
Computer Science and Information Systems 11(2):503–524 DOI: 10.2298/CSIS130610033M

Application and Relational Database Co-Refactoring

Ondrej Macek1 and Karel Richta2

1 Dept. of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University in Prague

Karlovo namesti 13
121 35 Praha 2, Czech Republic

macekond@fel.cvut.cz
2 Dept. of Software Engineering, Faculty of Mathematics and Physics,

Charles University
Malostranske namesti 25

118 00, Praha 1, Czech Republic
karel.richta@mff.cuni.cz

Abstract. A refactoring of application persistent objects affects not only the source
code but the stored data as well. The change is usually processed in two steps:
refactoring and data migration, which is ineffective and error prone. We provide
a formal model for solution which is capable to migrate database according to a
refactoring in the application code. The feasibility of the change and its data-secure
processing is addressed as well.

Keywords: refactoring, relational schema evolution, application and database co-
evolution, formal model

1. Introduction

The Evolution (change) of a software is a common issue during the software development.
It occurs for many reasons in all phases of the software lifecycle. The evolution severity
usually depends on the number of changes which have to be made and on the number
of affected software components. Refactoring [8] is a very popular practice in object-
oriented environments for evolving the source code and software architecture. Evolution
of database schema and stored data is implemented separately from source code refactor-
ing, although the change of application also affects the database. Object-relational map-
ping (ORM) frameworks can help with propagation of the evolution from an application
to a database. However, these frameworks are usually neither capable of solving complex
refactoring cases nor they migrate data properly as it will be shown in Sect. 2.

The problem of application and database evolution is discussed from a developer’s
point of view and the formal model of application refactoring and its impact is shown in
Sect. 3. A developer works with a model of a persistence layer, which can be transformed
into a model of a database schema (or into a database schema directly). Changes of the
application layer can be represented as a sequence of transformations. These transforma-
tions affect the structure of the application layer or the database schema. We show how
these transformations can be used not only for a structural change, but for an automatic
generation of a data migration script as well. Basic refactoring cases are introduced as
well as the complex ones which are created as sequences of the basic ones. Capabilities
of the proposed formal models are illustrated in the common refactoring issues in Sect. 5.

504 Ondrej Macek and Karel Richta

2. Refactoring in the Context of ORM

A software implemented by using an object-oriented language, which uses a relational
database as a data storage, consists of four main components. There is the application
itself, the database schema, stored data and the object-relational mapping. The software
can be evolved by adding or removing entities, their properties or associations. These
changes affects the database directly. Other kind of evolution is refactoring. Refactoring
is a change made to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior [8]. The refactoring may
affect not only the application but the database as well. The database has to evolve when
the persistence layer of the application changes to fit the object-relational mapping used
in the software. The common current solution is based on capabilities of object-relational
mapping frameworks which are capable of creating a database schema according to the
given source code or model. The process of evolution then proceeds as follows:

1. The code is refactored (usually by using the developer’s IDE).
2. The ORM framework generates a new database schema.
3. The data are migrated manually (if needed) from the old to the new database.

The last step is error-prone as it is processed manually and the error probability increases
with the complexity of the refactoring. The evolution process requires cooperation of a
developer and a database administrator or it requires the developer to have a knowledge
of the database used in the software. The knowledge of the ORM is needed in both cases.
Remarkable is the fact that the feasibility of data evolution has to be verified for each
deployed software instance, because the data can differ. The data and information preser-
vation is a crucial issue of database evolution. The next observation is that the evolution
of the software is defined twice for one software - first for the application then for the
database.

Example 1 Let us have only two classes A and B in the application which are not con-
nected by an association and there are corresponding tables tab a and tab b in the database,
which contain some data. We decide to merge A with B during the development. It means
(on a structural level) that the result of the merging is a new class A’, which contains all
properties of old A and all properties of B and B is removed from the application. The
database schema is generated by the ORM framework automatically and it contains only
the table tab a’’. The data migration has to be created manually. The developer has to
define the evolution twice. The mapping between the data in tab a and tab b (a carte-
sian product of data in both tables, equality of some columns etc.) has to be provided to
merge the stored data correctly. Next the impact of this mapping on the database has to be
verified: are there any data which can be lost during inlining and is this loss intentional?

We propose a better solution where the process of database evolution according to the
code refactoring is more automatized. The solution is illustrated in Fig. 1. It is based on a
change in the evolution process which assumes that the ORM does not change during the
evolution:

1. The evolution of the whole software is defined independently of the application or the
database.

2. The evolution is interpreted for the application and the database.

Application and Relational Database Co-Refactoring 505

3. The evolution is executed.

The process can decrease mistakes in the evolution process, because there is only one
source for the evolution and the evolution is automatically interpreted for the application
(as a refactoring) and database (as schema and data migration). The existence of the set
of all possible software evolutions E is based on a set of evolutionary transformations
specific for an application and a database. Each transformation contains conditions of
transformation feasibility, thus the feasibility of the evolution can be verified.

Fig. 1. The evolution of data changes the system on all levels. The figure shows all components of
the evolution process.

The set E is created with respect to the needs of a developer, therefore the evolution-
ary cases are similar to the refactoring cases. Nevertheless the refactoring itself does not
provide enough information for the complex migration of database and data, therefore the
inputs of some transformation in E are extended beyond normal refactoring inputs. We fo-
cus on refactorings (i.e. structural changes) in this paper, therefore some transformations
are not mentioned in the paper (e.g. adding data).

Example 2 The situation from Example 1 can be solved more effectively when the merge-
Classes evolution is defined in E. The mergeClasses evolution is then automatically in-
terpreted as merging of application classes (change of structure) and a merge of tables
on database level (change of structure and migration of data). All information needed
for software evolution is provided as the input of the mergeClasses transformation - the
inputs are: identificators of both classes to be merged and the mapping between stored
data, therefore the script for data migration can be generated. The structural feasibility is
verified during the interpretation of the mergeClasses evolution and the migration script
contains conditions which verify the feasibility on the level of data. (The semantics of the
evolution is defined formally later in the paper.)

