
Computer Science and Information Systems 13(1):173–197 DOI: 10.2298/CSIS141228061M

A Systematic Data Collection Procedure for Software
Defect Prediction

Goran Mauša1, Tihana Galinac Grbac1, and Bojana Dalbelo Bašić2

1 Faculty of Engineering, Vukovarska 58
51 000 Rijeka, Croatia

gmausa@riteh.hr, tgalinac@riteh.hr
2 Faculty of Electrical Engineering and Computing, Unska 3

10 000 Zagreb, Croatia
bojana.dalbelo@fer.hr

Abstract. Software defect prediction research relies on data that must be collected
from otherwise separate repositories. To achieve greater generalization of the re-
sults, standardized protocols for data collection and validation are necessary. This
paper presents an exhaustive survey of techniques and approaches used in the data
collection process. It identifies some of the issues that must be addressed to mini-
mize dataset bias and also provides a number of measures that can help researchers
to compare their data collection approaches and evaluate their data quality. More-
over, we present a data collection procedure that uses a bug-code linking technique
based on regular expression. The detailed comparison and root cause analysis of
inconsistencies with a number of popular data collection approaches and their pub-
licly available datasets, reveals that our procedure achieves the most favorable re-
sults. Finally, we implement our data collection procedure in a data collection tool
we name the Bug-Code (BuCo) Analyzer.

Keywords: software defect prediction, data collection issues, dataset bias, bug-code
linking, open-source projects

1. Introduction

The first step of any empirical research is data collection. Empirical research is highly
dependent on the quality of the data used. Low-quality data are not a good source for
the construction of new theories. The threats to the generality of the conclusions drawn
from such data are predominantly posed by bias. That is why there are guidelines for data
collection in various research areas. The area of software defect prediction (SDP) lacks
such a set of guidelines for collection and validation of data. Instead, there are some often
used practices that were never thoroughly compared against a set of rules nor against each
other. The goal of our research is a systematically defined data collection procedure for
SDP studies. So far, we have addressed and evaluated the issues that may become a sig-
nificant source of bias if left open to interpretation [26] and we have developed a tool for
automated data collection [25]. In this paper, we aim to make the data collection guide-
lines complete by proposing how to perform a systematic comparison of data collection
procedures. Then we use it for an empirical study to compare our own data collection
procedure with existing practices and to study the effectiveness of linking techniques in
different contexts.



174 Goran Mauša et al.

SDP deals with finding a predictive model that would identify areas of source code
that are most prone to defects. Such a recommendation system require a data collection
mechanism and a recommendation engine to collect development data, to analyze the
data model and to generate recommendations [32]. The majority of studies suffers from
the generalization of results and unknown sources of bias that are not properly addressed
[17]. SDP research relies strongly on data from several software development reposito-
ries. Linking the data across disparate sources from the software life cycle and matching
all records related to the same software entity offers a powerful resource for the study of
software behavior. Data linking has also been recognized as a powerful tool for gaining
new knowledge and developing new theories in many other disciplines, such as health
[21], national statistics [15], business, bioinformatics, and climate change. However, the
quality of the collected data is influenced by the quality of the reporting system. If the
reporting has no standardized methodologies, the quality of collected data will be deteri-
orated. The data collection procedures should be verifiable, repeatable and accurate [4],
[17]. Numerous efforts have been devoted to identifying sound techniques, procedures
and useful tools that could be used for such purposes. Some examples include the ef-
forts put toward constructing traceability requirements [1], bug-code linking [38], [30],
and bug localization [23], [40]. However, none of the existing approaches seams to have
achieved satisfactory accuracy and bias seams to be the dominant problem [42]. Further-
more, many repositories suffer from data quality issues, such as outliers, missing values,
redundant or irrelevant attributes and instances, overlapping classes, contradictory sam-
ples, data shifting, imbalance of classes or unreliable replicability [37], [33]. Hence, the
SDP community must develop a systematic approach to assess the reproducibility of em-
pirical studies based on the datasets retrieved from development repositories [16].

The quality of the linked data has been addressed in other research fields as is reviewed
in [9] and it depends on data linking approach. If there is no standard for data linking in
SDP studies, datasets may suffer from bias and the generalisation of results cannot be
achieved. Thus, we examine the data collection procedures used in the field of SDP re-
search, investigate their weaknesses, and reveal hidden issues. Using supporting tools and
datasets, we quantitatively evaluate the effectiveness of already available techniques and
develop our own. Our contribution to the research community will be to identify concrete
issues that must be discussed when applying a particular linking technique, to address
threats to its validity and the generalization of its results, and a set of guidelines how to
systematically evaluate its performance in comparison to already existing ones. In this
paper we distinguish two terms in data collection: linking technique that is a matching
technique to connect the pieces of information from separate repositories, and data col-
lection procedure that includes a particular linking technique and a set of decisions that
define which data are going to be collected. The output of a linking technique are bug file
pairs and the output of a SDP data collection procedure are SDP datasets that consist of
files described with software metrics and number of associated bugs in a given release of
a software product.

Our research questions are as follows:

RQ1 How strongly is linking effectiveness influenced by development context and why?
RQ2 Which linking technique identifies the highest number of correct links?

We use the term development context as a general description of specificities behind
a development process. It comprises not only the structure of the repository, but also the



A Systematic Data Collection Procedure for Software Defect Prediction 175

specifics of the development process, the habits of the developers and the procedures and
rules they follow. The habits of developers within a community are typically more similar
than the habits of developers across multiple communities because they are governed by
strict naming conventions, rules and procedures that are not part of general development
practice. For example, the Eclipse community has its own naming conventions and in-
formal rules that may have significant influence on the data quality it produces and the
linking techniques that can be applied. How to establish context is a difficult task and a
general challenge [32]. In our analysis, each dataset is regarded as a separate development
context.

