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Abstract. Electroencephalography (EEG) is widely used in clinical diagnosis, mon-
itoring and Brain - Computer Interface systems. Usually EEG signals are recorded
with several electrodes and transmitted through a communication channel for fur-
ther processing. In order to decrease communication bandwidth and transmission
time in portable or low cost devices, data compression is required. In this paper we
consider the use of fast Discrete Cosine Transform (DCT) algorithms for lossy EEG
data compression. Using this approach, the signal is partitioned into a set of 8 sam-
ples and each set is DCT-transformed. The least-significant transform coefficients
are removed before transmission and are filled with zeros before an inverse trans-
form. We conclude that this method can be used in real-time embedded systems,
where low computational complexity and high speed is required.
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1. Introduction

Electroencephalography (EEG) is a recording of cortically evoked electro-potentials across
the scalp. Electrical activity of the scalp evokes oscillations at a variety of frequencies.
This oscillatory activity is classified into different frequency bands or rhythms: delta (0.5
- 3.5 Hz), theta (4 - 8 Hz), alpha 1 (8 - 10.5 Hz), alpha 2 (10.5 - 13 Hz) beta 1 (13 - 21
Hz), beta 2 (20 - 32 Hz), and gamma (36 - 44 Hz) [16].

Since EEG discovery by Berger et. al [1], many research activities have centred on
extracting useful information about the brains conditions based on the characteristics of
the signal. EEG signals are used in clinical diagnosis of brain death, epileptic seizures
and other diseases, as well as in intensive care monitoring. Non-clinical uses include neu-
roscience, psycho-physiological, Brain - Computer Interface (BCI) and other researches.
Many applications require acquisition, storage, and automatic processing of EEG during
an extended period of time [16].

Since 1970s research on Brain - Computer Interface systems began at the University
of California Los Angeles [22], the EEG signal has become the main data source for
BCI study due to its low cost and non-invasive nature. It is possible to record different
electrical potentials from the central nervous system of a human brain, depending on
the subject’s mental state. Because EEG signals are non-stationary and non-linear, and
normally interfered by eye movements and muscle noises, it is difficult to differentiate the
classes of mental tasks so various machine learning algorithms are used for classification.



50 Darius Birvinskas, Vacius Jusas, Ignas Martisius, and Robertas Damasevicius

Moreover, the amount of raw data produced in recording trials is impractical for most
machine learning algorithms [2], this can be overcome by transforming time series into
feature vectors with a fixed dimensionality [11].

Due to the large data size of the EEG resulting from large number of electrodes, long
recording time and usually high sample rate, data compression is required for efficient
data transmission and archiving. Efficient compression of the EEG signal is a difficult
task due to inherent randomness in the signal, and hence high compression rates cannot
be achieved with lossless compression methods [20, 7].

Recently low cost, portable EEG monitoring devices became available, making com-
mercial, non-clinical applications possible [17]. For example, NeuroSky ”MindSet” is
an audio headset with a single electrode, recording scalp electro-potentials. It uses wire-
less technology to transmit to a host device. Since ”MindSet” is a portable device, long
recordings are possible, however working time is limited by battery capacity. In this case
lossy compression techniques may be acceptable as long as the reconstructed signal pre-
serves enough information about the user’s mental state [14]. For these reasons, simple,
low complexity, embedded data compression methods are required, even if it might effect
accuracy.

Discrete Cosine Transform (DCT) is a transformation method for converting a time
series signal into basic frequency components. An important feature of DCT is that it
takes correlated data as input and concentrates it’s energy into just the first few transform
coefficients. This method is widely used for audio and image compression [19]. Beside
that, DCT has been successfully used for EEG data set reduction and feature extraction
[2, 3].

DCT and inverse DCT (IDCT) are highly computationally intensive, creating pre-
requisites for performance bottlenecks in systems utilizing them [15]. To overcome this
problem, a number of fast algorithms have been proposed [5, 12, 13] for more efficient
computations of these transforms. These algorithms are based on the sparse factorizations
of the DCT matrix and many of them are recursive.