506 Ondrej Macek and Karel Richta

3. Model of Software Evolution

Model-driven development (MDD) is a good approach to data evolution of various soft-
ware components [19]. The software is represented by a set of models – concretely, an
application model and a database model. The evolution and ORM is represented by a set
of model-to-model transformations and the interpretation of transformations from E is a
model-to-model transformation again.

3.1. Software Model

The software consists of three important components (as seen in Fig. 1): an application
(its persistence layer concretely), a database (consisting of a database schema and stored
data) and an ORM, therefore we define a software as a triple consisting of an application
and a database which are connected together by an ORM. The software has to be in a
consistent state so its users can benefit from its usage. The software is in a consistent state
if the application and the database are consistent and the database structure corresponds
to the application structure according to the ORM, therefore the software is defined as:

software(a, d, ρ) =

consistentSoftware(a, d, ρ) if a ̸=⊥ ∧ d ̸=⊥
∧ ρ(a) = d

⊥

(1)

a ∈ Application, d ∈ Database, ρ ∈ ORM

where the ⊥ symbol denotes an inconsistent state of a software or its components.

Evolution of a software is a transformation from one consistent state to another one.
These states are called generations of the software and the functions which change the
state of the software are called transformations.

3.2. Application Model

An application is defined as a set of classes and it creates the context for all structures
used in the software persistence layer. For the sake of brevity, we use regular expression
as follows: the notation X = A∗ means X is defined as a sequence of elements from A,
X = (A,B) means X is a tuple of pairs from A and B, X = A|B means X is either A or
B.

Application and Relational Database Co-Refactoring 507

The application is defined as follows:

AppType = APPSTRING | APPINTEGER | APPBOOLEAN (2)
InheritanceType = SINGLETABLE (3)
Inheritance = (Label, InheritanceType) ∪ {OBJECT} (4)
Property = (Label, AppType,DefaultV alue,

Cardinality,Mandatory) (5)
Class = (Label, Property∗, Association∗, Inheritance) (6)
Association = (Label, Class, StartCardinality, EndCardinality) (7)
StartCardinality, EndCardinality ∈ N0 ∪ {∗}

Application = Class∗ (8)

Application type Application type (AppType) represents primitive types in the applica-
tion. Programming languages usually provide types such as String, Integer, Boolean etc.
The denotation of types begins with ”APP-” prefix to distinguish them from database
types. The type casting (i.e. changing type of a property from String to Integer) is not
part of transformations defined in this paper, because we focus on structural changes and
their impact on data in the first place. However, type casting can be easily integrated into
described transformations.

Inheritance The inheritance defines a parent-child relationship between classes. Multiple
ancestors are not allowed and of course a class cannot be its own ancestor directly or indi-
rectly. These restrictions are inspired by common programming languages as Java or C#.
The InheritanceType determines how a inheritance hierarchy is mapped into a database.
We consider only one common mappings of inheritance into a relational database for the
sake of model abbreviation. We decide to represent an inheritance hierarchy of classes as
a single table that has columns for all the fields of the various classes [9]. We assume there
is only one type of inheritance type per class hierarchy. There can be several independent
inheritance hierarchies in the model. The symbol OBJECT represents an universal parent
for all classes.

Property Property represents a feature of a class which is represented as a primitive type.
A property can be mandatory, can have a default value and according to its cardinality
it can represent a single value or a collection of values. The properties of non-primitive
types are represented as associations.

Class Class represents a basic structural unit in the application model. It has a unique
name, one or more properties and it can be associated to other classes in the application.

Association Association represents a connection between two classes. It has a unique
name and the reference is represented by the label of referenced class. The class which
owns the association is considered to be the starting class of an association, referenced
class is considered to be the ending class of an association. The cardinalities define the
multiplicities of both association ends.

508 Ondrej Macek and Karel Richta

3.3. Application Manipulation

The application model defines only the structure of an application’s data thus there are
defined transformations for adding, altering and removing parts of the model (the set A).

Each transformation has a set of preconditions, which are in case of adding or altering
very simple:

1. Name collisions have to be prevented when creating a class in the model or altering
its name.

2. All references have to be updated when renaming a class.
3. The existence of the class being referenced has to be verified when creating or altering

an association.

The only problem that can occur while deleting classes etc. from an application is that the
class can be removed only when it is not associated with other classes. The list of possible
transformations from A are in Table 1. The list of altering operations is not complete as
transformation for changing the obligation or cardinality of properties and associations are
missing. It is because these transformations are not so important for complex refactorings.

Table 1. The content of the set A - transformations for application change and refactoring. The
detailed specification can be found in [16].
Type of transformation Defined transformations

Application Creation newApplication: → Application
addClass: Class×Application → Application
addProperty: Class× Property ×Application → Application
addAssociation: Class×Association×

Application → Application
Application Modification renameProperty: Class× Property × Label

Application → Application
renameAssociation: Class×Association× Label

Application → Application
renameClass: Class× Label ×Application → Application

Application Deconstruction removeProperty: Class× Property×
Application → Application

removeAssociation: Class×Association
×Application → Application

removeClass: Class×Application → Application
Inheritance manipulation addParent: Class× Inheritance×Application → Application

removeParent: Class×Application → Application
pushDown: Class× Property ×Application → Application
pullUp: Class× Property ×Application → Application

3.4. Database Model

A relational database consists of a database schema and data. Database schema defines the
structure of the database and data represents stored instances in the software. A database

Application and Relational Database Co-Refactoring 509

is defined as:

DbType = DBSTRING | DBINT | DBBOOLEAN (9)
Constraint = NOTNULL | UNIQUE (10)
PrimaryKey = (Label) (11)
Column = (Label,DbType,DefaultV alue, Constraint∗) (12)
ForeignKey = (Label, TableSchema,Constraint∗) (13)
TableSchema = (Label, PrimaryKey,Column∗, ForeignKey∗) (14)

Data Types Database data types DbType represent primitive types in the database. Da-
tabases usually provide types such as Varchar, Integer, Boolean etc. We define types for
strings, numbers and boolean values which can be further extended according to a speci-
fication of a concrete database.

