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Abstract. Efficient management of multidimensional data is a challenge
when building modern database applications that involve many fold data
such as temporal, spatial, data warehousing, bio-informatics, etc. This
problem stems from the fact that multidimensional data has no order that
preserves proximity. The majority of existing solutions to this problem can-
not be easily integrated into the current relational database systems since
they require modifications to the kernel. A prominent class of methods
that can use existing access structures are ‘space filling curves’. In this
work we describe a method that is also based on the space filling curve
approach, but in contrast to earlier methods, it connects regions of various
sizes rather than points in multidimensional space. Our approach allows
efficient transformation of interval queries into regions of data which re-
sults in significant improvements when accessing the data. In detailed
empirical study, we have demonstrated that the proposed method, which
can be integrated within the commercial RDBMS, outperforms the best
available off-the-shelf methods for accessing multidimensional point data.

1. Introduction

In current database applications, there is an increasing need to efficiently han-
dle multidimensional data such as temporal, spatial, spatio-temporal, multime-
dia, scientific, and medical data [10], [15]. Multidimensional relational data can
be represented as points/vectors in a multidimensional space, where each at-
tribute corresponds to a dimension.

Multidimensional databases are usually very large in size. Such a large and
increasing volume of data needs efficient access methods to support it oth-
erwise the improvements of more complex data representation and reasoning
may be lost due to the inefficient access. For many applications, the addition of
multidimensional data is currently kept to a minimum since it requires great care
to preserve efficiency. The required level of support may be difficult to achieve
and hard to maintain leading to poor response times. It is well known that with
traditional multidimensional access methods [8], the performance deteriorates
rapidly as the number of dimensions increases, thus they typically do not scale
well into higher dimensions [19]. It is also well know that the difficulties asso-
ciated with multidimensional data grow with the number of dimensions. Once
data have more than three or four dimensions, additional problems begin to
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arise, loosely termed the ‘curse of dimensionality’, which can severely deterio-
rate an access method’s performance. At higher dimensionality (10 dimensions
or higher) the existing indexing methods do not work well in the sense that a se-
quential scan of the table becomes faster (less time and/or less block accesses)
than using the index to answer most queries [26]. At higher dimensional space,
data becomes very sparse and distance metrics lose their meaning. For above
10-15 dimensions, the number of dimensions that are not partitioned can be-
come large as there are simply not enough data to require all dimensions to be
split. This causes nodes to waste space on redundant information on these un-
partitioned dimensions. Selectivity in unpartitioned dimensions is not supported
and the interior nodes can contribute little to the selectivity of the index tree.
To cope with high number of dimensions, dimensionality reduction techniques
have been applied which reduce the original space to a much lower dimen-
sional subspace [7]. However, the transformation of data or queries requires
additional resources and typically only approximate the original data. There-
fore, dimension reductions are not a solution in many application domains and
a need for an efficient access method to manage medium to high dimensional
vector data remains.

Several types of approaches have been developed in order to cope effi-
ciently with multidimensional data (see related works in Section 5). In particu-
lar, Space Filling Curve (SFC henceforth) methods play a prominent role in the
area. SFC methods, e.g. Z-order curve [18], Hilbert Curve [5], and Gray Codes
[4]. The main disadvantages of SFC’s methods are that they are CPU intensive
and that they suffer from high overlap between pages (curve segments) and
the query interval. The UB-Tree [20] integrates a space filling curve and a B+-
Tree creating a primary index for multidimensional data. Disadvantages of the
UB-Tree are that it requires modification to the kernel for integration and, like
other SFC’s the segments, are typically not hyper-cubic and may even repre-
sent disjoint space (Figure 1). One of the most prominent d dimensional point
data structures is the K-D-Tree [2] and its variants: the hB-Tree [16], the BD-
Tree [27], the hybrid tree [14] and the quad-Tree. A disadvantage common to all
K-D-Tree methods is that for certain distributions, no hyperplane can be found
that divides the data objects evenly. Some methods for efficient management
of temporal data, which can be incorporated within commercial database man-
agement systems, have been presented in literature [23], [24], however, these
methods can not efficiently support high dimensional queries.

Fig. 1. Three examples of single SFC segments that are far from hypercubic.
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In this work, we are interested in multidimensional access structures that
efficiently support basic vector data operations, in particular interval queries
as they play a prominent role in many contexts. Our focus is on methods that
scale well at medium dimensionality (from 4 to 18 dimensions) but that can still
be useful at higher dimensions. Also, a fundamental requirement is that our
approach should be easily integrated into current Relational Database Man-
agement Systems (RDBMS) to take advantage of the in built industrial strength
concurrency and recovery. Specifically, we aim at developing an approach that
can be implemented without any modification of the kernel.

We propose an SFC based method, termed the “VG-Curve” method, where
“VG” stands for “Variable Granularity”, overcoming some of the limitations of
existing methods. In our approach, the multidimensional space is partitioned
into regions of different dimensions, depending on the distribution of the popu-
lation in the multidimensional space. Thus, while standard SFC methods chose
one granularity to partition space, the VG-Curve method works with variable-
granularity regions, so that many pixels can be grouped in the same region [25].
In particular, scarcely populated parts of the space can be enclosed into larger
regions, and empty regions do not even need to be stored. Then, the curve (VG-
Curve) connects such regions thus achieving an ordering of multidimensional
data similar to a SFC so that nearby objects are physically clustered together
with a high probability. As a consequence, the advantages of SFC methods are
preserved by our approach, which, on the other hand, is more efficient, since
less entities (regions) are connected by the Curve.

The remainder of this paper is organized as follows. Section 2 constitutes
the core of the paper, since data structures and basic algorithms constituting
our VG-Curve method are presented. Section 3 focuses on our treatment of
interval queries. Section 4 presents an extensive experimental evaluation of
our approach, demonstrating that it outperforms the best available off-the-shelf
methods in RDBMS for accessing multidimensional point data in medium and
high dimensionality on interval query. Section 5 presents related works and
extensively shows the differences between our VG-Curve approach and related
approaches in the literature. Finally, in Section 6 conclusions and future work
are discussed.

