
Computer Science and Information Systems 12(2):375–403 DOI: 10.2298/CSIS141025015H

Model-Driven Java Code Refactoring

Sohaib Hamioud1, and Fadila Atil
2

1 Complex System Engineering Laboratory (LISCO), Department of Computer Science,

Badji Mokhtar University, POB 12,

23000 Annaba, Algeria

hamioud_sohaib@yahoo.com
2 Complex System Engineering Laboratory (LISCO), Department of Computer Science,

Badji Mokhtar University, POB 12,

23000 Annaba, Algeria

atil_fadila@yahoo.fr

Abstract. Refactoring is an important technique for restructuring code to improve

its design and increase programmer productivity and code reuse. Performing

refactorings manually, however, is tedious, time consuming and error-prone.

Thus, providing an automated support for them is necessary. Unfortunately even

in our days, such automation is still not easily achieved and requires formal

specifications of the refactoring process. Moreover, extensibility and tool develo-

pment automation are factors that should be taken into consideration when design-

ing and implementing automated refactorings. In this paper, we introduce a

model-driven approach where refactoring features, such as code representation,

analysis and transformation adopt models as first-class artifacts. We aim at

exploring the value of model transformation and code generation when formaliz-

ing refactorings and developing tool support. The presented approach is applied to

the refactoring of Java code using a prototypical implementation based on the

Eclipse Modeling Framework, a language workbench, a Java metamodel and a set

of OMG standards.

Keywords: code refactoring, metamodeling, model-driven engineering.

1. Introduction

Refactoring is the process of changing the internal structure of a software without chan-

ging its external behavior, typically aimed at making code more reusable, easier to

maintain, easier to extend and easier to understand [3], [19]. Based on case studies [14],

[36], refactoring is frequent and commonly practiced by programmers. Thus, automated

refactorings were invented and are generally faster, more efficient and less error-prone

than manual refactorings [22]. However, implementing a refactoring tool is still a chall-

enging task.

Typically, most of the automated refactoring tool’s code is devoted to the required

components for building the tool. The most commonly used components are: (1) Lexer,

parser and (sometimes) preprocessor for constructing a program presentation (generally

an abstract syntax tree) which is used for both analysis and transformation. (2) Pretty

printer for mapping back the performed changes to the source code. (3) Program data-

base for indexing the program, and user interface for interacting with the tool. In fact,

Sohaib Hamioud, and Fadila Atil 376

developers do not have to always construct refactoring tools from scratch. They some-

times reuse some existing components (e.g., parser, AST, syntax) from other tools (e.g.,

compiler frontends). However, reuse is not always possible and easy because existing

components are originally constructed for different and specific concerns. This limit-

ation was discussed in [20].

Yet another challenge that faces automation is handling language extensions. Java,

for example, has been extended by new features over the last years (foreach loop,

variable-length arguments, closures, etc.). Refactoring tools should be designed so they

can be easily extended to support the manipulation of new language features. Further-

more, new refactorings (i.e., new preconditions, new postconditions and/or new

transformations) should be easy to specify and easy to add. Within this context, a

suitable approach is needed that can produce generic and extensible refactoring tools

based on effective solutions.

This paper focuses on the application of model-driven techniques for implementing

refactoring tools. Model Driven Engineering (MDE) adopts the use of models in

software development for managing complexity, automating the process and raising the

abstraction level. It is about creating, transforming, generating, interpreting and weaving

models using modeling languages, tools, etc. The Object Management Group (OMG)

introduced the Model Driven Architecture (MDA) initiative as an implementation of

MDE [17]. It provides a suite of technologies and standards such as UML, OCL, XMI,

CWM, and MOF.

The thesis of this paper is that rather than implementing the tool’s components (in

particular lexer/parser and pretty printer) in a code-centric manner involving large

amounts of handwritten code, one can automatically generate them from an explicit

metamodel (abstract syntax) and textual syntax specification (concrete syntax) for the

programming language, which not only reduces hand-coding, but also removes the

burden of reusing existing components. This is possible with the use of modern lang-

uage workbenches.

MDE increases the abstraction level where high level reuse (i.e., generative reuse)

takes place, and this is achieved through modeling, transformations and code gener-

ation. Metamodels provide high expressiveness for describing languages and can be

easily integrated and extended for reuse. Textual syntaxes and grammars (used to

generate parsers and printers) can be reused as well along with metamodels [5], [6], [8].

While usual refactoring tools manipulate ASTs, here we manipulate models of the

source code described according to the programming language metamodel. Hence,

various existing modeling tools and standardized modeling and transformation

languages can be used for this purpose. In this paper, we show how MDE can be

applied to: (1) improve design and implementation of automated refactorings, (2) easily

handle language extensions, and (3) make refactoring tools easy to extend and maintain.

The main components of a prototypical implementation are outlined. It contains eight

useful refactorings: Rename (package, class, interface, method and field), Extract Local

Variable, Move Method and Remove Class. We have chosen the Object Constraint

Language (OCL) for static source code analysis [16], and the Query View Transfor-

mation (QVT) to apply refactoring (i.e., code transformation) [15]. The reminder of this

paper is structured as following. The metamodel defining the abstract syntax of Java is

presented in Section 2. Then Section 3 introduces an OCL-based approach for code

analysis. The QVT-based code transformation is then integrated in Section 4. Section 5

outlines the several tools and techniques used to implement our experimental prototype.

Model-Driven Java Code Refactoring 377

In Section 6, the evaluation of the extensibility and the modification possibilities offered

by our approach is introduced. Related work is presented in Section 7. Finally Section 8

concludes the paper and elaborates on future work.

2. Java Metamodel

Refactoring activities (analysis and transformation) must rely on a program model that

conforms to an explicit structure describing the syntax and semantics of language

entities. Our approach suggests the use of a metamodel that allows a model-based

representation of the source code. Many Java metamodels exist and to choose the most

suitable among them for use in a refactoring tool, there are some requirements that need

to be met:

 Granularity level: a metamodel that provides coarse-grained elements like classes,

methods and fields can be used to support the automation. However, this level of

granularity limits the range of refactorings that can be implemented. Accordingly,

lower granularity is required to cover, for example, statement level information, such

as expressions and blocks;

 Quality: even if a fine granularity is required, the quality of the metamodel needs to

be high so that developers (and users) can easily handle it, because, in our approach,

they are supposed to use declarative languages to manipulate instances of the

metamodel. In this declarative context, a high-quality metamodel must explicitly

reflect a deep knowledge of the Java language in a clear and understandable way,

which can be supported by subtyping (i.e., the use of subtyping relationship to

express the identification and abstraction of common concepts used in different

metaclasses that represent Java features), package structuring (i.e., the use of

metapackages to group related metaclasses and metadatatypes), meaningful naming

(i.e., the use of self-documenting names that clarify the intended use of each

metamodel element. This also includes naming conventions) and high-quality

referencing (i.e., definition of the most appropriate meta-associations between

metaclasses). These techniques decrease complexity, promote understanding and

support metamodel extensibility.