The contributions of this paper are the presentation of an exploratory study with the
goal of identifying all issues present in data collection, the performance of a comparison
experiment among bug-code linking techniques, the performance of a comparison exper-
iment between the proposed data collection approach and other popular datasets and the
development of a tool for the automatic replication of the entire data collection process
for a wider range of projects. The remainder of this paper is organized as follows: Section
2 presents the related work in the field of data collection for the SDP research, focus-
ing on various linking techniques, approaches and reporting quality; Section 3 describes
the details of our empirical study; Section 4 presents the results of the quantitative as-
sessments and root cause analysis of our experiment, answers the research questions and
discusses the threats to validity; and Section 5 summarizes the paper with a discussion
and conclusion.

2. Background

2.1. Linking techniques

In related work a various approaches to bug-code linking are explored that we mention
below. The simplest one, the deterministic approach, is about joining data from diverse
repositories based on a unique entity identifier that is available in all repositories [5]. For
example, the Bug ID is typically used as a unique identifier to connect the bugs from a
bug repository with the related source code changes in a source code management reposi-
tory. These source code changes, i.e., commits, are briefly explained in commit messages,
which is where the Bug ID is sought. We use this technique in our experiment and refer to
it as the Simple Search approach. However, such a unique entity identifier is not always
present. In the example of bug-fix connections, for most source code repositories, it is not
mandatory to state the Bug ID in the commit message. Thus, we are unable to discover
all bug-fix links using the Simple Search technique. The explicit inclusion of the Bug ID
in the commit message is highly dependent on the culture and habits of the open-source
development community and the maturity of the organization. This is a crucial issue that
can easily lead to biased data, and it is the focus of this paper. The positive correlation
between project members’ experience (which may also be related to the maturity of the
organization) and the presence of linkage information was confirmed in [6]. Thus, the
deterministic approach can provide good linking results only if the entity identifiers or
linkage keys are of high quality, meaning that they are precise, stable over time, avail-
able and robust with regard to errors. Moreover, the usage of different linkage keys, as
presented in [5] for the linking of data in the health domain, may result in differing data



176 Goran Mauša et al.

quality. In this paper, one of the analyses investigates the effect of using different linkage
keys in the same repository. Another analysis investigates the effect of using the most
commonly used linkage key across the most often used repositories in SDP research.

The probabilistic linking approach is based on the existing common attributes in the
repositories. For example, links are confirmed only if their common attributes predomi-
nantly agree, and they are not confirmed if these attributes predominantly disagree [13].
This approach has been applied to create SDP datasets in several studies. An algorithm
based on regular expressions that matches the file names present in both the bug tracking
and source code management repositories is proposed in [14].

The SZZ approach, proposed by Śliwerski, Zimmermann and Zeller in [38], is an-
other example of a probabilistic linking approach used in the SDP research community.
It uses multiple keywords together with the Bug ID and assigns a syntactic weight to all
commits and a semantic confidence weight to all links. The syntactic weight is incre-
mented for commit messages that contain Bug ID, and any of the following keywords:
”fix”, ”bug”, ”defects” and ”patch” OR no other words aside from numbers. The seman-
tic weight is incremented for all previously found bug-commit links that satisfy any of
the following conditions: The bug is resolved as fixed, a short description of the bug is
contained in the commit message, the author of the commit message was assigned to the
bug (we use this technique in our experiments and call it Authorship Correspondence),
and at least one file changed in the commit is associated with the bug. The threshold for
valid links was determined based on a manual inspection. Links that satisfy more than 1
semantic criterion OR that satisfy 1 semantic AND at least 1 syntactic criterion are re-
garded as valid. This approach is the best thus far described in the SDP research literature
and is broadly used in many other studies (e.g., [19], [18], [20], [7], [28], [20].

The use of the time attribute in matching algorithm was proposed in [2]. This ap-
proach combines the use of regular expressions and the search for certain keywords with
a check of the time difference between bug reporting and fix committing activities. Bet-
ter performance than that of the SZZ approach was reported for the application of this
method to the same Eclipse dataset, where a linking rate of 43.7% was achieved instead
of 24.3%. D’Ambros et al. [10], [11] used the same pattern-matching approach as in the
SZZ approach and introduced a linking verification criterion that excludes any link with
a bug report date that is after the commit date. We use this technique in our experiments
and call it Time Correlation.

A complex linking approach that combines the techniques of (1) Simple Search, (2)
Authorship Correspondence, (3) Time Correlation and (4) text similarity between bug re-
ports and change logs was implemented in the ReLink tool [41]. We also use this same
tool in our experiments. Finally, the Fellegi-Sunter approach [39], performs matching
based on nine attributes: last comment author, last comment time-stamp, 2nd-to-last com-
ment author, 2nd-to-last comment time-stamp, fixed author, fixed time-stamp, product,
component, and title. The performance of this algorithm and its ability to successfully re-
cover links were demonstrated on the Apache and WikiMedia repositories. In [29] is pre-
sented a six-layer link detection approach based on textual similarity, which they called
the multi-layered approach (MLink). The six layers can be described as follows: (1) a
pattern-based detector similar to that of the SZZ approach, (2) a filtering layer that re-
moves any link with committing time that do not lie between the bug opening and bug
closing dates, (3) a patch-based detector that isolates code fragments within the text of a



A Systematic Data Collection Procedure for Software Defect Prediction 177

bug report and searches within the commit log, (4) a name-based detector that searches for
names of entities and system components that are common to the bug report and the com-
mit log, (5) a text-based detector similar to the ReLink tool and (6) an association-based
detector that attempts to link bugs and commits that do not share any text similarity.

Our tool for automated data collection [25] offers all the aforementioned linking tech-
niques. Furthermore, we developed another technique that is based on regular expressions
so we call it the BuCo Regex technique. It is an improved Simple search technique which
predefines the surrounding characters of a Bug ID in a commit message and it achieved
very favorable results in our first analyses [27].

