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Abstract. The paper presents a novel agile approach to large scale design of 

enterprise data warehouses based on a Data Vault model. An original, simple 

and direct algorithm is defined for the incremental design of physical Data Vault 

type enterprise data warehouses, using source data meta-model and rules, and 

used in developing a prototype case tool for Data Vault design. This approach 

solves primary requirements for a system of record, that is, preservation of all 

source information, and fully addresses flexibility and scalability expectations. 

Our approach benefits from Data Vault dependencies minimizations and rapid 

loads opportunities enabling greatly simplified ETL transformations in a way not 

possible with traditional (i.e. non data vault based) data warehouse designs. The 

approach is illustrated using a realistic example from the healthcare domain.  

Keywords: Enterprise data warehouse, system of records, design automation, 

Data Vault model. 

1. Introduction 

In this section we delineate the scope of the work, introduce baseline terminology, 

present selected requirements for design automation of a Data Vault (DV) type data 

warehouse, and explain the organization of this paper. The scope of the work is the 

design of DV based Enterprise Data Warehouse (EDW) / Data Mart (DM) content. 

The paper does not addresses storage and distribution opportunities i.e. recent 

advances such as (Hadop, NoSQL, etc.). 

Data warehouse (DW) is a subject oriented, nonvolatile, integrated, time variant 

collection of data in support of management's decisions [1]. A DW may be used to 

support permanent systems of records and information management (compliance and 

improved data governance). Data marts are small data warehouses that contain only a 

subset of the EDW [2]. The data mart provides the platform for Online Analytical 

Processing (OLAP) analysis. Therefore, OLAP is a natural extension of the data 



570           Dragoljub Krneta, Vladan Jovanović, and Zoran Marjanović 

warehouse. The results from OLAP analysis can be presented visually, which enables 

improved comprehension [3]. The data mart is a part of data storage, but usually 

contains summarized data [4]. The Extract, Transform, Load (ETL) process involves 

fetching data from transactional systems, cleaning the data, transforming data into 

appropriate formats and loading the result to a warehouse [5]. In the ETL process, data 

from data sources is extracted by extraction routines. Data are then propagated to the 

Data Staging area where they are transformed and cleaned before being loaded to the 

data warehouse [6], [7]. An Important element of the DW is metadata, including 

definitions and rules for creating data [8]. Metadata play an important role in data 

warehousing. Before a data warehouse can be accessed efficiently, it is necessary to 

understand what data is available in the warehouse and where the data is located [2]. 

The design of data warehouses is a difficult task. There are several problems 

designers have to tackle. First of all, they have to come up with semantic reconciliation 

of the information lying in the sources and the production of an enterprise model for 

the data warehouse [2]. Data warehouses can be distinguished by the type of 

architecture. Bill Inmon [9], [1], [10] proposed the CIF (Corporate Information 

Factory) as an integrated data warehouse, i.e. database in the third normal form (3NF), 

from which multidimensional data marts are to be derived. The second option is bus 

architecture, defined by Ralph Kimball [11], [12], [13] where a data warehouse is just 

a collection of data marts with conformant dimensions. Data Warehousing 2.0 (DW 

2.0) is a second-generation attempt to define a standard Data Warehouse architecture. 

One of the advantages introduced in DW 2.0 is its ability to support changes of data 

over time [10]. 

Data modeling techniques for the data warehouse differ from the modeling 

techniques used for operational systems and for data marts. This is due to the unique 

set of requirements, variables and constraints related to the modern data warehouse 

layer. Some of these include the need for an integrated, non-volatile, time-variant, 

subject oriented, auditable, agile, and complete store of data. To address these needs 

several new modeling approaches have been introduced within the Data 

Warehouse/Business Intelligence industry. Among these are Data Vault modeling and 

Anchor Modeling [14]. 

The Data Vault approach is introduced by Daniel Linstedt [15], [16], [17], to solve 

the problems of flexibility and performance, enabling maintenance of a permanent 

system of records [18]. Data Vault (DV) model is recognized by the modeling style 

using Hub, Link and Satellite entities. In terms of entity relationship data models, a 

Hub entity holds identities, typically business keys (or their combinations), Link 

entities are representation of foreign key references (typically used to represent 

transactions between two or more business components i.e. Hubs). A Satellite entity 

shows context information i.e. attributes of a Hub or a Link. We can split out satellites 

by: rate of change, type of data and source system.  [19]. See the example of a Data 

Vault in figure 1. The main difference from traditional ER data modeling style is in 

representing attributes, namely Hub/Link entities which have relationship/identify 

Satellite entities (representing traditional attributes in time).    

Anchor Modeling is a database modeling technique built on the premise that the 

environment surrounding a data warehouse is in a constant state of change, and 

furthermore that a large change on the outside of the model should result in only a 
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small change on the inside of the model [20], [21]. The goal of using the anchor 

modeling technique is to “achieve a highly decomposed implementation that can 

efficiently handle growth of the data warehouse without having to redo any previous 

work” [21], mimicking the ideas of isolated semantic temporal data put forth in DW 

2.0 architecture [22]. 

Data Vault and Anchor models are characterized by strong normalized data and 

insensitivity to changes in the business environment, and adapted to frequent changes, 

as well as the modeling of small parts of the data model, without the need for redesign. 

Sixth Normal Form (6NF) is a term used in relational database theory by 

Christopher Date to describe databases which decompose relational variables to 

irreducible elements. While this form may be unimportant for non-temporal data, it is 

certainly important when maintaining data containing temporal variables of a point-in-

time or interval nature [22], [23]. In [23], Chris Date points out several shortcomings 

when attempting to model fully temporalized data using standard Fifth Normal Form 

(5NF) principles and introduces Sixth Normal Form (6NF) as "A relvar (table) R is in 

6NF if and only if R satisfies no nontrivial join dependencies at all, in which case R is 

said to be irreducible" [23].  

The Data Vault model, in the extreme case where a satellite table consists of one 

attribute, becomes a 6NF design. 

According to [16], [24], a Data Vault makes most sense in the case of distributed 

data sources. To ensure traceability of data, the Data Vault is not transforming data 

from different sources before they are loaded into the warehouse, thus enabling 

permanent system of records (i.e. Data Vault). This differs from the CIF where data are 

consolidated up front. 