Constraints There are two types of constraints defined in the model. Both constraints are
column constraints - the first constraint forces columns to have no non-empty elements,
the second constraint requires there have to be unique records in a column or foreign key.

Primary key A primary key is an unambiguous identifier of a record in a table. The
primary key is always provided (automatically generated) by the associated sequence s
as a non-zero natural number. A new value of a key is obtained by calling the function
next(s). The generator of primary keys values is called Sequence and there is one se-
quence per database in the model (see (18)).

A primary key is always defined with constraints NOTNULL and UNIQUE.

Column A column defines data values and types which can be part of a table record.

Foreign key A foreign key is a reference to another table’s primary key, it has a unique
name and it can be constrained. The value of a foreign key is a non-zero natural number
or ∅ if not constrained by NOTNULL.

TableSchema A table represents a basic concept of a database schema. It has a unique
name, one or more columns and it can be related to other tables in the schema by foreign
keys. Rows in the table represent stored data.

Data A database consists not only of a schema but also of data which are represented as
rows in a table. A table row in our model consists of value pairs, which represent concrete
values of a concrete column or key. Each row contains a reference to a table it belongs to
and a primary key’s value, which uniquely identifies the row.

KeyPair = (PrimaryKey, V alue) (15)
Pair = (Column, V alue) | (ForeignKey, V alue) (16)
TableData = (Table,KeyPair, Pair∗) (17)

510 Ondrej Macek and Karel Richta

Database The database is defined by its schema and data it contains. Last important item
of a database is a generator of primary key values called Sequence.

Database = (TableSchema∗, TableData∗, Sequence) (18)

3.5. Database Manipulation

A database consists of two parts - of a database schema, which defines the structure, and
of stored data - hence the transformations from set D have to consider both parts. The
transformation for manipulation of structure has similar conditions to the evolution of
applications. The transformations for data manipulation are inspired by the SQL language.
The basic transformations are in Table 2 and the operations for data manipulation are in
Table 3. The set of transformations for database manipulation is limited in contrast to the
SQL language. Only transformations necessary for data evolution on database level are
introduced.

Table 2. The transformations for database evolution. Transformations can be mapped to SQL intu-
itively. The detailed specification can be found in [16].

Type of transformation Defined transformations

Database Creation newDatabase: → Database
addTable: TableSchema×Database → Database
addColumn: TableSchema× Column×

Database → Database
addForeignKey: TableSchema× ForeignKey×

Mapping ×Database → Database
Database Modification alterColumnName: TableSchema× Column× Label×

Database → Database
alterForeignKeyName: TableSchema× ForeignKey×

Label ×Database → Database
alterTableName: TableSchema× Label×

Database → Database
Database Destruction dropColumn: TableSchema× Column×

Database → Database
dropForeignKey: TableSchema× ForeignKey×

Database → Database
dropTable: TableSchema×Database → Database

Copy Structure and Values copyColumn: TableSchema× TableSchema×
Column× Label ×Mapping ×Database →
Database

copyTable: TableSchema× Label ×Database →
Database

Data-secure Database dropEmptyColumn: TableSchema× Column×
Elements Removal Database → Database

dropEmptyForeignKey: TableSchema× ForeignKey×
Database → Database

dropEmptyTable: TableSchema×Database →
Database

Application and Relational Database Co-Refactoring 511

Table 3. The table contains a set of transformations which serve for data manipulation. The detailed
specification can be found in [16].

Data Manipulation selectOne: TableSchema× ID ×Database → TableData
selectAll: TableSchema×Database → TableData∗
insertData: TableData×Database → Database
insertValue: TableData× Pair ×Database → Database

Copying Database Elements The transformations for copying the structure and values
of a column or table serve more as helpers for advanced evolution cases, where they are
discussed in detail.

Data-Safe Database Element Removal The transformation that remove elements from
the database can have fatal impact on the data preservation, therefore the set of transfor-
mations is extended by data safe transformations for removing database elements. These
transformations are not part of the SQL standard, although they can be implemented as
database functions. These transformations create a safe way to remove elements from the
database as they drop empty structural elements only.

3.6. Mapping Between Stored Data

A relation between data from different TableDatas has to be known during execution
of some transformations (e.g. moveProperty). The relation is defined as a mapping be-
tween TableDatas. The mapping is defined as follows:

mapping : TableData → TableData ∗ ∪ {∅} (19)

The mapping has a sequences of TableData in its range set, this allows to define one-to-
many and many-to-many relations between data. The ∅ represents a situation where there
is no relation for a given element of the mapping’s range. A special case of mapping is
an empty mapping denoted as me, which is used when there are no TableData in the
domain or the range is equal to ∅ i.e. the transformation takes part on the structural level
only. The set of all possible mappings is called Mapping.

Each mapping has to fulfill constraints given by the structural definition of its range
TableData. Concretely: uniqueness of column values:

∀m ∈ Mapping;x1, x2 ∈ domain(m); p1 ∈ pairs(m(x1)), p2 ∈ pairs(m(x2)) :

x1 ̸= x2 ∧ ∃ c ∈ Column,UNIQUE ∈ constraints(c)∧
c ∈ pairs(columns(range(m))) =⇒ p1 ̸= p2 (20)

if the principle of uniqueness is violated then usage of such a mapping leads to an incon-
sistent database. Next constraint of mappings is the non-emptiness of columns constrained
with NOTNULL constraint:

∀m ∈ Mapping;x ∈ domain(m) :

∃ c ∈ Column,NOTNULL ∈ constraints(c) =⇒ m(x) ̸= ∅ (21)

512 Ondrej Macek and Karel Richta

if this principle is violated then usage of such a mapping leads to an inconsistent database.
There can occur data loss, when the mapping is a partial function. Usage of such

mapping has to be reconsidered before its usage, because it can result in a semantically
inconsistent state of the database.

A mapping can be implemented as a nested query in the SQL command representing
the transformation. Alternatively, a database view can be implemented to represent such
a mapping.