2.2. Datasets

Benchmarking datasets are needed to give researchers a basis for comparison. Several
attempts have been made in that direction. Bachmann et al. [3] explored the missing links
between bug tracking and source code management repositories. They manually collected
a dataset from the Apache project, with the assistance of an expert developer, and termed
it ”the ground truth” (we also refer to this dataset in the same manner for the remainder
of the paper). Unfortunately, that dataset was not made public. The same benchmarking
dataset was adopted, further enlarged and used in [41] and [29]. A different approach to
the creation of a benchmark dataset was taken in [8]. These authors criticized the approach
of the a posteriori manual establishment of links by a person who was not the actual
developer of all of the commits. Their approach instead consists of using a JIRA bug
tracking system that provides the developers with an add-on to connect the bug with
the commit at the time the changes to the source code are made. Using that valuable
information, they constructed datasets for 10 Apache projects and made them publicly
available. We used one such dataset in our comparison of the ReLink tool with more
simple techniques in [27]. We also use that dataset in our present experiments and refer
to it as the Benchmark throughout the remainder of this paper.

In related studies, efforts are rarely made to identify and properly address the bias in
the existing SDP research. The studies that have addressed the existence of bias have con-
sidered its impact only through the linking rate or only on a single dataset. The community
still lacks a universal approach to address this issue. One interesting approach is proposed
in [24]. This approach is based on the artificial insertion of false instances into the training
sample to evaluate the resistance of a particular technique to bias. Alternatively, according
to [31], the bias could be effectively minimized by simply gathering larger samples. How-
ever, it may be difficult to determine and achieve the sample size needed to overcome the
bias effect. In the linking research community, it is well known that the quality of a tech-
nique varies depending on the nature of the datasets and the techniques that are applied
to these datasets [34]. Therefore, if we wish to produce comparable results and evaluate
the performances of various linking techniques, we must perform our experiments using
the same datasets. Moreover, these datasets should be freely available to other researchers
and practitioners in the field. Finally, the techniques used should be repeatable for ease
of comparison. For all these reasons, the objectives of this study are to investigate the
repeatability of SDP linking techniques, assess their performances on common datasets
and start to build a comparison network for bias evaluation.



178 Goran Mauša et al.

2.3. SDP Data Collection Procedure

Besides the linking technique, there are several issues that need to be addressed in the SDP
data collection procedure. Our previous research identified several issues that are inherent
to the nature of many open-source repositories and that could present a significant source
of bias for bug-code linking if left open to interpretation [26]:

– Bug repositories contain various bug statuses that are indicated as closed (resolved,
verified) or merely opened (unconfirmed, confirmed, in progress) and closed ones are
relevant to SDP

– Bug repositories contain various resolution levels for bugs that are fixed and relevant
to SDP and for bugs that could not have been fixed (invalid, wontfix, duplicate, works-
for-me).

– Bug repositories usually contain various severity levels for bugs that cause loss of
functionality (minor, normal, major, critical, blocker) and are relevant to SDP, bugs
that do not cause loss of functionality (trivial) and even enhancement requests.

– There is no strict naming convention for release designations that allows for the
straightforward identification of connections between bug tracking and source code
management repositories.

– Large projects may be divided into several partitions within the top-level source code
management repository.

– The relationship between bugs and files may be many-to-many rather than one-to-one
for the following reasons:
– A single Bug ID may be present in more than one commit
– A single commit may contain changes to more than one file
– A single file may be changed in commits linked to more than one bug

– Duplicated file-bug links may occur for files changed in multiple commits that are
linked to one bug and they need to be counted distinctly.

– Bug IDs with fewer digits may be incorrectly identified in Bug IDs with a larger
number of digits and the linking technique should comprise this fact.

There are also several issues that need to be defined to avoid bias in the SDP data
collection procedure:

– The granularity level must be determined prior to beginning data collection, be-
cause it affects the spectrum of possible software metrics we are able to collect. The
file level is the dominant choice and the file-based nature of most source code man-
agement repositories is the usual motivation [12].

– Besides the number of bugs, the files in the SDP dataset are described through a
number of software metrics. There are 3 major categories of software metrics used
in SDP research. The product metrics are the dominant choice [20], [22], [36] and the
development metrics are sometimes added to them [7], [20], [22]. The deployment
and usage metrics are the least used ones [22], [30].

– There are two repository search order approaches to the data collection. The typical
order is to examine the source code repository first [43], [20], [10]. The popular SZZ
approach also uses this order [38]. The other course of action is to first collect all
bugs from bug tracking repository and then search for them in the commit messages.
Schröter et al. [35] are the only authors to have compared these two approaches. They



A Systematic Data Collection Procedure for Software Defect Prediction 179

achieved a bug identification rate of approximately 50% using the first approach and
found an additional 20% using the second. Although obviously important, this seems
to be an underestimated and often unaddressed issue.

3. Empirical Study

In this section, we define our empirical study strategy following the steps for constructing
a verifiable, repeatable and accurate data collection plan given by Basili and Weiss [4].

3.1. Variables and Measurement Instruments

The typical evaluation measures used in linking comparisons are the linking rate and
various metrics based on the confusion matrix [9], [8], [41]. We also define the Linking
Rate (LR) as the ratio of linked to fixed bugs. The confusion matrix is typically used in the
classification domain, and it represents all possible outcomes of correctly and incorrectly
assigning instances into two classes. In our case, the instances are bug-code links, and
the two classes are the presence (1) or absence (0) of links. True Positive (TP) links are
those that we correctly establish. False Positive (FP) links are incorrectly established links.
The links we miss are False Negatives (FNs). Missing links are a known issue in open-
source community repositories [41], [8], and they are reflected in the LR. The linking
techniques we use should maximize TPs, avoid FPs and minimize FNs. The category of
True Negative (TN) links is more difficult to comprehend because these links represent
all links that do not exist and are also not established. None of the linking techniques
we have encountered make any attempt to address TN links. With the exception of the
Benchmark datasets, the actual links are unknown a priori and require extensive manual
investigation to discover them. For this reason, we calculate these metrics and the ones
that are derived from them (precision, recall and F-measure) only for Benchmark dataset
and for the first release of JDT project. Accuracy, the most standard measure, requres TN
to be calculated, so it is not calculated because of afore mentioned reasons. On the other
hand, we merely comment the influence of various linking techniques on their values for
the remaining datasets, after we perform manual inspections. To assess the experiments
and evaluate their results for the remaining datasets, instead of confusion-matrix-based
measures, we define the metrics presented in Table 1. The second column of Table 1
provides brief descriptions, and the third column summarizes the purpose of each metric.
Further details regarding metrics usage are provided in this section.