 

 

Fig. 1. An example of mapping a relational to the data vault physical model 

A system theoretic block diagram representation, figure 2 from [25], shows explicit 

separation of data warehouse data into permanent original data (DW staging or to put 

it more precisely, a Data Vault) and derived data in data marts. The DB mimics 
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system’s state at the last updated moment in time while DW tracks the system’s state 

over time. 

 

 

Fig. 2. DW State history (Data Vault) and DW Reporting Area  

Methodologies of data warehouse design, such as ([1], [13], [26], [27], [19]) are not 

fully formalized.  Based on the starting point to be used in determining the DW 

content, the following four classes of approaches to DW design can be recognized: 

1. Data-driven (or supply-driven) [9], [28], [29], [30], [31] is based on an analysis of 

the data, the database schema and the identification of available data. 

2. Demand-driven (also user-requirements driven) [11], [28], [30], [31] starts with 

the determination of requests for information from the user, but mapping that to 

available data remains a problem. 

3. Goal-driven [32], [33], [30] is based on a business strategy i.e. begins with an 

analysis of key business processes, but according [28], [34] is a subset of Demand-

driven approach. 

4. The Hybrid approach combines user requirements with analysis of management 

and operational data. It distinguishes the interleaved and sequential access. For 

sequential access, the data-driven and demand-driven paradigms are applied 

independently of each other, one after the other, while in the interleaved hybrid 

approach both paradigms are applied in parallel [34]. 

This work is part of a larger research program, the DW21 dealing with the next 

generation DW design technology [35] where Data Vault is a baseline approach to DW 

design and most of the requirements are derived from a developer’s standpoint as 

shown in figure 3. 

One practical problem for organizations building data warehouses using different 

methodological approaches is that the process of designing a data warehouse including 

a process of identifying and/or generating measures and dimensions (or Hub, Link and 

Satellite concepts in case of Data Vault approach) is not sufficiently automated.  

 



A Direct Approach to Physical Data Vault Design           573 

Predictive DMs 

 

 

Distributed Data 

Marts (DM)

 

 

PDV Content 

(Distributed)

  

Hypothetical 

DMs

 

 

Source Data

 

 DV Data Requirements:

 

PDV Variability 

Requirements:

 Concerns vs. Aspects

 

Content

 

Distribution

 (Node 

Location)

Partitioning

 (Mem-Devices)

Recovery
 

 

 Security 

 

 
Privacy  

 

PDW Metadata

 

ETL DMs 

Metadata

 
Scorecards

Metadata 

Dashboards

 Metadata

Analytic 

Tranformations 

 Metadata

PDV Case Tool Content 

Requirements:  
 

EL PDV 

Metadata

 

LDV Models

 

Source Data 
Metadata

 

 

Fig. 3. Some Requirements of DW 2.1 Research Program 

The rest of the paper is structured as follows: section 2 reviews work on data 

warehouse design automation, section 3 presents our approach to physical Data Vault 

design, section 4 illustrates related Physical Data Vault (PDV) design tool we 

developed to automate prototyping and implementation of data vaults based data 

warehouses, section 5 illustrates the use of the tool on a real example for distributed 

data base sources, and section 6 outlines future work. 

2. A Review of Data Warehouse Design Automation 

The starting point for review is selection of relevant works in the field of design 

automation for DW content (to narrow the scope somewhat, we did not emphasize a 

large body of work dealing primarily with ETL). Our choices are based on perceived 

contributions to the theory and practice of design, confirmed by the number of citations 

(at www.harzing.com). 

A semiautomatic sequential hybrid approach of conceptual modeling of a data 

warehouse that starts with E/R model is proposed in [36]. After the analysis and design 

of the conceptual/logical model, the identification of facts is followed by semi-

automatic creation of attribute trees in accordance with the requirements. The next step 

is to identify the dimensions, measures and aggregate functions after which logical and 

physical schema of data warehouse is performed. Improvement of the procedure is 

given in a textbook form in the [26].  

The Hybrid approach in designing multidimensional database warehouse on the 

basis of transactional normalized systems is proposed in [37]. In this approach an ER 

diagram is transformed into a Structured Entity Relationship Models (SERM) diagram. 

Phipps and Davis [38] start with a data-driven approach, and later uses the demand-

driven approach (sequential hybrid approach). The initial scheme is obtained using a 

multidimensional E/R model. This paper proposes an algorithm for obtaining a 

conceptual scheme of transactional schemas. The algorithm uses the numeric fields 

and relationships between entities as the basis for the creation of Multidimensional E/R 

schemes. The algorithm is applied to each data model where data can be divided into 

numeric, date/time, and text data types. In addition, this approach can be used to 

evaluate candidates for the conceptual schema using custom queries. 

 Peralta (et al.) [39] represents a step forward in the automation of data warehouse 

based on the rules applying existing knowledge in the data warehouse design. The 
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proposed rules are built into the design strategy that is run in accordance with the 

requirements and data extraction based on the transactional database schema. The 

framework consists of: rules, guidelines for the design based on non-functional 

requirements, the mapping scheme of the original database to a conceptual scheme, 

and a number of schema transformations. This approach allows the use of existing 

design techniques, with improved productivity. 

Romero and Abello [40] propose a semi-automatic method for recognizing business 

multidimensional concepts from domain ontology representing different and 

potentially heterogeneous data. With the use of ontologies and tools it can search for 

multi-dimensional patterns. Simulations of real cases to verify the algorithm are 

performed as well as theoretical analysis of the algorithm. This approach is able to 

integrate data from heterogeneous sources that describe their domains through 

ontologies. One of the most promising areas where the method can be applied is the 

semantic Web, which contributes to the extraction and integration of external data 

from the Web. 

Zepeda (et al) [41] introduces a semi-automatic process to build a DW based on 

MDA (Model Driven Architecture). It starts by collecting and consolidating user 

requirements. Other steps include recognizing structural information from the original 

database schema supported by an automation technique. This approach uses a tool to 

guide designers toward effective solutions in line with customer requirements. 