 Completeness: the need for a complete Java metamodel is apparent. Ideally, the

layout of Java code must be preserved after both extraction (converting code into

model) and generation (converting model into code). This is not possible if the

metamodel does not cover the whole language. Moreover, details such as comments

should not be omitted and lost;

 Semantics modeling: obviously, semantic analyses are essential for the successful

implementation of refactoring. Rename (i.e., refactoring usable for renaming Java

entities), for example, requires name binding analysis. Semantic information can be

deduced statically or dynamically, but most of refactoring tools use static analysis.

Fortunately, static semantics are sufficient to implement the most commonly used

Java refactorings. As a result, a suitable Java metamodel needs to reflect static

semantics;

 Standardization: with a standard-based approach like ours, the metamodel must be

defined in a standard metamodeling language. This allows its integration with

standard modeling tools.

Sohaib Hamioud, and Fadila Atil 378

In the literature, we found two Java metamodels that respond to the requirements: the

SPOON metamodel [21] and the JaMoPP metamodel [7]. The later was chosen because,

comparing to the former, it can easily be extended with new language features for Java.

Moreover, we argue that the JaMoPP metamodel is better than the SPOON metamodel

in term of quality. First, JaMoPP groups 233 metaclasses in 18 metapackages, while

SPOON contains 70 metainterfaces and 70 metaclasses, which are divided into 4

metapackages. The higher number of metapackages used to organize JaMoPP elements

promotes a better understanding. With regard to SPOON, three fundamental parts

compose the metamodel: a structural part represented by the structural metapackage, a

code part represented by the code metapackage and a reference part represented by the

reference metapackage. JaMoPP goes beyond that by splitting these parts into more

accurate groups. For example, the code metapackage contains the executable Java code

found in method bodies. JaMoPP models this part using several metapackages including

statements, expressions, operators, arrays and variables. Yet another fact that supports

our argument is that JaMoPP exploits subtyping better than SPOON. While JaMoPP

defines 18 abstract metaclasses, the SPOON metamodel does not contain any. Let’s take

as example the concept of Class. In JaMoPP, a Class is a ConcreteClassifier which is a

Classifier. A Classifier is a Type and a ReferenceableElement. A type is a

Commentable, and a referenceable element is a NamedElement. As one can notice,

JaMoPP pushes common concepts (e.g., meta-attributes name and comments) into

abstract metaclasses (e.g., NamedElement and Commentable) which reduces

redundancy and increases understandability.

JaMoPP’s metamodel is defined in the metamodeling language ECORE [32] which is

a widely used implementation of the OMG standard Essential MOF (EMOF). To

support semantic analyses, JaMoPP represents static semantics through cross-references

between model elements (type information, class hierarchy, method calls, name bind-

ings, etc.). It covers the whole Java language including annotations and generics (by

means of metaclasses contained in annotations and generics metapackages respect-

ively). JaMoPP brings not only a complete Java metamodel with a fine granularity but

also a model-level representation of Java code.

Fig. 1 illustrates a model-level representation (right) of a Java class (left) conforming

to JaMoPP’s Java metamodel. It is the EMFText Java editor outline view of the Movie

class in the form of a tree structure. For the sake of simplicity, we removed keyword

layout information. Each model element in the tree has a corresponding element in the

textual representation. Only some important elements are shown, i.e., instances of the

metamodel’s concrete metaclasses, references (meta-association ends) and required

fields (multiplicity-1 meta-attributes). Comments do not appear in the view, but rather

are implicitly stored in the String-typed field comments inherited from the abstract

metaclass Commentable. They are associated with the following, preceding or surround-

ing model element (e.g., the line comment in the Movie class is associated with the

Public modifier of the Class).

Relations between models and metamodels are explained by the OMG’ MDA

standard (Fig. 2) where metamodels are described using the OMG’ Meta Object Facility

(MOF) metametamodel [18]. At the metamodel level, JaMoPP is adopted to define the

concepts of the Java programming language. All models conforming to JaMoPP are

represented as EMF models [32]. They provide a model-level representation of Java

programs which are on the instance level.

Model-Driven Java Code Refactoring 379

Fig. 1. Model-based representation of Java class Movie from Fowler’s Book [3]

Fig. 2. MDA four-layer architecture

Sohaib Hamioud, and Fadila Atil 380

Fig. 3. Model-driven precondition checking

3. OCL-based Code Analysis

Typically, automated refactoring tools analyze source code, then transform it. Code

analysis can be done in two ways: static and dynamic. Both methodologies complement

each other in a number of dimensions. Static analysis is a program-centric process,

performed on a program model (i.e., information abstraction). In contrast, dynamic

analysis is an input-centric process since it depends on the test suite used to evaluate,

trace and traverse the program during runtime. Within a refactoring context, tools

generally use static analysis, especially for statically typed languages like Java. This can

be explained by the fact that dynamic analysis is relatively slow, as good as the

designed test suite and generates large amount of data. Another thing that promotes the

use of static analysis is that the most implemented refactorings in current tools require

neither dynamic semantics nor complicated static analysis.

As said before, refactorings must preserve the external behavior of the program.

Generally, developers ensure behavior preservation in their tools by enforcing a set of

preconditions that the program must satisfy so that transformation can proceed safely,

which is much harder to implement in tools than the code transformations. We adopt an

OCL-based code analysis for checking preconditions. Our approach for static analysis is

tied to the code representation, in this case models, since we used a constraint and query

language that must be applied to models.

OCL is an evident choice to query source code [16]. Being a standard language, OCL

is powerful enough to express the necessary queries and conditions on Java models for

behavior-preserving refactorings. As shown in Fig. 3, OCL is tightened by the target

language metamodel due to the fact that declarative OCL expressions must be defined

in the context of a metamodel element.

Here, preconditions are given in terms of analysis operations (primitive and derived)

similar to the ones given in [22]. The specification of these operations is based entirely

on OCL (version 2.3.1). An example of a primitive OCL analysis operation can be

found in Listing 1.

Model-Driven Java Code Refactoring 381

Context

 java::containers::Package::

 hasClassifier(classifierName:String):Boolean

body:

 self.getClassifiersInSamePackage()->exists(c|c.name=

classifierName)

Listing 1. OCL primitive analysis operation hasClassifier(classifierName)

The OCL expression defining the operation is specified against the JaMoPP meta-

model in the context of Package, which is a JavaRoot. It checks the existence of the

classifier named classifierName in the package. A classifier can be a Class, Interface,

Enumeration or Annotation. The primitive operation hasMember(memberName) (List-

ing 2) returns true if a member with a given name exists in the target MemberContainer.

Context

java::members::MemberContainer::hasMember(memberName:Stri

ng):Boolean

body:

 self.members->exists(m|m.name= memberName)

Listing 2. OCL primitive analysis operation hasMember(memberName)

Context

java::classifiers::Class::superClass():java::classifiers:

:Class

body:

 self.getSuperClass()

Listing 3. OCL primitive analysis operation superClass()

Listing 3 contains the primitive operation superClass() which returns the immediate

superclass of self (i.e., a given class). Other primitive analysis operations are shown in

Listings 4 and 5. isReferenced() is defined in the context of Class and allows to verify

whether or not a given class is referenced. This operation leads to an overly strong pre-

condition because it does not allow the remove refactoring if the class to be removed is

referenced internally or imported but never instantiated. This restriction can be relaxed

so that a class is removed only if it is not referenced externally (see section 6.3).

isEmpty() returns true if the class has no methods and no fields.