Several researchers have performed data collection procedures and made their data
available. There are two types of datasets: those that record only the total number of bugs
per file and those that reveal all underlying links. Our empirical study will use both types
of datasets to evaluate our data collection procedure. The SZZ datasets (Eclipse 2.0, 2.1,
3.0) and the D’Ambros dataset (Eclipse JDT Core 3.4) give only the total number of bugs
per file. Therefore, we collect the data for the same releases of the Eclipse projects to
compare with the popular SZZ procedure. The Nfi and Nbi metrics serve to ensure that
comparisons are being performed on the same input data, if possible. The comparison is
then performed in terms of Nfo and Sbo. However, these metrics do not reveal whether
the two procedures found the same bug-code links and that is why we perform additional
analysis. We calculate the number of files with equal number of associated links, i.e.



180 Goran Mauša et al.

Table 1. Evaluation metrics.

Metric Description Purpose
(Nfi) Number of files in the input of analysis Comparison of
(Nbi) Number of bugs in the input of the analysis input data
(Nlo) Number of identified links
(Nco) Number of linked commits Comparison of
(Nbo) Number of linked bugs linking output
(LR = Nbo/Nbi) Linking rate
(Nfo) Number of linked files Comparison of
(Sbo) Sum of all linked bugs in all the files final datasets

For comparing the final dataset obtained by two different linking techniques
(Equal Nbo) Number of files with equal number of bugs Finer comparison
(Greater Nbo) Number of files with greater number of bugs of final datasets
(Lower Nbo) Number of files with lower number of bugs

For manually comparing the output links obtained by two different linking techniques
(Equal Nlo) Number of equally established links
(Incorrect Nlo) Number of established incorrect links Finer comparison
(Correct Nlo) Number of established correct links of linking output
(Questionable Nlo) Number of established links for

which the correctness is unsure
(Precision) Correctly established links / All established links Finer comparison
(Recall) Correctly established links / All actual links using standardized
(F-measure) Harmonic mean between Precision and Recall evaluation metrics

number of bugs (Equal Nbo), and for files with unequal number of associated links, we
calculate the number of files for which our technique links more bugs (Greater Nbo) and
the number of files for which our technique links fewer bugs (LowerNbo). We distinguish
these two categories because we wish to reveal which technique yields the better LR. After
having found the files with equal and unequal number of bugs, we plan to manually select
a number of randomly selected files with (Equal Nbo), (Greater Nbo) and (Lower Nbo),
analyze all the commits that are linked to these files and try to find regularities which
reveal the reasons for unequal number of linked bugs.

To be able to fairly judge the appropriateness of a particular linking technique, one
should obtain a benchmark dataset with all links already identified. ”The ground truth”
dataset for the Apache HTTPD project was developed in [3], but unfortunately, it was not
made public. However, several studies have performed comparisons against this dataset.
The ReLink tool was applied to the same input by Wu et al. [41] and these authors made
their Apache HTTPD3 dataset available. Using the same input, we also indirectly com-
pare our results with ”the ground truth.” Another approach to constructing ground truth
datasets was taken by Bissyande et al. [8]. They constructed their Benchmark dataset for
the Apache OpenNLP4 project by collecting data from already-linked repositories. We
use their dataset as well. Because the ReLink and Benchmark datasets provide all bug-
code links, we are able to perform comparisons at a finer level of detail. The LR serves as
a basis for comparing the effectiveness of various linking techniques in different contexts.

3 https://code.google.com/p/bugcenter/wiki/ReLink
4 http://momentum.labri.fr/bugLinking/



A Systematic Data Collection Procedure for Software Defect Prediction 181

Table 2. Experiment objects.

Dataset
Name Project Contains

SZZ Eclipse 2.0, 2.1, 3.0 pre-release and post-release bugs per file
D’Ambros Eclipse JDT Core 3.4 total number of bugs per class
ReLink Apache HTTPD list of bug-commit links established by the tool
Benchmark Apache OpenNLP list of bug-commit links extracted from JIRA

Tools
Name Input Linking Technique

ReLink Bugs, SVN Simple search and NLP based prediction
Simple Bug ID Search

BuCo Bugzilla Time Correlation
Analyzer GIT Authorship Correspondence

Regular Expression Bug ID Search

The Nlo and Nco metrics are used to achieve more detailed comparisons of the linking
techniques we examine. To reveal the intersection between two linking techniques, we
calculate the number of equally established links (Equal Nlo). For the links that the two
techniques do not identify in common, we manually assess their correctness and calcu-
late (Incorrect Nlo) and (Correct Nlo). For links that are not identified in common for
which we cannot say for certain whether the link actually exists, we calculate (Question-
able Nlo). Since Benchmark datasets reveal which links should have been made, we also
calculate the precision, recall and F-measure for ReLink and for BuCo Analyzer.

We perform a similar comparison between ReLink and BuCo Analyzer on JDT 2.0
dataset. We manually compare all the links they yielded and calculate the number of
(Equal Nlo), (Incorrect Nlo), (Correct Nlo), and (Questionable Nlo). Making the as-
sumption that the union of all links discovered by these two techniques is equal to total
number of TP, we calculate their precision, recall and F-measure.

