
Computer Science and Information Systems 11(2):623–644 DOI:10.2298/CSIS130429023A

Building ontologies for different natural languages

Emhimed Salem Alatrish1, Dušan Tošić2, and Nikola Milenković3

1 Faculty of Mathematics, Studentski Trg 16,
11000 Belgrade, Serbia

emhimed_alatrish@yahoo.com
2 Faculty of Mathematics, Studentski Trg 16,

11000 Belgrade, Serbia
dtosic@matf.bg.ac.rs

3 Faculty of Mathematics, Studentski Trg 16,

11000 Belgrade, Serbia
nikola.milenkovic@live.com

Abstract. Ontology construction of a certain domain is an important step in
applying the Semantic web. A number of software tools adapted for building
domain ontologies of most wide–spread natural languages are available, but
accomplishing that for any given natural language presents a challenge. Here we

propose a semi-automatic procedure to create ontologies for different natural
languages. Our approach utilizes various software tools available on the Internet
most notably DODDLE-OWL - a domain ontology development tool impleme-
nted for English and Japanese languages. By using this tool, WordNet, Protégé
and XSLT transformations, we propose a general procedure to construct domain
ontology for any natural language.

Keywords: Semantic Web, Ontology, Natural language, DODDLE-OWL.

1. Introduction

Semantic Web has lately been a popular and prolific field of research with numerous

scientific papers published on the topic so far. Ontology is an important component of

the Semantic Web and a lot of papers about applying ontology in specific fields have
been published (see [27, 28]). Ontologies are closely connected to Natural Language

Processing (NLP) - a field of artificial intelligence, computer science and linguistics. As

such, NLP is related to the area of human–computer interaction. Ontologies provide an

explicit and formal way for data interpretation, integration and sharing, helping to

understand natural (human) language. Understanding of natural language is not an aim

per se, but it is useful in different fields, such as: Information Extraction (IE), Machine

Translation (MT), Question Answering (QA), etc. (Fig. 1.). Because of that the

production of software tools to support ontology and Semantic web has accelerated. A

number of these tools are free and available on the Internet (see: [2, 5, 13]).

Unfortunately, most of them are made to work with only a small set of widely used

languages such as: English, Spanish, French etc. Some natural languages are not
represented in these tools and it is a challenge to create domain ontologies for text

written in these languages.

http://www.linkedin.com/skills/skill/Artificial_Intelligence
http://www.linkedin.com/skills/skill/Computer_Science
http://www.linkedin.com/skills/skill/Linguistics

624 Emhimed Salem Alatrish et al.

Fig. 1. Relation between natural language, NLP and ontology

Our idea is to combine different accessible software tools for the purpose of semi-

automatic construction of Natural Language Ontologies (NLOs) from specific domains.

This approach aims to be general and applicable for any natural language. The proposed

approach is very ambitious because the problem NLO construction is very general and

difficult. Understandably, certain adaptations and constraints are necessary depending

on the features of the natural language in question. The domain of applying ontology is
important too. Usually, we should make text classification before ontology construction.

A good methodology for text classification is proposed in [14].

2. Related work

The problem of NLO construction became apparent immediately after ontologies
appeared in computer sciences and it is still present today. This problem is considered in

some books (for example, [3], [21]) and in many articles ([15], [29], [8], [30]). In [15],

an automatic ontology building method is proposed. The authors described a system

which starts from small ontology kernel and constructs the ontology by automatically

understanding the text. This system is implemented in the project named Hasti and

applied to Persian (Farsi) texts. Paper [8] contains a project description where

ontologies are part of the reasoning process used for information management and for

the presentation of information. Both accessing and presenting information are mediated

via natural language. In [1], an automatic construction of ontology from Arabic texts is

proposed, by using statistical techniques to extract elements of ontology. In this work

initialization of the ontology is started manually and it is difficult to describe it as a
fully automatic process. An approach to converting hierarchical classifications (whose

nodes are assigned natural language labels) into lightweight ontologies is proposed in

[11]. In paper [12] a model of a Conversational Recommendation Agent (CoRA) is

described. It is a domain-specific dialogue system, which implements an ontology-based

Natural Language Processing system for shopping situations. The problem of content

determination in natural language generation (NLG) is considered in [16]. The authors

try to answer the question "What is an A?" where A is a that building ontologies for

different natural languages is currently a challenging problem. In recent years, CNL

(Controlled Natural Language) has received much attention with regard to ontology

([20], [5]). CNLs, as subsets of natural languages, can eliminate ambiguity of natural

 Building ontologies for different natural languages 625

languages and successfully apply in ontology construction. Introducing CNLs, authors

impose restrictions on used natural languages.
By developing the area of ontology construction, a lot of new problems are raised.