Context

 java::classifiers::Class::isReferenced():Boolean

body:

 java::types::NamespaceClassifierReference.

Sohaib Hamioud, and Fadila Atil 382

 allInstances()->

 exists(ncr|

 ncr.classifierReferences->

 exists(cr|

cr.target.oclIsTypeOf(java::classifiers::Class) and

cr.target.oclAsType(java::classifiers::Class)= self)

) or

 java::references::IdentifierReference.allInstances()->

 exists(ir|

 ir.target.oclIsKindOf(java::members::Member)and

 ir.target.oclAsType(java::members::Member).

 getContainingConcreteClassifier().oclIsTypeOf

 (java::classifiers::Class) and

 ir.target.getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) or

 java::references::MethodCall.allInstances()->

 exists(mc|

mc.target.oclIsTypeOf(java::members::ClassMethod) and

mc.target.oclAsType(java::members::ClassMethod).

 getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) or

 java::imports::ClassifierImport.allInstances()->

 exists(ci|

ci.classifier.oclIsTypeOf(java::classifiers::Class) and

ci.classifier.oclAsType(java::classifiers::Class)= self)

Listing 4. OCL primitive analysis operation isReferenced()

Model-Driven Java Code Refactoring 383

In our approach, some of the analysis operations used to describe preconditions are

derived from the primitive operations. For example, the analysis operation subClasses()

(which returns the set of all immediate subclasses of a given class) is specified based on

the primitive operation superClass() as shown in Listing 6.

Context

 java::classifiers::Class::isEmpty():Boolean

body:

 let members:Set(java::members::Member)= self.members in

 members->isEmpty() or

 members->select(m|

 m.oclIsTypeOf(java::members::Field)

 or

m.oclIsTypeOf(java::members::ClassMethod)

)->isEmpty()

Listing 5. OCL primitive analysis operation isEmpty()

Context java::classifiers::Class::subClasses():

 set(java::classifiers::Class)

body:

 java::classifiers::Class.allInstances()->select(c|

c.superClass()= self

)

Listing 6. OCL derived analysis operation subClasses()

Context

java::classifiers::Class::renameClass(newName:String):Boo

lean body:

 not self.getContainingPackage().hasClassifier(newName)

 and

 not

self.oclAsType(java::members::MemberContainer).hasMember(

newName)

Listing 7. Precondition specification of the renameClass refactoring in terms of OCL

analysis operations

Sohaib Hamioud, and Fadila Atil 384

For instance, to rename a class, a precondition must be considered and checked bef-

ore the renaming, to avoid any unexpected program behavior. This precondition consists

of three subconditions: (1) the given name is valid (not null, begins with a letter or

underscore and contains only letters, digits, and underscores), (2) there exists no

classifier (i.e., class, interface, enumeration or annotation) with a name identical to the

new name in the containing package and (3) the new name is distinct from any other

member names declared in the class. The validity verification of the new name is done

using Java since it is more related to the user interface component than to the meta-

model; the other two conditions are represented by two primitive operations. The pre-

condition specification of the rename class refactoring is shown in Listing 7.

As yet another example, consider the preconditions of the removeclass refactoring

(Listing 8). A class to be removed must be unreferenced, which is guaranteed using the

primitive operation isReferenced(). This class should either have no subclasses or have

subclasses but have no methods or fields. Derived operation subClasses() and primitive

operation isEmpty() allow to guarantee that. Because of space limitations we omit more

examples for OCL analysis operations.

Context

 java::classifiers::Class::removeClass():Boolean

body:

 not self.isReferenced()and

 (self.subClasses()->isEmpty()or self.isEmpty())

Listing 8. Precondition specification of the removeClass refactoring in terms of OCL analysis

operations

Fig. 4. Model-driven code transformation

4. Model-based Code Transformation

Relying on the results of precondition checking, a code transformation must be applied

if allowed. Whereas a large number of refactoring tools use the AST to transform the

Model-Driven Java Code Refactoring 385

source code by an AST rewriter, we execute transformations on the model built from

original code using a standardized transformation language. The transformation makes

changes to code by adding, moving, removing or modifying elements in the model. As

depicted in Fig. 4, this kind of transformation is endogenous because the source and the

target language metamodel are the same. Extraction and generation steps must be

carried out before and after applying model transformations, respectively. The output of

the extraction step and the input of the generation step are EMF models conforming to

JaMoPP. Its elements are used in the QVT transformation definition that conforms to

the QVT metamodel. This definition will be executed by the QVT execution engine

which, according to its transformation rules, reads and transforms a source model

representing a source Java code to a target model representing the desired refactored

Java code.

Model-based Java code representation enables to apply generic modeling tools like

QVT [15]. Specifically, Operational QVT (QVTO) is the transformation engine used in

the implementation of automated refactorings. With the Java BlackBoxing mechanism,

QVT opens up the possibility for calling external Java libraries. Moreover, the QVT

specification integrates the OCL.

import m2m.qvt.oml.RefactorLib;

modeltype java uses "http://www.emftext.org/java";

transformation createClass(out javaModel:java);

...

main()

{ map createCompilationUnit();

}

mapping

createCompilationUnit():java::containers::CompilationUnit

{

 var namespaces: Sequence(String)= getNameSpaces();

 result.namespaces:= nameSpaces;

 result.classifiers+= map createClass();

}

mapping createClass():java::classifiers::Class

{

 var modifiers:= getModifiers();

 result.name:= getClassName();

 Sequence{1.. modifiers->size()}->forEach(i|

 let modifier:String= modifiers->asSequence()->at(i)

 in

Sohaib Hamioud, and Fadila Atil 386

 if (modifier= ’public’) then

 result.annotationsAndModifiers+=

 object java::modifiers::Public{}

 else if (modifier= ’abstract’) then

 result.annotationsAndModifiers+=

 object java::modifiers::Abstract {}

 else result.annotationsAndModifiers+=

 object java::modifiers::Final {}

 endif

 endif

)

}

Listing 9. QVT transformation for the application of the createClass refactoring

Like in [19], we adopt a decomposition approach in which primitive refactorings can

be composed to form more complex refactorings (composite refactorings). A primitive

refactoring creates, deletes, renames, modifies or copies entities (e.g., packages, classes,

interfaces, attributes, methods, parameters and variables). A composite refactoring is a

combination of primitive or composite refactorings. The transformation is configured

according to the selected refactoring via the user interface, and is invoked with Java. For

example, Listing 9 shows the QVTO transformation code of the primitive refactoring

createClass. The first three lines represent the code which imports the blackboxing

library, and defines the JaMoPP metamodel and the transformation header.