3.7. Object Relational Mapping

ORM is the only fixed point in the software model we use. The mapping is similar to
the Hibernate mapping [13], thus a lot of developers should be familiar with it. The main
ideas are:

– classes are mapped to tables,
– single properties are mapped to a column or if the property is a collection then the

property is mapped as a table,
– associations are mapped to foreign keys or to tables if the association represents a

many-to-many relationship,
– primary keys are created automatically for each table,
– names used in application are mapped into the database schema (e.g. because of pos-

sible name collision of application classes and names of database schema elements).

3.8. Software Evolution

The evolution of the whole software is described from the developer’s point of view, there-
fore the transformations use the names and elements from application context. Elements
have to be transformed into a database context - this is assured by the ORM. In the model
we ignore the fact an element’s label has to be often transformed as well (e.g. because of
collision between the label and label of a database internal table).

Three sets of transformations have to be defined to provide the capabilities described
in Example 2: the set E of all possible software transformations:

E = {e|e : ConsistentSoftware → Software} , (22)

which is limited in this paper to a set of transformations for refactoring, creating and
deleting model elements. The list of transformations and their definition is available online
[16]. The fact that a transformation produces Software and not ConsistentSoftware
supports composition of transformations. If a transformation (refactoring) is applicable
on a software it produces consistent software. In contrast if the transformation is not
applicable than the software is in the state ⊥ and no transformation can change it.

Next we define the set of application refactorings:

A = {a|a : Application → Application} (23)

and the set of database evolutionary transformations

D = {d|d : Database → Database} . (24)

Application and Relational Database Co-Refactoring 513

Evolution of the software is defined as an interpretation of the transformation for each
component of the software:

t(s) = software(Ψ(t, application(s)), Φ(t, database(s)), ρ(s)) (25)
s ∈ ConsistentSoftware, t ∈ E

where Ψ : E × Application → A interprets the software evolution cases to the code
refactoring and Φ : E ×Database → D interprets to the evolutionary transformation of
database. The ORM does not change during the evolution.

The advantage of interpretation is that the semantics of the evolution is defined only
once by the E-transformation. This definition contains all necessary information for par-
tial evolutions of all software components. This approach speeds up the work of software
developers, because it automatize the process of database evolution.

3.9. Basic Evolutionary Transformations

The evolution of the whole software is based on the atomic transformations specific for
each software part, which are defined in Sec. 3.3 and 3.5. This section introduces how
those primitives can be used to manipulate the software elements.

The basic evolutionary transformations of the software are based on basic evolution
of an application. These transformations have to respect the ORM, because properties
and associations can be mapped as a column (foreign key respectively) as shown in the
example of creating a new property:

Φ(newProperty(c, p), d) =

addColumn(ORM(c), ORM(p), d)

if cardinality(p) = 1

addForeignKey(ORM(p), fk,me,

addTable(ORM(p), d))

if cardinality(p) > 1

where fk = (ORM(c), ORM(C), ⟨⟩)

(26)

c ∈ Class, p ∈ Property, d ∈ Database

An example of both mappings is in Fig. 2.
A mapping between basic evolutionary transformations is provided in the short in Ta-

ble 4. The detailed definitions are provided in [16]. The mapping can be implemented as
a direct generation of SQL commands from the application transformations or an inter-
mediate database model can be used. The second approach is suitable if there are multiple
models affecting database i.e. a model of entities, which is interpreted as database schema
and a model of business constraints, which is interpreted as a set of database triggers.

Each basic application transformation is mapped to a set of possible mappings on the
database level according to the cardinality. The advanced transformations are explained in
detail in Sect. 3.10. Some of the advanced transformations cannot be implemented as a set
of simple data manipulations SQL scripts. Rather, advanced constructs such as PL/SQL
procedures have to be used, especially when there is a mapping between instances. The

514 Ondrej Macek and Karel Richta

(a) (b) (c)

Fig. 2. Two possible variants how the newProperty transformation can be interpreted on the
database level. The initial state is in Fig. 2a, then a new property called Address is added. In case
the Address property has cardinality equal to 1 then the result is in Fig. 2b otherwise the result is in
Fig. 2c.

Table 4. The mapping between evolution of the application and database transformations. The ad-
vanced transformations are explained in detail in Sect.3.10.

Application Transformation Database Transformation

newClass addTable
newProperty if cardinality ≤ 1 then addColumn else addTable
newAssociation if cardinality ≤ 1 then addColumn else addTable
renameProperty if cardinality ≤ 1 then renameColumn else renameTable
renameAssociation if cardinality ≤ 1 then renameForeignKey

else renameTable
renameClass renameTable
removeProperty if cardinality ≤ 1 then dropEmptyColumn

else dropEmptyTable
removeAssociation if cardinality ≤ 1 then dropEmptyForeignKey

else dropEmptyTable
removeClass dropEmptyTable

Application and Relational Database Co-Refactoring 515

transformations for data-safe removal are used as default removing transformations, al-
though the classic drop- transformations can be used. This should lead to the more careful
usage of removing transformations.

3.10. Advanced Evolutionary Transformations

Advanced evolutionary transformations are based on the basic ones, they can be obtained
as a concatenation of transformations. This means the complex transformations are lim-
ited in the same way as their basic components. All transformations from the set E pre-
sented so far have the same input information for both an application and a database,
whereas the advanced transformations usually need a mapping between stored data (in-
stances) as their input.