2. The Variable Granularity Space Filling Curve (VG-Curve)

This Section constitutes the core of the paper, since it presents the data struc-
tures and algorithms involved by the VG-Curve method. First, we describe how
multi-dimensional data are stored in our approach. Then, the algorithm to parti-
tion space into regions is discussed. Finally, the algorithms to insert and delete
objects are presented.

2.1. VG-Curve representation

We assume that the universe of discourse (the data space) is a d-dimensional
hyper rectangle with a side length of hi and volume v =

∏d
i = 1 hi. The data
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space is assumed to have a non uniform (real world) distribution of data with
some empty and some heavily populated areas. Entities in the data space are
called objects.

Definition 1. An object is a d-dimensional tuple with d indexed attributes, a
unique object key and any number of other non indexed attributes.

The multi-dimensional space is partitioned into hyper-rectangular parts called
regions. We cope with regions of different sizes obtained by partitioning space
according to a specific strategy (described in the next subsection). Specifically,
a given order is assumed for the dimensions (notice that our approach is almost
independent of such an order); two child regions can be obtained by orthogo-
nally splitting the parent region in two along the current dimension, considering
the order of dimensions in a cyclical way.1 As a consequence, a region is de-
fined as follows:

Definition 2. A region is an area representing a d-dimensional interval with the
first j dimensions (in order) having a side length of x and the next k dimensions,
where k = d − j, having a side length of 2x. The length of the ith dimension
of a region will be hi

2n with 1 ≤ n ≤ maxsplit

d , where maxsplit is the maximum
number of splits allowed.

A minimum granularity is fixed for regions.

Definition 3. A pixel is the finest granularity of regions, dictated by the choice
of maxsplit.

Each region can be uniquely identified by an address, which is, roughly
speaking, a compact binary representation of the sequence of splits that have
generated it. Region addresses are obtained by bit interleaving of a N-order
curve decomposition e.g. for d = 2 the order for quadrants is SW, NW, SE, NE,
though any other SFC partitioning strategies may be used. Regions are open
on the high side and closed on the low side, i.e., [min, max). A region address
is the key for all objects in that region. The volume rv of a region decreases
exponentially (rv = v ∗ (21−L)) with its address length L. We therefore obtain
a fine partitioning of the multidimensional space with relatively short addresses.

Definition 4. Region addresses form a complete order called VG-Curve.

In the following, we discuss how such abstract notions can be implemented
in our approach, in order to enhance efficiency in the treatment of multidimen-
sional data. Being a complete order, the VG-curve is suitable for indexing with
one dimensional index. We thus propose the following data structures in order
to store the VG-curve.

1 For instance, if the chosen order of dimension is < x, y >, then an hyper rectangle
can be first split in two along the x dimension, then along y, then again along x, and
so on.

1080 ComSIS Vol. 10, No. 3, June 2013



Indexing Method for Multidimensional Vector Data

In short, the VG-curve is implemented by a base relation that is managed
by a directory relation combined with control processes. The base relation con-
tains the unique object key, the region address where object belongs, and one
column for each dimension. It may also contain other (not indexed) columns.
The base relation is ordered by region address.

It is important to note that we do not enforce a strict one-to-one correspon-
dence between regions and physical blocks, the reasons for this are:

– a region may contain few objects (much less objects than the blocking fac-
tor), so that one physical block may contain objects of different regions, and

– a pixel region may contain too many objects (more objects than the blocking
factor), so that more than one block may be needed to contain all objects.

The DBMS employs and manages an index structure to contiguously store
and manage the base relation, typically a B+-Tree index structure. This struc-
ture is sometimes called the Index Organized Table.

Additionally, for the sake of efficiency, we also adopt a directory, which is
a compressed representation of the base relation containing the addresses of
non-empty regions and their population.

The directory allows an efficient approximate filter of the regions. The effi-
ciency is further enhanced since the directory is suitable for a depth first tree
search. The directory contains all the populated regions, using the same order-
ing key as the base relation (i.e., the region addresses), so it is maintained in
the same order as the base relation by the RDBMS. It worth noticing that the
ordering of the VG-Curve is implicitly represented in the directory by consider-
ing the ordering induced by the addresses of the regions, 0-padded on the right
to have a number of digits equal to the current number of splits.

2.2. Partitioning Method

A core task in our method is the partitioning of data into regions and the asso-
ciation of addresses to regions. This task is performed by the data partitioning
algorithm.

The starting point of our approach is a multidimensional space populated
by a set of objects. The task of the partitioning algorithm is to partition such
a space into variable-dimension regions, depending on the distribution of the
objects in the space, in order to achieve efficient data management.

Partitioning needs to take into account different parameters. First of all, the
volume of a pixel needs to be fixed. Such a parameter is usually chosen by
considering the value which cannot be any more further subdivided, since it
represents a bottom granularity. The maximum number of splits maxsplit,where
pv is the volume of a pixel, is thus defined by:

maxsplit = log2 (v/pv)
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It is important to decide when a region is populated enough in order to be
split. Let bf = bd

od be the blocking factor, i.e., the maximum number of objects
that can be contained into a physical block (where bd and od denote the size
of blocks and objects respectively). We choose to split regions whenever their
population exceeds the blocking factor. In such a way, we partially enforce the
correspondence between physical blocks and regions, to enhance efficiency.
However it is worth stressing that, as stated before, in our approach we do not
strictly enforce a one-to-one correspondence between regions and blocks, not
to suffer the low block utilization due to possible sparse data.