The main function of the transformation creates a compilation unit (i.e., a Java file) in

the given package. An empty class with a specified name and access modifiers is

created within the compilation unit. It has no members, super or subclasses. Java is used

to identify which package the user selected and what arguments were given (e.g., class

name, package name and modifiers). As shown in the example above, three operations

are needed from the imported blackboxing library:

 getNamespaces(): returns the package namespaces as a sorted list of Strings. The

transformation sets the namespaces attribute of CompilationUnit to the package

name;

 getClassName(): returns the name of the new class. The transformation sets the name

attribute of Class to the specified name. This operation provides a default name if

one is not given;

 getModifiers(): returns the modifiers of the class as a sorted list of Strings. The

transformation sets the annotationsAndModifiers attribute of Class to the given set of

modifiers. If no modifier is selected, the operation will return an empty list. Only

public, abstract and final access modifiers are allowed when creating a class using

the user interface.

Model-Driven Java Code Refactoring 387

5. Implementation

According to [13], [14], Rename, Extract Local Variable and Move are, in this order,

the most used automated refactorings. To apply them following the presented approach,

we used a set of standards and modeling tools. The first task is modeling, since the

language metamodel (abstract syntax) must be defined, along with the concrete syntax,

to generate, using a language workbench, the infrastructure underlying the automation

process (i.e., a parser and a printer).

Both analysis and transformation can rely on two distinct metamodels, because our

approach treats both of them separately. It depends on the language, the refactorings to

be implemented and developers’ choices. In scenarios where a simplified language

metamodel, which is sufficient to cover the required analyses, exists or can easily be

defined, one can use it for analysis rather than using the complete metamodel, which

results in simplified OCL expressions. However, for general-purpose programming

languages like Java, two metamodels require an extended infrastructure which can lead

to a sizeable tool. For that reason, we used a single metamodel for both analysis and

transformation.

5.1. Tools

A number of tools have been used to support our approach as depicted in Fig. 5. The

Eclipse platform and its open universal IDE (Integrated Development Environment)

present a tool integration framework where different tools can be integrated as plugins

to add functionality [33]. Since modeling is a fundamental part of our implementation,

we used EMF (Eclipse Modeling Framework) which is a modeling framework for

building tools and other applications based on a structured data model [32]. EMF

models are the foundation for fine-grained data integration in Eclipse and, for OCL-

based analysis, they can be analyzed using the OCL implementation provided by the

Eclipse OCL project [34]. Another part of the Eclipse modeling project is the Model to

Model Transformation (MMT), its sub-project QVT Operational [35] is our choice for

implementing the refactorings.

Fig. 5. Tools underlying the implementation

There are modern tools for defining textual languages, whether general purpose

(GPLs) or domain specific languages (DSLs). EMFText [6] is a good example (Fig. 6);

it bridges the gap between abstract and concrete syntax and provides the possibility of

deriving a generic syntax specification automatically from the former. This specification

will be refined using EMFText facilities to define the concrete syntax and then generate

Sohaib Hamioud, and Fadila Atil 388

the tooling for the language (e.g., parser, printer, textual editor supported by syntax

highlighting, code completion, quick fixes, reference resolution and refactoring).

EMFText is tightly integrated with EMF which provides facilities to handle models

such as resource management (e.g., for loading and saving models). Ecore is the

commonly used metamodeling language of EMF. In addition to the fact that Ecore is a

standard, it allows the language metamodel to be processed by existing Ecore-based

modeling tools.

Fig. 6. Overview of EMFText

With the help of EMFText, JaMoPP has been developed for the Java programming

language to build models from their respective code and vice versa [5]. From a

complete Ecore metamodel for Java, an initial text syntax specification, which necessi-

tates further modifications, was generated by a mechanism that conforms to the HUTN

standard. EMFText has a language called ConcreteSyntax (CS) for specifying text

syntax. This language is based on the Extended Backus-Naur Form (EBNF). Thanks to

the obtained CS specification of the Java syntax, JaMoPP provides a parser and a

printer, which play a crucial role in refactoring engines.

Fig. 7. Workflow of the refactoring process

Model-Driven Java Code Refactoring 389

5.2. Workflow

Rename (package, class, interface, method and field), Extract Local Variable, Move

Method and Remove Class are the automated refactorings we selected for implement-

ation as a plugin to the eclipse environment. Fig. 7 shows the workflow of the refactor-

ing process and the plugin components involved.

Once the user selects a refactoring, the Refactoring manager looks for Java models

needed for the analysis phase, and calls the respective OCL analysis operations. EMF is

indispensable for the implementation; it provides a powerful framework for model

persistence. Java files are represented by resources. A resource is the basic unit of

persistence in EMF. We determined the persistence form (i.e., JaMoPP resource

factory) and registered it with the EMF’s resource factory registry interface. Specific-

ally, the ResourceManager class of the Refactoring manager component is responsible

for loading, saving and unloading Java models resources. EMF persistence framework

includes an interface called Resourceset which is used to manage references within one

resource as well as between different resources (cross-references). The OCL analysis

component (org.eclipse.mdrefactoring.java.analysis) evaluates the OCL operations that

specify the precondition of the selected refactoring on the corresponding Java models. It

then passes the analysis results to the Refactoring manager, which sends the models to

the QVTO transformation engine only if the precondition is satisfied. The transform-

ation code (contained in a resource) is invoked and executed automatically by the

Refactoring manager. The output is saved and the target models are converted into well-

formatted Java code.

The Refactoring manager plays an important role in the refactoring process, because

it initiates, based on the user interface, both the analysis and the transformation, and

handles the EMF resource management. Since there are composite refactorings that may

take place, there may be several iterations of the sequence of steps from 2 to 9 (see Fig.

7).

Fig. 8. Tool extension and customization

Sohaib Hamioud, and Fadila Atil 390

6. Evaluation

In the evaluation phase, the following question is addressed: to what extent the tools

implemented using our approach are flexible to accommodate modifications? To answer

this question, we consider several extension scenarios of our prototype where different

parts of the tool are concerned. The experiment proved that the automated support

implemented following our approach is easily extensible and highly customizable. This

is explained by the extensibility of these artifacts: the language metamodel, the

language syntax, the OCL analysis operations and the QVTO transformations. The main

modification activities and the concerned artifacts are summarized in Fig. 8. A language

extension can be done by extending the metamodel and the text syntax, and regenerating

the refactoring engine (i.e., the parser and the printer). Typically, changing the meta-

model also requires changing some of the analysis operations and the transformation

rules. A new refactoring can be implemented by giving its OCL precondition and the

appropriate QVT transformation code. The opposite can be done to remove an existing

refactoring. Moreover, considering its important role in our implementation, the Refac-

toring manager component should be maintained when the tool evolves. Another

possibility would be the extension of the tool infrastructure to support new languages

(DSLs or GPLs), which is equivalent to adding new parsers and printers (i.e., new meta-

models), new preconditions and new transformations. Generally, developers should

determine what modifications need to be applied on which artifacts.

Fig. 9. Extending metaclass Commentable with the EOperation getContainingPackage()

6.1. Extending the Language Metamodel

The language metamodel can be extended to support new language features or to be

enriched with an additional useful constructs. In this section, we present an example of

the latter case (i.e., adding useful constructs), where only the metamodel is extended

Model-Driven Java Code Refactoring 391

without affecting the language (i.e., the syntax). We enriched the original JaMoPP meta-

model with the operation getContainingPackage() (used in the rename class pre-

condition specification of Listing 7) which is defined in the metaclass java::commons::

Commentable. This operation returns the containing package of type java::containers::

Package. The main reason behind the definition of this operation is to provide the

possibility to create an explicit representation of the package that contains the method

caller.