3.2. Objects

Our analyses are applied to several projects from two open-source communities: the
Eclipse and Apache communities. We use these projects because considerable effort has
already been directed toward empirical research of their repositories and because we need
a common basis for the comparisons of the linking techniques and the data collection
approaches. The datasets, the tools and the linking techniques we used are presented in
Table 2.

Many studies that rely on Eclipse datasets actually reuse the datasets provided by
SZZ5 or D’Ambros6. The datasets provided by SZZ are the first three releases of the
Eclipse project, whereas D’Ambros provided a dataset for the Eclipse JDT Core 3.4 ver-
sion. This is an intermediate version, and our technique should not be evaluated solely
based on its effectiveness on that version. Eclipse has had 13 releases, and it may be in-
teresting to study the consistency of a technique’s effectiveness across all of them. The

5 https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
6 http://bug.inf.usi.ch



182 Goran Mauša et al.

Table 3. Raw data statistics and context.

JDT PDE BIRT HTTPD OpenNLP
Releases 13 13 9 1 1
Files 18,752 6,829 8,104 3,744 1,784
Bugs 198,206 42,582 65,173 673 100
Domain Development Development Business Web NLP - Language

Tools Environment Intelligence Server Processing

Table 4. The description of anaylsis methods used in the experiment

Experiments and Quantitative Assessment
Goal: assess the linking bias produced by linking techqniques and datasets
Approach: apply the linking techniques and datasets presented in table 2
Input: the datasets presented in table 2
Output: the bias of each approach with respect LR and Nlo, Nco, Nfo, Nbo

Detailed Quantitative Root Cause Analysis
Goal: manually identify the causes of inconsistencies between the linking results

Final Dataset Comparison
Approach: comparison of the Nbo obtained by BuCo and by SZZ and D’Ambros
Input: randomly selected 100 files and all commits linked with these files
Output: the number of files with equal and unequal numbers of bugs
Linking Comparison
Approach: compare the Nco obtained by BuCo and by ReLink and Benchmark
Input: all the links made by each technique
Output: the Nlo that are equally and unequally established links

dataset statistics and project domains are summarized in Table 3. For the Eclipse projects,
this table presents the number of major releases we analyze, the total number of .java
files, the total number of bugs in the input of the analysis (reported and fixed) and the
total number of files in the input of analysis for all analyzed projects. Later, we remove all
files that are not related to the actual project functionality. Every file that contains ”.test”
or ”.example”7 in its file path is omitted from the final datasets. SZZ and D’Ambros used
the same approach. For the Apache projects, the table presents the total number of .c and
.h files and bugs given by [41] and [8]. Files with ”test” or ”example” in the name and
a certain number of other files for which we did not find any distinguishing features are
removed from the sample.

For the purposes of systematic data collection from open-source projects for SDP, we
developed the Bug-Code (BuCo) Analyzer tool that is described in details in [25] and we
used it for the purpose of this study. The tool offers the possibility of selecting among the
above mentioned linking techniques, including an interface for the ReLink tool.

In our study, we employ several analysis methods presented in Table 4, with the ob-
jective of developing accurate algorithms for linking techniques and reducing empirical
study bias.

7 http : //wiki.eclipse.org/Naming Conventions



A Systematic Data Collection Procedure for Software Defect Prediction 183

4. Results

In this section, we present our results and discuss the answers to the research questions
stated in Section 1.

4.1. Experiments and Quantitative Assessment

The experiment and quantitative assessment are divided into three studies and are ex-
plained below.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

2.0 2.1 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.2 4.3 

Li
nk

in
g 

Ra
te

 

JDT releases 

Simple Search 

Regular Expression 

Time Correlation 

Autorship Correspondence 

Time & Author 

ReLink 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

2.0 2.1 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.2 4.3 

Li
nk

in
g 

Ra
te

 

PDE releases 

Simple Search 

Regular Expression 

Time Correlation 

Autorship Correspondence 

Time & Author 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

2.0 2.1 2.2 2.3 2.5 2.6 3.7 4.2 4.3 

Li
nk

in
g 

Ra
te

 

BIRT releases 

Simple Search 

Regular Expression 

Time Correlation 

Autorship Correspondence 

Time & Author 

Fig. 1. Linking rate for six linking techniques applied to JDT, PDE and BIRT respectively.



184 Goran Mauša et al.

Table 5. Comparison of linking techniques The first column indicates release in the analysis and
the number of bugs collected from the Bugzilla repository (Nbi). The following columns represent
the linking techniques (Time stands for Time Correlation, Author stands for Authorship Correspon-
dence, T & A stands for combination of both Time Correlation and Authorship Correspondence),
the number of linked bugs (Nbo) and the LR (Nbo/Nbi) each technique yields. The mean value
(µ) and the standard deviation (σ) of LR for the whole project are presented for each technique.

JDT Simple Enhancement BuCo ReLink
Rls. Nbi Search Time Autor T & A Regex Tool

1 4276 84.5% 32.3% 18.5% 14.3% 48.4% 49.3%
2 1875 73.1% 30.9% 22.9% 16.9% 64.4% 65.3%
3 3385 73.9% 27.5% 20.4% 11.3% 70.9% 71.5%
4 2653 81.6% 25.0% 25.4% 13.5% 80.6% 81.5%
5 1879 85.0% 23.6% 30.5% 13.5% 84.9% 85.8%
6 1341 88.7% 28.7% 35.8% 16.0% 88.7% 89.8%
7 989 90.0% 30.5% 42.2% 19.0% 90.0% 91.5%
8 595 91.8% 45.4% 65.0% 30.9% 91.8% 92.8%
9 492 88.6% 44.1% 75.2% 37.4% 88.6% 90.2%
10 549 72.7% 34.2% 64.8% 30.4% 72.7% 73.8%
11 329 87.5% 54.7% 66.0% 41.0% 87.5% 90.9%
12 41 87.8% 65.9% 73.2% 56.1% 87.8% 90.2%
13 348 89.7% 73.0% 51.1% 43.1% 89.7% 90.8%

