between polygons and polylines, such as the cases in
which a polyline partially or totally overlap the boundary of the polygon. In this
paper, we analyze the aforementioned cases, and enrich the semantics of the
geo-operators involved in such configurations in order to capture these details.

In [6] the authors focus on six kinds of topological relations between a poly-
line and a polygon, and illustrate a hierarchical representation of these rela-
tions. They propose sixteen polyline-polygon topological relations as well as
a conceptual neighborhood graph defined at two levels, basic and compos-
ite. The basic relations are further classified at coarse and detailed levels. The
composite relations are classified according to three levels which are set, ele-
ment, and integrated level. At each level, topological invariants are developed
based on the intersection between the polyline and polygon boundaries. How-
ever, the formalization of topological operators and their possible combinations
are not delineated. In our work, we formalize the geo-operators and investigate
the combination of topological relationships, and we define the OCN graph on
the basis of the conceptual neighborhood of such relations, as well.

In [8] [9], starting from the Geographical Pictorial Query Language pro-
posed in [21], a preliminary study regarding constraint relaxation in the case of
queries which produce null answers is proposed. The comparison among the
intersection matrices proposed in the aforementioned papers, the well-known
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9-intersection matrix of Egenhofer, and our 16-intersection matrix will be exten-
sively described and discussed in the next subsection.

5.1. Comparison with the other existing matrices

In this subsection the 16-intersection matrix proposed in this paper will be com-
pared with two different kinds of intersection matrices proposed in the litera-
ture. They are the 9-intersection matrix proposed by Egenhofer [10], and the
9-intersection matrices proposed in [8] [9]. In order to better clarify the issue,
consider Figures 1(a) and 1(b) in Section 2. Recall that Pi, Pb, and Pe, indicate
the internal, boundary and external points of the polygon P, and Li, Lb, and Le

denote the internal, boundary and external points of the polyline L, respectively.
In the cases of Figures 1(a) and 1(b), the 9-intersection matrices proposed by
Egenhofer both coincide, and are defined by the following matrix:


Pi Pb Pe

Li ∅ ¬∅ ¬∅
Lb ∅ ∅ ¬∅
Le ¬∅ ¬∅ ¬∅


Indeed, with this matrix, there is no way to distinguish, for instance, that the

intersections between the internal points of the polyline and the boundary points
of the polygon are one isolated single point in the case of Figure 1(a), and one
polyline in the case of Figure 1(b) (the element (Li, Pb) is just non-empty).

Let us consider now the proposal defined in [8] [9]. In the mentioned papers,
given a topological relationship, three 9-intersection matrices, here referred to
as 3×9-intersection matrices, are defined, corresponding to point, polyline, and
polygon intersections. These matrices necessarily require to compute 27 ele-
ments. For instance, in the case of Figure 1(a), we have the following 3×9-
intersection matrices:


Pi Pb Pe

Li 0 1 ∞
Lb 0 0 2
Le ∞ ∞ ∞




Pi Pb Pe

Li 0 0 2
Lb 0 0 0
Le ∞ 1 ∞




Pi Pb Pe

Li 0 0 0
Lb 0 0 0
Le 1 0 1


where, for instance, the element (Li, Pb) of the first matrix is set to 1 because
the intersection between the internal points of the polyline and the boundary
points of the polygon is formed by one single point. The same element in the
remaining matrices is set to 0 because this intersection does not contain either
polylines or polygons, respectively. This does not hold for the 3×9-intersection
matrices corresponding to Figure 1(b), which are given below:
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Pi Pb Pe

Li 0 ∞ ∞
Lb 0 0 2
Le ∞ ∞ ∞




Pi Pb Pe

Li 0 1 2
Lb 0 0 0
Le ∞ 1 ∞




Pi Pb Pe

Li 0 0 0
Lb 0 0 0
Le 1 0 1



In fact, in this case, the element (Li, Pb) of the first matrix is set to infinite
because this is the cardinality of the intersection between the internal points
of the polyline and the boundary points of the polygon. The same element is
set to 1 in the second matrix, meaning that such an intersection contains one
polyline, and 0 in the third matrix because this intersection does not contain any
polygon.

Let us analyze the 16-intersection matrix proposed in our work. In the case
of the configuration of Figure 1(a), the 16-intersection matrix is the following:


Pi Pbp Pbl Pe

Lip − 1 − −
Lil 0 − 0 2
Lb 0 0 − 2
Le 1 − 1 1


whereas, in the case of Figure 1(b) it is:


Pi Pbp Pbl Pe

Lip − 0 − −
Lil 0 − 1 2
Lb 0 0 − 2
Le 1 − 1 1


With respect to the 9-intersection matrix of Egenhofer, the 16-intersection matrix
allows us to distinguish the configurations of Figures 1(a) and 1(b). In fact, for
instance, the element (Lip ,Pbp) is set to 1 in the former case, meaning that
one isolated single point is in the intersection between the internal points of the
polyline and the boundary points of the polygon, and it is set to 0, in the latter
case, because such an intersection does not contain any isolated single points.
Furthermore, the element (Lil ,Pbl ) is set to 0 in the former case because there
are no internal lines of the polyline which are contained in the intersection with
the boundary lines of the polygon, whereas the same element is set to 1 in the
latter case because this intersection contains one polyline.