In this paper we consider the use of fast Discrete Cosine Transform (fDCT) algo-
rithms for lossy EEG data compression in order to decrease communication bandwidth
and transmission time. This method could be useful in portable or low cost devices where
data compression is required and small data loss is acceptable.

The rest of the paper is organized as follows. In Section 2, we provide an overview
of some recent approaches for EEG compression. We present the method of Discrete
Cosine Transform and quality measures of signal compression in Section 3. We discuss
the materials and methods used for the experiment in Section 4. We report the results of
the experiment in Section 5 and finish with conclusions in Section 6.

2. Related Work

Compression techniques practically aim at obtaining maximum data volume reduction
while preserving the significant information for reconstruction. Data compression can be
lossless, when the signal waveform fidelity is totally preserved, or lossy, in cases where a
certain amount of distortion in the decompressed data is allowed.
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2.1. Lossless Compression

High compression rates cannot be achieved with lossless compression methods due to
randomness of EEG signal. In some cases conventional compression algorithms, like TAR
or ZIP can be used, however as shown in [24] specialized algorithms can achieve higher
compression ratio.

A common way to improve compression ratio is the use of mathematical transforms.
A method for multi channel EEG compression using Karhunen-Loeve transform (KLT) is
shown in [23]. Main disadvantage of KLT is high computation time. In [21], an adaptive
error modelling technique for lossless compression has been applied to improve the com-
pression efficiency. Another approch is to use neural network predictors for contex-based
error modelling [16]. This has shown some improvement in compression efficiency by
removing bias offset of raw data.

2.2. Lossy Compression

Unlike lossless compression, lossy algorithms does not allow perfect reconstruction of
the signal, but can achieve higher compression ratio and use less computation resources.
Recent works on lossy EEG compression includes the use of Wave Packet Transform [4].
This Cardenas-Barrera et al. proposed method is designed to be low-power and can be
used in portable devices. Another approach with Wavelet dictionaries is presented in [8].
The compression is based on a superposition of dictionary elements, by minimizing the
norm of the error.

Higgins et al. suggest the use of JPEG2000-based algorithm for lossy EEG compres-
sion [9]. The JPEG2000 algorithm is designed for image compression, however applica-
tions are not limited to image files only. Core components of algorithm include: Discrete
Wavelet Transform (DWT), quantisation and an Arithmetic Coder. The DWT replaces the
Discrete Cosine Transform (DCT) of the original JPEG format. Using different compres-
sion parameters compression ratio of 11:1 can be achieved [9].

Further, recent works based on wavelet-SPIHT [6] and finite rate of innovation tech-
nique [18] has been published. These approaches have shown some improvement in the
compression performance at the expense of computation resources. A performance survey
of some EEG compression techniques can be found in [24].

Several compression methods have been reported recently, however, to the best of our
knowledge none of these approaches uses Discrete Cosine Transform or fast DCT algo-
rithms for EEG data compressions. This method is suitable for hardware implementation
and should reduce computation time in embedded systems.

3. Theory

A theoretical background required for our experiment can be divided into to parts. The
first one explain Discrete Cosine Transform and some of its properties. Since direct DCT
formula implementation is inefficient, three fast DCT computation schemes are also pro-
vided. The second part provide information about evaluation parameters that we are going
to use in our experiments. These parameters are compression ratio and percent root-mean-
square difference (PRD).
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3.1. Discrete Cosine Transform

DCT is a transformation method for converting a time series signal into basic frequency
components. Low frequency components are concentrated in first coefficients, while high
frequency - in the last ones.