Algorithm 1 - Partition
Input: region R, address of region A, directory D, blocking factor BF , current depth
CD, max number of splits maxsplit, dimension vector DV , current dimension i
begin
if population of R > BF then

if CD < maxsplit then
partition R along the dimension DV [i];
Let LeftRec and RightRec the first and second regions obtained;
remove from D the entry for R;
if population of LeftRec > 0 then

add into D the entry for LeftRec (address: A.‘0’);
end if
if population of RightRec > 0 then

add into D the entry for RightRec (address: A.‘1’);
end if
Partition(LeftRec, A.‘0’, D, BF , CD + 1, maxsplit, DV , next(i, DV ));
Partition(RightRec, A.‘1’, D,BF , CD + 1, maxsplit, DV , next(i, DV ));

else
Allow population to grow beyond the blocking factor;

end if
end if
end

Partitioning algorithm, shown in the Algorithm 1, assumes a fixed ordering
for dimensions, but any ordering can be used, since the approach is almost non-
sensitive to it (only the number of not-empty regions can slightly vary depending
on such an ordering). In the algorithm, DV is a vector in which dimensions are
ordered, DV [cur] indicates the current splitting dimension. Partitioning operates
in a recursive way, by splitting each region in two along the current dimension,
until either pixel regions or regions with population smaller than the blocking
factor are obtained. At each stage, the region is split in two along the current
dimension, considering the following split position:

SplitPosition =
r(s)high − r(s)low

2
(1)
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where s is the current dimension, r(s)high - the region’s s dimension high bound-
ary, r(s)low - the region’s s dimension low boundary. The first child region gets
all the parents objects that lay below or on the new partition (i.e., such that their
value along the current dimension is less or equal than the SplitPosition) and
the high child gets the data that lies above it. At each partition, the address of
the first (second) child region is obtained by concatenating ‘0’ (‘1’) to the ad-
dress of the current region (the initial region, corresponding to the whole space,
is denoted by the address ‘1’). Additionally, the directory is updated in order to
consider the new regions (while the parent region is removed). In such a way,
a tree of addresses and split conditions is virtually generated by the partition
process, as shown in Figure 3 as regards Example 2 in the following.

Notice that when a CD is equal to maxsplit the partition has reached its
maximum allowed depth, i.e., we have reached the pixel level. When a pixel
becomes overfull it will not split and it’s population is allowed to grow beyond the
blocking factor similar to the concept of super-nodes for X-tree high-dimensional
indexing [22]. This is possible since the physical storage of a region is not limited
to a block but is clustered in order of its address.

As a simple running example, we use a two dimensional domain (with di-
mensions x and y) where the blocking factor is 3, each dimension has a range
from 0 to 100, and the dimensions are ordered x first then y. There are seven-
teen data objects labelled ‘a’ to ‘q’ distributed unevenly over the space to show
how different distributions are handled. Figure 2 shows the results of partitioning
on such data, assuming maxsplit equal to 4.

Fig. 2. The data space is recursively divided based on data population density. Example
after 17 objects are inserted causing 6 splits (BF = 3).

The upper part of Figure 3 shows the virtual tree produced by partitioning.
For the two dimension example the whole space region (represented by ‘1’) is
first split with a vertical partition, splitting the space along the x-dimension. The
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first split which is at x = 100 − 0
2 = 50 replaces region ‘1’ with two regions.

The first child has address ‘10’, representing all objects with an x value ≥ 0
and < 50 and a y value ≥ 0 and < 100. The second child (address equal to
‘11’) represents all objects with an x value ≥ 50 and < 100 and a y value ≥ 0
and < 100. If the region ‘11’ still contains more than three objects, then it will
be split on the next dimension i.e., the y-dimension at the partition value of 50.
Dividing into two regions ‘111’ and ‘110’ that replace region ‘11’, and so on.

Fig. 3. Running example, virtual tree nodes are in single border boxes, directory regions
are in double border boxes. The objects reference the regions of the directory and are
stored in order of the region they reference. Pages of the B+-tree are shown as alternat-
ing grey and white. Regions ‘1010’ and ‘110’ are empty, no objects reference them and
they are not stored in either the directory or the data relation.

As shown by the upper part of Figure 3, the partitioned space can be rep-
resented as an unbalanced binary tree where data are totally ordered. The
leaf nodes of the tree contain the addresses of the regions, whose objects are
stored by the DBMS in contiguous blocks of the base relation. These blocks are
denoted by alternative shading in the lower part of Figure 3. It is worth stressing
that the binary partitioning tree is only virtual in our approach. As a matter of
fact, the partitioning algorithm we propose has predictable split positions and
split dimensions. Therefore, the partitioning tree needs not to be stored, since
region bounds can be easily evaluated when needed. Only the leaf nodes of
the partitioning tree need to be stored. They are stored in the directory which,
besides the addresses of regions, also contains their population.

The directory resulting from the running example is shown in Table 1. The
directory performs the functions of an index i.e., it is a compressed represen-
tation of the data used to efficiently access the data itself, but it does not store
pointers to the block(s) where data are stored. It is worth noticing that the di-
rectory does not contain the entries concerning empty regions (which are only
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implicitly represented). In the example the VG-Curve base relation is at the bot-
tom, containing the objects (a - q). In Figure 3 the grey/white shading indicates
the correspondence between blocks and regions. The directory consists of the
double bordered boxes.

Table 1. This is the directory containing the binary regions with the population for the
running example.

address 1000 1001 10110 10111 11100 11101 1111
population 2 3 3 2 2 3 2

2.3. Insertion Method

The identification of the region where a new spatial object has to be inserted
(called insert region henceforth) is conceptually easy when standard SFC meth-
ods are used, since they partition space into regions having a fixed known di-
mension (i.e., pixels). In our approach, on the other hand, regions have different
sizes. Nonetheless, through the addresses stored in the directory, and exploit-
ing the virtual partitioning three, the insert region can be efficiently determined.