One might argue that getting the containing package object is a redundancy because,

instead of accessing the package namespaces and the contained compilation units from

this object, it is possible to use common operations created by JaMoPP for this purpose,

such as getContainingPackageName() which returns the name of the containing

package, getContainingCompilationUnit() which returns the containing compilation

unit and getClassifiersInSamePackage() which returns all classifiers contained in a

given package. Technically, this is true; however, it is conceptually wrong to define

OCL operations that inspect Java code in a package (e.g., primitive operation

hasClassifier(classifierName) of Listing 1) in the context of a CompilationUnit or a

Classifier, since Package is the parent container of these entities.

Fig. 9 shows the modified metaclass Commentable (left) and the behavior

specification of the getContainingPackage() method (right) of the corresponding Java

class. Taking performance into consideration, package objects created by this method

are “lightweight” as they do not contain any compilation unit. Once the package is

obtained, JaMoPP’s common operations can be used to fully exploit it.

Although this example is simple and concerns only the metamodel, it is obvious how

simple and straightforward the extension of the metamodel is. Accordingly, developers

can easily adjust it to fit their needs in the way we did it. Next, we will show a more

complex example where Java is extended with new features.

6.2. Extending the Language

Programming languages evolve over time by adding new features. Java is a prominent

example, where eight versions were released since the initial introduction in 1996. Also,

extending a general purpose language like Java by embedding within it a domain

specific language to accomplish specific tasks is often done in practice. Refactoring

tools must handle these extensions in an easy and efficient manner. The problem is that

parsing a composite program written in Java and the embedded DSL constructs is

challenging. Seeing that parsing is a very important step, not only in refactoring, but

also in syntactic and semantic analysis activities (e.g., compilation), the implemented

tooling that supports the embedded language has to handle the composite grammar

efficiently and keep the existing tools (e.g., refactoring tool) aware of the extension.

This is generally not the case.

To shed light on this issue, we take as example the Tom language [1], [12]. Tom is a

DSL designed to extend GPLs with constructs to manipulate tree structures and XML

documents. It provides a powerful pattern matching and term rewriting features. Tom

distribution for Java includes a plugin for the eclipse IDE, which provides a textual

editor supported by syntax highlighting and code completion. Unfortunately, besides

rename and move (resource and package), other refactorings are not supported. This is

expected, especially if we know that Tom and Java can be unboundedly nested which

Sohaib Hamioud, and Fadila Atil 392

makes parsing even more difficult. Consequently, reusing the implemented JDT

refactorings is not possible without an immense work. Like refactoring, syntax error

detection is also hindered by the complex nature of the two languages mixture. In Tom,

Java code is considered as a sequence of characters. The Tom compiler traverses the

program and generates corresponding Java program. In other words, two compilation

steps are required to run a Tom program. Accordingly, Java syntax errors are not

detected until the compilation of the generated code. Even with the propagation of

syntax errors from the generated code to Tom code, refactoring still challenging

considering the representation of Java code in Tom. Furthermore, refactoring the

generated code using the JDT refactoring tool does not solve the problem, because

propagating changes in the other direction (i.e., from Java to Tom) is not supported.

The code of Listing 10 is a Tom program that defines the algebraic data-type Peano

to represent Peano integers, and builds the integers 0=zero and 1=suc(zero). The %gom

{…} construct defines the sort Nat and its operators zero(), suc(Nat) and plus(Nat,Nat),

which are used as constructors to build the data-structure. These operators represent

arities and possess zero or more arguments (slots). Each argument has a name and a

type (sort). The compilation of this code results in the generation of a corresponding

Java code. From the data-type definition, an API is generated in a default Java package

named types and its namespaces are the name of the Tom file (ignored if the data-type is

defined in a separated Gom file) followed by the module name in lower case letters

(e.g., the code generated by the %gom{..} in the example can be found following this

path: main\peano\types, where main is the Tom file name lowercased). Also, a Java

compilation unit that contains the same Java code as the Tom file is generated, where

the only difference is that the Tom features are replaced by Java equivalents. Sorts and

operators are translated into Java classes in the package types. This explains the

inclusion of the import statement since these classes are used to manipulate the data-

type. The back-quote (`) construct is translated into method calls and is used in the

example to initialize the variables z and one of type Nat.

import main.peano.types.*;

 public class Main {

 %gom {

 module Peano

 abstract syntax

 Nat = zero()

 | suc(pred:Nat)

 | plus(x1:Nat, x2:Nat)

 }

 public final static void main(String[] args) {

 Nat z = `zero();

 Nat one = `suc(z);

 System.out.println(z);

Model-Driven Java Code Refactoring 393

 System.out.println(one);

 }

}

Listing 10. Tom program of the Tom file Main

Using the available refactorings (i.e., rename and move) is sufficient to know the

limits of a JDT-based refactoring. For instance, renaming the Tom file Main to Main2

results in the generation of new Java implementation in new packages (main2/peano/

types) and the generation of a new Java compilation unit named Main2 with syntax

errors. This is explained by the fact that renaming a Tom file is different from the

renaming of a Java file. The rename refactoring of a Java compilation unit implies the

renaming of the contained class and the updating of all references to this class, which is

not the case when this refactoring is applied on a Tom file. First, the refactoring changes

only the name of the Tom file and does not change the contained class name, because of

the parsing approach adopted by Tom. Second, the transformation must rename the

package and the corresponding Java compilation unit (if exist) before renaming the

actual Tom file to avoid the creation of undesirable new packages and duplicated Java

files. Obviously, the JDT refactorings cannot be used to refactor Tom programs without

a thorough revision of the provided API.

Our approach defines the language concepts at a high level of abstraction making this

kind of extension easier. To solve the problems explained above, the first thing to do is

to evade the two-phase compiling approach by creating a parser capable of recognizing

the two languages constructs. In our approach, this is equivalent to the creation of a

metamodel that defines the two languages concepts and describes how they are nested.

An excerpt of such a metamodel is illustrated in Fig. 10. JaMoPP is used as a basis to

perform the Java extension by integrating the Tom concepts. The extended metamodel

defines the relationships between Tom and Java. For example, a GomModule is defined

as a ConcreteClassifier which allows the recognition of gom%{..} constructs as class

members and referenceable elements. The definition of a DataType as a Concrete

Classifier has the advantage of treating Tom data-types just as any other Java types.

Operators are represented by the metaclass GomOperator which is integrated in

JaMoPP as a ReferenceableElement (since operators are referenced by other elements)

and a Parametrizable (since an operator can have parameters). The back-quote construct

used in the example (for building the data-structure) is represented by the metaclass

BackquoteTermBuilder which is an ElementReference (since it references a constructor)

and an Argumentable (to represent the constructor arguments). All Tom metaclasses are

defined in the metapackage tom. Listing 11 shows the model (serialized as an .xmi file)

describing the Tom program of Listing 10, which conforms to the extended metamodel.