The DCT input f(x) is a set of N data values (EEG samples, audio samples, or other
data) and the output Y (u) is a set of N Discrete Cosine Transform coefficients. The one-
dimensional DCT for a list of N real numbers is expressed by formula (1):

Y (u) =

√
2

N
· α(u) ·

N−1∑
x=0

f(x) · cos
(
π · (2x+ 1) · u

2N

)
(1)

where

α(u) =

{ 1√
2
, u = 0

1, u > 0

The first coefficient Y (0) is called the DC coefficient and rest are referred to as AC
coefficients [19]. The DC coefficient contains mean value of original signal.

Inverse DCT takes transform coefficients Y (u) as input and converts them back into
time series f(x). For a list of N DCT coefficients inverse transform is expressed by the
following formula (2):

f(x) =

√
2

N
· α(u) ·

N−1∑
u=0

Y (u) · cos
(
π · (2x+ 1) · u

2N

)
(2)

In this formula notations are the same as in (1). DCT exhibits good energy compaction
for correlated signals. If the input data consists of correlated quantities, most of the N
transform coefficients produced by the DCT are zeros or small numbers, and only a few
coefficients are large. These small numbers can be quantized coarsely, usually down to
zero. Since EEG has low frequency oscillations, most of the relevant information is com-
pressed into the first coefficients, while the last ones usually contain noise.

During the transform small values of N such as 3, 4, or 6 result in many small sets
of data items and small sets of coefficients where the energy of the original signal is
concentrated in a few coefficients, but there are not enough small coefficients to quantize.
Large values of N result in a few large sets of data. The problem in this case is that
individual data items of a large set are normally not correlated and therefore result in a
set of transform coefficients where all the coefficients are large. Most data compression
methods that employ the DCT use the value of N = 8 [19].

Direct implementation of formulas (1) and (2) requires 4N multiplications, so it is
slow and impractical. To overcome this, a number of fast DCT computation algorithms
were proposed. These algorithms reduce the number of multiplications and additions,
usually, however, limiting the number of samples to 2m, where m is a positive integer.

Chen DCT Chen et. al [5] published the first fast DCT and IDCT algorithm. They pro-
posed a recursive algorithm to factor any N-point DCT with N = 2m,m ≥ 2 into plane
rotations and ”butterfly” operations. The factorization has a very regular structure and
is 6 times faster than the fast Fourier transform based algorithms. The algorithm uses
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Fig. 1. Signal graph of the Chen DCT transform [5]

3N/2(log2N − 1) + 2 addition operations and N · log2N − 3N/2 + 4 multiplications.
For an 8 point vector this number is 16 multiplications and 26 additions. The signal graph
for N = 8 signal, is presented in Fig. 1.

Loeffler DCT Another factorization for DCT was proposed in [13]. This method uses
only 11 multiplications and 29 additions for a 8-point vector, achieving the multiplication
lower bound, without an increase in addition operations. One of its variations is adopted
by the Independent JPEG Group in a popular image compression algorithm JPEG imple-
mentation. The Loeffler Discrete Cosine Transform computation algorithm is sectioned
into 4 stages, which are executed in series (see Fig. 2). Note that this factorization re-
quires a uniform scaling factor of 1/

√
8 at the end of the flow graph to obtain the true

DCT coefficients.

Fig. 2. Signal graph of the Loeffler DCT transform [13]

BinDCT BinDCT, published in [12], is one of the newest fast DCT and IDCT algorithms.
Both Chen and Loeffler algorithms need floating point multiplication. While they can be
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scaled down to integer multiplication, the complexity is still unsatisfactory for embedded
systems, requiring a 32 bit data bus. The BinDCT algorithm’s novelty lies in that it uses a
scheme of lifting steps, which in turn use only shift and addition. This algorithm uses an
underlying Chen or Loeffler signal graph, swapping plane rotations and ”butterflies” for
lifting step operations. These lifting steps are shown in Fig. 3.