The growing number of ontologies available in different natural languages leads to an

interoperability problem. This problem is considered in [9] and a new architecture for a

multilingual ontology matching service is proposed. A Framework for merging the

heterogeneous ontologies based on WordNet is described in [4]. In fact, a new

methodology for merging the different ontologies is introduced. Casual users often use

large database. For these purposes it convenient to use Natural Language Interfaces

(NLIs) (often referred as closed-domain Question Answering (QA) systems). In [6]

system FREyA (Natural Language Interfaces to ontologies) is presented.

3. Semi-automatic creation of NLO

Even though automatic creation of domain NLO has been attempted (see [15]), it is still

a difficult task in general. It is particularly challenging to do so for the texts written in

different natural languages and related to some domain. In this case the domain

ontology structure depends in some aspects on human users. Because of that, it is

convenient to provide refined semi-automatic software tool for building NLOs. Those
kind of tools are available on the Web ([24], [5]) and one of them is DODDLE-OWL

(see: [18] and [26]). DODDLE-OWL is an interactive domain ontology development

environment created for Japanese and English language. We adopted this environment

for any natural language (that has a dictionary on WordNet) by applying translation of

original text into English text and transforming the obtained English ontology. Since

DODDLE-OWL is an essential tool in our approach, we are going to describe it in more

detail.

3.1. DODDLE-OWL Overview

DODDLE-OWL (a Domain Ontology rapiD DeveLopment Environment - OWL

extension) is a domain ontology development tool for the Semantic Web. It is written in

Java language. According to [7], “DODDLE-OWL reuses existing ontologies such as

WordNet and EDR as general ontologies to construct taxonomic relationships (defined

as classes) and other relationships (defined as properties and their domains and ranges)

for concepts”. An initial concept hierarchy is constructed as a (is-a) hierarchy of terms.

Here, it is assumed that there are one or more domain specific documents and that the

user can select important terms needed to construct domain ontology. DODDLE-OWL
has the following six main modules: Ontology Selection Module, Input Module,

Construction Module, Refinement Module, Visualization Module, and Translation

Module. We assume that there are one or more domain specific documents, and we also

assume that the user can select important terms needed to construct domain ontology

(Fig. 2, see [18] and [26]).

First, as an input to DODDLE-OWL, the user selects several concepts in Input

Module. In Construction Module, DODDLE-OWL generates the basis of the ontology,
an initial concept hierarchy and set of concept pairs, by referring to appropriate

http://doddle-owl.sourceforge.net/ja/

626 Emhimed Salem Alatrish et al.

reference ontologies and documents. In Refinement Module the initial ontology,

generated by Construction Module, is refined by the user through interactive support by
DODDLE-OWL. The ontology constructed by DODDLE-OWL can be exported with

the representation of OWL. Finally, Visualization Module (MR3) (described in [18]) is

connected with DODDLE-OWL and works with a graphical editor ([26]).

Fig. 2. Overview of DODDLE-OWL

3.2. Construction of domain NLO for different languages

In order to construct the NLO for different languages, text document from any natural

language is translated to English language. English ontology is built by using

DODDLE-OWL. In DODDLE-OWL the following steps are executed:

1. In the Ontology Selection Module, user selects reference ontologies on WordNet,

EDR (general vocabulary dictionary or technical terminology dictionary), and existing

OWL ontologies in the ontology selection as shown in Fig. 3.

2. In the Input Document Selection Module, user selects domain specific documents

described in English. In this step, some words in the documents are extracted. During

the same phase, user can select a part of speech (POS) for extraction of words from the

documents. For example, if noun or verb words are extracted, checkbox "Noun" or

"Verb" should be checked as shown in Fig. 3.
3. In the Input Term Selection Module, a list of extracted terms is formed. This list

includes (for more details see [3] and [14]): compound words, part of speech (POS),

Term Frequency (TF of term t in document d is defined as the number of times that t

occurs in d), Inverse Document Frequency (IDF estimate the rarity of a term in the

whole document collection - if a term occurs in all the documents of the collection, its

 Building ontologies for different natural languages 627

IDF is zero) and TF-IDF in the documents (TF-IDF is weight of a term - the product of

its TF weight and its IDF weight). Domain specific documents contain many significant
compound words. Therefore, accurate extraction of compound words is necessary to

construct domain ontologies. At this step, while considering part of speech (POS), TF,

and so on, the user selects input terms which are significant terms for the domain. For

certain domains, important terms do not occur in the documents. In such case, the Input

Term Selection Module has a function, allowing the manual addition of important terms

as input terms by the user. In order to prevent the leakage of the selection of input terms

from the documents, the Input Term Selection Module maintains the relationships

between the extracted terms and the terms in the documents as shown in Fig. 3.