Sohaib Hamioud, and Fadila Atil 394

Fig. 10. Excerpt of the Tom metamodel

The concrete syntax has to be extended as well to introduce the Tom syntax. Thanks

to the importing mechanism offered by EMFText, Java rules are reused and only the

rules defining the Tom syntax must be given. Resolving references (especially cross-

resource references) is the most difficult task of this experiment. EMFText generates a

set of resolvers but, in our case, they cannot be used to resolve references without

adjustment, since some resolving rules are Java-specific and, in addition to the fact that

the JaMoPP resolvers are originally adjusted, some disambiguation procedures must be

hand-coded to resolve ambiguities resulted from the unbounded nesting of Tom and

Java. For example, the generated parser, without adjustment, cannot distinguish if a

non-primitive type is a class, a module or a data-type. Consequently, the type String of

argument args of the method main is recognized as a Tom data-type instead of a Java

class. Besides resolving challenges, the language extension is straightforward.

<containers:CompilationUnit>

 ...

 <classifiers xsi:type="classifiers:Class" name="Main">

 <members xsi:type="tom:GomModule" name="Peano">

 <dataTypes name="Nat">

 <operators name="zero"/>

 <operators name="suc">

 <parameters xsi:type="tom:SlotParameter"name="pred">

 <typeReference

xsi:type="types:NamespaceClassifierReference">

Model-Driven Java Code Refactoring 395

 <classifierReferences>

 <target xsi:type="tom:DataType" href=

"//@classifiers.0/@members.0/@dataTypes.0"/>

 </classifierReferences>

 </typeReference>

 </parameters>

 </operators>

 <operators name="plus">

 ...

 </operators>

 </dataTypes>

 </members>

 <members xsi:type="members:ClassMethod" name="main">

 ...

 <statements

xsi:type="statements:LocalVariableStatement">

 <variable name="Z">

 ...

 </variable>

 </statements>

 <statements

xsi:type="statements:LocalVariableStatement">

 <variable name="one">

 <typeReference

xsi:type="types:NamespaceClassifierReference">

 <classifierReferences>

 <target xsi:type="tom:DataType" href=

"//@classifiers.0/@members.0/@dataTypes.0"/>

 </classifierReferences>

 </typeReference>

 <initialValue xsi:type="tom:BackquoteTermBuilder"

Sohaib Hamioud, and Fadila Atil 396

 target=

"//@classifiers.0/@members.0/@dataTypes.0/@operators.0"/>

 <arguments xsi:type=

 "references:IdentifierReference" target=

"//@classifiers.0/@members.1/@statements.0/@variable"/>

 </variable>

 </statements>

 ...

 </members>

 </classifiers>

</containers:CompilationUnit>

Listing 11. XMI representation of class Main according to the extended metamodel

6.3. Adding, Removing and Modifying Refactoring

In this section, two modification scenarios are illustrated. The first scenario is related to

limitations encountered when using a precondition-based approach to guarantee

behavioral preservation. Soares et al. [27] evaluated refactoring engines like Eclipse

JDT and NetBeans using SafeRefactore, a tool for checking behavioral changing. They

reported many overly weak and overly strong preconditions. Overly weak preconditions

are insufficient to ensure behavioral preservation whereas overly strong preconditions

prevent refactorings, where some minor modifications to the code would enable them.

Hence, developers must enforce the first type and relax the second. In section 2, we

used an overly strong precondition for the remove class refactoring, which must be

relaxed. The precondition prevents removing classes that are referenced internally or

imported but never instantiated. A more flexible removing would delete this kind of

referenced class, which can be achieved by changing the primitive analysis operation

isReferenced() of Listing 4. Generally, relaxing an overly strong precondition requires

the introduction of new code transformations which is not the case here. The new primi-

tive operation isReferenced() is shown in Listing 12.

The second scenario requires the modification of some existing refactorings and the

introduction of new QVT transformations. Consider the example of renaming the class

Main of Listing 10 to Main2. As explained previously, the old implementation of this

refactoring is no longer valid. Our prototype is extended to support renaming Tom files.

The process comprises the following steps:

 Extend the infrastructure to manipulate Tom files (section 6.2);

 Add new QVT transformations to apply refactoring;

 Add the manipulating code to the RefactoringManager component. It loads and saves

models (thanks to the TomParser and Printer) using the TomResourceFactory which

automatically selects Tom files (*.t files). Additional infrastructure is needed to

resolve cross-references between model elements since Tom programs can import

Model-Driven Java Code Refactoring 397

and include Tom constructs stored in separated files (e.g., *.gom files). Also, the

code calls the renameClass OCL operation and invokes the new QVT transform-

ations. The renameClass precondition is extended to prevent the refactoring if a

package whose name is same as the new name exists in the parent container of the

Tom file to be renamed.

The QVT transformations do the following:

 Find the corresponding package (in the parent package of the file to be renamed) and

rename it, if exists;

 Find the corresponding Java file (in the parent package of the file to be renamed) and

rename it, if exists;

 Get the Java import elements whose namespaces respect Tom conventional form

(i.e., packagename/filename/modulename) and change the corresponding namespace

(i.e., from filename to newfilename), if exist;

 Update all references to the class. This includes Tom-specific references such as the

implement{classreference} reference of the TypeTerm construct;

 Rename the class contained in the file and then rename the file.

Context

 java::classifiers::Class::isReferenced():Boolean

body:

 java::types::NamespaceClassifierReference.

 allInstances()->

 exists(ncr|

 not (ncr.getContainingConcreteClassifier().

 oclIsTypeOf(java::classifiers::Class) and

 ncr.getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) and

 ncr.classifierReferences->

 exists(cr|

cr.target.oclIsTypeOf(java::classifiers::Class) and

cr.target.oclAsType(java::classifiers::Class)= self

)

) or

 java::references::IdentifierReference.allInstances()->

 exists(ir|

 not (ir.getContainingConcreteClassifier().

Sohaib Hamioud, and Fadila Atil 398

 oclIsTypeOf(java::classifiers::Class) and

 ir.getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) and

 ir.target.oclIsKindOf(java::members::Member)and

 ir.target.oclAsType(java::members::Member).

 getContainingConcreteClassifier().oclIsTypeOf

 (java::classifiers::Class) and

 ir.target.getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) or

 java::references::MethodCall.allInstances()->

 exists(mc|

 not (mc.getContainingConcreteClassifier().

 oclIsTypeOf(java::classifiers::Class) and

 mc.getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

) and

mc.target.oclIsTypeOf(java::members::ClassMethod) and

mc.target.oclAsType(java::members::ClassMethod).

 getContainingConcreteClassifier().

 oclAsType(java::classifiers::Class)= self

)

Listing 12. Relaxed primitive analysis operation isReferenced()

6.4. Discussion

Code generation is a powerful technique used in model-driven software development.

Bringing this technique into the refactoring world is one of the objectives of this work.

In the evaluation section, we applied several modification scenarios to our prototype to

validate the extensibility of refactoring tools implemented based on our approach. We

selected the Tom language as a case study. Why Tom? Because it’s a very complex Java

Model-Driven Java Code Refactoring 399

extension that requires the implementation of many complex parsers. We are talking

about an extreme extension case.