Algorithm 2 - Insertion
Input: obj for insert. OBJ , directory D, blocking factor bf , current depth depthcur of
the tree
begin
for each dimension i do

Evaluate the normalized natural number bi using Equation (2);
Convert bi into the corresponding binary number binaryi;
Normalize the length of binaryi to d(currdepth − 1)/de bits;

end for
Interleave the normalized binary numbers obtained;
Let bin be the result of interleaving;
The address b of the target region of OBJ is obtained by concatenating ‘1’ and bin;
if A region with address a exists in D such that a ∈ prefix(b) then

Let insert region address be a;
else

Find the region with the address a in D having the greatest n such that a =
prefix(b, n);
Let insert region address be the first n+ 1 bits of b;
Insert the insert region into D;

end if
Insert OBJ into Base Relation and set its region address to insert region;
Increment the population of insert region in D
if insert region population > bf then

Partition insert region using Algorithm 1;
end if
end
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It is worth stressing that, once an arbitrary order has been chosen for the di-
mensions, the order in which objects are inserted has no effect on the partitions
created. Given the coordinates of an object in the multidimensional space, the
region containing it can be determined as described by the Algorithm 2 - Inser-
tion.

In the Insertion algorithm, we denote by prefix(b) the set of all prefixes of an
address b, and by prefix(b, n) its n-digit prefix. In the first part of the algorithm,
the address of the region where the object should belong (called target region)
is computed. The address of the target region is computed by first evaluating,
for each dimension, a normalized binary value. In principle, such a binary value
could be evaluated on the basis of the coordinate of the object (along the given
dimension) and of the (virtual) partition tree. However, for the sake of efficiency,
we obtain such a value following three steps. First, we apply the equation 2,
to get a natural number bi. The i th dimension’s normalized natural value bi is
defined as:

if (vi −mini) = 0 then bi = 0

else bi = d
vi −mini

maxi −mini
∗ 2(d(currdepth−1)/de) − 1e

(2)

where vi is the object coordinate in the i th dimension, maxi is the maximum
value in the i th dimension, mini is the minimum value in the i th dimension,
currdepth is the current depth of the virtual partition tree, and d is the number of
dimensions.

In the second step, the normalized natural value is converted into the cor-
responding binary number binaryi. Since at most d(currdepth−1)/de splits have
been done along each dimension, in the third step only the leftmost d(currdepth−
1)/de bits of binaryi are retained (in case binaryi = 0 the result is a string with
d(currdepth − 1)/de of ‘0’).

Once these normalized binary strings are obtained for each dimension, the
address of the target region is obtained by bit interleaving them (e.g., the bit
interleaving of ‘100’ and ‘011’ is ‘100101’) and by prefixing the result with ‘1’ (to
represent the root of the tree). The bit interleaving is similar to the Z-curve bit
interleaving (see also [18]), except the value in each dimension is normalized
via vi−mini

maxi−mini
to a fraction of that dimensions domain range.

The final result is the address of the target region. Since no region exists
below the current depth of the tree, the target region represents the lowest pos-
sible region of the tree where the object should be inserted.

As an example, we show how to insert the object q (78, 80) the last of the
seventeen objects inserted into the index (see Figures 2 and 3 for the virtual
tree and Table 1 for the directory). Since in the example the current depth of the
tree is 5, then the normalized binary string for the x dimension is obtained as
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follows:

bx = d( 78 − 0

100 − 0
∗ 2d(

5 − 1
2 )e)− 1e

bx = d(0.78 ∗ 22 − 1 e
bx = d3.12 − 1e = 3

binaryx = ‘11′

(3)

Since the length of ‘11’ is equal to d(currdepth − 1)/de, all the bits can be
kept. Similarly, considering the y dimension, we get by = 3 and binaryy = ‘11’.
Interleaving binaryx and binaryy gives as result ‘1111’, so that, adding ‘1’ on
the left, we get the final address ‘11111’ where q (78, 80) object belongs.

Since in our approach space is partitioned in a number of regions of different
dimensions, the target region determined so far may be or not be an already
defined region. Thus, the second part of the algorithm identifies the actual re-
gion where the object has to be inserted (called insert region) on the basis of
the target region. Given a target region of address b, three cases are possible:

1. the directory already contains a region whose address a is equal to b. Such
a region is thus the insert region;

2. the directory already contains a region whose address a is a (proper) prefix
of b. This means that such a region properly contains the target region, and
the new object must be inserted into it (i.e., region a is the insert region);

3. none of the two cases (1) and (2) above holds. This means that the tar-
get region is in an area of the multidimensional space that does not contain
any object yet, so that no region in the directory covers it. Thus, the (virtual)
partition tree must be extended with the insertion of a new region (which,
obviously, need to be stored also in the directory).

In case (3) above, the parent node of the new region can be determined by
identifying the longest prefix of b in the directory. Let p1 be the length of such a
prefix. The address of the new region (insert region) will be the first p1 + 1 bits
of the target region of address b.

Once the insert region has been determined, the new object is inserted into
it. In case the resulting population of the insert region exceeds the blocking
factor, the insert region is split, using the partitioning Algorithm 1.

Continuing the example, the object q (78, 80) has a target region b equal
to ‘11111’. Comparing this address with the directory regions we find in the
directory the region with address ‘1111’. Since ‘1111’ is a prefix of ‘111111’,
such a region contains the target region, and is thus the desired insert region.
Therefore, the object ‘q’ may be inserted into it. On the other hand, in case the
target region of a new object were, e.g., ‘11011’, there would not be any region
in the directory whose address is a prefix of the target region address. Since
the longest prefix in the directory is ‘11’, then the new region to be inserted
would have address ‘110’.
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2.4. Deletion and Update Algorithms

The deletion algorithm removes objects. If after the removal of an object a re-
gion contains zero objects, such a region needs to be removed from the direc-
tory. Additionally, this algorithm merges two children into their parent region in
case, after the removal of an object, the population of both children falls under
the one third of a regions blocking factor bf . This fraction has been chosen to
avoid merge/split thrashing which may occur when a region is merged after a
deletion and the same region needs to be split after only one additional inser-
tion.

Algorithm 3 - Deletion
Input: object for deletion OBJ , directory D , blocking factor bf
begin
delete region = region where OBJ is clustered;
Delete OBJ ;
Decrement the population of delete region;
if population of delete region = 0 then

remove the region;
else
if Combined population of delete region and its sibling < bf /3 then

Merge sibling regions into parent region;
end if

end if
end

The update of an object can be seen as a deletion followed by an insertion.

