
Computer Science and Information Systems 11(2):569–599 DOI:10.2298/CSIS130523034K

A Direct Approach to Physical Data Vault Design

Dragoljub Krneta1, Vladan Jovanović2, and

Zoran Marjanović3

1 Lanaco Information Technologies, Knjaza Milosa 15,

78000 Banja Luka, Bosnia and Herzegovina

dragoljub.krneta@lanaco.com
2 Georgia Southern University, 1500 IT Drive,

Statesboro, Georgia 30458, USA

vladan@georgiasouthern.edu
3 Faculty of Organizational Sciences, Jove Ilica 154,

11000 Belgrade, Serbia

zoran.marjanovic@fon.rs

Abstract. The paper presents a novel agile approach to large scale design of

enterprise data warehouses based on a Data Vault model. An original, simple

and direct algorithm is defined for the incremental design of physical Data Vault

type enterprise data warehouses, using source data meta-model and rules, and

used in developing a prototype case tool for Data Vault design. This approach

solves primary requirements for a system of record, that is, preservation of all

source information, and fully addresses flexibility and scalability expectations.

Our approach benefits from Data Vault dependencies minimizations and rapid

loads opportunities enabling greatly simplified ETL transformations in a way not

possible with traditional (i.e. non data vault based) data warehouse designs. The

approach is illustrated using a realistic example from the healthcare domain.

Keywords: Enterprise data warehouse, system of records, design automation,

Data Vault model.

1. Introduction

In this section we delineate the scope of the work, introduce baseline terminology,

present selected requirements for design automation of a Data Vault (DV) type data

warehouse, and explain the organization of this paper. The scope of the work is the

design of DV based Enterprise Data Warehouse (EDW) / Data Mart (DM) content.

The paper does not addresses storage and distribution opportunities i.e. recent

advances such as (Hadop, NoSQL, etc.).

Data warehouse (DW) is a subject oriented, nonvolatile, integrated, time variant

collection of data in support of management's decisions [1]. A DW may be used to

support permanent systems of records and information management (compliance and

improved data governance). Data marts are small data warehouses that contain only a

subset of the EDW [2]. The data mart provides the platform for Online Analytical

Processing (OLAP) analysis. Therefore, OLAP is a natural extension of the data

570 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

warehouse. The results from OLAP analysis can be presented visually, which enables

improved comprehension [3]. The data mart is a part of data storage, but usually

contains summarized data [4]. The Extract, Transform, Load (ETL) process involves

fetching data from transactional systems, cleaning the data, transforming data into

appropriate formats and loading the result to a warehouse [5]. In the ETL process, data

from data sources is extracted by extraction routines. Data are then propagated to the

Data Staging area where they are transformed and cleaned before being loaded to the

data warehouse [6], [7]. An Important element of the DW is metadata, including

definitions and rules for creating data [8]. Metadata play an important role in data

warehousing. Before a data warehouse can be accessed efficiently, it is necessary to

understand what data is available in the warehouse and where the data is located [2].

The design of data warehouses is a difficult task. There are several problems

designers have to tackle. First of all, they have to come up with semantic reconciliation

of the information lying in the sources and the production of an enterprise model for

the data warehouse [2]. Data warehouses can be distinguished by the type of

architecture. Bill Inmon [9], [1], [10] proposed the CIF (Corporate Information

Factory) as an integrated data warehouse, i.e. database in the third normal form (3NF),

from which multidimensional data marts are to be derived. The second option is bus

architecture, defined by Ralph Kimball [11], [12], [13] where a data warehouse is just

a collection of data marts with conformant dimensions. Data Warehousing 2.0 (DW

2.0) is a second-generation attempt to define a standard Data Warehouse architecture.

One of the advantages introduced in DW 2.0 is its ability to support changes of data

over time [10].

Data modeling techniques for the data warehouse differ from the modeling

techniques used for operational systems and for data marts. This is due to the unique

set of requirements, variables and constraints related to the modern data warehouse

layer. Some of these include the need for an integrated, non-volatile, time-variant,

subject oriented, auditable, agile, and complete store of data. To address these needs

several new modeling approaches have been introduced within the Data

Warehouse/Business Intelligence industry. Among these are Data Vault modeling and

Anchor Modeling [14].

The Data Vault approach is introduced by Daniel Linstedt [15], [16], [17], to solve

the problems of flexibility and performance, enabling maintenance of a permanent

system of records [18]. Data Vault (DV) model is recognized by the modeling style

using Hub, Link and Satellite entities. In terms of entity relationship data models, a

Hub entity holds identities, typically business keys (or their combinations), Link

entities are representation of foreign key references (typically used to represent

transactions between two or more business components i.e. Hubs). A Satellite entity

shows context information i.e. attributes of a Hub or a Link. We can split out satellites

by: rate of change, type of data and source system. [19]. See the example of a Data

Vault in figure 1. The main difference from traditional ER data modeling style is in

representing attributes, namely Hub/Link entities which have relationship/identify

Satellite entities (representing traditional attributes in time).

Anchor Modeling is a database modeling technique built on the premise that the

environment surrounding a data warehouse is in a constant state of change, and

furthermore that a large change on the outside of the model should result in only a

A Direct Approach to Physical Data Vault Design 571

small change on the inside of the model [20], [21]. The goal of using the anchor

modeling technique is to “achieve a highly decomposed implementation that can

efficiently handle growth of the data warehouse without having to redo any previous

work” [21], mimicking the ideas of isolated semantic temporal data put forth in DW

2.0 architecture [22].

Data Vault and Anchor models are characterized by strong normalized data and

insensitivity to changes in the business environment, and adapted to frequent changes,

as well as the modeling of small parts of the data model, without the need for redesign.

Sixth Normal Form (6NF) is a term used in relational database theory by

Christopher Date to describe databases which decompose relational variables to

irreducible elements. While this form may be unimportant for non-temporal data, it is

certainly important when maintaining data containing temporal variables of a point-in-

time or interval nature [22], [23]. In [23], Chris Date points out several shortcomings

when attempting to model fully temporalized data using standard Fifth Normal Form

(5NF) principles and introduces Sixth Normal Form (6NF) as "A relvar (table) R is in

6NF if and only if R satisfies no nontrivial join dependencies at all, in which case R is

said to be irreducible" [23].

The Data Vault model, in the extreme case where a satellite table consists of one

attribute, becomes a 6NF design.

According to [16], [24], a Data Vault makes most sense in the case of distributed

data sources. To ensure traceability of data, the Data Vault is not transforming data

from different sources before they are loaded into the warehouse, thus enabling

permanent system of records (i.e. Data Vault). This differs from the CIF where data are

consolidated up front.

Fig. 1. An example of mapping a relational to the data vault physical model

A system theoretic block diagram representation, figure 2 from [25], shows explicit

separation of data warehouse data into permanent original data (DW staging or to put

it more precisely, a Data Vault) and derived data in data marts. The DB mimics

572 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

system’s state at the last updated moment in time while DW tracks the system’s state

over time.

Fig. 2. DW State history (Data Vault) and DW Reporting Area

Methodologies of data warehouse design, such as ([1], [13], [26], [27], [19]) are not

fully formalized. Based on the starting point to be used in determining the DW

content, the following four classes of approaches to DW design can be recognized:

1. Data-driven (or supply-driven) [9], [28], [29], [30], [31] is based on an analysis of

the data, the database schema and the identification of available data.

2. Demand-driven (also user-requirements driven) [11], [28], [30], [31] starts with

the determination of requests for information from the user, but mapping that to

available data remains a problem.

3. Goal-driven [32], [33], [30] is based on a business strategy i.e. begins with an

analysis of key business processes, but according [28], [34] is a subset of Demand-

driven approach.

4. The Hybrid approach combines user requirements with analysis of management

and operational data. It distinguishes the interleaved and sequential access. For

sequential access, the data-driven and demand-driven paradigms are applied

independently of each other, one after the other, while in the interleaved hybrid

approach both paradigms are applied in parallel [34].

This work is part of a larger research program, the DW21 dealing with the next

generation DW design technology [35] where Data Vault is a baseline approach to DW

design and most of the requirements are derived from a developer’s standpoint as

shown in figure 3.

One practical problem for organizations building data warehouses using different

methodological approaches is that the process of designing a data warehouse including

a process of identifying and/or generating measures and dimensions (or Hub, Link and

Satellite concepts in case of Data Vault approach) is not sufficiently automated.