We have learned from this experience that creating metamodels for the languages is

not easy for developers who do not have a deep knowledge about them, and this goes

for creating concrete syntaxes. Fortunately, refactoring tool developers fulfill this

requirement. Also, resolving model references is not an easy task and creating resolvers

requires skillful programming abilities; especially for complex language extensions.

However, not all Java extensions are as complex as the Tom case; embedded languages

with unique opening and closing tags can be easily integrated with JaMoPP and their

resolving rules are simpler.

7. Related Work

Since the early days of refactoring, it has been clear that automation is needed. Several

approaches have been proposed for facilitating the implementation of refactoring tools.

Steimann et al. proposed constraint-based refactoring [28], [30], [31]. The idea is to

describe a refactoring problem by constraints generated from the programs to be refac-

tored using so-called constraint rules. The refactoring constraint language and frame-

work REFACOLA is developed to help implementing constraint-based refactoring tools

for any target language [29]. Schäfer et al. suggest the use of an intermediate represent-

ation of Java programs called JL [26]. They attempt to make complex refactorings

simpler to express and implement by introducing a more efficient solution to the issues

of naming and accessibility. In a preceding work, Schäfer et al. employed a decompos-

ition and modular approach to specify complex refactorings using micro-refactorings

[25]. They proposed language restrictions and extensions to make refactorings easier to

formulate. Schäfer’ approach addresses the preservation of program behavior as a

dependence edge preservation problem [23], [24], and uses constraints to control

accessibility adjustments [26].

IDEs (e.g., Eclipse, NetBeans, IntelliJ IDEA) played a big role in the popularization

and utilization of refactorings. The Eclipse JDT (i.e., Java Development Tool), for

example, includes a wide range of automatic refactorings [33]. As a JDT generalization,

an API called LTK (The Language Toolkit) is introduced to support automated refactor-

ings implementation in eclipse-based IDEs for other programming languages (e.g., C++,

Fortran). Like most IDEs, eclipse uses an AST built by a compiler front end (Eclipse

Compiler for Java or ECJ) for analyzing and changing the code. When it comes to

customizing and extending its refactoring tool (to fix bugs, add refactorings, customize

refactorings, add language features,…), choices are limited by the IDE’s existing parser

and AST (i.e., the JDT API).

In his work, Overbey proposes the use of a language-independent library to generate

most of the code needed to implement the refactoring tool components (parser, AST,

etc.) [20]. His approach focuses on using grammar to generate ASTs with a very rich

API, and gives the tool developer the possibility to customize the structure of ASTs

(and thus the parser) by annotating the grammar. However, developers are obliged to

work with the author’s toolkit (Ludwig which is a grammar-based code generator with

an EBNF parser, and the Rephraser Engine which is a language-independent library).

Sohaib Hamioud, and Fadila Atil 400

Unlike the techniques mentioned above, our solution uses a standard-based approach

to develop, extend, and maintain refactoring tools. Rather than manipulating the abstract

syntax tree, we manipulate models using an Ecore-based representation of the abstract

syntax. Similar to Overbey’s approach, components underlying the refactoring tool are

generated from a grammar, but using a language workbench in a model-driven fashion.

Code analysis for precondition checking and code transformation are implemented

separately, with OCL and QVT respectively (standards). This separation reduces the

effort required in the tool maintenance and extension.

Similarly, Liang introduces a model-driven approach for precondition checking [10].

He uses OCL to specify refactoring preconditions for C++ programs. However, and

besides the fact that he didn’t cover the code transformation part, his implementation

relies on a Component-Based Tool Development technique where the Eclipse CDT API

(i.e., the eclipse parser and AST for C++) is used to extract artifacts from the source

code, then models representing the program are constructed against the language meta-

model by mapping the extracted AST elements to the corresponding model elements.

He claims that programmers should be able to specify their own preconditions and he

bases his approach on this hypothesis. The problem is that many programmers are

neither familiar with metamodeling and declarative languages such as OCL nor experts

in refactoring precondition specification. Our approach targets refactoring tool devel-

opers who are familiar with model-driven techniques.

8. Conclusion

In this paper, we have used model-driven techniques and a language workbench to

develop and extend a Java refactoring tool. The presented approach has a number of

advantages. The language metamodel is considered to be part of the tool’s document-

ation, which supports the tool’s code comprehension. This is because the OCL pre-

conditions and the QVTO transformations are specified against the metamodel. Thus,

understanding tool behavior and outcome by developers, maintainers, or even users

becomes easier, especially for those who are familiar with modeling languages.

The above conclusion is fortified by the fact that our approach is based on standards.

The separation of behavior preservation checking (i.e., preconditions checking) from

code transformation enables better extension of the tool. One can accommodate new

refactoring preconditions (e.g., to handle new language features) without affecting what

the transformation actually does and vice versa. Thanks to EMFText, extending the

language (i.e., Java) can be easily done by extending the language metamodel and the

text syntax specification from which the tooling underlying the refactoring tool can be

regenerated.

In future we plan to support our prototype to undo refactorings. Eclipse is used to

provide a user interface. However, improvements (e.g., preview and error reporting) are

required. The verification and the evaluation of the implemented model transformations

to improve the reliability and the quality of our prototype are subject to future work.

There are different verification techniques of model transformations that can be used

[2], [9]. In the same context, we intend to run more test suites on refactored code from

open-source projects to check behavioral changes. Several techniques and tools can be

of help to detect bugs and validate the implemented refactorings [4], [11], [27].

Model-Driven Java Code Refactoring 401

Like other model-driven approaches, scalability is an important concern, especially

in the context of refactoring. A refactoring tool is supposed to handle complex and

large-scale software with acceptable performance. Modeling frameworks like EMF tried

to solve the growing size of models issue by introducing mechanisms such as lazy

loading and databases for model persistence. Here, we exploited the lazy loading

mechanism when we implemented the refactoring manager component (section 5.2)

which improved our prototype performance. However, further work is needed to

improve these solutions. OCL and QVTO code optimization along with highly designed

metamodel for the language are required to achieve desirable performance. In this work,

only extensibility is evaluated. Doing the comparison between our prototype and other

refactoring engines (e.g., Eclipse JDT) in term of performance is also subject to future

work.

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking

Rewriting on Java. In: Baader, F. (ed.): RTA 2007. LNCS, Vol. 4533. Springer, Heidelberg,

36–47. (2007)

2. Calegari, D., Szasz, N.: Verification of Model Transformations: A Survey of the State-of-the-

Art. Electronic Notes in Theoretical Computer Science, Vol. 292, 5–25. (March 2013)

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley

Professional. (1999)

4. Gligoric, M., Behrang, F., Li, Y., Overbey, J., Hafiz, M., Marinov, D.: Systematic Testing of

Refactoring Engines on Real Software Projects. In: Castagna, G. (ed.): Proceedings of the

27th European Conference on Object-Oriented Programming (ECOOP'13). LNCS, Vol.

7920. Springer-Verlag, Berlin Heidelberg, 629-653. (July 2013)

5. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: EMFText and JaMoPP -

Tool Presentation. In: Vogel, R. (ed.): 5th European Conference on Model Driven

Architecture- Foundations and Aplications (ECMDA-FA’09): Proceedings of the Tools and

Consultancy Track, 73-77. (June 2009)

6. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and Refinement

of Textual Syntax for Models. In Proceedings of the 5th European Conference on Model

Driven Architecture- Foundations and Aplications (ECMDA-FA’09). LNCS, Vol. 5562.