Nazri (et al) [42] is based on a model of data source and proposes a semi-automatic 

tool that uses lexical ontology as the knowledge base. Once you identify the facts and 

dimensions, the generation of a multidimensional model is made with minimal 

involvement of a user.  The method is illustrated using a semantic lexicon WorldNet as 

knowledge domain, to identify measures and dimensions. 

Zekri (et al) [43] introduces a semi-automatic approach for the design of 

multidimensional diagrams. Conceptual Data Model (CDM) is first translated into the 

multivariate pattern, and then refined with user requirements. Both steps use graphs as 

a formalism for the representation of the data model for decision making. 

Design automation is not an easy process because, in addition to the identification of 

the original database schema, it attempts to formalize the requirements of end users. 

However, certain steps must be performed manually, for example, the identification of 

business keys and measures. Table 1 provides a comparative overview of the various 

approaches, including a new one based on the Data Vault. Note that the public domain 

literature concerning the design of Data Vault systems [15], [16], [24], [44], [45], [46] 

does not elaborate on actual design process automation. 

Our direct approach to automatic generation of Data Vault physical models is based 

on metadata schemas of structured data sources (transactional databases) taking into 

account some semi-structured and unstructured sources. In addition, compared to the 

alternatives (Table 1), our direct approach to the physical design automation of data 

warehouse is achieved through the use of rules. It should be noted that majority of 

listed approaches are academic and that only Golfarelli [26] has a long tradition of 

industrial use which is also a characteristic of the Data Vault approach itself [15], [16], 

[44]. A direct physical design for data warehouses is  practical only in the case of a 

data vault type of data warehouses and is made possible by separating storage of 

identities (permanent keys) from evolving relationships and characteristics (attributes).   
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Table 1. Comparison of data warehouse design approaches  

Approach 

Generating Data Source 
Using 

Rules 
Conceptual 

DW model 

Physical 

DW model 

Data 

Vault Structured 
Semi-

structured 

[36] X X 
 

X 
  

[37] X 
  

X 
  

[38] X 
  

X 
  

[39] X 
  

X 
 

X 

[40] X X 
 

X X 
 

[41] X 
  

X 
  

[43] X X 
 

X 
  

[42] 
 

X 
 

X X 
 

Direct 

Physical DV  
X X X X X 

 

An important contribution of our approach is the realization of a possibility to 

directly derive Data Vault schema from source RDBMS schemas. The direct approach 

to physical Data Vault design is now possible thanks to the feature of the Data Vault 

models i.e. the separation of unchangeable identities of entities in real systems (Hubs) 

from time variant relationships (Links) and the characteristics of such entities and 

relationship (Satellites). 

There are many approaches to modeling and/or generating ETL process and code 

for example [45, 46, 47, 48, 49, 50, 51 and 52]. In Muñoz [51] an approach to the 

automatic code generation of ETL processes is given. The modeling of ETL processes 

used MDA (Model Driven Architecture) with the formal definition of a set of QVT 

(Query, View, Transformation) transformation. The problem of defining ETL activities 

and securing their formal conceptual representation is given in Simitsis and Vassiliadis  

[48]. The proposed conceptual model provides custom attributes for monitoring and 

appropriate ETL activities in the early stages of project data warehouse, and flexibility, 

extensibility and reuse patterns for ETL activities. Jovanovic (et al) [53] presents a tool 

GEM that from a given set of business requirements and data source descriptions semi-

automatically produces multidimensional and ETL conceptual designs. In addition, 

many commercial ETL design tools exists [54, 55, 56, 57, etc.]. Nevertheless none of 

the before mentioned  approaches and tools consider the ETL process in a Data Vault 

based data warehouse context that is for a second generation of data warehousing 

models. 

Sources listed in Table 1 above mainly represent academic contributions. Of interest 

to practitioners and to our research are also several additional sources illustrating the 

development and/or use of tools to automate the design of data warehouses. 

Golfarelli (et al) [58] presented the prototype CASE tool WAND. This tool assists 

the designer in structuring a data mart, carries out conceptual design in a semi-

automatic fashion, allows for a core workload to be defined on the conceptual scheme 

and carries out logical design to produce the data mart scheme.  
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QBX is a CASE tool for data mart design resulting from a close collaboration 

between academy and industry. It supports designers during conceptual design, logical 

design, and deployment of ROLAP data marts in the form of star/snowflake schemata, 

and it can also be used by business users to interactively explore project-related 

knowledge at different levels of abstraction. [59]. 

BIReady's Model-driven Data Warehouse generation engine [60] is one extension of 

CA Erwin tool that allegedly uses best practices and a stable architecture so that one 

can easily manage and evolve data warehouse.  BIReady is able to generate a Data 

Warehouse automatically from a business model. BIReady even generates the ETL and 

loads data.  BIReady builds data architectures from the ground up based on best-

practices. For example, the Corporate Information Factory (CIF) pattern by Bill Inmon, 

the father of Data Warehousing, and Dan Linstedt’s Data Vault modelling approach. 

Even BIReady’s datamarts are real Kimball Star-schemas. 

The Birst [61] tool automatically compiles a logical dimensional model into a star 

schema design and then generates and maintains fact and dimension tables. Logical 

measures are automatically analyzed for calculation grain, while logical dimensions 

are analyzed for levels requiring persistence. This tool generates and manages all key 

relationships, including surrogate keys where necessary and provides data connectivity 

and extract options for a wide variety of databases, both flat and structured files. The 

Birst also supports scheduled data extraction from all major relational database 

management systems, including Oracle, DB2, SQLServer, MySQL, Sybase, and 

PostgreSQL. 

Quipu [62] is an open source data warehouse generation system that creates data 

warehouses and supports Data Vault architectures. Quipu automates the data 

warehouse data model design and generates the ETL load code to fill the data 

warehouse from source systems. With Quipu you can simply and quickly generate and 

implement a source driven Data Vault, often referred to as source or raw Data Vault. 