A Direct Approach to Physical Data Vault Design 573

Predictive DMs

Distributed Data

Marts (DM)

PDV Content

(Distributed)

Hypothetical

DMs

Source Data

 DV Data Requirements:

PDV Variability

Requirements:

 Concerns vs. Aspects

Content

Distribution

 (Node

Location)

Partitioning

 (Mem-Devices)

Recovery

 Security

Privacy

PDW Metadata

ETL DMs

Metadata

Scorecards

Metadata

Dashboards

 Metadata

Analytic

Tranformations

 Metadata

PDV Case Tool Content

Requirements:

EL PDV

Metadata

LDV Models

Source Data
Metadata

Fig. 3. Some Requirements of DW 2.1 Research Program

The rest of the paper is structured as follows: section 2 reviews work on data

warehouse design automation, section 3 presents our approach to physical Data Vault

design, section 4 illustrates related Physical Data Vault (PDV) design tool we

developed to automate prototyping and implementation of data vaults based data

warehouses, section 5 illustrates the use of the tool on a real example for distributed

data base sources, and section 6 outlines future work.

2. A Review of Data Warehouse Design Automation

The starting point for review is selection of relevant works in the field of design

automation for DW content (to narrow the scope somewhat, we did not emphasize a

large body of work dealing primarily with ETL). Our choices are based on perceived

contributions to the theory and practice of design, confirmed by the number of citations

(at www.harzing.com).

A semiautomatic sequential hybrid approach of conceptual modeling of a data

warehouse that starts with E/R model is proposed in [36]. After the analysis and design

of the conceptual/logical model, the identification of facts is followed by semi-

automatic creation of attribute trees in accordance with the requirements. The next step

is to identify the dimensions, measures and aggregate functions after which logical and

physical schema of data warehouse is performed. Improvement of the procedure is

given in a textbook form in the [26].

The Hybrid approach in designing multidimensional database warehouse on the

basis of transactional normalized systems is proposed in [37]. In this approach an ER

diagram is transformed into a Structured Entity Relationship Models (SERM) diagram.

Phipps and Davis [38] start with a data-driven approach, and later uses the demand-

driven approach (sequential hybrid approach). The initial scheme is obtained using a

multidimensional E/R model. This paper proposes an algorithm for obtaining a

conceptual scheme of transactional schemas. The algorithm uses the numeric fields

and relationships between entities as the basis for the creation of Multidimensional E/R

schemes. The algorithm is applied to each data model where data can be divided into

numeric, date/time, and text data types. In addition, this approach can be used to

evaluate candidates for the conceptual schema using custom queries.

 Peralta (et al.) [39] represents a step forward in the automation of data warehouse

based on the rules applying existing knowledge in the data warehouse design. The

574 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

proposed rules are built into the design strategy that is run in accordance with the

requirements and data extraction based on the transactional database schema. The

framework consists of: rules, guidelines for the design based on non-functional

requirements, the mapping scheme of the original database to a conceptual scheme,

and a number of schema transformations. This approach allows the use of existing

design techniques, with improved productivity.

Romero and Abello [40] propose a semi-automatic method for recognizing business

multidimensional concepts from domain ontology representing different and

potentially heterogeneous data. With the use of ontologies and tools it can search for

multi-dimensional patterns. Simulations of real cases to verify the algorithm are

performed as well as theoretical analysis of the algorithm. This approach is able to

integrate data from heterogeneous sources that describe their domains through

ontologies. One of the most promising areas where the method can be applied is the

semantic Web, which contributes to the extraction and integration of external data

from the Web.

Zepeda (et al) [41] introduces a semi-automatic process to build a DW based on

MDA (Model Driven Architecture). It starts by collecting and consolidating user

requirements. Other steps include recognizing structural information from the original

database schema supported by an automation technique. This approach uses a tool to

guide designers toward effective solutions in line with customer requirements.

Nazri (et al) [42] is based on a model of data source and proposes a semi-automatic

tool that uses lexical ontology as the knowledge base. Once you identify the facts and

dimensions, the generation of a multidimensional model is made with minimal

involvement of a user. The method is illustrated using a semantic lexicon WorldNet as

knowledge domain, to identify measures and dimensions.

Zekri (et al) [43] introduces a semi-automatic approach for the design of

multidimensional diagrams. Conceptual Data Model (CDM) is first translated into the

multivariate pattern, and then refined with user requirements. Both steps use graphs as

a formalism for the representation of the data model for decision making.

Design automation is not an easy process because, in addition to the identification of

the original database schema, it attempts to formalize the requirements of end users.

However, certain steps must be performed manually, for example, the identification of

business keys and measures. Table 1 provides a comparative overview of the various

approaches, including a new one based on the Data Vault. Note that the public domain

literature concerning the design of Data Vault systems [15], [16], [24], [44], [45], [46]

does not elaborate on actual design process automation.

Our direct approach to automatic generation of Data Vault physical models is based

on metadata schemas of structured data sources (transactional databases) taking into

account some semi-structured and unstructured sources. In addition, compared to the

alternatives (Table 1), our direct approach to the physical design automation of data

warehouse is achieved through the use of rules. It should be noted that majority of

listed approaches are academic and that only Golfarelli [26] has a long tradition of

industrial use which is also a characteristic of the Data Vault approach itself [15], [16],

[44]. A direct physical design for data warehouses is practical only in the case of a

data vault type of data warehouses and is made possible by separating storage of

identities (permanent keys) from evolving relationships and characteristics (attributes).

A Direct Approach to Physical Data Vault Design 575

Table 1. Comparison of data warehouse design approaches

Approach

Generating Data Source
Using

Rules
Conceptual

DW model

Physical

DW model

Data

Vault Structured
Semi-

structured

[36] X X

X

[37] X

X

[38] X

X

[39] X

X

X

[40] X X

X X

[41] X

X

[43] X X

X

[42]

X

X X

Direct

Physical DV
X X X X X

An important contribution of our approach is the realization of a possibility to

directly derive Data Vault schema from source RDBMS schemas. The direct approach

to physical Data Vault design is now possible thanks to the feature of the Data Vault

models i.e. the separation of unchangeable identities of entities in real systems (Hubs)

from time variant relationships (Links) and the characteristics of such entities and

relationship (Satellites).

There are many approaches to modeling and/or generating ETL process and code

for example [45, 46, 47, 48, 49, 50, 51 and 52]. In Muñoz [51] an approach to the

automatic code generation of ETL processes is given. The modeling of ETL processes

used MDA (Model Driven Architecture) with the formal definition of a set of QVT

(Query, View, Transformation) transformation. The problem of defining ETL activities

and securing their formal conceptual representation is given in Simitsis and Vassiliadis

[48]. The proposed conceptual model provides custom attributes for monitoring and

appropriate ETL activities in the early stages of project data warehouse, and flexibility,

extensibility and reuse patterns for ETL activities. Jovanovic (et al) [53] presents a tool

GEM that from a given set of business requirements and data source descriptions semi-

automatically produces multidimensional and ETL conceptual designs. In addition,

many commercial ETL design tools exists [54, 55, 56, 57, etc.]. Nevertheless none of

the before mentioned approaches and tools consider the ETL process in a Data Vault

based data warehouse context that is for a second generation of data warehousing

models.

Sources listed in Table 1 above mainly represent academic contributions. Of interest

to practitioners and to our research are also several additional sources illustrating the

development and/or use of tools to automate the design of data warehouses.

Golfarelli (et al) [58] presented the prototype CASE tool WAND. This tool assists

the designer in structuring a data mart, carries out conceptual design in a semi-

automatic fashion, allows for a core workload to be defined on the conceptual scheme

and carries out logical design to produce the data mart scheme.

576 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

QBX is a CASE tool for data mart design resulting from a close collaboration

between academy and industry. It supports designers during conceptual design, logical

design, and deployment of ROLAP data marts in the form of star/snowflake schemata,

and it can also be used by business users to interactively explore project-related

knowledge at different levels of abstraction. [59].