Fig. 3. a) plain rotation, b) lifting steps of the BinDCT algorithm [12]

Lifting step coefficients denoted as p, u, K1 and K2 in Fig. 3 b) are calculated accord-
ing to (3):

p =
r12
r11

(3)

u =
r11r21

r11r22 − r21r12
K1 = r11

K2 =
r11r22 − r21r12

r11

In this formula coefficients r11, r12, r21 and r22 are shown in Fig. 3 a). Also in formula
(3) all coefficients must have format of a

2b
, where a is an integer and b is a natural number.

This property is important, because coefficients of this format can be implemented using
only logic shifts instead of multiplication and division.

3.2. Evaluation Parameters

Lossless data compression are usually evaluated using compression ratio (CR) [19], which
is defined as (4):

CR =
Lcomp

Lorig
(4)

where Lorig and Lcomp is the length of original and compressed signals.
However, evaluating CR is not enough for lossy compression. It is well known that

higher data compression can be achieved by reducing the quality of reconstructed data. In
this paper, we validate the quality of reconstructed signal as a percent of root-mean-square
difference (PRD).

Let X and X̃ be the original and the reconstructed signals respectively, and N is its
length. The PRD is defined as (5):

PRD =

√√√√∑N
n=1(x[n]− x̃[n])2∑N

n=1(x[n])
2

· 100% (5)
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where x[n] and x̃[n] are samples of original and reconstructed signals. This quantifies the
average quality of reconstruction, in contrast to peak signal-to-noise ratio (PSNR), which
measures local or worst-case distortion.

Decision between CR and PRD has to be made according to the application. For
telemedicine and diagnosing purposes, requiring high accuracy, are opposite to non-clinical
uses, where higher compression ratio is preferred.

4. Material and Methods

For experiments two data sets from the BCI competition II (http://bbci.de/competition/ii)
were used. These data sets were used in competition and several independent teams have
confirmed they are accurate.

The Data set Ia (provided by University of Tuebingen). This data set was recorded us-
ing a healthy subject. The subject was asked to move a cursor up and down on a computer
screen, while his cortical potentials were taken. During the recording, the subject received
visual feedback of his slow cortical potentials (SCPs). Each trial consists of 896 samples
from each of 6 channels. Channels locations are these: A1-Cz (10/20 system), A2-Cz, 2
cm frontal of C3, 2 cm parietal of C3, 2 cm frontal of C4, 2 cm parietal of C4.

The Data set IVa (provided by Fraunhofer-FIRST, Intelligent Data Analysis Group
and Freie Universitat Berlin, Department of Neurology, Neurophysics Group). This data
set was recorded using a healthy subject during a no-feedback session. The task was to
press with the index and little fingers the corresponding keys in a self-chosen order and
timing. 28 EEG channels were measured and band-pass filter between 0.05 and 200 Hz
was applied. Channels are in the following order: F3, F1, Fz, F2, F4, FC5, FC3, FC1,
FCz, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6,
O1, O2.

Fig. 4. EEG signal in time series

Fig. 5. DCT transform of EEG signal (N=8)



56 Darius Birvinskas, Vacius Jusas, Ignas Martisius, and Robertas Damasevicius

Data sets has several EEG channels, however for our experiment we use only channel
1 from both data sets. Data in other channels are analogous so we assume that compression
results would be similar for other channels in the same data set. Since these data sets
consist of different number of samples, 200 trials of 896 samples were formed from each
data set. The sample count was chosen according to the data structure of Data set Ia.
An example of one such EEG trial is shown in Fig. 4. Every trial was compressed and
reconstructed separately and average PRD measured. These steps were taken in order
to compare experimental results with different data structures, allowing for direct result
comparison.

The idea behind this compression algorithm is similar to the one used in audio com-
pression. The EEG signal is partitioned into sets of N samples and each set is then DCT-
transformed. As mentioned before, this compresses relevant information into the first
DCT coefficients. This step is illustrated in Fig. 5, where N = 8 is chosen. The picture
shows the last coefficients being close to zero, making it possible to remove them and
therefore reducing the signal length.