Additional business value can be achieved by implementing a business Data Vault, 

where source data is combined in a Data Vault implementation of a single business 

model. Quipu supports both Data Vault architectures. Quipu's repository holds all 

relevant metadata of  the source data elements and generates a data warehouse model 

based on the Data Vault modeling methodology. Quipu provides the functions to build 

a Data Vault data warehouse quickly and reliably. Quipu fills the gap in the tool sets 

available today to implement the data warehouse architecture by generating, 

maintaining and populating (database) structures and code to capture changes in data, 

both transactional and reference [62]. According to a white paper available on [62], 

functionality to assist the construction of Data Marts is not yet available in the Version 

1.1 release of Quipu. 

Pentaho Data Integration (PDI, also called Kettle) [46] is the component of Pentaho 

responsible for the ETL processes. Though ETL tools are most frequently used in data 

warehouses environments, PDI can also be used for other purposes: migrating data 

between applications or databases, exporting data from databases to flat files, parallel 

loading of data into databases, data cleansing, integrating applications. PDI can be 

used as a standalone application, or it can be used as part of the larger Pentaho Suite. 

As an ETL tool, it is the most popular open source tool available Moreover, the 

transformation capabilities of PDI allow you to manipulate data with very few 
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limitations [46]. The ETL process is fully automated, but data vault and data mart 

processes are not part of the framework [63]. 

Table 2 summarizes information about relevant tools. 

Table 2. Comparison of data warehouse design tools 

  

Type of DW 

tool 

Physical 

DW model 

Data Vault 

design 

Generate 

ETL code 

Data Mart 

design 

WAND Academic Automatic 
Not 

supported 
Automatic Automatic 

QBX Academic Automatic 
Not 

supported 
Automatic Automatic 

Quipu Open source Automatic Automatic Automatic Manual 

Pentaho 

Kettle 
Open source Manual Manual Automatic Manual 

BIReady Commercial Automatic Manual Automatic Automatic 

Birst Commercial Automatic 
Not 

supported 
Automatic Automatic 

Direct 

PDV 
Prototype Automatic Automatic 

Automatic  

(in progress) 

Automatic  

(in progress) 

 

The advantage of our approach is the availability of a graphical view of the physical 

diagrams for Data Vaults and data marts during the design process. Furthermore, 

except for WAND and QBX, these tools do not present formalized and publically 

available information in detail.  

3. Direct Physical Data Vault Design 

The aim of physical design is to assist in implementing a DW on a selected database 

management platform. In the process of storing data, ones take large amounts of data 

from variety of sources: ERP (Enterprise Resource Planning) systems, relational 

databases, Excel files, DBF files, TXT and XML files or data from the Web. The data 

in  databases are called structured as they are defined with the data schemas. 

Information contained in file systems is considered unstructured and exists in two basic 

forms: as textual and as non-textual. Existing technology allows for easy loading of 

textual data in the staging database or data warehouse, which is not the case with non-

textual. Some textual data (documents) can be structured and are known as semi-

structured. 
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Fig. 4. Overview of proposed approach 

We propose a direct approach to the design of physical Data Vault data warehouses 

based on the historical preservation of the original data. An important methodological 

contribution of our approach is that conceptually, at the metadata level, data sources 

(DS) of all types are presented with relational model schema equivalents. The 

relational model is treated as the common factor for Data Vault implementation and all 

the source data and therefore all types of sources (structured and some semi-structured) 

are the first to be abstracted via meta-model into relational model equivalents. The 

term direct approach means that an approach directly leads to Data Vault models based 

on a physical model of sources in a relational form. The approach is facilitated by the 

fact that, no matter how many sources of operational data are drawn from, it is the aim 

of each information system to integrate basic information of wider significance and 

establish control using only one or few primary database(s) that include most of the 

data (and these databases, in most cases, reside in relational database engines). On the 

other hand, theoretical analysis [64] considers relational data models as general 

models, in which all data can be represented and so reduced. This work covers only the 

first stage from Figure 5 of the full scope of our research on Data Vault approach 

automation. The phases of initial Data Vault design automation (for the first stage) are 

shown in Figure 6. 
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Fig. 5. Stages of Data Vault data warehouse design and exploitation 

 

 

Fig. 6. Phases of initial Physical Data Vault design automation 

The direct approach to Physical Data Vault (PDV) design automation of a data 

warehouse presented in this paper includes the use of rules for data warehouse design. 

To understand the detailed rules we first outline a general algorithm for recognition of 

Hub, Link and Satellite relations based on mapped original data (equivalent relational 

model tables). In a nutshell the algorithm consists of the following: 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

The effect of the algorithm is to create a Link for each FK (except for tables whose 

PK are completely composed of FKs as all such tables will became Links in step I- b- if 

not confirmed  Hubs in step I- a). The proof of completeness of the algorithm follows 

from the assumption that, no matter the source, every table must have a PK, and the 

fact that tables are originally valid i.e. have been made from real data so that no 

I- For each source: 
a) For each Table: the user confirms Hubs by 

selecting a Business Key 

b) For each Table, if not already selected as 
a Hub, create Link 

c) For each Table:  
i. for each FK create  Link 

d) for each non-key attribute: create 
Satellite 

II- For each Hub (PK) 

a) For each source 
i. For each Table (search for matching PK): if 

found, create Link (to Hub ad II; this only 

illustrate possible integration). 
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contradictions in terms of circular dependencies on other tables could prevent their 

formation.  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next figure shows how introduction of Links breaks cycle in ER models. 

1. Every PK is either composed (partially or fully) from 
the PKs from other tables or is a separate PK 

(possibly, but rarely, composed of several fields 

concatenated or not. See [19]).  

2. Tables with separate PKs are designated as Hubs  
3. Tables with fully composed PKs are designated as Links. 
4. Remove all Links tables whose PK are not used as FK  
5. Remove all Hubs tables whose PK are not part of any PK 

in any remaining table 

6. Represent all remaining FK references with separate 

Links tables (each of those Links will now have two FK 

references); this is a crucial step separating mutually 

dependent tables  

7. Represent what is left, treating it as a directed graph 
expressing FK references (as precedence relations) in a 

matrix form  

a. Nodes are tables (including Links created in step 
6),  

b. Branches are FK references whose direction 

follows the FK reference i.e. branches are 

pointing to tables whose PK is referenced by each 

FK. The result is a connected directed graph. 