3. Query answering: Interval queries

There are several query types of interest for point objects stored in multidimen-
sional space. Relevant examples are Interval Queries (IQ) and Exact Match
Queries (EMQ). If p is a point in a d dimensional space and iq is a d-dimensional
query interval then the above queries can be represented as:

– Interval Query (IQ) - p ∈ iq, find all objects that are contained within the
query interval

– Exact Match Query (EMQ) - p = iq, find all objects that have the same value
as the target point for each d dimension.

In this paper we focus on the efficient processing of interval queries on medium
to high dimensional point data (d = 2-18) as well as the exact match query,
as a specific type of interval query. Multidimensional range searching, such as
interval queries, plays an important role in the way modern applications query
their data. It covers many different query predicates in different data models
(e.g, temporal, spatial, etc).
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Interval queries are processed following the primary index two stage query
process (see Figure 4). In the approximate filter the curve is preprocessed to
remove some regions that cannot contain answers, then the remaining regions
from the directory are hierarchically searched. The result of such a search are
two sets of regions: O, consisting of all the overlapping regions (i.e., regions in
the directory that intersect the interval query, but are not completely contained
into it), and C, consisting of the regions entirely contained into the interval query.
Contained regions only have objects that must be part of the result, whereas
overlapping regions will need to have their objects checked for false hits by the
exact (secondary) filter. Preprocessing trims the curve of regions that the search

Fig. 4. The query answering stages.

will examine. It removes from consideration all regions before the first and after
the last pixel that can contribute to the answer. We calculate the first and last
pixel of interest by bit interleaving (see Equation 2) the minimum and maximum
corners of the query interval. The minimum corner will be the point represent-
ing the minimum of the interval restriction in all dimensions and similarly for
the maximum corner. We prune the directory by retrieving only the regions that
cover the curve between and including these pixels, and search this reduced
set of regions. This is a fast and simple technique to reduce the load on the
approximate filter. A simplified example of an approximate filter is presented in
Figure 5 where: (a) shows the regions removed by preprocessing even with-
out consulting the directory, (b) shows the regions removed in the hierarchical
search as they do not intersect the query interval, and (c) shows the regions
that intersect the query interval and may be in the result set (four contained
regions do not need their objects to be checked while the other eight regions
that are overlapped by the query interval will require the secondary (exact) filter
to select the objects contained in the interval query).

Algorithm 4 shows the interval query. For each region in the directory, the
algorithm visits the virtual partition tree level by level, starting from the root.
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Fig. 5. Uniformly partitioned space with the query interval shown as a dotted line.

This visit is implemented by using the variable L (representing the length of
addresses, and, thus, the depth in the virtual tree). Given a region F in the
directory, and given a level L, the algorithm searches for the L-level ancestor of
F . Let R be such a region of the partition tree. R is compared with the binary
addresses of the extreme points of the interval query, to check whether it is
disjoint, contained or overlapping the interval query IQ. If R is disjoint from IQ,
the search discards all the directory regions beginning with the address of R
(i.e., such that R = prefix(a, L)). If R is contained, F and all the other regions
in the directory starting with the address of R are put into the set C of contained
regions. Otherwise, R overlaps the interval query. If R is equal to F , then F is
an overlapping region, and is inserted into O. Otherwise the search must be
further refined, by going deeper in the virtual tree (i.e., by incrementing L). The
process is repeated until a subtree of disjoint regions is excluded or a subtree
of contained regions is included or the full region is tested and classified as
disjoint, contained or overlapped. The secondary (exact) filter tests all objects
in O and adds the true hits to the final output.

The treatment of exact match queries is a special and easy case of the
above. The result of preprocessing of exact match query gives as result a pixel.
The region that contains such a pixel, if it exists, is then read to find the objects
it contains. If such a region does not exist, the pixel does not contain any object,
and the result of the query is empty.

4. Experiment

In order to evaluate the performance of the VG-Curve method, in this section we
experimentally compare it (as suggested in the UB-Tree experiment [1]) with two
of the best available methods in off-the-shelf commercial RDBMS for medium
to high dimensional data, i.e. compound indexes and table scans. We could not
directly compare our results with UB-Tree because it requires modification to the
kernel. While R-tree methods are commonly available in commercial RDBMS
their performance is well known to deteriorate above 5 dimensions so we could
not use them as we are interested in medium to high dimensional data (up to
18 dimensions). On the other hand, the performances of basic SFC methods
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Algorithm 4 Interval query
begin
Input: Preprocessed directory D , Interval Query IQ;
Output: Containing Regions C, Overlapping Regions O;
Add all regions in D to LIST , ordered by address;
Initialize C and O to the empty set;
Let length L be 1;
while LIST is not empty do

Let F be the first region in LIST ;
Let R be the region in the virtual partition tree such that R = prefix(F,L);
if R is contained within IQ then

Move from LIST to C all regions a such that R = prefix(a, L);
Set L to 1;

else if R is disjoint from IQ then
Remove from LIST all regions a such that R = prefix(a, L);
Set L to 1;

else if R equals F then
Add R to O;
Remove R from LIST ;

else
Increment L;

end if
end while
end

(e.g. Z-curve) deteriorate rapidly when the number of dimensions increases or
the query interval grows, due to a blow out in CPU operations, as we confirmed
in initial testing, so we found the Z-curve unsuitable for this experiment.

Comparisons between our method and the rest of the related literature are
reported in Section 5.

4.1. Environment

All experimental results presented in this Section are computed on a Sun Fire
V880 server with 8 x UltraSPARC-III 900MHZ CPU using 8GB RAM, running
Oracle 10g RDBMS. Database block size was 8K and SGA size was 500MB.
At the time of testing database server had no other significant load. We used
built-in methods for statistics collection, analytic SQL functions, and the PL/SQL
procedural runtime environment. All queries had the buffers flushed before run-
ning.