BIReady's Model-driven Data Warehouse generation engine [60] is one extension of

CA Erwin tool that allegedly uses best practices and a stable architecture so that one

can easily manage and evolve data warehouse. BIReady is able to generate a Data

Warehouse automatically from a business model. BIReady even generates the ETL and

loads data. BIReady builds data architectures from the ground up based on best-

practices. For example, the Corporate Information Factory (CIF) pattern by Bill Inmon,

the father of Data Warehousing, and Dan Linstedt’s Data Vault modelling approach.

Even BIReady’s datamarts are real Kimball Star-schemas.

The Birst [61] tool automatically compiles a logical dimensional model into a star

schema design and then generates and maintains fact and dimension tables. Logical

measures are automatically analyzed for calculation grain, while logical dimensions

are analyzed for levels requiring persistence. This tool generates and manages all key

relationships, including surrogate keys where necessary and provides data connectivity

and extract options for a wide variety of databases, both flat and structured files. The

Birst also supports scheduled data extraction from all major relational database

management systems, including Oracle, DB2, SQLServer, MySQL, Sybase, and

PostgreSQL.

Quipu [62] is an open source data warehouse generation system that creates data

warehouses and supports Data Vault architectures. Quipu automates the data

warehouse data model design and generates the ETL load code to fill the data

warehouse from source systems. With Quipu you can simply and quickly generate and

implement a source driven Data Vault, often referred to as source or raw Data Vault.

Additional business value can be achieved by implementing a business Data Vault,

where source data is combined in a Data Vault implementation of a single business

model. Quipu supports both Data Vault architectures. Quipu's repository holds all

relevant metadata of the source data elements and generates a data warehouse model

based on the Data Vault modeling methodology. Quipu provides the functions to build

a Data Vault data warehouse quickly and reliably. Quipu fills the gap in the tool sets

available today to implement the data warehouse architecture by generating,

maintaining and populating (database) structures and code to capture changes in data,

both transactional and reference [62]. According to a white paper available on [62],

functionality to assist the construction of Data Marts is not yet available in the Version

1.1 release of Quipu.

Pentaho Data Integration (PDI, also called Kettle) [46] is the component of Pentaho

responsible for the ETL processes. Though ETL tools are most frequently used in data

warehouses environments, PDI can also be used for other purposes: migrating data

between applications or databases, exporting data from databases to flat files, parallel

loading of data into databases, data cleansing, integrating applications. PDI can be

used as a standalone application, or it can be used as part of the larger Pentaho Suite.

As an ETL tool, it is the most popular open source tool available Moreover, the

transformation capabilities of PDI allow you to manipulate data with very few

A Direct Approach to Physical Data Vault Design 577

limitations [46]. The ETL process is fully automated, but data vault and data mart

processes are not part of the framework [63].

Table 2 summarizes information about relevant tools.

Table 2. Comparison of data warehouse design tools

Type of DW

tool

Physical

DW model

Data Vault

design

Generate

ETL code

Data Mart

design

WAND Academic Automatic
Not

supported
Automatic Automatic

QBX Academic Automatic
Not

supported
Automatic Automatic

Quipu Open source Automatic Automatic Automatic Manual

Pentaho

Kettle
Open source Manual Manual Automatic Manual

BIReady Commercial Automatic Manual Automatic Automatic

Birst Commercial Automatic
Not

supported
Automatic Automatic

Direct

PDV
Prototype Automatic Automatic

Automatic

(in progress)

Automatic

(in progress)

The advantage of our approach is the availability of a graphical view of the physical

diagrams for Data Vaults and data marts during the design process. Furthermore,

except for WAND and QBX, these tools do not present formalized and publically

available information in detail.

3. Direct Physical Data Vault Design

The aim of physical design is to assist in implementing a DW on a selected database

management platform. In the process of storing data, ones take large amounts of data

from variety of sources: ERP (Enterprise Resource Planning) systems, relational

databases, Excel files, DBF files, TXT and XML files or data from the Web. The data

in databases are called structured as they are defined with the data schemas.

Information contained in file systems is considered unstructured and exists in two basic

forms: as textual and as non-textual. Existing technology allows for easy loading of

textual data in the staging database or data warehouse, which is not the case with non-

textual. Some textual data (documents) can be structured and are known as semi-

structured.

578 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

Fig. 4. Overview of proposed approach

We propose a direct approach to the design of physical Data Vault data warehouses

based on the historical preservation of the original data. An important methodological

contribution of our approach is that conceptually, at the metadata level, data sources

(DS) of all types are presented with relational model schema equivalents. The

relational model is treated as the common factor for Data Vault implementation and all

the source data and therefore all types of sources (structured and some semi-structured)

are the first to be abstracted via meta-model into relational model equivalents. The

term direct approach means that an approach directly leads to Data Vault models based

on a physical model of sources in a relational form. The approach is facilitated by the

fact that, no matter how many sources of operational data are drawn from, it is the aim

of each information system to integrate basic information of wider significance and

establish control using only one or few primary database(s) that include most of the

data (and these databases, in most cases, reside in relational database engines). On the

other hand, theoretical analysis [64] considers relational data models as general

models, in which all data can be represented and so reduced. This work covers only the

first stage from Figure 5 of the full scope of our research on Data Vault approach

automation. The phases of initial Data Vault design automation (for the first stage) are

shown in Figure 6.

A Direct Approach to Physical Data Vault Design 579

Fig. 5. Stages of Data Vault data warehouse design and exploitation

Fig. 6. Phases of initial Physical Data Vault design automation

The direct approach to Physical Data Vault (PDV) design automation of a data

warehouse presented in this paper includes the use of rules for data warehouse design.

To understand the detailed rules we first outline a general algorithm for recognition of

Hub, Link and Satellite relations based on mapped original data (equivalent relational

model tables). In a nutshell the algorithm consists of the following:

The effect of the algorithm is to create a Link for each FK (except for tables whose

PK are completely composed of FKs as all such tables will became Links in step I- b- if

not confirmed Hubs in step I- a). The proof of completeness of the algorithm follows

from the assumption that, no matter the source, every table must have a PK, and the

fact that tables are originally valid i.e. have been made from real data so that no

I- For each source:
a) For each Table: the user confirms Hubs by

selecting a Business Key

b) For each Table, if not already selected as
a Hub, create Link

c) For each Table:
i. for each FK create Link

d) for each non-key attribute: create
Satellite

II- For each Hub (PK)

a) For each source
i. For each Table (search for matching PK): if

found, create Link (to Hub ad II; this only

illustrate possible integration).

580 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

contradictions in terms of circular dependencies on other tables could prevent their

formation.

Next figure shows how introduction of Links breaks cycle in ER models.

1. Every PK is either composed (partially or fully) from
the PKs from other tables or is a separate PK

(possibly, but rarely, composed of several fields

concatenated or not. See [19]).

2. Tables with separate PKs are designated as Hubs
3. Tables with fully composed PKs are designated as Links.
4. Remove all Links tables whose PK are not used as FK
5. Remove all Hubs tables whose PK are not part of any PK

in any remaining table

6. Represent all remaining FK references with separate

Links tables (each of those Links will now have two FK

references); this is a crucial step separating mutually

dependent tables

7. Represent what is left, treating it as a directed graph
expressing FK references (as precedence relations) in a

matrix form

a. Nodes are tables (including Links created in step
6),

b. Branches are FK references whose direction

follows the FK reference i.e. branches are

pointing to tables whose PK is referenced by each

FK. The result is a connected directed graph.

8. We can fully reduce the matrix using Warshall's

algorithm following precedence relations (as

adjacencies) on a connected directed acyclic graph (in

a finite number of steps) where the number of steps

determines the length of the longest precedence chain.

9. The key for a proof that the above procedure finishes
is that the graph obtained by carving initial, i.e.

root, Hubs and Links must be acyclic (proof by

contradiction)

a. If the precedence (FK path) forms a cycle the

table has a PK that depends on itself but this

contradicts the initial requirement that tables

can exists in extension, meaning that records in

the tables exist i.e. not only can be formed with

complete PK in the time of schema creation but

also effectively populated in the time of record

creation).

A Direct Approach to Physical Data Vault Design 581

Fig. 7. Links for FK relationship

3.1. Conceptualization of Metadata – Phase 1

The main phase is the Conceptualization of Metadata (general Physical Data Vault

structure) resulting in a physical data model that can be used in designing individual

Data Vault data warehouses.