Fig. 3. Typical usage of DODDLE-OWL

4. In the Input Concept Selection Module, the user identifies the word sense of input

terms in order to map those terms to the concepts in the reference ontologies selected

with the Ontology Selection Module. A particular single term may have many word

senses. Therefore, there may be many concepts corresponding to a word. The Input

Concept Selection Module has a function enabling automatic word disambiguation. This

function shows the list of concepts, ordered by some criteria, corresponding to the

selected input term. Input term not corresponding to the labels of concepts in the
reference ontologies is marked as undefined. The input terms are also undefined if the

concept exists, but there are no appropriate concepts in the reference ontologies. The

user defines the undefined terms manually in the refinement module, as shown in Figure

3.

628 Emhimed Salem Alatrish et al.

5. The Hierarchy Construction Module automatically generates the basis of ontology,

an initial concept hierarchy (by referring to reference ontologies) and documents. An
initial concept hierarchy is constructed as a taxonomic relationship.

6. DODDLE-OWL uses MR3: Meta-Model Management based on RDFs Revision

Reflection [18] as the Visualization Module. Figure 4. shows the product of MR3 as

RDFs description and graphical representation. Finally, through the translation module,

we can export the constructed domain ontology described in RDFs. For example, a

portion of the obtained English Ontology OWL code is presented in the following

document (1):
<rdf:Description rdf:about="use">
 <rdfs:subClassOf rdf:resource="activity"/>

 <rdfs:comment xml:lang="en">the act of using; "he warned

against the use of narcotic drugs"; "skilled (1) in the

utilization of computers"</rdfs:comment>

 <rdfs:label xml:lang="en">use</rdfs:label>

 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>
</rdf:Description>

Fig. 4. Products of MR3

7. To build ontology represented by OWL, we use Protégé editor ([23]). Protégé has

plugin to enhance ontology development, such as the OWL plugin (see: [10]). We use
this possibility to get the OWL document. For example, the document (1) is transformed

in the following text.
<owl:Class rdf:ID="use">

 <rdfs:label xml:lang="en">use</rdfs:label>

 <rdfs:comment xml:lang="en">

 the act of using; "he warned against the …

 </rdfs:comment>
 <rdfs:subClassOf>

 <owl:Class rdf:ID="activity"/>
 </rdfs:subClassOf>

</owl:Class>

 Building ontologies for different natural languages 629

The similar ontology graph for the related English words could be generated as in

Fig. 4. by using Protégé editor.
8. Very important step in localization process is translation of the ontology

recognized in a source language into target language by using XSLT. We are looking

for all tags <rdfs:label>, <owl:Class> (this includes rdf:ID and

rdf:about) and <rdfs:subClassOf> (this includes attributes rdf:about and

rdf:resource) and duplicates them. XSLT Translation script is included in this

paper and also publically available online1.

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.w3.org/2002/07/owl#">
 <xsl:output method="xml" indent="yes"/>
 <xsl:variable name="dict"

 select="document('dictionary.xml')/*" />
 <xsl:variable name="sourceLanguage" select="$dict/@from" />

 <xsl:variable name="targetLanguage" select="$dict/@to" />

 <xsl:template match="@* | node()">

 <xsl:copy>
 <xsl:choose>

 <xsl:when test=".=rdfs:label">
 <xsl:apply-templates select="rdfs:label"/>

 </xsl:when>
 <xsl:when test=".=rdfs:subClassOf ">

 <xsl:apply-templates

 select="rdfs:subClassOf "/>
 </xsl:when>
 <xsl:otherwise>

 <xsl:apply-templates select="@* | node()"/>
 </xsl:otherwise>

 </xsl:choose>
 </xsl:copy>

 </xsl:template>

 <xsl:template match="rdfs:label">

 <xsl:variable name="word" select="." />

1 https://github.com/nikolamilenkovic/doddle-owl-rdf-translator

630 Emhimed Salem Alatrish et al.

 <rdfs:label xml:lang="{$sourceLanguage}">
 <xsl:value-of select="$word"/>

 </rdfs:label>
 <rdfs:label xml:lang="{$targetLanguage}">
 <xsl:value-of select="$dict/word[@name=$word]"/>

 </rdfs:label>

 </xsl:template>

 <xsl:template match="owl:Class">

 <xsl:if test="@rdf:ID">
 <xsl:variable name="word" select="@rdf:ID" />

 <xsl:variable name="translated_word">
 <xsl:value-of select="$dict/word[@name=$word]"/>

 </xsl:variable>

 <owl:Class rdf:ID="{$translated_word}">
 <xsl:apply-templates />

 </owl:Class>
 </xsl:if>

 <xsl:if test="@rdf:about">

 <xsl:variable name="word"

 select="substring(@rdf:about, 2)" />
 <xsl:variable name="translated_word">
 <xsl:value-of select="$dict/word[@name=$word]"/>