8. We can fully reduce the matrix using Warshall's 

algorithm following precedence relations (as 

adjacencies) on a connected directed acyclic graph (in  

a finite number of steps) where the number of steps 

determines the length of the longest precedence chain. 

9. The key for a proof that the above procedure finishes 
is that the graph obtained by carving initial, i.e. 

root, Hubs and Links must be acyclic  (proof by 

contradiction) 

a. If the precedence (FK path) forms a cycle the 

table has a PK that depends on itself but this 

contradicts the initial requirement that tables 

can exists in extension, meaning that records in 

the tables exist i.e. not only can be formed with 

complete PK in the time of schema creation but 

also effectively populated in the time of record 

creation). 
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Fig. 7. Links for FK relationship 

3.1. Conceptualization of Metadata – Phase 1 

The main phase is the Conceptualization of Metadata (general Physical Data Vault 

structure) resulting in a physical data model that can be used in designing individual 

Data Vault data warehouses. 

The first two steps of this stage assume building a model of the metadata (Figure 8) 

and of the modeling rules (Figure 9). When making the meta model and rules we 

distinguish between part of the model that is independent of the data source (source-

independent design) and part of the model, which depends on the source (source-

specific design). The independent part refers to the metadata tables and rules, and the 

dependent part involves procedures related to different data sources. The purpose and a 

method of how to update the metadata table are shown in Table 3.  

The RuleTypes table contains information about the types of policies, such as rules 

for different data sources, rules for identifying Hub, Link and Satellite tables and rules 

for creating Hub, Link and Satellite tables. The Rules Table contains information about 

the rules for a particular type of rules and actions to be performed when a certain 

condition is satisfied. Rules in column Rules allow easier execution of commands that 

are stored in the column RuleAction. The following example is given to show the SQL 

(Structured Query Language) rule to describe a set of constraints that are applied to 

identify candidate Hub based on the value of the column BusinessKey. 

 
UPDATE TableColumns SET TableColumns.HubCandidate = 1 

WHERE TableColumns.BusinessKey = 1 

 

The third step in this phase is generating code to create a staging database and 

creating tables and stored procedures from the model (Figure 8 and 9). From this 

presentation of the physical model we can generate a script to create a table in the 

staging database and insert initial data into tables StructureType and SourceType. The 

fourth step is to insert data into the rules table and basic codebook (reference data).  

After the first stage and creation of the tables and appropriate procedures conditions 

are created for the development of an application that allows one to automate the 

design of the physical model of Data Vault data warehouse, with minimal user 

interaction. Second, third and fourth phase of Figure 6 needs to be done for each 

specific system. 
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Fig. 8. Physical metadata model 
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Fig. 9. Model of Rules 
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Table 3. Purpose of the generated tables 

Table Purpose Insert method 

StructureType Codebook data: 

structured (ST), semi-

structured (SS) or 

unstructured (US) 

From model, example: 

INSERT INTO StructureType 

(StrTypeID, StrName) VALUES 

('ST', 'Structured') 

SourceType Data sources codebook  

(example: MS SQL 

Server, Oracle, xls, 

XML, txt, etc.)  

From model, example: 

INSERT INTO SourceType 

(SourceTypeID, StrTypeID, 

SourceTypeName) VALUES (1, 

'ST', 'MS SQL Server')  

DataSource Data source that will be 

used by data warehouse 

Automatically after identification all 

data sources through the user 

interface  

Tables Table from operational 

data 

Automatically after identification all 

data sources through the user 

interface 

SemiStructures Semi-structured data 

source (xls, XML, etc.) 

Semi-automatic, after importing and 

structuring (if possible) in the 

staging database 

UnStructures Unstructured data source 

(txt, etc.) 

Semi-automatic, after textual 

analysis and importing and 

structuring in the staging DB 

TableColumns Columns of data tables 

from databases and other 

sources that can by 

structured  

Automatically, except BusinessKey 

fields that will be selected through 

the user interface 

RuleTypes Types of rules for 

creating a data warehouse 

From model 

Rules Contain rules and 

appropriate action if 

condition is satisfied 

From model 

3.2. Identification of Data Sources – Phase 2 

This phase is applied to each individual DW (further development of CASE tools will 

take into account experiences with the prototype). The first step involves the 

identification of specific applications and systems (databases, structured and 

unstructured data sources) for data warehouse by a user selecting specific data sources 

(through the user interface). The second step in this phase is to insert data into table 

data sources based on the selected data source. 
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Fig. 10. Flowchart of the second phase 

The third step defines rules for inserting metadata for structured, semi-structured 

and unstructured data sources into a staging database. The rules defined in the model 

are stored in a table Rules. For identification of the rules, it is necessary to find data 

type (ST, SS, US) from all sources of data based on input parameters. These 

parameters will be obtained through the mechanism of the cursor through tables from 

data sources. The cursor is introduced as a set of records which is attached to the 

pointer at current row. Commands in SQL statements include moving the cursor to 

work with the current row. If it is semi-structured data sources, in the absence of a 

clear structure, their operational data need to be imported into the staging database. 

Semi-structured data such as Excel files can be imported into a database using ETL 

processes [13].  

Import metadata in the staging database will be prepared using a stored procedure 

as indicated in the model sp_InsertSemiStrInStage (with appropriate parameter). In 

case of unstructured data sources, it is necessary to first identify their metadata. 

Unstructured data can be placed into the database in the traditional way by using the 

files metadata, the path to the file or URL, and attributes and links between files placed 

in the database. The newer method of storing unstructured data in the database is 

known as text analytics. It is the process of converting unstructured documents into 
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structured documents by analysis of the structure of the text in the document [65]. Text 

analytics is the process of enabling a computer to extract meaning from text and is 

performed as a series of iterative process prior to loading into the database [66]. Some 

of the procedures are simple editing, stop-word removal, replacement of synonym or 

concatenation, homographic resolution, thematic clustering, external 

glossary/taxonomy overlay, stemming, alternate spelling resolution, foreign language 

accommodation, search direct and indirect support. A description of each of the 

procedures is given in [67]. 