The first two steps of this stage assume building a model of the metadata (Figure 8)

and of the modeling rules (Figure 9). When making the meta model and rules we

distinguish between part of the model that is independent of the data source (source-

independent design) and part of the model, which depends on the source (source-

specific design). The independent part refers to the metadata tables and rules, and the

dependent part involves procedures related to different data sources. The purpose and a

method of how to update the metadata table are shown in Table 3.

The RuleTypes table contains information about the types of policies, such as rules

for different data sources, rules for identifying Hub, Link and Satellite tables and rules

for creating Hub, Link and Satellite tables. The Rules Table contains information about

the rules for a particular type of rules and actions to be performed when a certain

condition is satisfied. Rules in column Rules allow easier execution of commands that

are stored in the column RuleAction. The following example is given to show the SQL

(Structured Query Language) rule to describe a set of constraints that are applied to

identify candidate Hub based on the value of the column BusinessKey.

UPDATE TableColumns SET TableColumns.HubCandidate = 1

WHERE TableColumns.BusinessKey = 1

The third step in this phase is generating code to create a staging database and

creating tables and stored procedures from the model (Figure 8 and 9). From this

presentation of the physical model we can generate a script to create a table in the

staging database and insert initial data into tables StructureType and SourceType. The

fourth step is to insert data into the rules table and basic codebook (reference data).

After the first stage and creation of the tables and appropriate procedures conditions

are created for the development of an application that allows one to automate the

design of the physical model of Data Vault data warehouse, with minimal user

interaction. Second, third and fourth phase of Figure 6 needs to be done for each

specific system.

582 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

SourceType

SourceTypeID

StrTypeID

SourceTypeName

int

char(2)

varchar(20)

<pk>

<fk>

DataSources

DataSourceID

SourceTypeID

DataSourceName

DataSourceDesc

int

int

varchar(20)

varchar(50)

<pk>

<fk>

Tables

TableID

DataSourceID

TableName

int

int

varchar(30)

<pk>

<fk>

TableColumns

ColumnID

TableID

SemiStrID

UnStrID

DataSourceName

TableOrStrName

ColumnSysID

ColumnName

ColumnType

ColumnPK

ColumnFK

IfFK_PKTable

IfFK_PKColumn

Nullable

BusinessKey

SurrogateKey

HubCandidate

LinkCandidate

SatCandidate

int

int

int

int

varchar(20)

varchar(30)

int

varchar(30)

varchar(20)

bit

bit

varchar(30)

varchar(30)

bit

bit

bit

bit

bit

bit

<pk>

<fk>

<fk>

<fk>

SemiStructures

SemiStrID

DataSourceID

SemiStrName

int

int

varchar(30)

<pk>

<fk>

UnStructures

UnStrID

DataSourceID

UnStrName

int

int

varchar(30)

<pk>

<fk>

StructureType

StrTypeID

StrName

char(2)

varchar(20)

<pk>

sp_InsertDSTablesColumns

sp_FindLinkCandidate

sp_InsertStrSourceType

sp_CreateHubTables

sp_CreateLinkTables

sp_CreateSatTables

sp_InsertSemiStrInStage

sp_InsertUnStrInStage

sp_InsertSemiStrCol

sp_InsertUnStrCol

Fig. 8. Physical metadata model

RuleTypes

RuleTypeID

RuleType

RuleTypeDesc

numeric

varchar(30)

varchar(100)

<pk>

Rules

RuleTypeID

RuleID

Rules

RuleAction

RuleDesc

numeric

numeric

varchar(100)

varchar(200)

varchar(200)

<pk,fk>

<pk>

sp_InsertRules

Fig. 9. Model of Rules

A Direct Approach to Physical Data Vault Design 583

Table 3. Purpose of the generated tables

Table Purpose Insert method

StructureType Codebook data:

structured (ST), semi-

structured (SS) or

unstructured (US)

From model, example:

INSERT INTO StructureType

(StrTypeID, StrName) VALUES

('ST', 'Structured')

SourceType Data sources codebook

(example: MS SQL

Server, Oracle, xls,

XML, txt, etc.)

From model, example:

INSERT INTO SourceType

(SourceTypeID, StrTypeID,

SourceTypeName) VALUES (1,

'ST', 'MS SQL Server')

DataSource Data source that will be

used by data warehouse

Automatically after identification all

data sources through the user

interface

Tables Table from operational

data

Automatically after identification all

data sources through the user

interface

SemiStructures Semi-structured data

source (xls, XML, etc.)

Semi-automatic, after importing and

structuring (if possible) in the

staging database

UnStructures Unstructured data source

(txt, etc.)

Semi-automatic, after textual

analysis and importing and

structuring in the staging DB

TableColumns Columns of data tables

from databases and other

sources that can by

structured

Automatically, except BusinessKey

fields that will be selected through

the user interface

RuleTypes Types of rules for

creating a data warehouse

From model

Rules Contain rules and

appropriate action if

condition is satisfied

From model

3.2. Identification of Data Sources – Phase 2

This phase is applied to each individual DW (further development of CASE tools will

take into account experiences with the prototype). The first step involves the

identification of specific applications and systems (databases, structured and

unstructured data sources) for data warehouse by a user selecting specific data sources

(through the user interface). The second step in this phase is to insert data into table

data sources based on the selected data source.

584 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

Fig. 10. Flowchart of the second phase

The third step defines rules for inserting metadata for structured, semi-structured

and unstructured data sources into a staging database. The rules defined in the model

are stored in a table Rules. For identification of the rules, it is necessary to find data

type (ST, SS, US) from all sources of data based on input parameters. These

parameters will be obtained through the mechanism of the cursor through tables from

data sources. The cursor is introduced as a set of records which is attached to the

pointer at current row. Commands in SQL statements include moving the cursor to

work with the current row. If it is semi-structured data sources, in the absence of a

clear structure, their operational data need to be imported into the staging database.

Semi-structured data such as Excel files can be imported into a database using ETL

processes [13].

Import metadata in the staging database will be prepared using a stored procedure

as indicated in the model sp_InsertSemiStrInStage (with appropriate parameter). In

case of unstructured data sources, it is necessary to first identify their metadata.

Unstructured data can be placed into the database in the traditional way by using the

files metadata, the path to the file or URL, and attributes and links between files placed

in the database. The newer method of storing unstructured data in the database is

known as text analytics. It is the process of converting unstructured documents into

A Direct Approach to Physical Data Vault Design 585

structured documents by analysis of the structure of the text in the document [65]. Text

analytics is the process of enabling a computer to extract meaning from text and is

performed as a series of iterative process prior to loading into the database [66]. Some

of the procedures are simple editing, stop-word removal, replacement of synonym or

concatenation, homographic resolution, thematic clustering, external

glossary/taxonomy overlay, stemming, alternate spelling resolution, foreign language

accommodation, search direct and indirect support. A description of each of the

procedures is given in [67].

The fourth step in this phase is to fill the tables Tables, SemiStructures,

UnStructures TableColumns and information about the tables and their columns on

transactional databases. This step will be automatically generated from the procedure

for importing data by using data from the target system schema repository containing

the tables, columns, indexes, constraints and relationships for each specific system for

database management. Inserting metadata into the table TableColumns looks more

complex due to the large number of metadata and a number of columns. A similar

approach is taken with other structured data sources that import metadata into tables

and TableColumns. Tables will be prepared using a stored procedure as indicated in

the model sp_InsertDSTablesColumns. Based on data sources, this procedure will be

transmitted as a parameter for a specific structured data source (MS SQL Server,

Oracle, IBM DB2 and others), on the basis of the rules in the table of rules.

In a nutshell, the algorithm for this phase consists of the following:

At this stage, only the first step requires the participation of users, while the other steps

are fully automated in the case of structured data sources. Automation rules are stored

in a table RuleTypes and Rules. In the case of semi-structured data sources, it is

necessary to partially involve users in structuring data, while the case of unstructured

data sources requires the participation of users and textual analysis.