Copy Property The copyProperty creates a duplicate of a property in a given class.
If the mapping is not provided the transformation creates only a structural copy of the
property, otherwise it copies the values too. Therefore the copyProperty transformation
is the simplest way to manipulate the stored data.

copyProperty : Class× Class× Property ×Mapping×
ConsistentSoftware → Software (27)

The copyProperty is the first transformation when an additional information has to be
added to the usual code refactoring. It is because the copyColumn transformation needs
one more information to succeed - a mapping has to be provided between the source and
the target table to assure data information consistency. The transformation is interpreted
for both software components - in the application case a new property is added:

Ψ(copyProperty(cs, ct, p,m, s)) = newProperty(ct, p, application(s)))

if cs ̸= ct (28)

In the database case the copy of a column or table is created according the cardinality of
the property and then the values are copied:

Φ(copyProperty(cs, ct, p,m, d) =

copyColumn(ORM(cs), ORM(ct), ORM(p),m, database(s))

if cardinality(p) = 1

copyPropertyAsTable(ORM(cs), ORM(ct), ORM(p),m, database(s))

if cardinality(p) > 1

(29)

Move Property The moveProperty transformation is based on the copyProperty trans-
formation followed by the removeProperty so its construction is easy. On the other
hand, special attention has to be paid to the provided mapping of instances, because it can

516 Ondrej Macek and Karel Richta

cause loss of data. The ideal case is when the mapping is injective, then the transformation
cannot cause loss of data.

moveProperty : Class× Class× Property ×Mapping×
ConsistentSoftware → Software (30)

moveProperty(cs, ct, p,m, s) =

removeProperty(cs, p, copyProperty(cs, ct, p,m, s)) (31)

Inline and Split Class Inline and split are two opposite transformations. First of them
moves data from the source class into the target one and then deletes the source class.
Second of them extracts a new class from an existing class. The inline transformations
can be composed from already mentioned basic transformations:

inlineClass : Class× Class×Mapping×
ConsistentSoftware → Software (32)

inlineClass(c1, c2,m, s) = removeClass(c2,moveProperties(c1, c2,m, s))

if !isReferenced(c2, application(s))

where p ∈ properties(c2),

moveProperties(c1, c2,m, s) =

∀ p ∈ properties(c2) : moveProperty(c1, c2, p,m, s) (33)

A special case of inlining is merge. The mergeClass transformation is used when two
classes have the same structure and they should be merged into one.

mergeClasses : Class× Class× Software → Software (34)

The classes are represented as two tables containing different data - these data have to be
merged into one table.

The split transformation has to be interpreted:

splitClass : Class× Label × Property×
ConsistentSoftware → Software (35)

Ψ(splitClass(c, l, p), a) = removeProperty(c, p, newProperty(cn, p,

addClass(cn, a)))

cn = class(l, ∅, ∅, OBJECT) (36)

Application and Relational Database Co-Refactoring 517

Φ(splitClass(c, l, p), d) =

dropColumn(ORM(c), ORM(p), copyColumn(ORM(c),

ORM(propToClass(p)),m, addTable(ORM(propToClass(p, l)), d)))

where m = ∀ r ∈ selectAll(ORM(c), d) :

m(r) = tableData((ORM(propToClass(p, l)), keyPair(r),

pairOfColumn(ORM(p), pairs(r))))

if cardinality(p) = 1

alterTableName(ORM(p), l, dropForeignKey(ORM(p),

foreignKeys(ORM(p), d))

if cardinality(p) > 1

(37)

The mapping is defined as identity in case of splitClass, therefore the rows in the new
table have the same primary keys’ values as in their source class.

3.11. Inheritance Manipulation

Inheritance is an important part of object-oriented world. The impact of change of this
relationship to the database depends on the type of inheritance mapping similarly as in
the case of moveProperty. The addParent transformation is described as example:

addParent : Class× Inheritance×Mapping×
ConsistentSoftware → Software (38)

The interpretation of the addParent transformation for the whole software on the appli-
cation level uses the transformation addParent defined for the application level (see Tab.
1):

Ψ(addParent(c, ih,m), a) = addParent(c, ih, a)

if ! isReferenced(c) (39)

The interpretation of the addParent transforation on the database level depends on
the ORM. We use the single-table mapping in our model, therefore the result is a merge
of tables:

Φ(addParent(c, ih,m, s) = dropTable(ORM(c), h(c, ih, p,m, s))

where h : TableSchema× Inheritance×Mapping×
Software → Database

h(c, ih, p,m, s) = ∀ p ∈ properties(c) :

Φ(moveProperty(c, class(ih), p,m, s)) (40)

The inverse transformation removeParent uses the splitClass transformations (this is valid
for the simplification when there is only one type of inheritance - SINGLETABLE). This

518 Ondrej Macek and Karel Richta

does not cover the case when the information from parent are not needed in its child, such
a transformation has to be defined by a sequence of steps.

Next transformations connected with inheritance are pushDown and pullUp. Pull up
moves a property from child to parent so the moveProperty can be used, the mapping
of instances is based on the parent-child relationship. It means the column cannot be
constrained with NOTNULL constraint if there are more siblings in the hierarchy. The
pushDown transformation works in opposite direction, however it moves the property into
all children of the parent class. The easiest situation is where there is no sibling in the hi-
erarchy, otherwise we assume there are no stored data in the siblings. It is because the
change of parent affects the instances of its children: When a property is moved only into
one child, the information consistency is violated, therefore we forbid such transforma-
tion, because we cannot anticipate developer’s intents.

The next two inheritance-related transformations are extractParent and extractCom-
monParent which serve for extracting a parent class based on a given set of property from
a class or from a couple of classes.

4. Example of Usage

The examples demonstrate how the transformations help with data evolution in real life
example of software evolution. There are two classes in our software Person and Legal-
Party, both of them contain information about address (street, city and zip code) as shown
in the Fig. 3 where the database tables are shown.

To improve the design of code a class representing Address has to be created. The
Address class shall be associated with both original classes and shall receive the data
already stored in the database.

Id Surname Street City ZIP
11 Jackson Central Park St New York 100 01
12 Clooney S Orange Ave Orlando 320 24

(a) Data stored in the table Person.
Id BusinessName Street City ZIP

100 Tools & Machines Olive ave. New York 100 01
200 AI Robotics Pine ave. LA 900 03

(b) Data stored in the table LegalParty.

Fig. 3. The initial state of the example used in the case study. There is a repetition of information
structure in the Person and LegalParty class.