Springer, 114–129. (June 2009)

7. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between Modelling

and Java. In Proceedings of the 2nd International Conference on Software Language

Engineering (SLE’09), Ser. LNCS, Vol. 5969. Springer, 374-383. (March 2010)

8. Izquierdo, J., Cuadrado, J., Molina, J.: Gra2MoL: A Domain Specific Transformation

Language for Bridging Grammarware to Modelware in Software Modernization. In MODSE:

Workshop on Model-Driven Software Evolution, Spain. (2008)

9. Kolahdouz-Rahimi, S., Lano, K., Pillay, S., Troya, J., VanGorp, P.: Evaluation of Model

Transformation Approaches for Model Refactoring. Science of Computer Programming, Vol.

85, Part A, 5-40. (1 June 2014)

10. Liang, Y.: Code Refactoring Under Constraints. PhD thesis, University of Alabama,

Tuscaloosa, AL,USA. (2011)

11. Mongiovi, M., Gheyi, R., Soares, G., Teixeira, L., Borba, P.: Making Refactoring Safer

Through Impact Analysis. Science of Computer Programming, Vol. 93, 39-64. (November

2014)

Sohaib Hamioud, and Fadila Atil 402

12. Moreau, P.-E., Ringeissen, C., Vittek, M.: A Pattern Matching Compiler for Multiple Target

Languages. In: Hedin, G. (ed.): CC 2003. LNCS, Vol. 2622. Springer-Verlag, Berlin

Heidelberg, 61–76. (2003)

13. Mur, G., Kersten, M., Findlater, L.: How are Java Software Developers Using the Eclipse

IDE?. IEEE Software, Vol. 23, No. 4, 76-83. (July 2006)

14. Murphy-Hill, E., Parnin, C., Black, A.P.: How We Refactor, and How We Know It. IEEE

Transactions on Software Engineering, Vol. 38, No. 1, 5-18. (January-February 2012)

15. Object Management Group (OMG), Meta Object Facility (MOF) 2.0 Query/

View/Transformation Specification, Version 1.1, http://www.omg.org/spec/QVT/1.1/PDF.

(January 2011)

16. Object Management Group (OMG), Object Constraint Language (OCL), Version 2.3.1,

http://www.omg.org/ spec/OCL/2.3.1/PDF. (January 2012)

17. Object Management Group (OMG), OMG Model Driven Architecture, http://www.omg.org/

mda/.

18. Object Management Group (OMG), Meta Object Facility (MOF) Core Specification, Version

2.4.2, http://www.omg.org/spec/MOF/2.4.2/PDF. (April 2014)

19. Opdyke, W. F.: Refactoring Object-oriented Frameworks. PhD thesis, University of Illinois

at Urbana-Champaign, Champaign, IL, USA. (1992)

20. Overbey, J.: Thesis Overview: A Toolkit for Constructing Refactoring Engines. Journal of

Computer Science and Technology, Vol. 12, No. 3, 140-142. (2012)

21. Pawlak, R.: Spoon: Compile-time Annotation Processing for Middleware. IEEE Distributed

Systems Online, Vol. 7, No. 11, 1. (November 2006)

22. Roberts, D.: Practical Analysis for Refactoring. PhD thesis, University of Illinois at Urbana-

Champaign, Illinois, USA. (1999)

23. Schäfer, M., Ekman, T., de Moor, O.: Sound and Extensible Renaming for Java. In: Kiczales,

G. (ed.): Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented

Programming Systems Languages and Applications (OOPSLA’08), ACM Press, New York.

(2008)

24. Schäfer, M., Verbaere, M., Ekman, T., de Moor, O.: Stepping Stones Over the Refactoring

Rubicon–Lightweight Language Extensions to Easily Realise Refactorings. In:

Drossopoulou, S. (ed.): ECOOP 2009- Object-Oriented Programming. LNCS, Vol. 5653.

Springer, Berlin Heidelberg, 369-393. (2009)

25. Schäfer, M., de Moor, O.: Specifying and Implementing Refactorings. In Proceedings of the

ACM international conference on Object Oriented Programming Systems Languages and

Applications (OOPSLA '10). ACM, New York, NY, USA, 286-301. (2010)

26. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A Comprehensive Approach to Naming and

Accessibility in Refactoring Java Programs. IEEE Transactions on Software Engineering,

Vol. 38, No. 6, 1233-1257. (November-December 2012)

27. Soares, G., Gheyi, R., Massoni, T.: Automated Behavioral Testing of Refactoring Engines.

IEEE Transactions on Software Engineering, Vol. 39, No. 2, 147-162. (February 2013)

28. Steimann, F., Thies, A.: From Public to Private to Absent: Refactoring Java Programs under

Constrained Accessibility. In: Drossopoulou, S. (ed.): ECOOP 2009- Object-Oriented

Programming. LNCS, Vol. 5653. Springer, Berlin Heidelberg, 419-443. (2009)

29. Steimann, F., Kollee, C., von Pilgrim, J.: A Refactoring Constraint Language and Its Applic-

ation to Eiffel. In: Mezini, M. (ed.): ECOOP'11. LNCS. Vol. 6813, Springer, Berlin

Heidelberg, 255-280. (2011)

30. Steimann, F., von Pilgrim, J.: Constraint-Based Refactoring with Foresight. In Proceedings

of ECOOP'12. LNCS, Vol. 7313. Springer, Heidelberg, 535-559. (2012)

31. Steimann, F., von Pilgrim, J.: Refactorings Without Names. In Proceedings of the 27th IEEE/

ACM International Conference on Automated Software Engineering (ASE), 290-293. (2012)

32. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework. 2nd

Edition, Addison Wesley Professional. (2008)

33. The Eclipse foundation, http:// www. eclipse.org/org/.

Model-Driven Java Code Refactoring 403

34. The Eclipse foundation, The Eclipse OCL website, http://www.eclipse.org/modeling/

mdt/ocl/.

35. The Eclipse foundation, The Eclipse QVTO website, https://www.eclipse.org /mmt/QVTO/

36. Xing, Z., Stroulia, E.: Refactoring practice: How it is and How it Should be Supported—an

Eclipse Case Study. In Proceedings of the 22nd IEEE International Conference on Software

Maintenance (ICSM'06), Washington, DC, USA, 458-468. (2006)

Sohaib Hamioud received his Master degree in Computer Science from the University

of Annaba, Algeria in 2010. He is a PhD student and a member of the SAFA team in

LISCO laboratory at the University of Annaba. His research interests include model-

driven engineering, domain specific languages, software architecture and software

engineering.

Fadila Atil is a Professor in the Department of computer science at the University of

Annaba. She received her PhD degree in 2007 from the same university. She

participated as Manager or Member in several research projects. Currently, she is

Manager of the project SAFAXY-1 and Team Manager of SAFA team in LISCO

laboratory at the University of Annaba. Her research interests include software

architecture, evolution and reuse in software engineering.

Received: October 25, 2014; Accepted: April 04, 2015