3.3. Identification of PDV types – Phase 3

Identification of PDV types (Hubs, Links, Satellites) for each DW is initially reduced to

the identification of a business key until the Hub, Link and Satellite are automatically

generated. On the model in Figure 8, the meaning of the columns in the tables

StructureType, SourceType, DataSource, Tables, SemiStructures, UnStructures

1. Loop over data sources (incrementally or in sets of DBs
as sources): Select data source and Insert metadata in

table DataSources

2. For each row in table DataSources: find structure type,
source type and rules

a) For each structured type:
i. Insert metadata in Tables
ii. For each row in table Tables: insert metadata

in table TableColumns

b) For each semistructured type:
i. Extract and load data in database StageDW
ii. Insert metadata in table SemiStructures
iii. For each row in table SemiStructures: insert

metadata in TableColumns

c) For each unstructured type:
i. Text analytics process
ii. Extract and load data in database StageDW
iii. Insert metadata in table UnStructures
iv. For each row in table UnStructures: insert

metadata in TableColumns

586 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

clear,only the structure and purpose of the specific TableColumns column (Table 4)

will be explained.

This table should contain metadata from databases, semi-structured metadata and

unstructured data sources that can be appropriately structured. Our approach provides

the automatic loading of metadata from all TableColumns structured data sources and

partly from some unstructured and semi-structured data sources. In addition to the data

that will be filled on the basis of a database schema, this table will contain a column

indicator that will give us information as to whether it is a business key, surrogate key,

or if the table Hub, Link or Satellite candidate.

Table 4. TableColumns Table structure

Column Type Description Load

automatic

Load

through UI

ColumnID int Primary key 

TableID int Table ID 

SemiStrID int ID from semistructured

data source


UnStrID int ID from unstructured

data source


DataSourceName varchar Data source name 

TableOrStrName varchar Table name or semi/un

struct. file name


ColumnSysId integer Sys column ID 

ColumnName varchar Column name 

ColumnType varchar Data type 

ColumnPK bit PK column? 

ColumnFK bit FK column? 

Nullable bit Nullable column? 

IfFK_PKTable varchar Table name on PK side

(if column FK)


IfFK_PKColumn varchar Column name on PK side

(if column FK)


BusinessKey bit Business key column? 

SurrogateKey bit Is column Surrogat for

corresponding Business

key?



HubCandidate bit Hub candidate? 

LinkCandidate bit Link candidate? 

SatCandidate bit Satellite candidate? 

This phase involves the following steps:

1. Identification of business key through a user interface. Through the appropriate

user interface, based on the data, the user should check the business keys. Based on the

business key, the column with the appropriate BusinessKey value (0 or 1) will be filled.

Filling in this section can be automatically based on rules stored in the table Rules,

A Direct Approach to Physical Data Vault Design 587

according to [15], [16], [24], [44], and based on BusinessKey the column SurrogateKey

will be filled.

2. Identification of hubs. The Hub entity table contains a single list of business keys.

These are the keys that organizations use in their daily operations, such as customer

number, code of the employee, account number, and so on [15]. According to [15],

[16], [24], Hub candidates can be identified using the filled BusinessKey and

SurrogateKey on the basis of rules for identifying hubs which are found in the tables

RuleTypes and Rules.

3. Identification of links. Link is the physical representation of references, foreign

keys and many-to-many relationships in third normal form [15]. Links can be

identified using the procedure sp_FindLinkCandidate (which is an integral part of the

model and that is called from the table Rules and RuleTypes) that includes the

following steps:

a) Find many-to-many table

b) Set to true LinkCandidate field in many-to-many table

c) Set 1 value in the column LinkCandidate for tables that have a foreign key

4. Identification of satellites. The Satellite entity contains context data of hub and

contains attributes that are not primary or foreign keys [15]. Satellites are identified on

the rules in tables RuleTypes and Rules, according to [15], [16], [24], [46].

Fig. 11. Flowchart of the third phase

3.4. Initial Declaration of PDV Structure- Phase 4

The last phase in the process of automation of the physical design of a data warehouse

is the initial declaration of the PDV structure. This phase include following steps:

1. Generate and execute the script to create a hub table. When we have the

business key, appropriate tables can be identified (by setting the value 1 in column

HubCandidate). It is possible to generate a script to create a hub table in a Data Vault,

based on the rules in the Rules table. This step provides the following:

a) Forming a cursor to go through the TableColumns Where HubCandidate=1

b) Retrieve data from a table and assign variables

c) In each iteration, use dynamic SQL to supplement sql_statement

d) Perform an sql_statement, creating a hub table

2. Generate and execute the script to create the link table. The link table is used to

represent relationships or transactions between two or more business components (two

or more hubs). We identified the appropriate link tables containing value 1 in column

588 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

LinkCandidate which enables the generation script to automatically generate a link

table, based on the rules in the Rules table. It is possible to generate a script to create a

link table in a data warehouse, based on the rules in Table Rules. This step involves:

a) Forming a cursor to go through the table TableColumns Where LinkCandidate=1

b) Retrieve data from a table and assign variable

c) In each iteration, use dynamic SQL to supplement sql_statement

d) Performing an sql_statement, creating a link table

3. Generate and execute script to create the satellite table. Satellite entity shows

how context hub data. Satellite table created for each hub table will contain non-key

attributes in a transactional database. We identified the appropriate Satellite tables by

setting the value 1 in column SatCandidate which enables the generation script to

automatically generate the satellite table based on the rules in the Rules table. In this

case, one table is generated for each hub table (or link table, if the transaction has only

a link table). This step involves:

a) Forming a cursor to go through the table TableColumns Where SatCandidate=1

c) Retrieving data from a table and assign variable

d) In each iteration, use dynamic SQL to supplement sql_statement

e) Performing an sql_statement, thus creating satellite tables

If the source of simple unstructured data, (Excel or TXT file), the data on clients

who are not in a transactional database (or other contact information, information

about market position, business data, etc.), then an additional Satellite table will be

created that will include data from Excel or TXT file.

Procedures described in the fourth phase make it possible to automatically create a

complete data warehouse based on Data Vault concepts. Among meta-requirements for

any design approach and its automation at least the following four are obvious:

performance, scalability, flexibility and agility. In order to fully appreciate potential of

our PDV approach one have to first realize what DV as such (comparing to traditional

alternatives namely normalized EDW and dimensional Data Marts) contributes to

satisfying such meta-requirements. The DV separation of Identities and Links from

attributes (Satellites) by design creates a scale-free network [17] and thus greatly

reduces stress of incremental expansion (scalability) this supports expansion of scope.

The structural changes are also additions (no deletes) so flexibility of designs is

assured. The DV by design foster higher levels of performance by (decoupling

dependencies and) allowing parallel data loads all the time from all source systems. By

requiring input without any irreversible data alterations (ELT as opposed to ETL) from

a data source into a raw data vault (as a permanent fully auditable system of records)

Linstedt suggest typical loading speed of 100K rows per minute is normal (as a

benchmark). Nature of the DV model preserves scalability and flexibility as well as

performance of the data vault designs weather manual or automated.

4. Physical Data Vault Design Tool

The goal of this section is to present the prototype CASE tool the authors have

implemented to support their methodology. The PDV (Physical Data Vault) design tool

A Direct Approach to Physical Data Vault Design 589

assists the designer in structuring a data vault, carries out physical design in a semi-

automatic fashion, and allows for a core workload to be defined on the physical

scheme.

The tool was developed using Larman’s [68] method. Specifications of requirements

can be presented as verbal descriptions of the model and use cases. Verbal Description:

Need to make an application that will provide support to the process of designing a

data warehouse. The data warehouse should provide an analysis of data from structured

data sources and simple unstructured and semi-structured (xls, txt). Structured data

should not be loaded in a separate staging database, but directly loaded into the data

warehouse. Semi-structured data has to be further structured in the staging database

and then loaded into the data warehouse. Unstructured data has to go through the

process of textual analysis, and then loaded into staging database for some structuring,

and then loaded into the data warehouse. The Figure 12 shows the observed use-cases

for the PDV tool.

DW Designer

Select Data Sources

Insert Metadata

Create Hub, Link, Sat Tables

Select Business Keys

Create DW and Staging DB

Link tables are identified

IdentifyLinkTables ()

Hub tables are identified

SendBusinessKeys ()

IdentifySatTables ()

Satellite tables are identified

DW Designer

System

Link tables are identified

IdentifyLinkTables ()

Hub tables are identified

SendBusinessKeys ()

IdentifySatTables ()

Satellite tables are identified

Fig. 12. Use-case diagram and Sequence diagram for the use-case select Business Keys

In the analysis phase, the behavior of software systems is determined by using

system sequence diagram. For each use-case and for each scenario, a sequence diagram

was created. The example in Figure 12 shows the sequence diagram for the use case

Select Business Keys. Sequence diagram for use-case Identification of business keys,

baseline scenario:

1. Designer sends business keys to system

2. The system returns the information based on business keys and identified Hub tables

3. Designer call the system to identify the Link tables

4. The system returns the information of identified Link table

5. Designer calls the system to identify the Sat tables

6. The system returns the information of identified Satellite tables

The architectural design includes the design of application logic, the user interface

and the internal metadata model database. The tool is built in three layer architecture

with the database layer, the user interface and business logic layer. The staging

590 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

database was designed on the basis of the physical model shown in Figures 8 and 9.