µ 84.2% 39.7% 45.5% 26.4% 80.5% 81.4%
σ 6.8% 16.0% 21.3% 14.4% 12.9% 12.9%

PDE Simple Enhancement BuCo BIRT Simple Enhancement BuCo
Rls. Nbi Search Time Autor T & A Regex Nbi Search Time Autor T & A Regex

1 561 47.2% 18.4% 16.2% 13.9% 22.3% 2034 44.0% 30.5% 18.1% 12.1% 43.6%
2 427 38.9% 24.6% 17.8% 16.2% 27.4% 596 53.5% 36.7% 19.6% 13.9% 52.7%
3 1041 38.6% 27.2% 10.0% 9.2% 33.6% 2630 61.9% 36.3% 17.7% 10.1% 60.5%
4 769 52.8% 35.5% 4.4% 3.6% 51.6% 1761 68.5% 21.9% 19.9% 7.8% 68.2%
5 546 69.4% 57.5% 9.5% 8.1% 69.2% 807 80.5% 43.2% 24.2% 12.3% 80.4%
6 727 85.3% 52.0% 28.7% 25.3% 85.3% 172 69.8% 62.8% 13.4% 11.0% 69.8%
7 963 80.9% 54.4% 22.8% 15.6% 80.9% 25 32.0% 20.0% 8.0% 4.0% 32.0%
8 879 86.9% 69.4% 44.4% 35.8% 86.9% 28 17.9% 7.1% 7.1% 3.6% 17.9%
9 454 86.1% 62.1% 50.2% 32.4% 86.1% 51 31.4% 13.7% 9.8% 3.9% 31.4%
10 204 85.3% 49.5% 55.9% 31.4% 85.3%
11 62 77.4% 48.4% 51.6% 32.3% 77.4%
12 65 70.8% 40.0% 49.2% 26.2% 70.8%
13 131 95.4% 61.8% 75.6% 48.9% 95.4%

µ 70.4% 46.2% 33.6% 23.0% 67.1% µ 51.1% 30.3% 15.3% 8.7% 50.7%
σ 19.6% 15.9% 22.2% 13.1% 25.0% σ 21.1% 16.9% 6.0% 4.0% 20.9%

Comparison of Linking Techniques An examination of the results presented in Table 5
and graphically analyzed in Figure 1 yields the following observations:

OBS1: The ReLink tool links a similar but consistently higher number of bugs
as BuCo Regex. The difference is low, approximately 1%, but present in all 13 examined
releases of JDT. We believe that the advanced techniques implemented for the recovery
of missing links are responsible for the difference. This assumption is further analyzed in
the detailed root cause analysis.



A Systematic Data Collection Procedure for Software Defect Prediction 185

OBS2: The Time Correlation and Authorship Correspondence techniques are
stricter in their linking behavior (establish fewer links than other techniques). The
Time Correlation and Authorship Correspondence techniques rely upon linking pieces of
information from bugs and commits that are neither formally defined nor strictly guided
by the community development process. They are merely recognized as potential links by
researchers, and they may carry significant bias. Compared with BuCo Regex, the Time
Correlation linking rate is lower by factors of 1.2-3.6 for JDT, 1.1-1.7 for PDE and 1.1-3.2
for BIRT; the Authorship Correspondence linking rate is lower by factors 1.1-3.4 for JDT,
1.2-11.6 for PDE and 2.4-5.2 for BIRT; and the combined usage of Time Correlation and
Authorship Correspondence yields linking rates that are lower by factors of 1.5-6.3 for
JDT, 1.6-14.1 for PDE and 3.6-8.7 for BIRT. Thus, these two techniques yield many FN
links and therefore should not be used to establish links; instead, they should only be used
to check questionable links.

OBS3: The BuCo Regex and Simple Search techniques link equal numbers of
bugs after a few releases. Regardless of the very different numbers of bugs in certain
releases, after the 5th release in the case of the PDE and BIRT projects and after the 6th
release in the case of the JDT project, these two techniques link equal numbers of bugs.
Unlike Simple Search, BuCo Regex defines the surrounding characters of a Bug ID and
thus achieves more accurate bug linking for Bug ID numbers with fewer digits that may be
incorrectly identified as a part of a Bug ID with more digits or any other number present
in a commit message. When the Bug ID number reaches a sufficiently high number of
digits (in the later releases of a project), these two techniques perform equally well.

OBS4: The linking rate rises for later releases. We believe that developers require
a learning period to become accustomed to the community development process and that
they evolve together with the project. Over time, they become more consistent in report-
ing bug fixing activities in their commit messages. For BuCo Regex and ReLink, the
techniques that outperform the other techniques in terms of FP links, the LRs increase
from below approximately 50% to above 90% for JDT, from 22% to above 80% for PDE
and from 43% to 80% for BIRT. This observation leads us to conclude that later releases
are less prone to developer bias, causing the lack of data quality to be less severe.

OBS5: The linking rate exhibits similar behavior for projects with similar devel-
opment context. The linking rates exhibit similar behavior for the JDT and PDE projects
but less similar behavior for the BIRT project. The linking rates for the later releases of
the JDT and PDE projects are above 80% and reach as high as 95%. By contrast, the link-
ing rate for the BIRT project rises above 80% for only one release and even drops below
33% in later releases. The separate development process used for this project, which is
evident in the number and designations of their releases, may be the cause of this differ-
ence. This observation proves that different contexts may be present even within the same
community and may influence the linking bias.