In order to speed up computation a number of fast algorithms were proposed. In our
experiments the following DCT/IDCT computation algorithms are used:

– Matlab native function.
– Chen’s [5] mathematical model using fixed point numbers.
– Loeffler’s [13] mathematical model using fixed point numbers.
– BinDCT [12] mathematical model using fixed point numbers.

Matlab native functions use floating point numbers and direct implementation of for-
mulas (1) and (2), so it is expected to be slow, but more accurate. Fast DCT algorithms are
implemented in Matlab using fixed point numbers. As a result, fixed point mathematical
models are less accurate, but less computationally demanding, and are possible to im-
plement in hardware. Loeffler’s mathematical model used in this experiment has already
been FPGA-proven and shown to be accurate [15].

There are two important parameters that must be chosen in order to compress a signal.
The first one is the signal partition size N. Since fast DCT computation algorithms use a
length of 2m, where m is a positive integer, an obvious choice for partition size is N = 8.
This size is used in the most of compression algorithms [19].

Another parameter considered is the number of DCT coefficients to truncate (we de-
note by R). By removing more coefficients, higher compression ratio is achieved. How-
ever, this would reduce the quality of the reconstructed signal. The trade-off between
compression ratio and reconstructed signal quality is the subject of our experiment. We
chose an R value of 2, 3, 4, 5 and 6. Since compression ratio depends on this value,
formula (4) can be rewritten as:

CR =
N −R

N
(6)

Our experiments follow these steps:

1. Each trial is partitioned into sets of 8 samples.
2. DCT transform is applied to every set of samples.
3. Number R of last DCT coefficients is removed and a new shorter data vector is con-

structed.
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4. Removed coefficients are filled up with zeros.
5. Inverse DCT transform is applied to every set of coefficients.
6. PRD of each trial is computed.
7. Average PRD is computed.

These steps can be divided in 3 groups: signal compression (steps 1 - 3), signal recon-
struction (steps 4 and 5) and quality assessment (steps 6 and 7). Four experiments were
carried out using a pair of all previously mentioned DCT/IDCT algorithms (Matlab native
function, Chen’s, Loeffler’s and BinDCT).

5. Results and Discussion

This experiment was carried out using Matlab and a PC running Debian Linux with an
Intel Pentium Dual-Core E5700 (3.00 GHz) processor and 6 GB RAM. In order to find
out which compression algorithm is faster, we measured time taken to compress and re-
construct the whole data set. In Table 1, relation between compression ratio (CR) and
quality of reconstructed signal is shown. This quality is measured using PRD as shown in
formula (5).

Table 1. Results using Matlab native DCT function

Data set Ia Data set IVa
CR PRD, % time, sec PRD, % time, sec
1.33 1.12 4.16 7.92 2.59
1.6 1.41 4.17 8.80 2.54
2 1.74 4.17 9.37 2.54

2.66 2.15 4.18 10.10 2.54
4 4.86 4.17 11.09 2.62

As expected, the signal quality depended on compression ratio, but compression -
reconstruction time was constant. We can see that maximum PRD at compression ratio 4
is 4.86% for data set Ia and 11.09% for data set IVa. Cardenas et.al [4] suggest that 99.5%
of EEG signal information is maintained when PRD is below 7%. However, other studies
suggest that maximum tolerable level for an automated epileptic seizure detection is 30%
[9, 10].

Differences between results of different data sets can be explained by their properties.
In this case peak-to-peak amplitude is the most notable signal property that differs. While
the amplitude of data set Ia is below 100, data set IVa is over 1500. Higher amplitude may
reduce correlation between adjacent samples.

In Table 2, Chen’s DCT algorithm performance is presented.
We can see that compression time is significantly reduced, but reconstruction quality

is lowered as well. For data set Ia quality difference between Chen’s and Matlab native
algorithms is higher for low CR, but in any case, PRD differs less than 1%. On the other
hand, compression - reconstruction time is decreased about 3 times.