We used the Database management system Microsoft SQL Server 2008 R2. Designing

the user interface included designing Windows forms. Some examples of the forms are

given in the next section. The tool is implemented using Microsoft Visual Studio.NET

environment using the C# programming language. The Microsoft's NET Framework

was selected as it has a consistent programming model for building diverse

applications [69].

5. Experimental verification of research results based on a

prototype application

Experimental verification of research results was done in the area of health insurance

using a prototype tool PDV for a data vault data warehouse design.

Fig. 13. Form for selection of structured data sources

Health Insurance Fund annually enters into contracts with pharmacies to issue

prescription drugs to insured patients. Prescription drugs are prescribed in health

institution (family doctor’s office or hospital). Every fifteen or thirty days (depending

on the contract), the pharmacy sends to Fund an invoice for drugs issued on

prescriptions. Invoice consists of a header and items. The header contains the name of

pharmacy, the date of the invoice, the total amount and the number of receipts. Items

invoices contain information about drug, quantity and amount, and patient’s

information. Invoices are to be submitted electronically. Health insurance Fund

distributes databases in offices in each of several regions. The number of records in the

table invoice items annually reaches several millions. To reduce the load on the

transactional system, view reports (which often changes the format and appearance), to

meet the requirements of users (in terms of reports with different grouping and

diagrams), it was decided to implement a data warehouse and business intelligence

system. When choosing a data warehouse architecture, the Data Vault approach was

chosen (emphasizing the need to leave a trail from where and when the information

A Direct Approach to Physical Data Vault Design 591

originated from the databases). Moreover, a Data Vault is designed to model data that

can be easily changed following rapid changes in the business environment.

After the first stage (initialized data warehouse and staging databases) associated

procedures based on the model are derived from the second stage, the selection of data

sources.

HealthInsFundOffice

HioID

HioName

CityID

HioFundName

HioAddress

HioPhone

HioEmail

smallint

varchar(30)

int

varchar(30)

varchar(30)

varchar(20)

varchar(30)

<pk>

<fk>

City

CityID

CityName

CityPostalCode

int

varchar(30)

varchar(10)

<pk>

Pharmacy

PharmacyID

ParmacyName

CityID

PharmacyAddress

PharmacyPhone

PharmacyEmail

int

varchar(30)

int

varchar(30)

varchar(10)

varchar(30)

<pk>

<fk>

Manufacturer

ManID

ManName

int

varchar(30)

<pk>

Invoice

InvoiceID

HioID

PharmacyID

InvoiceDate

InvoiceAmount

InvoiceNumPresc

...

int

smallint

int

datetime

decimal (10,2)

int

<pk>

<pk,fk1>

<fk2>

InvoiceDetails

InvoiceID

HioID

DrugID

PatientID

Quantity

UnitPrice

int

smallint

int

int

decimal(10,4)

decimal(8,2)

<pk,fk1>

<pk,fk1>

<pk,fk2>

<pk,fk3>

Drug

DrugID

DrugBrandName

ManID

DrugGenericName

DrugDosageForm

DrugPackage

DrugUnitPrice

int

varchar(30)

int

varchar(50)

varchar(30)

varchar(30)

decimal(8,2)

<pk>

<fk>

Patient

PatientID

PatientLastName

PatientFirstName

PatientSex

PatientBirthDate

CityID

PatientInsNum

int

varchar(30)

varchar(30)

char(1)

datetime

int

varchar(15)

<pk>

<fk>

Fig. 14. Physical model of transactional database PrescriptionDrugs

After the selection of data sources, the user starts uploading the metadata of selected

data sources into the staging database. Part of the physical model of transactional

database PrescriptionDrugs is given in figure 14.

In the following form (Fig.15), users simultaneously (on three DataGridView

controls) see selected data sources, data source tables and columns. The third

DataGridView enables the checking of business keys. On the basis of the business keys

592 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

and corresponding rules for Hub tables, the system identifies a Hub table. After that,

based on the hub tables and rules, the system identifies link tables. At the end of this

phase, system identifies Satellite tables. After clicking the Next button, a form opens to

declare a PDV structure as shown in the figure 16.

Fig. 15. Form for identification PDV types

A Direct Approach to Physical Data Vault Design 593

Fig. 16. Form for declare PDV structure

This form allows for manual modification of the proposed Hub, Link and Satellite

table. After manual modifications, the designer starts the process of creating Hub, Link

and Satellite tables that are just being identified. This step completes the process of

creating a data warehouse based on the Data Vault concept. The next button is clicked

to enable visualization of Data Vault data warehouse structure. The created Data Vault

Physical model is shown in figure 17. According [15], in the tables can be generate a

surrogate key - optional component, possibly smart key or sequential number, if the

composite primary key might cause performance problems.

In our trials and experiments with the use of the PDV design tool (as it was evolving

as a prototype itself) it was easy to create a complete data warehouses based on Data

Vault concepts. In addition, the tool excelled when used to develop prototypes of data

warehouses. In fact, only when a tangible DW prototype was completed, users become

more interested in participating and frequently stated new requirements. Automating

design for a data warehouse significantly accelerated the development of a robust

system by allowing prototyping in the early stages of contact with customers, and

customers were more interested in providing information.

594 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

Hub_City

CityID

LoadDate

RecordSource

<pk>

Hub_Drug

DrugID

LoadDate

RecordSource

...

<pk>

Hub_HealthInsFundOffice

HioID

LoadDate

RecordSource

<pk>

Hub_Manufacturer

ManID

LoadDate

RecordSource

...

<pk>

Hub_Patient

PatientID

LoadDate

RecordSource

<pk>

Hub_Pharmacy

PharmacyID

LoadDate

RecordSource

...

<pk>

Lnk_Drug

DrugID

ManID

LoadDate

RecordSource

...

<pk,fk1>

<pk,fk2>

Lnk_HealthInsFundOffice

HioID

CityID

LoadDate

RecordSource

...

<pk,fk1>

<pk,fk2>

Lnk_Invoice

InvoiceID

HioID

PharmacyID

LoadDate

RecordSource

...

<pk>

<pk,fk1>

<fk2>

Lnk_InvoiceDetails

InvoiceID

HioID

DrugID

PatientID

LoadDate

RecordSource

...

<pk,fk1>

<pk,fk1>

<pk,fk2>

<pk,fk3>

Lnk_Patient

PatientID

CityID

LoadDate

RecordSource

...

<pk,fk1>

<pk,fk2>

Lnk_Pharmacy

PharmacyID

CityID

LoadDate

RecordSource

...

<pk,fk1>

<pk,fk2>

Sat_City

CityID

CityName

CityPostalCode

LoadDate

LoadEndDate

RecordSource

<pk,fk>

<pk>

Sat_Drug

DrugID

DrugBrandName

DrugGenericName

DrugDosageForm

DrugPackage

DrugUnitPrice

LoadDate

LoadEndDate

RecordSource

<pk,fk>

<pk>

Sat_HealthInsFundOffice

HioID

HioName

HioFundName

HioAddress

HioPhone

HioEmail

LoadDate

LoadEndDate

RecordSource

<pk,fk>

<pk>

Sat_Invoice

InvoiceID

HioID

InvoiceDate

InvoiceAmount

InvoiceNumPresc

LoadDate

LoadEndDate

RecordSource

...

<pk,fk>

<pk,fk>

<pk>

Sat_InvoiceDetails

InvoiceID

HioID

DrugID

PatientID

Quantity

UnitPrice

LoadDate

LoadEndDate

RecordSource

<pk,fk>

<pk,fk>

<pk,fk>

<pk,fk>

<pk>

Sat_Manufacturer

ManID

ManName

LoadDate

LoadEndDate

RecordSource

<pk,fk>

<pk>

Sat_Patient

PatientID

PatientLastName

PatientFirstName

PatientSex

PatientBirthDate

PatientInsNum

LoadDate

LoadEndDate

RecordSource

...