 </xsl:variable>

 <owl:Class rdf:about="{concat('#',$translated_word)}">
 <xsl:apply-templates />

 </owl:Class>

 </xsl:if>
 </xsl:template>

 <xsl:template match="rdfs:subClassOf">

 <xsl:choose>
 <xsl:when test="@rdf:resource">

 <xsl:variable name="word"

 select="substring(@rdf:resource, 2)" />
 <xsl:variable name="translated_word">

 <xsl:value-of select="$dict/word[@name=$word]"/>
 </xsl:variable>

 <rdfs:subClassOf

 rdf:resource="{concat('#',$translated_word)}" />
 </xsl:when>
 <xsl:otherwise>

 <xsl:copy>
 <xsl:apply-templates select="@* | node()"/>

 </xsl:copy>
 </xsl:otherwise>

 </xsl:choose>
 </xsl:template>

</xsl:stylesheet>

 Building ontologies for different natural languages 631

For example, if the input document includes these tags:
<owl:Class rdf:ID="use">

 <rdfs:label xml:lang="en">use</rdfs:label>

 <rdfs:comment xml:lang="en">

 the act of using; "he warned against the …

 </rdfs:comment>

 <rdfs:subClassOf>

 <owl:Class rdf:ID="activity"/>
 </rdfs:subClassOf>

</owl:Class>

and the target language is Serbian-Cyrillic, we will get document like this one:

<owl:Class rdf:ID="користити">

 <rdfs:label xml:lang="sr">користити</rdfs:label>

 <rdfs:comment xml:lang="en">

 the act of using; "he warned against the …

 </rdfs:comment>
 <rdfs:subClassOf>

 <owl:Class rdf:ID="активност"/>
 </rdfs:subClassOf>

</owl:Class>

After that, we can generate an ontology graph for related Serbian words from a

specified text (Fig. 5.).

Fig. 5. Ontology graph for related Serbian words

The whole process could be graphically described as in Fig. 6.

632 Emhimed Salem Alatrish et al.

Fig. 6. Building of NLO

3.3. Creating dictionary for the translation process

By applying DODDLE-OWL, after finishing step 4, the project is completed and saved.

When the project is saved, a file named “InputWordSet” is automatically created. This

file contains all English words selected from Input Term Info Table. This file

consequently contains all relevant words for the target ontology. These words should be

translated into corresponding words in the target language. Here we utilize MyMemory

online translation service [19]. MyMemory is the world's largest Translation Memory

(TM). It has been created collecting TMs from the European Union, United Nations and

aligning the best domain-specific multilingual websites.

MyMemory’s translation service is accessible over the Internet via their translation

API. We wrote WordTranslator2 console application in .NET Framework 4.5 which
utilizes their translation API. Performing translation of a single word is done by calling

WordTranslator with the following arguments: word to be translated, language of the

provided word and the desired language for the translation. Program outputs a single

translated word. This greatly simplifies the translation process, since the complexity of

2 https://github.com/nikolamilenkovic/word-translator

 Building ontologies for different natural languages 633

natural language translation is reduced to a single console command execution. (If some

words are not translated, then we use Google translator or any available tool for
translation.)

Since WordTranslator translates a single word at a time, we also created a script3

which automatically iterates over each word in the input word list and translates each

word individually. Script is written in Batch shell scripting language and its source code

is:

@ECHO OFF & SetLocal EnableExtensions EnableDelayedExpansion
::Input file name
SET in=%1
::Input language (for example: en)
SET inLang=%2
::Output language (for example: ar)
SET outLang=%3
::Output file name (for example: dictionary.xml)
SET out=%4
::Check if output file exists
IF EXIST %out% (

 ECHO %out% already exists! Deleting...
 DEL %out%
 ECHO Deleted!
)

ECHO ^<?xml version="1.0" encoding="UTF-8"?^> >> %out%
ECHO ^<dictionary from="%inLang%" to="%outLang%"^> >> %out%

FOR /F "tokens=*" %%l in (%in%) do call :TRANSLATE %%l
ECHO ^</dictionary^> >> %out%
ECHO Dictionary created. Perform manual check before usage.