The fourth step in this phase is to fill the tables Tables, SemiStructures, 

UnStructures TableColumns and information about the tables and their columns on 

transactional databases. This step will be automatically generated from the procedure 

for importing data by using data from the target system schema repository containing 

the tables, columns, indexes, constraints and relationships for each specific system for 

database management. Inserting metadata into the table TableColumns looks more 

complex due to the large number of metadata and a number of columns. A similar 

approach is taken with other structured data sources that import metadata into tables 

and TableColumns. Tables will be prepared using a stored procedure as indicated in 

the model sp_InsertDSTablesColumns. Based on data sources, this procedure will be 

transmitted as a parameter for a specific structured data source (MS SQL Server, 

Oracle, IBM DB2 and others), on the basis of the rules in the table of rules. 

 

In a nutshell, the algorithm for this phase consists of the following: 

 

 

 

 

 

 

 

 

 

 

 

At this stage, only the first step requires the participation of users, while the other steps 

are fully automated in the case of structured data sources. Automation rules are stored 

in a table RuleTypes and Rules. In the case of semi-structured data sources, it is 

necessary to partially involve users in structuring data, while the case of unstructured 

data sources requires the participation of users and textual analysis. 

3.3. Identification of PDV types – Phase 3 

Identification of PDV types (Hubs, Links, Satellites) for each DW is initially reduced to 

the identification of a business key until the Hub, Link and Satellite are automatically 

generated. On the model in Figure 8, the meaning of the columns in the tables 

StructureType, SourceType, DataSource, Tables, SemiStructures, UnStructures 

1. Loop over data sources (incrementally or in sets of DBs 
as sources): Select data source and Insert metadata in 

table DataSources  

2. For each row in table DataSources: find structure type, 
source type and rules 

a) For each structured type:  
i. Insert metadata in Tables 
ii. For each row in table Tables: insert metadata 

in table TableColumns 

b) For each semistructured type: 
i. Extract and load data in database StageDW 
ii. Insert metadata in table SemiStructures 
iii. For each row in table SemiStructures: insert 

metadata in TableColumns 

c) For each unstructured type:  
i. Text analytics process 
ii. Extract and load data in database StageDW 
iii. Insert metadata in table UnStructures 
iv. For each row in table UnStructures: insert 

metadata in TableColumns 
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clear,only the structure and purpose of the specific TableColumns column (Table 4) 

will be explained.  

This table should contain metadata from databases, semi-structured metadata and 

unstructured data sources that can be appropriately structured. Our approach provides 

the automatic loading of metadata from all TableColumns structured data sources and 

partly from some unstructured and semi-structured data sources. In addition to the data 

that will be filled on the basis of a database schema, this table will contain a column 

indicator that will give us information as to whether it is a business key, surrogate key, 

or if the table Hub, Link or Satellite candidate. 

Table 4. TableColumns Table structure 

Column Type Description Load 

automatic 

Load 

through UI 

ColumnID int Primary key     

TableID int Table ID    

SemiStrID int ID from semistructured 

data source 
   

UnStrID int ID from unstructured 

data source 
   

DataSourceName varchar Data source name    

TableOrStrName varchar Table name or semi/un 

struct. file name 
   

ColumnSysId integer Sys column ID    

ColumnName varchar Column name    

ColumnType varchar Data type    

ColumnPK bit PK column?    

ColumnFK bit FK column?    

Nullable bit Nullable column?    

IfFK_PKTable varchar Table name on PK side 

(if column FK) 
   

IfFK_PKColumn varchar Column name on PK side 

(if column FK) 
   

BusinessKey bit Business key column?    

SurrogateKey bit Is column Surrogat for 

corresponding Business 

key? 

   

HubCandidate bit Hub candidate?    

LinkCandidate bit Link candidate?    

SatCandidate bit Satellite candidate?    

 

This phase involves the following steps: 

1. Identification of business key through a user interface. Through the appropriate 

user interface, based on the data, the user should check the business keys. Based on the 

business key, the column with the appropriate BusinessKey value (0 or 1) will be filled. 

Filling in this section can be automatically based on rules stored in the table Rules, 
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according to [15], [16], [24], [44], and based on BusinessKey the column SurrogateKey 

will be filled. 

2. Identification of hubs. The Hub entity table contains a single list of business keys. 

These are the keys that organizations use in their daily operations, such as customer 

number, code of the employee, account number, and so on [15]. According to [15], 

[16], [24], Hub candidates can be identified using the filled BusinessKey and 

SurrogateKey on the basis of rules for identifying hubs which are found in the tables 

RuleTypes and Rules.  

3. Identification of links. Link is the physical representation of references, foreign 

keys and many-to-many relationships in third normal form [15]. Links can be 

identified using the procedure sp_FindLinkCandidate (which is an integral part of the 

model and that is called from the table Rules and RuleTypes) that includes the 

following steps: 

a) Find many-to-many table 

b) Set to true LinkCandidate field in many-to-many table 

c) Set 1 value in the column LinkCandidate for tables that have a foreign key 

4. Identification of satellites. The Satellite entity contains context data of hub and 

contains attributes that are not primary or foreign keys [15]. Satellites are identified on 

the rules in tables RuleTypes and Rules, according to [15], [16], [24], [46]. 

 

 

Fig. 11. Flowchart of the third phase 

3.4. Initial Declaration of PDV Structure- Phase 4 

The last phase in the process of automation of the physical design of a data warehouse 

is the initial declaration of the PDV structure. This phase include following steps: 

1. Generate and execute the script to create a hub table. When we have the 

business key, appropriate tables can be identified (by setting the value 1 in column 