<pk,fk>

<pk>

Sat_Pharmacy

PharmacyID

ParmacyName

PharmacyAddress

PharmacyPhone

PharmacyEmail

LoadDate

LoadEndDate

RecordSource

...

<pk,fk>

<pk>

Fig. 17. Model of Physical Data Vault data warehouse

6. Conclusion

This paper presents the basic algorithm for the initial physical design stage of the Data

Vault types of enterprise data warehouses i.e. integrated data warehouses as systems of

records not open to end user reporting. The approach is based on the incremental

expansion of data warehouse adding new data sources in sets or one at a time. The

algorithm utilizes metadata model and rules for the design starting with existing

A Direct Approach to Physical Data Vault Design 595

(mainly) transactional data sources. Relations between entities in transactional systems

and rules for the development of a data warehouse based on Data Vault concept are

crucial for physical design automation of a data warehouse model. The

conceptualization of metadata presented a physical model that can be used in the

design of individual data warehouses, and this became the basis for development of a

tool. The most important contribution of this paper is realization of Data Vault schema

directly from RDBMS schemas. Such a direct approach was possible thanks to the

feature of the Data Vault models i.e. separation of unchangeable identities of entities in

real systems (Hubs) from time variant relationships among such entities (represented

by Links) and the characteristics of such entities and their relationships (represented by

Satellites). Traditional approaches to integration used pruning of data from the source

and other forms of derivation i.e. consolidation that requires much intervention by

experts (due to creative and semantically rich transformations). Data Vaults provide

the unique ability to integrate data incrementally by adding links (of 'same as' type

essentially 1:1 mappings) between initial and added hubs, while preserving all data in

satellites, links and hubs without any reconstructions and deletes (guaranteeing

preservation of information necessary for an enterprise size system of records). The

subject of ongoing research is detailed specifications of dynamic expansion of Hub,

Link (and their Satellite tables) and their additional linking for possible cases of

merging Data Vault schemes in operation. Within the achieved scope, work in

progress is focused on code generation for the initial loading of the created Data Vault

enterprise data warehouses, as well as code generation for the Data Vault updating

with new values and/or updates of the code to update (all without slowing down the

original system).

The PDV approach is based on available relational schema and this satisfies meta-

requirements stated earlier. Loading a schema and transforming it following

preprogrammed rules certainly supports design performance, scalability and agility

(user intervention is minimal but necessary, and is mainly focused on recognizing

major permanent business keys). We claim that any indirect DV design driven by a

conceptual or a logical data model (derived from the existing data sources) even when

supported by some automation, is less flexible than direct PDV. Furthermore,

it increases a danger of losing data from the source, potentially invalidating the central

DV EDW purpose - to maintain a system of unaltered records.

Future work relate to the remaining three stages of Figure 5. First is the automation

of the ETL process from data sources to feed a Data Vault. The Data Vault type data

warehouse is a solution for integrating, storing and protecting data. However, it is not

intended, nor suitable, for intensive queries or reports. That is why the data warehouse

architecture with a Data Vault layer (persistent system of records with full history of

changes) also contains a data mart layer using the star schemas for reporting data

access [46]. According to [70] the dimensions of the star schema result from the Hub

and Satellite tables, and the fact tables from a Satellite and Link tables. The next item

of research is addressing the output area (data marts) with the following steps: Create a

model of DMs and DMs materialization code and create metadata for Analytics

Tracking (Dashboards/Scorecards) and standard reporting.

The process of designing an enterprise data warehouse based on the Data Vault

model can be formalized, generalized and to some extent based on the automated

596 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

physical model for structured, semi-structured and simple unstructured data sources,

including transactional database. Our direct approach integrates elements of the

physical design of enterprise data warehouses based on a data vault model as a system

of records. This paper also illustrated the development of a tool for automation of

design for data vault based enterprise data warehouses. The tool has been implemented

and used on a real case in the field of healthcare and medical insurance and provided

satisfactory results.

The paper and the approach presented so far do not address design of data marts,

data virtualization, data warehouse schema evolution, master data management,

mappings to NoSql data stores or hybrid databases, nor fully elaborates on ELT/ETL

transformation automatization as those issues are part of a lager ongoing research

program.

References

1. Inmon H. W.: Building the Data Warehouse. Wiley Computer Publishing. (1992)

2. Jarke M., Lenzerini M., Vassiliou Y, Vassiliadis P.: Fundamentals of Data Warehouses.

Springer-Verlag. (2003)

3. Ćamilović D., Bečejski-Vujaklija D., Gospić N.: A Call Detail Records Data Mart: Data

Modelling and OLAP Analysis. Computer Science and Information Systems, Issue: 12,

page 87-110. (2009).

4. Krneta D., Radosav D., Radulovic B.: Realization business intelligence in commerce using

Microsoft Business Intelligence. 6th International Symposium on Intelligent Systems and

Informatics (SISY), pp. 1–6. (2008)

5. Larson B.: Delivering Business Intelligence with MSSQL Server 2008. Mc Graw Hill

(2009)

6. Vassiliadis P., Simitsis A., Skiadopoulos S.: Conceptual Modeling for ETL Processes. In

Proc. 5th International Workshop on Data Warehousing and OLAP, VA, USA. (2002)

7. Vassiliadis P., Simitsis A, Baikousi E.: A Taxonomy of ETL Activities. InProc. ACM 12th

International Workshop on Data Warehousing and OLAP (DOLAP 2009), Hong Kong

8. Adelman S., Moss L., Abai M.: Data Strategy, Addison Wesley, New York. (2005)

9. Inmon W.H.: Building the Data Warehouse: Gettiing Started, White Paper BillInmon.com.

(2000)

10. Inmon H.W., Strauss D., Neushloss G.: DW 2.0 The Arcitecture for the Next Generation

of Data Warehousing, Morgan Kaufman. (2008)

11. Kimball R.: The Data Warehouse Toolkit: Practical Techniques for Building Dimensional

Data Warehouses, Willey. (1996)

12. Kimball R., Ross M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional

Modeling, 2nd Edition, Wiley. (2002)

13. Mundy J., Thornthwaite W., Kimball R.: The Microsoft Data Warehouse Toolkit, Second

edition, Wiley. (2008)

14. Rönnbäck L., Hultgren H.: Comparing Anchor Modeling with Data Vault Modeling,

Modeling for the modern Data Warehouse, White paper. (2013)

15. http://www.tdan.com/view-articles, Data Vault Series 1-5 by Dan E. Linstedt. (2002)

16. Linstedt D.: Data Vault Modeling & Methodology, http://www.learndatavault.com. (2011)

17. Linstedt D.: Super Charge your Data Warehouse, Kindle Edition. (2010)

18. Jovanović V., Bojičić I.: Conceptual Data Vault Model, Proceedings of the Southern

Association for Information Systems Conference, Atlanta, GA, USA. (March, 2012)

A Direct Approach to Physical Data Vault Design 597

19. Hultgreen H.: Modeling the Agile Data Warehouse with Data Vault. New Hamilton.

(2012)

20. Rönnbäck L.: Anchor Modeling – A Technique for Information Under Evolution, GSE

Nordic Conference, Stockholm, Sweden. (2001)

21. Regardt, O., Rönnbäck, L., Bergholtz, M., Johannesson, P., Wohed, P.: Analysis of

Normal Forms for Anchor Tables. (2010)

22. Knowles C.: 6NF Conceptual Models and Data Warehouses 2.0. Proceedings of the

Southern Association for Information Systems Conference, Atlanta, GA, USA. (March

2012)

23. Date, C.J., Darwen, H., Lorentzos, N.: Temporal data and the relational model: A detailed

investigation into the application of interval and relation theory to the problem of temporal

database management. Morgan Kaufmann Publishers. (Amsterdam, 2002)

24. Graziano K.: Introduction to Data Vault Modeling. True BridgeResources, White paper.

(2011)

25. Jovanović V., Bojičić I., Knowles C., Pavlić M.: Persistent staging area models for Data

Warehouses. Issues in Information Systems, Volume 13, Issue 1, pp. 121-132. (2012)

26. Golfarelli M., Rizzi S.: Data Warehouse Design Modern Principles and Methodologies.

McGraw-Hill. (2009)