GOTO :EOF

:: ----------------- PROCEDURE TRANSLATE ------------------------
:TRANSLATE
 SET inputWord=%1
 FOR /f "delims=" %%a in ('WordTranslator.exe --word %inputWord% --
inputLanguage %inLang% --outputLanguage %outLang%') DO SET
outputWord=%%a

3 https://gist.github.com/nikolamilenkovic/9169523

634 Emhimed Salem Alatrish et al.

 ECHO Translated %inputWord% to %outputWord%
 ECHO ^<word name="%inputWord%"^>%outputWord%^</word^> >> %out%
 EXIT /b
:: ------------- END OF PROCEDURE: TRANSLATE --------------------

WordTranslator can be used for any combination of input/output languages. Since we

are starting with English ontologies, all our input words will be in English, and output in

the target language. In the Batch script we use outputs generated by WordTranslator to

construct dictionary used by XSLT transformation. Format of the dictionary as follows

(mapping English to Serbian words):

<?xml version="1.0" encoding="utf-8"?>

<dictionary from="en" to="sr">

 <word name="activity">активност</word>

 <word name="abstraction">апстракција</word>

 <word name="group">група</word>

 <word name="creative_activity">креативна_активност</word>

 <word name="sun">сунце</word>

</dictionary>

After building the English OWL representation of our text in step 5, we transform

this document into Serbian OWL representation by using XSLT transformer. For this

purpose we use an XML editor. There are several available XML editors (see: [17] and

[22]). For example, by using Oxygen XML Editor [10], we get the workspace organized

as in Fig. 7.

Fig. 7. XSLT transformer applied to Oxygen XML Editor

 Building ontologies for different natural languages 635

4. Examples

In this section we present two examples of applying our procedure for Arabic and

French. We started with the following Arabic text:

البرمجة هو الانضباط الفعلي للغاية .البرمجة هي المقرر التعليمي في كلية الرياضيات. البرمجة هي فن جميل

الآن يمكننا استخدام الكثير من لغات البرمجة الجديدة وجعل العديد من . ويتم تعلمه في العديد من الكليات في العالم

لمختلفةالبرامج ا

The above Arabic text is translated into English as follows:

"Programming is a beautiful art. Programming is a course in the Faculty of

Mathematics. Programming is a discipline very effective and it is learned in many
colleges in the world. Now we can use a lot of new programming languages and make

many different programs."

After applying the DODDLE-OWL, the obtained document is used by Protégé editor

to get the ontology for the above-mentioned English text. The obtained ontology

document is very long and here we present only a part of this document that is related to

the notions: “discipline” and “course”:

</owl:Class>

 <owl:Class rdf:about="discipline">
 <rdfs:subClassOf>

 <owl:Class rdf:about="activity"/>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">discipline</rdfs:label>

 <rdfs:comment xml:lang="en">training to improve strength

 or self-control</rdfs:comment>

 </owl:Class>

 <owl:Class rdf:about="course">

 <rdfs:label xml:lang="en">course</rdfs:label>

 <rdfs:comment xml:lang="en">a line or route along which

 something travels or moves; "the hurricane demolished

 houses in its path"; "the track of an animal"; "the

 course of the river"</rdfs:comment>

 <rdfs:subClassOf>

By using the Protégé editor, we can generate ontology graph for related English

words from specified text (Fig. 8.).

636 Emhimed Salem Alatrish et al.

Fig. 8. Ontology graph for English words

A part of XSLT transformation for this text has the form as in Fig. 9.

Fig. 9. XSLT transformer applied Arabian text

A corresponding piece of the obtained ontology for the previous Arabic text (the

entire document is too long and will therefore not be presented in its entirety) looks like

the following one:
</owl:Class>

 <owl:Class rdf:about="#طابضنالا">

 Building ontologies for different natural languages 637

 <rdfs:subClassOf>
 <owl:Class rdf:about="#طاشن"/>

 </rdfs:subClassOf>

 <rdfs:label xml:lang="ar">ضباط <rdfs:label/>الان

 <rdfs:comment xml:lang="en">training to improve strength

 or self-control</rdfs:comment>

 </owl:Class>
 <owl:Class rdf:about="#يميلعتلا_ررقملا">

 <rdfs:label xml:lang="ar">المقرر التعليمي</rdfs:label>

 <rdfs:comment xml:lang="en">a line or route along which

 something travels or moves; "the hurricane demolished

 houses in its path"; "the track of an animal"; "the

 course of the river"</rdfs:comment>

 <rdfs:subClassOf>

By applying the Protégé editor to the obtained document, we can generate an

ontology graph for related Arabic word from a specified text (Fig.10.). From this graph

we can see the relations between concepts in given text.

Fig. 10. Ontology graph for Arabic words

The second example is related to French language. For the following text:

Un thésaurus est constitué d’un ensemble organisé de termes, choisis pour leur

capacité à faciliter la description d’un domaine et à harmoniser la communication et le

traitement de l’information. Les termes d’un thésaurus sont reliés entre eux par des

relations sémantiques (hiérarchique, équivalence, etc.).
A fraction the OWL document is below:

<owl:Class rdf:about="description">

 <rdfs:subClassOf>

638 Emhimed Salem Alatrish et al.

 <owl:Class rdf:about="knowledge"/>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="en">description</rdfs:label>

 <rdfs:comment xml:lang="en">sort or variety; "every

description of book was there"</rdfs:comment>

</owl:Class>

By applying the Protégé editor, as in previous example, we get an ontology graph for
an English text (Fig. 11.).