Comparison of Data Collection Contexts Table 6 presents the comparison results. The
Nfi,Nfo and Sbo metrics are calculated for source code files only (.c and .h for C++ and
.java for the Java programming language). We ensured the comparison of the same files, as
is evident from the equal values ofNfi. The only exception is the Apache HTTPD project,
for which ReLink used the SVN repository and we use the GIT repository, which lacks a
certain period of source code history records. Because the SZZ dataset provides only the



186 Goran Mauša et al.

Table 6. Comparison of data collection contexts: The columns represent the files in the input of
analysis (Nfi), the bugs in the input of the analysis (Nbi), the identified links (Nlo), the linked
files (Nfo), the linked bugs (Nbo) and the sum of all linked bugs in all the files (Sbo).

Input Collection Output
Source Nfi Nbi Approach Nlo Nco Nfo Sbo

2406 unknown SZZ unknown unknown 1188 3860
JDT 2.0 2406 4276 BuCo Regex 1809 1733 1111 3794

2406 4276 ReLink 1838 1739 1122 3924
2748 unknown SZZ unknown unknown 1008 2506

JDT 2.1 2748 1875 BuCo Regex 1085 1066 875 2142
2748 1875 ReLink 1095 1068 817 2134
3292 unknown SZZ unknown unknown 1271 3498

JDT 3.0 3292 3385 BuCo Regex 2212 2116 1289 4423
3292 3385 ReLink 2231 2114 1300 4465

PDE 2.0 567 unknown SZZ unknown unknown 25 34
567 561 BuCo Regex 119 112 113 246

PDE 2.1 765 unknown SZZ unknown unknown 22 42
765 427 BuCo Regex 123 122 119 229

PDE 3.0 1041 unknown SZZ unknown unknown 42 77
1041 1041 BuCo Regex 330 329 282 584
997 unknown D’Ambros unknown unknown 206 374

JDT Core 997 989 BuCo Regex 855 839 316 719
3.4 997 989 ReLink 883 861 317 820

1784 100 Benchmark 127 125 100 131
OpenNLP 1784 100 BuCo Regex 128 126 100 131

1784 100 ReLink 115 113 80 102
HTTPD 2243 673 BuCo Regex 703 664 138 624

3744 673 ReLink 1014 957 280 857

number of bugs per file, we do not know exactly which bugs are linked. Because of the
different repository search order, beginning with the source code management repository,
we are unable to reconstruct their input list of bugs. For this reason, we marked their
values of Nbi, Nlo and Nco as unknown. The output number of files Nfo is the number
of files that contain at least one bug, and the output sum of bugs Sbo is the total number
of all bugs in all files. That number must not be misunderstood as the linking rate because
one bug may be linked to more than one file.

An examination of the results presented in Table 6 yields the following observation:
OBS6: The performance of a linking technique depends on the context. The BuCo

Regex technique links a far greater number of files and bugs than does the SZZ approach
for the PDE project. The difference is between 77% and 85% for the PDE project. How-
ever, it produces fewer links for the first 2 JDT releases and more links for the third
JDT release. These differences are not severe, ranging from 1% to 6.5% (SZZ) or 33%
(D’Ambros). The ReLink tool links more files and bugs than BuCo Regex for nearly every
analyzed release. The exception is the Apache OpenNLP project, where it yields approxi-
mately 20% lower values ofNfo and Sbo. The influence of context on the effectiveness of



A Systematic Data Collection Procedure for Software Defect Prediction 187

Table 7. Final dataset comparison: The comparison is done between SZZ datasets and BuCo Regex
for JDT and PDE, and between D’Ambros dataset and BuCo Regex for JDT Core.

Project Total Files Equal Nbo Greater Nbo Lower Nbo
JDT 2.0 2406 1740 (72.3%) 341 (14.2%) 325 (13.5%)
JDT 2.1 2748 1383 (50.3%) 605 (22.0%) 760 (27.7%)
JDT 3.0 3292 1442 (43.8%) 970 (29.5%) 880 (26.7%)
PDE 2.0 575 482 (83.3%) 90 (15.7%) 3 (0.5%)
PDE 2.1 765 666 (87.1%) 97 (12.7%) 1 (0.1%)
PDE 3.0 874 621 (71.1%) 253 (28.9%) 0 (0.0%)
JDT Core 3.4 997 621 (62.3%) 253 (25.3%) 123 (12.3%)

a linking technique is visible in three layers: the open-source community (evident in the
links missed by ReLink only for Apache HTTPD), the project (evident from the opposite
results achieved by SZZ and BuCo Regex for JDT and PDE) and the release (evident from
the opposite results achieved by SZZ and BuCo Regex within the JDT project). Therefore,
we perform further analyses to elucidate the issues that may give rise to these differences.

4.2. Detailed Qualitative Root Cause Analysis

The detailed qualitative root cause analysis begins with the search for intersections among
different linking techniques. When comparing with the SZZ approach, we do not have ac-
cess to their intermediate linking results; we know only the final number of links per file.
This comparison is referred to as a Final dataset comparison, and it is based onNfo, Sbo,
Equal Nbo, Greater Nbo and Lower Nbo, as defined in previous section. When compar-
ing with ReLink and Benchmark, we have access to all linking results; this comparison is
termed a Linking comparison, and it is based on Nfo, Sbo, and Nlo. However, the sole
comparison of these numbers cannot reveal the causes of any inconsistencies. Therefore, a
manual investigation of a subset of consistent and inconsistent results is performed by the
main author of this paper. To reveal the cause of inconsistencies and check the correctness
of the intersecting results, all links are manually investigated. For Final dataset compari-
son, we search for root causes of inconsistencies and calculate the number of files affected
by each of them. For Linking comparison, we search for correctness of established links
and calculate EqualNlo, CorrectNlo, IncorrectNlo and QuestionableNlo, as defined
in previous section.