As a final example consider now Figure 4. In this case the 9-intersection
matrix proposed by Egenhofer is:
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Pi Pb Pe

Li ¬∅ ¬∅ ¬∅
Lb ∅ ∅ ¬∅
Le ¬∅ ¬∅ ¬∅


and the 3×9-intersection matrices are:


Pi Pb Pe

Li ∞ 6 ∞
Lb 0 0 2
Le ∞ ∞ ∞




Pi Pb Pe

Li 3 0 4
Lb 0 0 0
Le ∞ 6 ∞




Pi Pb Pe

Li 0 0 0
Lb 0 0 0
Le 4 0 3



whereas the 16-intersection matrix is the following:

(m1)


Pi Pbp Pbl Pe

Lip − 6 − −
Lil 3 − 0 4
Lb 0 0 − 2
Le 4 − 6 3


It is easy to see that, according to our approach, the above matrix contains in
a compact form all the significant values (i.e, different from zero and infinite)
which can be found in the 3×9-intersection matrices. For instance, the element
(Li, Pb) of the first of the three matrices, which is set to 6, corresponds to the
element (Lip ,Pbp), equal to 6, of the 16-intersection matrix above. Analogously,
the element (Le, Pb) of the second of the three matrices corresponds to the
element (Le,Pbl ) of the 16-intersection matrix (which are equal to 6 in both
cases).

Therefore, with respect to the 3×9-intersection matrices, the 16-intersection
matrix, first of all, allows us to significantly reduce the number of elements to be
evaluated from 27 to 10. Furthermore, in D’Ulizia et al. the formalization of the
3×9-intersection matrices has not been given, whereas in our proposal the geo-
operators and the 16-intersection matrix have been formalized in Sections 2 and
3, respectively. Finally, in [8] [9], constraint relaxation is performed according to
a similarity graph which is inherently different from our OCN graph. In fact, in the
former, nodes are labeled with pre-defined configurations and arcs are labeled
with integers standing for the “distance” among the configurations associated
with the involved nodes. In our proposal, nodes are labeled with geo-operators,
arcs are not labeled, and the possible configurations that approximate the user
query are identified according to the semantics of the geo-operators given in
Definition 2 and the OCN graph of Figure 2.

1070 ComSIS Vol. 10, No. 3, June 2013



Constraint Relaxation of the Polygon-Polyline Topological Relation

6. Discussion and Conclusion

In this paper, we studied the problem of relaxing spatial constraints for picto-
rial queries having null answers in geographical databases. We focused on the
polygon-polyline topological relationship and proposed a computational model
which is based on the notions of Operator Conceptual Neighborhood (OCN)
graph and the relative 16-intersection matrix.

The benefits of our approach are manyfold. First, from a user point of view,
as extensively analyzed in the previous section, it allows us to capture query
details which the traditional 9-intersection matrix of Egenhofer is not able to pro-
vide. Second, in our approach the formalizations of the geo-operators and the
16-intersection matrix have been given. Third, from a query processing point
of view, we save the cost of calculating seventeen more cells with respect to
the 3×9-intersection matrices [8] [9]. Thus the gain (ratio) of the number of in-
tersection operations by the 3×9-intersection matrices over the 16-intersection
matrix is 2.7.

In the case of different topological relationships to be examined in a given
query, the saving according to our approach becomes even more significant.
Figure 10 illustrates that the difference between the number of intersection op-
erations of the 16-intersection matrix and the 3×9-intersection matrices is high
for high number of topological relations.

02468101205010015020025030016-intersection matrix3x9-intersection matrixNumber of topological realtionsNumber of intersection operations02468101205010015020025030016-intersection matrix3x9-intersection matrixNumber of topological realtionsNumber of intersection operations

Fig. 10. Number of intersection operations

With respect to the 9-intersection matrix, we have an extra cost of calculating
one more cell, which is worth performing in order to provide more accurate
results.
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Regarding the implementation of our proposed 16-intersection matrix, the
open source Java libraries JTS Topology Suite [33] is invoked in GeoPQL. JTS
Topology Suite is an API of 2D spatial predicates and functions and provides a
consistent, and robust implementation of fundamental 2D spatial analysis meth-
ods. It conforms to the Simple Features Specification for SQL published by the
Open GIS Consortium-OGC R⃝ [39]. GeoPQL takes advantage of some special
techniques of JTS, which produce performance gains for storing and manipu-
lating spatial data. These techniques include: (i) in-memory spatial indexes for
storing and executing quickly queries over large data objects, and (ii) the tech-
nique of Monotone Chains used to improve the runtime performance in the in-
tersection detection operations [33]. The implementation of our 16-intersection
matrix relies on revisiting and enhancing the mechanism of the 9-intersection
matrix computation provided in JTS, in the case of the polygon-polyline SGOs
discussed in Section 2.

In this paper we focused on a class of queries addressing the polygon-
polyline topological relationship. In the case of pictorial queries involving car-
dinal or positional operators (e.g., “the lakes which are in the north of Rome”),
or SGOs with holes (e.g., “the administrative subdivisions of Switzerland which
contain Campione - belonging to Italy), our approach needs to be further inves-
tigated.

As a future work we also plan to analyze and extend our proposal to the
cases of the polygon-polygon, and polyline-polyline topological relationships.
Furthermore, the development of a platform on the Web, and its integration with
GeoPQL, is another issue to be tackled in the future.
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