HubCandidate). It is possible to generate a script to create a hub table in a Data Vault, 

based on the rules in the Rules table. This step provides the following: 

a) Forming a cursor to go through the TableColumns Where HubCandidate=1 

b) Retrieve data from a table and assign variables 

c) In each iteration, use dynamic SQL to supplement sql_statement 

d) Perform an sql_statement, creating a hub table 

2. Generate and execute the script to create the link table. The link table is used to 

represent relationships or transactions between two or more business components (two 

or more hubs). We identified the appropriate link tables containing value 1 in column 
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LinkCandidate which enables the generation script to automatically generate a link 

table, based on the rules in the Rules table. It is possible to generate a script to create a 

link table in a data warehouse, based on the rules in Table Rules. This step involves: 

a) Forming a cursor to go through the table TableColumns Where LinkCandidate=1 

b) Retrieve data from a table and assign variable 

c) In each iteration, use dynamic SQL to supplement sql_statement 

d) Performing an sql_statement, creating a link table 

3. Generate and execute script to create the satellite table. Satellite entity shows 

how context hub data. Satellite table created for each hub table will contain non-key 

attributes in a transactional database. We identified the appropriate Satellite tables by 

setting the value 1 in column SatCandidate which enables the generation script to 

automatically generate the satellite table based on the rules in the Rules table. In this 

case, one table is generated for each hub table (or link table, if the transaction has only 

a link table).  This step involves: 

a) Forming a cursor to go through the table TableColumns Where SatCandidate=1 

c) Retrieving data from a table and assign variable 

d) In each iteration, use dynamic SQL to supplement sql_statement 

e) Performing an sql_statement, thus creating satellite tables 

If the source of simple unstructured data, (Excel or TXT file), the data on clients 

who are not in a transactional database (or other contact information, information 

about market position, business data, etc.), then an additional Satellite table will be 

created that will include data from Excel or TXT file. 

Procedures described in the fourth phase make it possible to automatically create a 

complete data warehouse based on Data Vault concepts. Among meta-requirements for 

any design approach and its automation at least the following four are obvious: 

performance, scalability, flexibility and agility. In order to fully appreciate potential of 

our PDV approach one have to first realize what DV as such (comparing to traditional 

alternatives namely normalized EDW and dimensional Data Marts) contributes to 

satisfying such meta-requirements. The DV separation of Identities and Links from 

attributes (Satellites) by design creates a scale-free network [17] and thus greatly 

reduces stress of incremental expansion (scalability) this supports expansion of scope. 

The structural changes are also additions (no deletes) so flexibility of designs is 

assured. The DV by design foster higher levels of performance by (decoupling 

dependencies and) allowing parallel data loads all the time from all source systems. By 

requiring input without any irreversible data alterations (ELT as opposed to ETL) from 

a data source into a raw data vault (as a permanent fully auditable system of records) 

Linstedt suggest typical loading speed of 100K rows per minute is normal (as a 

benchmark). Nature of the DV model preserves scalability and flexibility as well as 

performance of the data vault designs weather manual or automated.  

4. Physical Data Vault Design Tool 

The goal of this section is to present the prototype CASE tool the authors have 

implemented to support their methodology. The PDV (Physical Data Vault) design tool 
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assists the designer in structuring a data vault, carries out physical design in a semi-

automatic fashion, and allows for a core workload to be defined on the physical 

scheme.  

The tool was developed using Larman’s [68] method. Specifications of requirements 

can be presented as verbal descriptions of the model and use cases. Verbal Description: 

Need to make an application that will provide support to the process of designing a 

data warehouse. The data warehouse should provide an analysis of data from structured 

data sources and simple unstructured and semi-structured (xls, txt). Structured data 

should not be loaded in a separate staging database, but directly loaded into the data 

warehouse. Semi-structured data has to be further structured in the staging database 

and then loaded into the data warehouse. Unstructured data has to go through the 

process of textual analysis, and then loaded into staging database for some structuring, 

and then loaded into the data warehouse. The Figure 12 shows the observed use-cases 

for the PDV tool. 

 

DW Designer

Select Data Sources

Insert Metadata

Create Hub, Link, Sat Tables

Select Business Keys

Create DW and Staging DB

    

Link tables are identified

IdentifyLinkTables ()

Hub tables are identified

SendBusinessKeys ()

IdentifySatTables ()

Satellite tables are identified

DW Designer

System

Link tables are identified

IdentifyLinkTables ()

Hub tables are identified

SendBusinessKeys ()

IdentifySatTables ()

Satellite tables are identified

 

Fig. 12. Use-case diagram and Sequence diagram for the use-case select Business Keys 

In the analysis phase, the behavior of software systems is determined by using 

system sequence diagram. For each use-case and for each scenario, a sequence diagram 

was created. The example in Figure 12 shows the sequence diagram for the use case 

Select Business Keys. Sequence diagram for use-case Identification of business keys, 

baseline scenario: 

1. Designer sends business keys to system 

2. The system returns the information based on business keys and identified Hub tables 

3. Designer call the system to identify the Link tables 

4. The system returns the information of identified Link table 

5. Designer calls the system to identify the Sat tables 

6. The system returns the information of identified Satellite tables 

 

The architectural design includes the design of application logic, the user interface 

and the internal metadata model database. The tool is built in three layer architecture 

with the database layer, the user interface and business logic layer. The staging 
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database was designed on the basis of the physical model shown in Figures 8 and 9. 

We used the Database management system Microsoft SQL Server 2008 R2. Designing 

the user interface included designing Windows forms. Some examples of the forms are 

given in the next section. The tool is implemented using Microsoft Visual Studio.NET 

environment using the C# programming language. The Microsoft's NET Framework 

was selected as it has a consistent programming model for building diverse 

applications [69]. 

5. Experimental verification of research results based on a 

prototype application 

Experimental verification of research results was done in the area of health insurance 

using a prototype tool PDV for a data vault data warehouse design. 

 

 

Fig. 13. Form for selection of structured data sources 

Health Insurance Fund annually enters into contracts with pharmacies to issue 

prescription drugs to insured patients. Prescription drugs are prescribed in health 

institution (family doctor’s office or hospital). Every fifteen or thirty days (depending 

on the contract), the pharmacy sends to Fund an invoice for drugs issued on 

prescriptions. Invoice consists of a header and items. The header contains the name of 

pharmacy, the date of the invoice, the total amount and the number of receipts. Items 

invoices contain information about drug, quantity and amount, and patient’s 

information. Invoices are to be submitted electronically. Health insurance Fund 

distributes databases in offices in each of several regions. The number of records in the 

table invoice items annually reaches several millions. To reduce the load on the 

transactional system, view reports (which often changes the format and appearance), to 

meet the requirements of users (in terms of reports with different grouping and 

diagrams), it was decided to implement a data warehouse and business intelligence 

system. When choosing a data warehouse architecture, the Data Vault approach was 

chosen (emphasizing the need to leave a trail from where and when the information 
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originated from the databases). Moreover, a Data Vault is designed to model data that 

can be easily changed following rapid changes in the business environment.  