27. Corr L., Stagnitto J.: Agile Data Warehouse Design. DecisionOne Press, Leeds. (2011)

28. Winter, R., Strauch, B.: A Method for Demand-Driven Information Requirements Analysis

in DW Projects. In Proceedings of 36th Annual Hawaii International Conference on

System Sciences. (2003)

29. Jensen, M., Holmgren, T., Pedersen T.: Discovering Multidimensional Structure in

Relational Data. In Proceedings of DaWaK. (2004)

30. Guo Y., Tang S., Tong Y., Yang D.: Triple-Driven Data Modeling Methodology in Data

Warehousing A Case Study. DOLAP '06 Proceedings of the 9th ACM international

workshop on Data warehousing and OLAP. (2006)

31. Golfarelli M.: Data warehouse life-cycle and design. White Paper, DEIS – University of

Bologna. (2008)

32. Boehnlein, M., Ulbrich v.E, A.: Business Process Oriented Development of Data

Warehouse Structures. Proceedings of Data Warehousing 2000, Physica Verlag. (2000)

33. Westerman P.: Data Warehousing. Morgan Kaufman Publishers. (2001)

34. Romero O., Abello A.: A Survey of Multidimensional Modeling Methodologies.

International Journal of Data Warehousing & Mining, 5(2), 1-23. (April-June 2009)

35. Jovanovic V., Marjanovic Z.: DW21 Research Program-Expectations, FON/Breza software

engineering, White paper. (February 2013)

36. Golfarelli M., Mario D., Rizzi S.: Conceptual Design of Data Warehouses from E/R

Schemes. System Sciences. (1998)

37. Boehnlein M., Ulbrich-vom Ende A.: Deriving initial data warehouse structures from the

conceptual data models of the underlying operational information systems. 2nd Int.

Workshop on Data Warehousing and OLAP. (1999)

38. Phipps C., Davis K. C.: Automating Data Warehouse Conceptual Schema Design and

Evaluation. 4th International Workshop on Design and Management of DW. (2002)

39. Peralta V., Marotta A., Ruggia R.: Towards the Automation of Data Warehouse Design.

15th Conference on Advanced Information Systems Engineering, Velden, Austria. (2003)

40. Romero O., Abello A.: Automating Multidimensional Design from Ontologies,

DOLAP’07. (November 2007)

41. Zepeda L., Ceceña E., Quintero R., Zatarain R., Vega L. , Mora Z., Clemente G.: A MDA

Tool for Data Warehouse. International Conference on Computational Science and Its

Applications. (2010)

598 Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović

42. Nazri M.N.M., Noah S.A., Hamid Z.: Using lexical ontology forsemi-automatic logical

data warehouse design. 5th international conference on Rough set and knowledge

technology. (2010)

43. Zekri M., Marsit I., Adellatif A.: A new data warehouse approach using graph. Eight IEEE

International Conference on e-Business Engineering. (2011)

44. Damhof R.: The next generation EDW. Database Magazine (Netherlands). (2008)

45. Hammergren T. , Simon A.: Data Warehousing for Dummies. 2nd edition. (2009)

46. Casters M., Bouman R., van Dongen J.: Pentaho Kettle Solutions: Building Open Source

ETL Solutions with Pentaho Data Integration. Wiley Publishing. (2010)

47. Luján-Mora, S., Vassiliadis, P., Trujillo, J.: Data Mapping Diagrams for Data Warehouse

Design with UML. (2004)

48. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual Modeling for ETL Processes. In

DOLAP. 2002.

49. Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit Wiley Publishing, Inc. (2004)

50. Simitsis A., Vassiliadis P., A method for the mapping of conceptual designs to logical

blueprints for ETL processes. Decision Support Systems, vol. 45, no. 1. pp. 22–40. (2008)

51. Muñoz L., Maz n J., Trujillo J.: Systematic review and comparison of modeling ETL

processes in data warehouse, Inf. Syst. Technol. (CISTI), 5th Iberian Conference. (2010)

52. Oliveira B., Santos V., Belo O.: Pattern-Based ETL Conceptual Modelling. International

Conference on Model & Data Engineering, Calabria, Italy. (2013)

53. Jovanovic P., Romero O., Simitsis A., Abell A., Requirement-driven creation and

deployment of multidimensional and ETL designs, Advanced Concept. Model. (2012)

54. http://technet.microsoft.com/en-us/library/ms141026.aspx

55. http://www.oracle.com/us/products/middleware/data-integration/enterprise-

edition/overview/index.html

56. http://www-03.ibm.com/software/products/en/ibminfodata

57. http://www.informatica.com/us/products/data-integration/enterprise/powercenter/

58. Golfarelli M., Rizzi S., Saltarelli E.: WAND: A CASE Tool for Workload-Based Design of

a Data Mart. SEBD. 2002.

59. Battaglia A., Golfarelli M., Rizzi S., QBX: A CASE tool for Data Mart design, O. De

Troyer et al. (Eds.): ER 2011 Workshops, LNCS 6999, pp. 358–363, Springer-Verlag

Berlin Heidelberg. (2011)

60. http://biready.com

61. http://www.birst.com/product/technology/data-warehouse-automation

62. http://www.datawarehousemanagement.org/Quipu.aspx

63. http://www.bi-podium.nl/mediaFiles/upload/DWHgen/Pentaho_en_DV_-_KdG.pdf

64. Date, C, Darwen, H., Databases, types and the relational model: the third manifesto (3rd

ed.). Reading, MA: Addison-Wesley. (2006)

65. Rainardi V.: Building The Data Warehouse With Examples in SQL Server, Springer, New

York. (2008)

66. Nicola M., Sommerlandt M., Zeidenstein K.: From text analytics to data warehousing.

http://www.ibm.com/developerworks/data/library/techarticle/dm-0804nicola/ (2008)

67. Inmon W.H., Krishnan K.: Building the Unstructured Data Warehouse, Technic

Publications LLC. (2012)

68. Larman Craig: Applying UML and Patterns: An introduction to object-oriented analysis

and design, Second edition, Prentice Hall, New Jersey. (1998)

69. http://www.microsoft.com/net

70. Govindarajan S.: Data Vault Modeling The Next Generation DW Approach.

http://www.globytes.com. (2010)

A Direct Approach to Physical Data Vault Design 599

Dragoljub Krneta received the M.Sc. from Technical Faculty "Mihajlo Pupin"

University of Novi Sad. Currently he is a PhD student in Faculty of Organizational

Sciences, University of Belgrade, Serbia. He lives in Banja Luka, Bosnia and

Herzegovina, where he works as a Software Development Manager in a company

Lanaco Information technologies. Throughout his career in IT that lasts more than

twenty years, he was actively involved in the design and development of information

systems as a programmer, systems analyst, database designer, system architect or

project manager. He has published 12 papers on international scientific conferences

and journals. His research interests include information systems development,

databases, data warehouses and business intelligence systems. He is a member of IEEE.

Vladan Jovanović, born in Belgrade Serbia, received all his degrees from the

University of Belgrade: a) B. Eng. in Cybernetics Information Systems in 1975, b) M.

Sci. in Computer Information Systems in 1978, and c) Ph.D. in Organizational

Sciences-Software Engineering in 1982. Since 2001 works as a professor of Computer

Sciences at the Georgia Southern University’s College of Engineering and IT.

Research interests: models, methodology and/or processes of data and software

intensive systems design. Professional contributions: a) standardization within the

IEEE Systems and Software Engineering Standardization areas of software

architecture and design, SQA, and SW Processes, and b) curriculum development in

IT, IS, CS, Systems Assurance and Software Engineering, as well as participating in

CS and SE program accreditation, as an ABET Program Evaluator.

Zoran Marjanović is a full professor at Faculty of Organizational Sciences (FOS),

University of Belgrade, Serbia and a president of Breza Software Engineering

company. His research interests are IS development methodologies, databases,

semantic enterprise application interoperability, and information systems development.

Prof Marjanovic is a lead on several on-going projects with government and

commercial entities that address design, deployment, and testing of ERP and other

business systems. He received his MS and PhD degrees in Information Systems from

University of Belgrade. He is a member of ACM and IEEE. E-mail:

zoran.marjanovic@brezasoftware.com

Received: May 23, 2013; Accepted: June 05, 2014