The first step is to extract two temporary classes representing addresses of a Person or
of a LegalParty:

s1 = splitClass(Person, ”Address tmp1”, ⟨street, city, zip⟩,
software) (41)

s2 = splitClass(LegalParty, ”Address tmp2”, ⟨street, city, zip⟩, s1) (42)

Application and Relational Database Co-Refactoring 519

The splitClass transformation moves given properties into the new class, therefore there
is no address information in Person or LegalPerson after these transformations. The tem-
porary classes have to be connected with the origin classes by an association.

s3 = newAssociation(Person, association(”address”,

”Address tmp1”, 1, 1),mapping1, s2) (43)
s4 = newAssociation(LegalParty, association(”address”,

”Address tmp2”, ∗, 1),mapping2, s3) (44)

The mapping1 and mapping2 can be defined using the equality of primary keys values,
because the temporary classes were extracted from the Person and LegalParty. Finally the
temporary class are merged into one:

s5 = mergeClasses(Address tmp1, Address tmp2, ”Address”, s4) (45)

The merge of classes is possible because the associations (and corresponding foreign
keys) created in the previous step are not constrained. The change of the code continue by

(a) The application model. (b) The database model.

Id Street City ZIP Person ContactAddress
1 Olive ave. New York 100 01
2 Pine ave. LA 900 03
3 Central Park St New York 100 01
4 Orange Ave Orlando 320 24

(c) Data stored in the table Address.

Fig. 4. The final state of the example used in the case study. There is only one table containing all
addresses in the system (see 4b), which is referenced by LegalParty class and by the the Person
and class twice, which represents regular and contact address.

adding more addresses to the Person class:

s6 = newAssociation(Person, association(”contactAddress”,

Address, 1, 1),me, s5) (46)

The final result of the transformations is in the Fig. 4.
The example shows that the defined transformations are able to perform regular data

evolutions. It shows that the usage of the transformations is sometimes not intuitive for
the user (e.g. creating temporary classes before merging), therefore the next complex
transformations have to be defined based on users’ experience reports. The examples show
that the column constraints often decide the feasibility of a transformation.

520 Ondrej Macek and Karel Richta

5. Capabilities of Defined Transformations

It is obvious that the set of defined transformation is limited because of focus on data
preservation or transformation concatenation. Nevertheless, defined transformations are
strong enough to handle a lot of refactoring cases. To verify this we use refactoring cases
based on the Eclipse foundation refactoring statistics [7] (choosing only the transforma-
tion influencing data) and on Fowler’s book [8]. Selected refactorings are:

1. Rename is the most used refactoring according to the Eclipse statistic and it is one of
the basic refactoring cases introduced in Sec. 3.9.

2. Move refactoring is used in Eclipse to move properties from a class to another class
within an inheritance hierarchy or to move classes between packages. In contrast, our
model does not consider packages, However it is able to move property from one
class to another according to the given mapping, which contains not only moves in
hierarchy but a lot of other cases too.

3. Extract Class is an often used refactoring in Eclipse and it is mentioned in Fowler’s
book as well. It is introduced as an example of advanced refactorings in Sec. 3.10 as
the splitClass transformation together with its opposite transformation mergeClasses.

4. Move field from Fowler’s book is introduced as moveProperty in Sec. 3.9.
5. Replace Data Value with Object is a refactoring case which is not mentioned among

the evolutionary transformations. However it can be composed from already defined
transformations:

replaceDataWithObject(sourceClass, property, newObject,

software) = removeProperty(sourceClass, property,

newAssociation(sourceClass, association(label(sourceClass),

newObject, 1, 1),mapping, copyProperty(sourceClass, newObject,

property,mapping, software) (47)

where the mapping represents the relation between the new object and the original
one - for each instance of the new object there is one instance of the original one.

The transformations proposed in this paper are able to implement all data refactorings
supported by the Eclipse IDE. There are some refactorings from Fowler which are not
considered in the proposal: replacing array with object, changing unidirectional associa-
tion to bidirectional (and reverse) and operations which replace types with polymorphism.
However, the proposal solves the most used refactorings.

6. Related Work

Research of data and database evolution is not limited to the relational ones only, there
is also work in the areas of object databases and XML databases. This work provides so-
lutions specific to concrete types of databases using various ranges of solutions - domain
specific languages [14], extensions of existing standards or MDD [15] or formal specifica-
tion [22]. These solutions are inspiring, however, the domain of the ORM has its specific
issues, so a solution from another domain has to be adapted carefully.

Application and Relational Database Co-Refactoring 521

Informal definitions The taxonomy of relational database evolution based on the entity-
relationship model is proposed in [20]. The evolution is described as a change in the
entity-relationship model and a change in a relational database. The semantics change
patterns in context of a conceptual schema are described in [25], although its impact on
a database schema or data is not described. The main cases of data evolution are defined
in both publications. The description is informal. An extensive set of possible database
refactorings is provided in [3], where both schema and data evolution is discussed. The
refactorings are intended to be used by database administrators, thus it assumes database-
first approach to evolution, whereas this proposal is application-first.

Formal frameworks A general formal framework for database evolution is defined in
[17]. The framework is based on a set of basic graph transformations which are then ex-
tended to transformations of the entity-relationship model. The framework and the defined
transformations can be implemented in our proposal too. The contribution of the formal
framework is a definition of equivalent structures in relational database schemas. Our pro-
posal is aimed to be used in the domain of object-oriented languages, where a class model
is more common than entity-relationship model.

The formal definition of MDD approach to database schema evolution is proposed in
[2], where changes of a database conceptual schema are interpreted on both a physical
schema and data. In contrast our proposal is aimed to solve the problem of code refactor-
ing and its impact on relational database, next we propose more complex transformations
(such as copyProperty or inheritance-related transformations) and examine the impact of
platform specific constructs (such as foreign keys or constraints) on the evolution.

A categorical framework for the migration of object-oriented systems is proposed
in [21]. This framework defines the refactoring of objects, data and methods, which are
the main objectives of the framework. The impact of the object change on a relational
database is not considered in the paper as it is aimed at object-oriented systems only.