4.2. Data Sets and Query Sets

We derived a data set of 5.8 million records from the the UCI KDD Archive
US forest cover type for 30 x 30 meter cells obtained from US Forest Service
(USFS) Region 2 Resource Information System (RIS) data. All relations had
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a unique identifier and a column for the derived key added. The experiments
are drawn for different number of dimensions. For each of them, we consider
the same query interval sets on identical relations (i.e. relations containing the
same number of records and columns of data).

Queries were randomly generated hypercubes with edge lengths from 20%
to 80% of the respective dimensions range. We generated 100 random queries
per 10% increment i.e 700 queries for each (2-18d) data set. Hypercubes were
chosen over hyper rectangles not to disadvantage the compound index method
(since it is the only one able to use the restriction in the first dimension to reduce
the number of pages needed to be retrieved). An extra 200 larger queries were
run for 10D, 14D and 18D to try to smooth out the larger result set performance
values.

The two parameters used in the VG-Curve are the blocking factor and the
length of the address (which corresponds to the maximum number of splits, i.e,
to maxsplit). The blocking factor was varied widely to test the sensitivity of the
VG-Curve to this parameters setting.

4.3. Results and Analysis

Experiments consider our VG-Curve method, table scan, and the compound
index method. They have been organized as follows:

– First of all, we compare the space complexity of such methods, considering
different number of dimensions.

– Second, we consider I/O and CPU time, taking into account data with 6 and
10 dimensions.

– Third, we analyze the scalability of the VG-Curve and the compound-index
methods when the number of dimensions increases from two to eighteen,
considering the I/O, CPU, and query answer size.

The graphs are not always smooth. This is due as the real data that we used
are not evenly distributed in the multidimensional space. As a consequence,
queries having the same range can return the answer sets that greatly differ in
size.

Space Complexity

The size of the index is a key factor in query performance. The size of the
VG-curve directory is a small fraction of the space required by the compound
index. This can be seen in Figure 6 where the size of the VG-Curve directory
managing 5.8 million objects is up to 733 times smaller than its corresponding
compound index and was always less than 100 blocks. The size difference be-
tween a directory entry and a compound index entry combined with the group-
ing of data into regions means that the VG-curve approach is clearly superior
in space complexity. Figure 6 shows that the size of the directory increases
when the number of dimensions grows. This is due to the expected behavior
of records, which become further sparse in the multidimensional space when
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Fig. 6. Total blocks used for the standard table is shown as a reference, a compound
index on indexed dimensions and the VG-Curve directory (BF=1000) for 2 to 18 Dimen-
sions on real data.

the number of dimensions grows. As a consequence, the number of regions
required to represent multidimensional data increases. However since the VG-
Curve converts n-dimensional objects into one dimensional addresses, the ratio
of the size of a directory entry relative to the size of the tuple obviously improves
as the number of dimension increases.

I/O and CPU time

We have experimentally compared I/O and CPU time of the VG-Curve, table
scan, and compound index methods considering real data of 10 (Figures 7 and
8) and 6 (Figures 9 and 10) dimensions. These dimensions were chosen since,
being in the range between the minimal and maximal number of dimensions we
considered in this paper (2 and 18, respectively), are also indicative of other
dimensions performance.

The I/O costs shown in Figure 7 clearly show that the VG-curve, for blocking
factors of 1000 and 1500, outperforms both the compound and the table scan
methods for queries with answer size of less than 20% of N (where N is the
number of objects in the table), by up to a factor of 12. The CPU costs in Figure
8 indicate that the VG-curve outperforms both compound index and table scan
methods for queries with result sets of less than 1% of N , and is still competitive
for queries with result sets of up to 10% of N . Typically, as for other high-
dimensional indexes, index structure performs better for result sets of up to 20%
of N . However, small result set queries are more important and more common
in the management of high-dimensional data. In case of answer sets larger than
20% of all objects, due to the overheads of using an index, the full table scan
will usually perform better. Similarly, the VG-Curve becomes worse than the
full table scan for larger result set, due to the overhead cost of VGC directory
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Fig. 7. VG-curve average I/O’s for all methods on 10 dimensions of real data.

Fig. 8. VG-curve average CPU’s for all methods on 10 dimensions of real data.

I/Os repeated fetching of same blocks (due to page aging). Also, the VG-Curve
usage of CPU for large result set is worse than for the full table scan approach.
However, it is worth stressing that I/O is a better measure of efficiency than the
CPU usage, since I/O is typically the bottleneck for query performance [11].

In the experiments concerning the VG-Curve, we have varied the blocking
factor widely from 500 to 10000, as shown, e.g., in Figures 9 and 10. While
the trade off between CPUs and I/Os is visible, the experiments show that the
VG-curve is not overly sensitive to the setting of this value. Varying the blocking
factor parameter has the effect of varying the trade off between I/O’s and CPU:
a larger blocking factor reduces the CPU usage and increases the I/O’s used.
Increasing the blocking factor reduces the number of regions but increases the
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Fig. 9. Average I/O’s for 6 Dimensions on real data.

average number of blocks that a region is spread over. This had the effect of
decreasing the directory size and thus CPU operations to process the directory
for a query. However, having a coarser partitioning means more false hit regions
as well as more blocks containing the regions of interest.

Fig. 10. Average CPU’s for 6 Dimensions on real data.
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Scalability

We have compared our approach with the compound index approach also
considering the scalability when the number of dimensions grows from 2 to 18.
The performance of VG-curve was not heavily affected by increasing dimen-
sions as can be seen for I/Os in Figure 11 and for CPU’s in Figure 12. This is
particularly the case for queries returning less than 0.1% of N . This is because
the efficient representation of regions in the directory is barely affected by the
increase in dimensions. The VG-curve clearly outperformed the the compound
index with regard to I/O right across the tested dimensions and the performance
advantage increases with the number of dimensions, as can be seen by com-
paring VG-curve I/O’s (Figure 11) with compound index I/Os (Figure 13). The
VG-curve CPU performance was clearly superior for queries with result sets of
less than 1% of N , this can be seen in Figure 8. This performance advantage
also increased with increasing dimensions Figure 12 and 14. The improve-

Fig. 11. Comparison of average disk I/O’s, as a % of table blocks, for VG-curve BF=1000
from 2 to 18 dimensions on real data.

ment in I/O performance of queries returning a small result set is highlighted in
Figure 15.