Fig. 11. Ontology graph for English words

By using the XSLT transformer (Fig. 12.), we generate a corresponding OWL
document for French language.

<owl:Class rdf:about="#description">
 <rdfs:subClassOf>

 <owl:Class rdf:about="#connaissance"/>
 </rdfs:subClassOf>

 <rdfs:label xml:lang="fr">description</rdfs:label>

 <rdfs:comment xml:lang="en">sort or variety; "every

 description of book was there"</rdfs:comment>

</owl:Class>

 Building ontologies for different natural languages 639

Fig. 12. Generating ontology for French language by applying XSLT transformer

The corresponding ontology graph is presented in Fig. 13.

Fig. 13. Ontology graph for French words

Consider another more complex example. Let us have the following French text:

640 Emhimed Salem Alatrish et al.

L'informatique est le domaine d'activité scientifique, technique et industriel

concernant le traitement automatique de l'information via l’exécution de programmes
informatiques par des machines : des systèmes embarqués, des ordinateurs, des robots,

des automates, etc.

Ces champs d'application peuvent être séparés en deux branches, l'une, de nature

théorique, qui concerne la définition de concepts et modèles, et l'autre, de nature

pratique, qui s'intéresse aux techniques concrètes d'implantation et de mise en œuvre sur

le terrain. Certains domaines de l'informatique peuvent être très abstraits, comme la

complexité algorithmique, et d'autres peuvent être plus proches d'un public profane.

Ainsi, la théorie des langages demeure un domaine davantage accessible aux

professionnels formés (description des ordinateurs et méthodes de programmation),

tandis que les métiers liés aux interfaces homme-machine sont accessibles à un plus

large public.
Le terme « informatique » résulte de la combinaison des trois premières syllabes du

terme « information » et des deux dernières syllabes du terme « automatique » ; il

désigne à l'origine l'ensemble des activités liées à la conception et à l'emploi des

ordinateurs pour traiter des informations. Dans le vocabulaire universitaire américain, il

désigne surtout l'informatique théorique : un ensemble de sciences formelles qui ont

pour objet d'étude la notion d'information et des procédés de traitement automatique de

celle-ci, l'algorithmique. Par extension, la mise en application de méthodes

informatiques peut concerner des problématiques annexes telles que le traitement du

signal, la calculabilité ou la théorie de l'information.

After applying our method, the following ontology graph is obtained (we omit

intermediate ontology graph for English words and parts of XSLT transformer):

Fig. 14. Ontology graph for French words

 Building ontologies for different natural languages 641

5. Discussion

The strong point of our approach is its generality, i.e. the possibility to apply it in same

way for any natural language. Our starting goal was to create automatic method for

building domain ontologies related to any natural language. Moreover, we conceive that

it is not possible to do in this moment. So, we include expert in generating of ontology

and make a semi-automatic approach. Participating of an expert (in selection some

words) is probably the weakest point of our method. Also, the problems could appear

during translation of some text into English language. A lot of new questions arise. For

example, let we have a text in the natural language NL1 (denote it with t.NL1) and

translate this text into natural language NL2 (denote it with t.NL2). After applying of
our method to t.NL1 and t.NL2 will we get same ontology graph, at least will we get

similar ontology graph. Special problem is how to measure the similarity of graphs.

These problems could be subject of further research.

6. Conclusion and future work

Ontologies are very important in different scientific fields such as: knowledge

engineering and representation, information retrieval and extraction, knowledge

management, agent systems, and so on. We can say that ontologies represent the

backbone of the semantic web. The possibility to create ontology for any natural

language gives us an opportunity to work with information that can be processed by

both humans and computers in a natural way which is, unfortunately, still difficult to do

that automatically. However, semi-automatic implementation of this process, including

a human expert, is possible. We described our approach for discovering taxonomic

conceptual relations from text facility ontology by using open source software tool

DODDLE-OWL. The main challenge we faced is that this software is available only for

Japanese and English languages. To address that, we proposed the procedure where

DODDLE-OWL is used as an auxiliary tool to build an ontology from the given text for
any natural language (referred in our paper as target language). For this approach the

other auxiliary tools are necessary as well as an existing WordNet database for the

target language, Protégé semantic web editor and Oxygen XML Editor. The main

contribution of this paper is the integration of different software tools, which gives new

quality and provides the building of ontologies for different natural languages. We plan

to perform further analysis of the results and compare the obtained ontology trees using

different natural languages with the same input text. We will try to improve the

proposed approach by integrating additional software tools and making certain steps

simpler.