Forward Round-Trip Engineering in Data Evolution A round-trip approach for data evo-
lution was described in [23], which was implemented in the SELF language. This ap-
proach proposed a forward-oriented evolution on all application levels in the software
application. In contrast with our framework, the round-trip approach does not care about
stored data, because it is focused only on transformations for creating, updating and delet-
ing elements of a model.

A meta-model based approach to data evolution is proposed in [1] where a very similar
solution for data evolution is proposed, which is based on an extended UML meta-model.
The solution provides similar capabilities of change of application and database as does
our proposal. In contrast our work is created with the ORM domain in mind and therefore
we extended the application meta-model with constructs typical of this domain.

ORM Frameworks There are many object-relational mapping frameworks available for
developers, and some of them provide tools for database migration. Hibernate [13] is
one of the most popular ORM frameworks in the Java community which is capable of
creating a new table or adding a new column according to a change in the application.
Active Record [11] is an ORM framework in the Ruby on Rails environment. Since its
first version it has contained support for database evolution according to the create-update-
delete principle, in the form of so-called migrations [10] which can be extended by adding

522 Ondrej Macek and Karel Richta

user SQL commands. Entity Framework [18] is Microsoft’s ORM solution for the .NET
platform. Its capabilities of data evolution support are similar to those of Active Record.
Neither of the frameworks is capable of automatization of complex refactoring cases.

Tools for Database Evolution The MeDEA project [6] offers a tool for evolution of both
database schema and stored data based on model-driven approach. The project DB-MAIN
[12] provides a MDD approach to data evolution on all the levels of software we do. The
project DB-MAIN is well documented formally. The PRISM is a research project for
data management under schema evolution [5]. In contrast with our proposal, and with
MeDEA, it extends the SQL command set by so-called schema modification operators
which implements the schema evolution. A very promising solution is Liquibase [24],
a tool for database refactoring and evolution. It is capable of migrating both database
schema and stored data. The evolution is described by an XML document which can be
interpreted on various databases.

The difference between these frameworks and our proposal is that each has a different
focus. All mentioned projects are aimed to be used by database administrators; whereas
our focus is on entities evolution, which is then propagated to a database with an emphasis
on automatization. Our goal is to hide the entire database level from our users.

The project IMIS [4] follows the same idea of applying MDD into evolution of a whole
software, but does not provide a formal model or an overview of capabilities (defined
transformations).

7. Conclusion

We discuss the impact of application refactoring on relational database schema and stored
data. We introduce basic transformations of application and database, next show how the
complex refactorings can be constructed based on basic refactorings. The transformations
presented are capable of solving the main refactoring cases. Theirs construction assures
structural-safe change of application and data-safe migration of database schema and data.

The proposal is based on the idea of MDD which is implemented by a set of mod-
els and transformation rules. This allows to simulate the behavior of an evolution in the
platform independent environment.

The main contribution is the new point of view on the application refactoring. The ap-
plication code and relational database co-evolution can improve the capabilities of IDEs
and speed up the work of developers. Next contributions are definitions of impact of
advanced refactoring cases on relational database and stored data. We show that the au-
tomatic co-refactoring is possible not only in case of basic changes of an application, but
even complex refactorings can be processed automatically for the applications’ code and
database.

Someone can be afraid about applicability in complex scenarios, whether the proposal
can really save time in real world scenarios. But due to the fact that hand-crafting of
mappings is not necessary in most of the interesting cases (usually an existing association
is used as the mapping function), the model proposed has advantages over hand-made
migration scripts.

Acknowledgments. The research has been supported by the Czech Technical University in Prague
grant No. [SGS12/147/OHK3/2T/13] and partially by the Avast Foundation.

Application and Relational Database Co-Refactoring 523

References

1. Aboulsamh, M., Davies, J.: A metamodel-based approach to information systems evolution and
data migration. In: Software Engineering Advances (ICSEA), 2010 Fifth International Confer-
ence on. pp. 155 –161 (aug 2010)

2. Aboulsamh, M., Davies, J.: A formal modeling approach to information systems evolution
and data migration. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E., Schmidt, R.,
Bider, I. (eds.) Enterprise, Business-Process and Information Systems Modeling, Lecture Notes
in Business Information Processing, vol. 81, pp. 383–397. Springer Berlin Heidelberg (2011),
http://dx.doi.org/10.1007/978-3-642-21759-3_28

3. Ambler, S.W., Sadalage, P.J.: Refactoring Databases: Evolutionary Database Design. Addison-
Wesley Professional (2006)

4. Bordbar, B., Draheim, D., Horn, M., Schulz, I., Weber, G.: Integrated model-based software de-
velopment, data access, and data migration. In: Proceedings of the 8th international conference
on Model Driven Engineering Languages and Systems. pp. 382–396. MoDELS’05, Springer-
Verlag, Berlin, Heidelberg (2005), http://dx.doi.org/10.1007/11557432_28

5. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful database schema evolution: the prism
workbench. Proc. VLDB Endow. 1(1), 761–772 (Aug 2008), http://dl.acm.org/
citation.cfm?id=1453856.1453939

6. Domnguez, E., Lloret, J., ngel L. Rubio, Zapata, M.A.: Medea: A database evolution archi-
tecture with traceability. Data & Knowledge Engineering 65(3), 419 – 441 (2008), http:
//www.sciencedirect.com/science/article/pii/S0169023X07002224

7. Eclipse Foundation: Usage Data Collector Results (2013), http://www.eclipse.org/
org/usagedata/results.php?kind=command&sort=element[Accesed 19.
November 2013]

8. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston,
MA, USA (1999)

9. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA (2002)

10. Hansson, D.H., Kemper, J.: ActiveRecord::Migration (2009), http://api.
rubyonrails.org/classes/ActiveRecord/Migration.html, Accessed 6.
September 2012

11. Hansson, D.H., Kemper, J.: RubyForge:ActiveRecord: Project Info (2009), http://
rubyforge.org/projects/activerecord, Accessed 6. September 2012

12. Hick, J.M., Hainaut, J.L.: Database application evolution: A transformational approach. Data
& Knowl. Eng. 59(3), 534–558 (2006)