Random data

Besides the above experiments, we have also drawn experiments consid-
ering the random data (results not shown here for the sake of brevity). Such
experiments have showed that for queries on real data the VG-curve was up
to 50% more efficient, compared to the random data, considering the queries
with result sets above 0.01% of N . Real data had many empty regions which
the VG-Curve could exploit to improve its efficiency by reducing the number
of overlapping false hit regions whereas for uniform (random) data the amount
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Fig. 12. Comparison of average CPU’s for VG-curve BF=1000 from 2 to 18 dimensions
on real data.

Fig. 13. Average I/O’s, as a % of table blocks, for compound index from 2 to 18 dimen-
sions on real data.

of regions overlapping query intervals grew exponentially with the side length
of the query interval. This highlights that the VG-Curve performance scaled up
better if the data was not uniform.

5. Related Works and Comparison

5.1. Related Work

Access methods for multidimensional data can be classified into data parti-
tioning and space partitioning methods. Generally speaking, space partition-
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Fig. 14. Average CPU’s for compound index from 2 to 18 dimensions on real data.

Fig. 15. Average I/O’s for VG-Curve for fixed result set on real data.

ing methods sacrifice space complexity in the form of node utilization or direc-
tory size to improve search efficiency, while data partitioning methods sacrifice
search efficiency to improve space complexity.

Typical representatives of data partitioning access methods are the R-tree
[9] and its variations. Disadvantages of the data partitioning methods are over-
laps between nodes at the same level, complex splitting and merging proce-
dures and the space requirements of Minimum Bounding Regions (MBR’s) as
the dimensions grow. While R-tree methods are commonly available in commer-
cial RDBMS, their performance is well known to deteriorate above 5 dimensions
so that we could not use them in our experiments.
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Space partitioning methods divide full data regions by partitioning the space.
They cover the entire space even if it is empty. Typical representatives of space
partitioning access methods are the K-D-tree [13], Quad trees [6], Grid file [12]
and Space Filling curves [17]. Disadvantages of space partitioning methods are
that they can suffer from poor minimum node utilization or have a high space
complexity. Additionally, tree based space partitioning methods are typically un-
balanced increasing the worst case performance.

Space Filling Curve (SFC) methods, e.g. Z-order curve [18], Hilbert Curve
[5], and Gray Codes [4], employ a curve that passes through all points in mul-
tidimensional space. This curve produces a total order of points in space that
enables the use of existing efficient one dimensional access structures where
the data is physically ordered, such as B+-trees. Leaf pages of the access
structures then represent data on a segment of the curve, producing a primary
index where nearby data is clustered with a high probability. The main disad-
vantage of SFC’s are that they are CPU intensive, and they suffer from high
overlap between pages (curve segments) and the query interval. SFC interval
query transformation require no I/O’s to calculate the points addresses (loca-
tion codes) on the curve that intersect with the query interval. A transformed
query will consist of several ranges of consecutive curve points, i.e., the inter-
secting segments of the curve. Queries then must process sparse and empty
regions of space at the same fine level as densely populated regions, unneces-
sarily consuming additional resources. Overcoming these problems is the main
motivation for our work.

The UB-Tree [3] integrates a space filling curve and a B+-Tree creating a
primary index for multidimensional data. It is paginated index where each leaf
node represents a page of data on a segment of the curve. It divides the space
into linear segments of a Z-curve (or any SFC). Internal nodes hierarchically
reference the start and end of their child segments by the use of areas, where
a region (segment) is the difference between two areas. Advantages of the UB-
Tree are that it is a primary access structure, so that it is well suited to interval
queries, it has the minimum node utilization guarantees of a B-tree (i.e. space
is linear for storage) and the processing of insert, find and delete operations is
logarithmic. Disadvantages of the UB-Tree are that it requires modification to
the kernel for integration and like other SFC’s the segments are typically not
hyper-cubic and may even represent disjoint regions in the space. This fact typ-
ically increases the number of pages read that do not contribute to the answer.
Calculating which of the segments overlaps with the query region is more diffi-
cult with the irregular shapes of the Z-regions than it would be with hypercubic
or hyper-rectangular shaped regions. Transforming the query into the distorted
neighborhoods used to physically store data is somewhat complex and the com-
plexity grows with the number of dimensions.

The K-D-Tree [2] and its variants hB-Tree [16], the BD-Tree [27], the hybrid
tree [14], and the quad-Tree are also recommended for d dimensional point
data. The K-D-Tree is a binary search tree that uses a recursive subdivision
of the data space into partitions by means of (d - l)-dimensional hyperplanes
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(i.e., in 2-d a line, in 3-d a plane). The hyperplanes are iso-oriented, and their
direction alternates among the d possibilities. For 3-d splitting, hyperplanes are
alternately perpendicular to the x-axis, y-axis, and z-axis. Each splitting hyper-
plane has to contain at least one data point, which is used for its representation
in the tree, causing uneven subspaces. A disadvantage common to all K-D-
Trees approaches is that, for certain distributions, no hyperplane can be found
that divides the data objects evenly.

The quad-tree family [21] is closely related to the K-D-Tree since the basic
idea underlying the quad-tree family is applied to an arbitrary number of dimen-
sions. Like the K-D-Tree, the quad-tree decomposes the universe by means
of iso-oriented hyperplanes. An important difference however is the fact that
quad-trees are not binary trees anymore. In d dimensions, the interior nodes
of a quad-tree have 2d descendants, each one corresponding to an interval-
shaped partition of the given sub-space. These partitions do not have to be of
equal size, although this is often the case. The subspaces are decomposed un-
til the number of objects in each partition is below a given threshold. Quad-trees
are therefore not balanced and the subtrees of densely populated regions need
to be deeper than the ones of sparsely populated regions, giving a bad worst
case behavior.