Acknowledgment. Research was partially supported by the Ministry of Education and Sciences
Republic of Serbia, through project no. OI 174010 Mathemaical models and optimization
methods of large systems.

642 Emhimed Salem Alatrish et al.

References

1. Ahmed, C, M., Hassina, A., Zaia, A.: Automatic Construction of Ontology from Arabic
Texts. ICWIT 2012: 193-202. (2012)

2. Alatrish S.E.: Coparison of Ontology Editors, eRAF Journal on Computing, Vol. 4, 23-38,
2012.

3. Antoniou G. and van Harmelen F.: Semantic Web Primer, The MIT Press, 2008.
4. Bajwa S. I.: A Framework for Ontology Creation and Management for Semantic Web,

International Journal of Innovation, Management and Technology, Vol. 2, No. 2, April 2011.
5. Bernstein A. and Kaufmann E.: GINO – A Guided Input Natural Language Ontology Editor,

Lecture Notes in Computer Science Volume 4273, pp 144-157, 2006.
6. Damljanovic D., Agatonovic M. and Cunningham H.: Natural Language Interfaces to

Ontologies:Combining Syntactic Analysis and Ontology-based Lookup through the User
Interaction, in: Proc. of the 7th Extended Semantic Web Conference (ESWC) (ed. Lora
Aroyo and al.), Springer Verlag, 106-120, 2010.

7. DODDLE-OWL,a Domain Ontology rapiD DeveLopment Environment - OWL extension,
[Online]. Available: http://doddle-owl.sourceforge.net/en/.

8. Dominique, E., Chris, N., Andrew, Z.: Towards Ontology-based Natural Language
Processing". RDF/RDFS and OWL in Language Technology: 4th Workshop on NLP and
XML (NLPXML-2004), ACL 2004, Barcelona, Spain, [Online]. Available:

www.aclweb.org/anthology-new/W/W04/W04-0609.pdf. (2004)
9. Haytham A-F., Schafermeier R. and Paschke P.: An Inter-lingual Reference Approach For

Multi-Lingual Ontology Matching, IJCSI International Journal of Computer Science Issues,
Vol. 10, Issue 2, No 1, pp. 497- 503, 2013.

10. Holger, K., Ray, F., Natalya, N., Mark, M.: The Protégé OWL plugin: An open development
environment for semantic web applications, The Semantic Web–ISWC 2004, 229-243.
(2004)

11. lya, Z., Lei, S., Fausto, G., Wei, P., Qi, J., Mingmin, C., Xuanjing, H.: From Web Directories

To Ontologies: Natural Language Processing Challenges, Technical Report # DIT-07-029.
May (2007)

12. Janzen, S., Maass, W.: Ontology-based Natural Language Processing for In-store Shopping
Situations, Third IEEE International Conference on Semantic Computing (ICSC 2009),
Berkeley, California. USA (2009)

13. Kapoor B. and Sharma S.: A Comparative Study Ontology Building Tools for Semantic Web
Applications, International Journal of Web & Semantic Technology , vol. 1, no. 3, pp. 1-13,
2010.

14. Karanikolas N. and Skourlas C.: A parametric methodology for text classification, Journal of

Information Science, Vol. 36 (4), pp. 421-442, 2010.
15. Mehrnoush, S., Ahmad, A.: Learning Ontologies from Natural Language Texts, International

Journal of Human-Computer Studies, Volume 60, Issue 1, January, Pages 17-63. (2004)
16. Mellish, C., Pan, J.: Natural Language Directed Inference from Ontologies, Artificial

Intelligence 172(10): 1285-1315. (2008)
17. Microsoft Core XML Services (MSXML) 6.0, [Online]. Available:

http://www.microsoft.com/enus/download/details.aspx?id=3988.
18. Morita, T., Izumi, N., Fukuta, N.: A Graphical RDF-Based Meta-Model Management Tool.

IEICE Transactions 89-D(4): 1368-1377. (2006).
19. MyMemory: next generation Translation Memory technology, [Online]. Available:

http://mymemory.translated.net/doc/.
20. Namgoong H. and Kim H-G.: Ontology-Based Controlled Natural Language Editor Using

CFG with Lexical Dependency, ISWC/ASWC, 353-366, 2007.
21. Nitin, I., Fred, J, D (editors).: Handbook of Natural Language Processing, Second Edition,

Taylor & Francis. (2010)

http://www.informatik.uni-trier.de/~ley/pers/hd/a/Aliane:Hassina.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Alimazighi:Zaia.html
http://www.informatik.uni-trier.de/~ley/db/conf/icwit/icwit2012.html#MazariAA12
http://www.microsoft.com/enus/download/details.aspx?id=3988
http://mymemory.translated.net/doc/

 Building ontologies for different natural languages 643

22. Oxygen XML Editor 14.2. [Online]. Available: http://www.oxygenxml.com/doc/Editor-
UserManual.pdf

23. Protégé ontology editor developed by Stanford Medical Informatics, Stanford University
School of Medicine, further information, [Online]. Available: http://protege.stanford.edu/.