Reconstruction quality of data set IVa is significantly lower, compared to Matlab na-
tive function results. As mentioned before, models of fast DCT algorithms are designed
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Table 2. Results using Chen DCT

Data set Ia Data set IVa
CR PRD, % time, sec PRD, % time, sec
1.33 2.02 1.47 12.90 0.92
1.6 2.16 1.48 13.51 0.91
2 2.34 1.46 13.89 0.91

2.66 2.63 1.45 14.46 0.92
4 5.07 1.48 15.17 0.93

Table 3. Results using Loeffler DCT

Data set Ia Data set IVa
CR PRD, % time, sec PRD, % time, sec
1.33 2.70 1.62 7.92 1.02
1.6 2.59 1.58 8.80 1.01
2 2.77 1.57 9.37 0.99

2.66 2.79 1.58 10.10 0.99
4 5.13 1.58 11.09 1.00

for fixed-point hardware implementation, so there is a fixed-point data type overflow pos-
sibility.

Table 3 shows results using Loeffler’s algorithm. In this case PRD of data set IVa
is similar to Matlab’s native functions, so we conclude that Loeffler’s fast DCT model
performs well for both data sets. However, reconstruction quality of data set Ia is slightly
lower than Chen’s algorithm.

Comparing Table 2 and Table 3 we can see that Loeffler’s algorithms is slower, but
this difference is low and insignificant. On the other hand reconstruction quality of the
dataset IVa is about 5 % higher using Loeffler’s algorithm as opposed to Chen’s.

In Table 4, results using BinDCT algorithm are presented. This algorithm is faster, but
less accurate than Loeffler’s.

Table 4. Results with BinDCT

Data set Ia Data set IVa
CR PRD, % time, sec PRD, % time, sec
1.33 2.68 1.44 8.15 0.90
1.6 2.96 1.42 9.19 0.90
2 3.23 1.42 9.72 0.89

2.66 3.41 1.44 10.33 0.90
4 5.49 1.43 11.08 0.94

Table 3 and Table 4 shows that multiplierless BinDCT algorithm performs similar as
Loeffler’s algorithm. This can be useful, when designing low-cost, low power embedded
compression systems.

A summarized quality result of all the algorithms is shown in Fig. 6 for data set Ia and
Fig. 7 for data set IVa. Despite Chen’s algorithm overflow with data set IVa, experimental
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Fig. 6. Quality of reconstructed signal (Data set Ia)

Fig. 7. Quality of reconstructed signal (Data set IVa)
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results show that the quality of a reconstructed signal is reduced less than 1%, while using
fixed-point fast DCT algorithms. On the other hand, compression - reconstruction time is
reduced by about 300%.

Comparing our results to [9] shows that higher compression ratio can be achieved at
a cost of higher PRD, when using a more complex JPEG2000 compression algorithm.
Furthermore, fixed-point DCT models produce similar quality results at a CR 4:1. These
results proves that fast DCT based data compression can be practically implemented in
low cost, low power portable devices in order to decrease wireless communication band-
width.

6. Conclusions

In this paper, we investigate the use of fast Discrete Cosine Transform algorithms for
EEG data compression. We compare performance of fast DCT algorithms against direct
DCT implementation. Experimental results showed a quality decrease of about 1%, with a
significant speed increase when using fast algorithms. A multiplierless BinDCT algorithm
produced the best compression speed result, with an insignificant loss of reconstruction
quality.

Reconstruction quality, expressed in percent of root-mean-square difference (PRD),
ranges from 5% to 11% at compression ratio 4:1 depending on the data used. These
quality results are in line with other authors, using more complex compression algorithms.
These results show that our purposed fast method for compression is efficient as well.

We conclude that fast fixed-point DCT algorithms can be used for EEG data com-
pression however, applications are limited to low power embedded systems or wireless
transmission for portable EEG devices.
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