The VA-file [26] is another method with similarities to SFC’s. The VA-file is
a simple vector approximation scheme that divides the data space into 2b rect-
angular cells where b denotes a user specified number of bits. The scheme
allocates a unique bit-string of length b for each cell, and approximates data
points that fall into a cell by that bit-string. The VA-file itself is simply an array of
these compact, geometric approximations. Queries are answered by excluding
most vectors through an approximate filtering step on the entire VA-file itself.
False positives are then removed by retrieving and examining the resulting can-
didate vectors. The VA-file reduces the number of disk accesses, however, it
incurs into higher computational cost in decoding the bit-string and computing
bounds. Another problem with the VA-file is that it works well for uniform data,
but not for skewed data, since the pruning effect of the approximation vectors
becomes very bad.

Currently the most widely used technique to handle multidimensional inter-
val queries is the use of a secondary index for each dimension [1]. However,
the performance of multiple secondary indexes deteriorates rapidly as the di-
mensions grow and it is only useful for very small result sets. For instance, in
[1], for six dimensions a compound index outperforms secondary indexes when
the result set is greater than 0.000015 % of the relation’s population.

5.2. Comparison

The vast majority of proposed multidimensional indexes are as yet not available
in commercial RDBMS. For many of them this is due to the fact that they would
require costly and time consuming changes to the kernel in order to be inte-
grated into the RDBMS. Paginated methods, like the UB-Tree, require changes
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to the kernel to access the block control functions. We have focused on devel-
oping a method that is not paginated and that can be constructed using existing
RDBMS.

In summary, the VG-Curve differs from the K-D-Tree since in the VG-Curve
approach partitions are at predetermined positions and it is a secondary (disk -
oriented) not primary memory storage method.

It differs from Quad trees since in the VG-Curve dimensions are split one at
a time. The number of partitions formed by a multidimensional quad tree grows
exponentially with increasing number of dimensions. For example, at 6 dimen-
sions a quad tree creates 64 partitions per split, while our approach creates 2
partitions per split. Splits are only performed when there is a need to divide the
data when papulation of the region is bigger that the predefined blocking factor.
However, our approach has virtual internal structure and therefore unbalanced
tree is not relevant to the worst case performance.

It differs from the grid file since partitions are applied locally to the node
not across the whole dataspace. It only stores (addresses and population of)
the non-empty regions. Split positions and dimensions can be calculated. No
storage space is wasted on empty nodes or internal nodes. This fact makes
the VG-Curve particularly suitable for higher dimensions, since they typically
produce vast amounts of empty space and highly unbalanced trees.

It differs from the UB tree since regions are hyper cubic, or hyper rectangular
with two side lengths of x and 2x. Having hypercube like shaped regions is
widely recognized to reduce the number of regions that overlap with a query
interval improving efficiency for query processing. Additionally, the VG-Curve
can be simple implemented within the commercial RDBMS and therefore inherit
all the services available in commercial DBMS, including industrial strength,
concurrency and recovery.

It differs from other SFC’s since we use a directory and a two stage query
processing (approximate query and exact filter). This is important since calcu-
lating all intersecting segments of a SFC can be CPU intensive causing blow
outs in efficiency. Unlike most SFC methods, the VG-Curve has implicit knowl-
edge of what are the empty regions (though they are not explicitly stored to
improve efficiency).

The VG-Curve differs from the VA file since it uses a clustering index entry
(not approximations) and queries are performed by pruning the search space
via a virtual tree search on the directory, then performing an exact filter on the
pruned set of objects.

6. Conclusion and Future Work

In current database applications, there is an increasing need to efficiently han-
dle multidimensional data. The difficulties associated with multidimensional data
grow with the number of dimensions. In this paper, we propose the VG-Curve,
a new approach to the treatment of multidimensional data that can be easily in-
tegrated into RDBMS since it does not require modifications to the kernel. The
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VG-Curve approach is a SFC method, since it partitions the multidimensional
space into regions and exploits the linear order induced on the regions in or-
der to take advantage of index structures such as the B+-tree. However, while
SFC methods ”blindly” partition space into regions of the minimum granularity
(pixels), the VG-curve approach adopts a partitioning algorithm which is sensi-
tive to the density of population, splitting the multidimensional space in a limited
number (with respect to the number of pixels) of hyper-rectangular regions of
different sizes. Only non-empty regions are explicitly maintained and consid-
ered in the VG-Curve, which significantly improves the performance. Despite
the fact that regions have variable sizes, the presented algorithms efficiently
identify regions to be modified. The limited number of regions have positive
effects on the space, CPU and I/O complexity of our approach.

More specifically, this study makes the following contributions to the field:

– We have presented a method to efficiently index multidimensional vector
data which is immediately suitable for full integration as it can be con-
structed from off-the-shelf RDBMS without modification to the kernel.

– We have shown that multidimensional data can be organized in a way suit-
able for employing a primary index structure which guarantees better per-
formance,

– We have used a virtual blocking factor to attain the space complexity guar-
antees of the underlying B-Tree.

– We presented a space partitioning method that achieves a low space com-
plexity while maintaining hypercubic like regions,

– We have compared our approach with related approaches in the literature,
– Additionally, we have drawn a set of experiments, empirically demonstrating

that our Variable Granularity space filling curve is superior to the best avail-
able off the shelf RDBMS index for handling vectors in high dimensional
space.

– We demonstrated that the VG-curve is resilient to increasing dimensions
which makes VG-curve superior to most medium to high dimensional in-
dexing methods.

The optimum region maximum population is expected to be dependent on
the query load. Larger result set queries will benefit from less directory entries
but smaller result set queries will benefit by the less overlap caused by smaller
regions. We would like to test and quantify this expectation in future work.

Also, we plan to test the applicability of our VG-Curve method to the treat-
ment of spatio-temporal Radio Frequencey Identification (RFID) applications
and bioinformatic data, with specific attention to the treatment of large data
sets and to similarity search in proteins respectively in our future work. The
VG-Curve method is also suitable for other SFC partitioning strategies which is
another area for future research.
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