24. Szulman S., Charlet J., Aussenac-Gilles N., Nazarenko A., Sardet E. and Téguiak H.V.:
DAFOE: An Ontology Building Platform - From Texts or Thesauri, KEOD 2009: 372-375

25. Takeshi, M., Naoki, F., Noriaki I., Takahira, Y.: DODDLE-OWL: Interactive Domain
Ontology Development with Open Source Software in Java. IEICE Transactions 91-D(4):

945-958. (2008)
26. Takeshi, M., Naoki, F., Noriaki I., Takahira, Y.: DODDLE-OWL: A Domain Ontology

Construction Tool with OWL. ASWC 2006: 537-551. (2006)
27. Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z.: Ontology-Based Architecture

with Recommendation Strategy in Java Tutoring System. Computer Science and Information
Systems, Vol. 10, No. 1, 237-261. (2013)

28. Wei, M., Xu, J., Yun, H., Xu, L.: Ontology-Based Home Service Model. Computer Science
and Information Systems, Vol. 9, No. 2, 813-838. (2012)

29. Wilson, W., Liu, W., and Bennamoun, M. 2012. Ontology learning from text: A look back
and into the future, ACM Comput. Surv. 44, 4, Article 20 (August 2012), 36 pages,
DOI=10.1145/2333112.2333115 http://doi.acm.org/10.1145/2333112.2333115

30. Wolf, F. and Bernhard, B.: Combining Ontologies And Natural, Language, [Online].
Available: krr.meraka.org.za/~aow2010/Fischer-etal.pdf. (2010)

Emhimed Salem Alatrish was born in 03/09/1972 at Yefren in Libya. He finished

primary and secondary school in Yefren, and then graduated from the Faculty of

Science and Arts in 1996. After that he started master study in Cultural University in

Istanbul and ended it in 2005/2006 school year. From 2008 year he is enrolled in the
doctoral program at the Faculty of Mathematics in Belgrade.In the period from 1997 to

2001 year he worked as an assistant professor at the Department of Physics, Faculty of

Science and Art in Yefren in Libya.

Dušan Tošić received his B.Sc. degree in mathematics 1972, M.Sc. in mathematic 1977

and PhD in mathematics 1984 from University of Belgrade, Faculty of Mathematics.

Since 2003 he is a full professor of computer science at Faculty of Mathematics,

University of Belgrade. Professor Tošić is an associate editor for the Journal ComSIS

(Computer Science and Information Systems) and reviewer of Zentarblat. His

publication list contains more than 100 titles of articles and books. He has supervised

about 20 candidates for PhD and M.Sc. degree. On the beginning his research interest

was numerical solving of differential equations. After that he was oriented toward
parallel algorithms, optimizations, genetic algorithms and teaching of computer

sciences. He is Fellow of Serbian Mathematical Society and member of Committee

Serbian Society of Computer Sciences.

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fukuta:Naoki.html
http://www.informatik.uni-trier.de/~ley/pers/hd/i/Izumi:Noriaki.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yamaguchi:Takahira.html
http://www.informatik.uni-trier.de/~ley/db/journals/ieicet/ieicet91d.html#MoritaFIY08
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fukuta:Naoki.html
http://www.informatik.uni-trier.de/~ley/pers/hd/i/Izumi:Noriaki.html
http://www.informatik.uni-trier.de/~ley/pers/hd/y/Yamaguchi:Takahira.html
http://www.informatik.uni-trier.de/~ley/db/conf/aswc/aswc2006.html#MoritaFIY06

644 Emhimed Salem Alatrish et al.

Nikola Milenković was born in 11/18/1987 in Belgrade. He finished primary school in

Barič and secondary school “Nikola Tesla” in Belgrade, and then graduated at the
Faculty of Mathematics in 2009, Computer Science course. After that he started master

studies at the Faculty of Mathematics and ended it in 2011. On the same year he

enrolled doctoral studies at the Faculty of Mathematics. Since 2009 he worked at a

various IT companies as a software developer, team leader and project manager. In

2013 he cofounded software development company in Belgrade where he currently

holds position of director.

Received: April 29, 2013; Accepted: March 30, 2014