After the first stage (initialized data warehouse and staging databases) associated 

procedures based on the model are derived from the second stage, the selection of data 

sources.  
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Fig. 14. Physical model of transactional database PrescriptionDrugs 

After the selection of data sources, the user starts uploading the metadata of selected 

data sources into the staging database. Part of the physical model of transactional 

database PrescriptionDrugs is given in figure 14. 

In the following form (Fig.15), users simultaneously (on three DataGridView 

controls) see selected data sources, data source tables and columns. The third 

DataGridView enables the checking of business keys. On the basis of the business keys 
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and corresponding rules for Hub tables, the system identifies a Hub table. After that, 

based on the hub tables and rules, the system identifies link tables. At the end of this 

phase, system identifies Satellite tables. After clicking the Next button, a form opens to 

declare a PDV structure as shown in the figure 16. 

 

 

Fig. 15. Form for identification PDV types 
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Fig. 16. Form for declare PDV structure 

This form allows for manual modification of the proposed Hub, Link and Satellite 

table. After manual modifications, the designer starts the process of creating Hub, Link 

and Satellite tables that are just being identified. This step completes the process of 

creating a data warehouse based on the Data Vault concept. The next button is clicked 

to enable visualization of Data Vault data warehouse structure. The created Data Vault 

Physical model is shown in figure 17. According [15], in the tables can be generate a 

surrogate key - optional component, possibly smart key or sequential number, if the 

composite primary key might cause performance problems. 

In our trials and experiments with the use of the PDV design tool (as it was evolving 

as a prototype itself) it was easy to create a complete data warehouses based on Data 

Vault concepts. In addition, the tool excelled when used to develop prototypes of data 

warehouses. In fact, only when a tangible DW prototype was completed, users become 

more interested in participating and frequently stated new requirements. Automating 

design for a data warehouse significantly accelerated the development of a robust 

system by allowing prototyping in the early stages of contact with customers, and 

customers were more interested in providing information.  
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Fig. 17. Model of Physical Data Vault data warehouse 

6. Conclusion 

This paper presents the basic algorithm for the initial physical design stage of the Data 

Vault types of enterprise data warehouses i.e. integrated data warehouses as systems of 

records not open to end user reporting. The approach is based on the incremental 

expansion of data warehouse adding new data sources in sets or one at a time. The 

algorithm utilizes metadata model and rules for the design starting with existing 
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(mainly) transactional data sources. Relations between entities in transactional systems 

and rules for the development of a data warehouse based on Data Vault concept are 

crucial for physical design automation of a data warehouse model. The 

conceptualization of metadata presented a physical model that can be used in the 

design of individual data warehouses, and this became the basis for development of a 

tool. The most important contribution of this paper is realization of Data Vault schema 

directly from RDBMS schemas. Such a direct approach was possible thanks to the 

feature of the Data Vault models i.e. separation of unchangeable identities of entities in 

real systems (Hubs) from time variant relationships among such entities (represented 

by Links) and the characteristics of such entities and their relationships (represented by 

Satellites). Traditional approaches to integration used pruning of data from the source 

and other forms of derivation i.e. consolidation that requires much intervention by 

experts (due to creative and semantically rich transformations). Data Vaults provide 

the unique ability to integrate data incrementally by adding links (of 'same as' type 

essentially 1:1 mappings) between initial and added hubs, while preserving all data in 

satellites, links and hubs without any reconstructions and deletes (guaranteeing 

preservation of information necessary for an enterprise size system of records). The 

subject of ongoing research is detailed specifications of dynamic expansion of Hub, 

Link (and their Satellite tables) and their additional linking for possible cases of 

merging Data Vault schemes in operation. Within the achieved scope, work in 

progress is focused on code generation for the initial loading of the created Data Vault 

enterprise data warehouses, as well as code generation for the Data Vault updating 

with new values and/or updates of the code to update (all without slowing down the 

original system).  

The PDV approach is based on available relational schema and this satisfies meta-

requirements stated earlier. Loading a schema and transforming it following 

preprogrammed rules certainly supports design performance, scalability and agility 

(user intervention is minimal but necessary, and is mainly focused on recognizing 

major permanent business keys). We claim that any indirect DV design driven by a 

conceptual or a logical data model (derived from the existing data sources) even when 

supported by some automation, is less flexible than direct PDV. Furthermore, 

it increases a danger of losing data from the source, potentially invalidating the central 

DV EDW purpose - to maintain a system of unaltered records. 

Future work relate to the remaining three stages of Figure 5. First is the automation 

of the ETL process from data sources to feed a Data Vault. The Data Vault type data 

warehouse is a solution for integrating, storing and protecting data. However, it is not 

intended, nor suitable, for intensive queries or reports. That is why the data warehouse 

architecture with a Data Vault layer (persistent system of records with full history of 

changes) also contains a data mart layer using the star schemas for reporting data 

access [46]. According to [70] the dimensions of the star schema result from the Hub 

and Satellite tables, and the fact tables from a Satellite and Link tables. The next item 

of research is addressing the output area (data marts) with the following steps: Create a 

model of DMs and DMs materialization code and create metadata for Analytics 

Tracking (Dashboards/Scorecards) and standard reporting.  

The process of designing an enterprise data warehouse based on the Data Vault 

model can be formalized, generalized and to some extent based on the automated 
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physical model for structured, semi-structured and simple unstructured data sources, 

including transactional database. Our direct approach integrates elements of the 

physical design of enterprise data warehouses based on a data vault model as a system 

of records. This paper also illustrated the development of a tool for automation of 

design for data vault based enterprise data warehouses. The tool has been implemented 

and used on a real case in the field of healthcare and medical insurance and provided 

satisfactory results. 

The paper and the approach presented so far do not address design of data marts, 

data virtualization, data warehouse schema evolution, master data management, 

mappings to NoSql data stores or hybrid databases, nor fully elaborates on ELT/ETL 

transformation automatization as those issues are part of a lager ongoing research 

program.  
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