13. JBoss Community: Hibernate (2011), http://www.hibernate.org/, Accessed 6.
September 2012

14. Jing, J., Claypool, K., Jin, J., Rundensteiner, E.: SERF: Schema Evolution through an Extensi-
ble, Re-usable and Flexible Framework. In: Int. Conf. on Information and Knowl. Management
(1998)

15. Lerner, B.S., Habermann, A.N.: Beyond schema evolution to database reorganization. ACM,
New York, NY, USA (1990)

16. Macek, O., Richta, K.: Transformations for Application and Database Co-Refactoring (2013),
https://github.com/macekond/comsis_transformations_appendix [Ac-
cesed 19. November 2013]

17. McBrien, P., Poulovassilis, A.: A General Formal Framework for Schema Transformation. Data
and knowledge engineering 28(1), 47–71 (September 1998), http://pubs.doc.ic.ac.
uk/formal-framework-transformation/

18. Microsoft: ADO.NET Enitity Framework (2011), http://msdn.microsoft.com/
en-us/library/bb399572.aspx, Accessed 6. September 2012

http://dx.doi.org/10.1007/978-3-642-21759-3_28
http://dx.doi.org/10.1007/11557432_28
http://dl.acm.org/citation.cfm?id=1453856.1453939
http://dl.acm.org/citation.cfm?id=1453856.1453939
http://www.sciencedirect.com/science/article/pii/S0169023X07002224
http://www.sciencedirect.com/science/article/pii/S0169023X07002224
http://www.eclipse.org/org/usagedata/results.php?kind=command&sort=element
http://www.eclipse.org/org/usagedata/results.php?kind=command&sort=element
http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://rubyforge.org/projects/activerecord
http://rubyforge.org/projects/activerecord
http://www.hibernate.org/
https://github.com/macekond/comsis_transformations_appendix
http://pubs.doc.ic.ac.uk/formal-framework-transformation/
http://pubs.doc.ic.ac.uk/formal-framework-transformation/
http://msdn.microsoft.com/en-us/library/bb399572.aspx
http://msdn.microsoft.com/en-us/library/bb399572.aspx

524 Ondrej Macek and Karel Richta

19. Moravec P., Harmanec D, Tarant P., Jezek J.: An practical approach to dealing with evolving
models and persisted data. In: Code Generation (2012)

20. Roddick, J.F., Craske, N.G., Richards, T.J.: A taxonomy for schema versioning based on the
relational and entity relationship models. In: Proceedings of the 12th International Conference
on the Entity-Relationship Approach: Entity-Relationship Approach. pp. 137–148. ER ’93,
Springer-Verlag, London, UK, UK (1994), http://dl.acm.org/citation.cfm?id=
647515.727030

21. Schulz, C., Löwe, M., König, H.: A categorical framework for the transformation of object-
oriented systems: Models and data. J. Symb. Comput. 46(3), 316–337 (Mar 2011), http:
//dx.doi.org/10.1016/j.jsc.2010.09.010

22. Tresch, M.: A framework for schema evolution by meta object manipulation. In: Proc. of the
3d Int. Workshop on Found. of Model. and Lang. for Data and Objects (1991)

23. Van Paesschen, E., De Meuter, W., D’Hondt, M.: Selfsync: a dynamic round-trip engineering
environment. Model Driven Eng. Lang. and Syst. pp. 633–647 (2005)

24. Voxland N.: Liquibase (2013), http://www.liquibase.org [Accesed 19. November
2013]

25. Wedemeijer, L.: Semantical change patterns in the conceptual schema. In: Proceedings of the
Workshops on Evolution and Change in Data Management, Reverse Engineering in Infor-
mation Systems, and the World Wide Web and Conceptual Modeling. pp. 122–133. ER ’99,
Springer-Verlag, London, UK, UK (1999), http://dl.acm.org/citation.cfm?id=
647523.728210

Ing. Ondrej Macek. He received his MS in 2008 in study programme Electrical Engi-
neering and Informatics from the Czech Technical University in Prague. He has been an
assistant professor at the Czech Technical University since 2010 where he teaches under-
graduate courses software analysis, object oriented design and project management. His
research interests are model driven development, databases, software engineering and for-
mal specification. He is a member of the Upsilon Pi Epsilon - International Honor Society
for the Computing and Information Disciplines and a member of a conference committee
of DATESO.

Doc. Ing. Karel Richta, PhD. He graduated from the Czech Technical University in
Prague in 1974. Specializes in the area of formal specification and semantics, engaged
in programming languages and operating systems, currently focuses mainly on software
engineering and database management systems. This topic teaches in the Department of
Computer Science & Engineering at Czech Technical University in Prague, and also in the
Department of Software Engineering of Charles University in Prague. He has published
more than 110 contributions to scientific conferences and in journals. He is a member
of numerous program committees, the member of a steering committee of DATAKON
conference, and the seminar DATESO. He is the president of the Czech ACM Chapter,
the member of TC2 committee of IFIP, the member of Czech Society of Information
Systems, the member of Czech Society of Systems Integration, also acts as a permanent
reviewer on IEEE Software.

Received: June 10, 2013; Accepted: May 30, 2014.

http://dl.acm.org/citation.cfm?id=647515.727030
http://dl.acm.org/citation.cfm?id=647515.727030
http://dx.doi.org/10.1016/j.jsc.2010.09.010
http://dx.doi.org/10.1016/j.jsc.2010.09.010
http://www.liquibase.org
http://dl.acm.org/citation.cfm?id=647523.728210
http://dl.acm.org/citation.cfm?id=647523.728210

	Introduction
	Refactoring in the Context of ORM
	Model of Software Evolution
	Software Model
	Application Model
	Application Manipulation
	Database Model
	Database Manipulation
	Mapping Between Stored Data
	Object Relational Mapping
	Software Evolution
	Basic Evolutionary Transformations
	Advanced Evolutionary Transformations
	Copy Property
	Move Property
	Inline and Split Class

	Inheritance Manipulation

	Example of Usage
	Capabilities of Defined Transformations
	Related Work
	Conclusion