Final Dataset Comparison The first analysis consists of identifying the files with equal
and unequal numbers of bugs between the BuCo and SZZ approaches and between the
BuCo and D’Ambros approaches. The results are presented in Table 7. The rows contain
the following pieces of information: the release of the analyzed projects, the total number
of files in the output (Nfo), the number of files with equal numbers of bugs (Equal Nbo),
the number of files for which BuCo linked more bugs (Greater Nbo) and the number
of files for which BuCo linked fewer bugs (Lower Nbo). For the files with equal and
unequal numbers of bugs, we also provide the percentage as a ratio with respect to the
total number of files.



188 Goran Mauša et al.

The root cause analysis of the inconsistencies presented in Table 7 continues with a
manual investigation. We randomly select a subset of 100 files from the datasets reported
by SZZ and D’Ambros, search the source code history for all changes made to these files
and compare the commits with those linked by BuCo. This subset of files consists of an
equal 50:50 ratio of files with equal numbers of bugs and unequal numbers bugs and a
60:40 ratio of files from the JDT and PDE projects. We find evidence of 3 discrepancies
in the data collection techniques that caused different Nbo values per file to be obtained,
which are presented in Table 8. After the project name in the first column, the following
columns present the number of files analyzed (Files Analyzed), the number of files with no
difference in the numbers of bugs linked and for which we discovered no inconsistencies
(Equal Nbo) and the number of files for which different numbers of bugs were linked
because of 3 types of differences: DIFF1 (∆t > 6 months), DIFF2 (Key word missing)
and DIFF3 (Other project). Detailed descriptions of these differences are provided below.

DIFF1: (∆t > 6 months) The SZZ data collection approach includes only bugs that
are reported more than 6 months before or after the release date of the release under
examination. This difference manifests in several ways. For example, the Bug ID 6839
was reported in December 2001, more than 6 months away from the release date of JDT
2.0. Our approach linked this bug to a commit with the message ”Fix for 6839” from
January 2002, two days after the bug had been closed. The SZZ approach decided not to
establish that link and therefore found one fewer bug in one file. A more severe difference
is observed for the Bug IDs 28622, 28559 and 28682. These bugs were all reported in
December 2002, less than 6 months away from the release date of JDT 2.0. However,
these bugs were reported for the JDT 2.1 release instead. The commits with messages
”Fixes for 28559, 28622 and 28682” and ”Fix for 28682” are linked to these bugs and
give rise to a twofold difference: for release 2.0, 3 more files are linked and the sum of
bugs is higher by 7 bugs, whereas for release 2.1, 3 fewer files are linked and the sum of
bugs is lower by 7 bugs.

DIFF2: (Key word missing) The SZZ data collection approach includes links only to
commits that contain keywords, such as ”bug” or ”fix”, or a character ”#” in front of a Bug
ID within the commit message [43]. The ClassFileStruct.java file8 provides an example
for which this difference in approach is relevant; for this file, the SZZ method found 0
bugs, and our method identified 2 pre-release bugs. Both of these bugs were found in
the commit message ”Update for 10979 and 10697.” There are two pieces of evidence
in favor of linking this commit: the time elapsed between the closing of the bug and the
committing of the change is less than 1 day, and the bug assignee for Bug ID 10679,
Olivier Thomannis, is the author of this commit. Because of the lack of keywords, such as
”bug,” or ”fix”, or the character ”#,” the SZZ technique also decided not to link the Bug
ID 10697 with the commit message ”Update for 10697.” The fact that these two commits
are ignored means that the number of files linked to bugs by the SZZ approach is lower
by 7 files, and the sum of bugs is lower by 13 bugs.

DIFF3: (Other project) The SZZ data collection approach occasionally includes
bugs that are reported for other Eclipse projects within the Bugzilla repository that are dif-
ferent from the project under examination. The ASTNode.java file9provides an example
of this difference. For this file, the SZZ approach found 9 pre-release and 1 post-release

8 org/eclipse/jdt/internal/compiler/classfmt/ClassFileStruct.java
9 org/eclipse/jdt/core/dom/ASTNode.java



A Systematic Data Collection Procedure for Software Defect Prediction 189

Table 8. Root cause analysis of final dataset comparison: The first column presents the source of
the subset, the second column gives the number of files in the subset (50% of equal number of bugs
and 50% of unequal number of bugs) and the remaining columns give the amount of files affected
by each difference.

Project Files ∆ t > 6 months Key word missing Other project
JDT 60 16 (26.6%) 9 (15.0%) 3 (5.0%)
PDE 40 13 (32.5%) 8 (20.0%) 1 (2.5%)
Total 100 29 (29.0%) 17 (17.0%) 4 (4.0%)

bugs, whereas our approach identified 8 pre-release and 1 post-release bugs. Analyzing
the entire GIT repository for changes made to that file reveals only two additional po-
tential links. These are commits with the following messages: ”Fix for 10495” and ”Add
useful toString methods for ASTNodes (bug 11076).” Because the Bug ID 10495 is of
trivial severity and is thus not included in the data collection process by either technique,
the inclusion of the Bug ID 11076 makes the difference; however, this is a bug reported
for the Platform project, not the JDT project. Such differences result in an increase in the
sum of bugs and the number of files linked to bugs identified by the SZZ approach. The
commit presented here causes 6 files to be linked to bugs.

An examination of the results presented in Tables 7 and 8 yields the following obser-
vations:

OBS7: Linking effectiveness may be influenced by overly strictly defined link-
ing procedure. One of recommendations made by Basilli and Weis is to make the data
collection forms should provide certain degree of flexibility. The strict limiting factors of
the 6-month time frame and the insistence on the presence of keywords are the predom-
inant reasons for the different linking results. The 6-month period limitation imposed by
SZZ and D’Ambros is the major cause of bias between BuCo and their data collection
approach. This limitation impacts 29 of the analyzed files and is therefore responsible for
58% of the files with different numbers of bugs (Nbo). The lack of certain keywords in
the commit message is a secondary cause of bias, impacting 17 of the analyzed files and
responsible for 34% of the files with different Nbo values. The least significant source
of bias is the fact that their approach also included bugs associated with other projects.
However, this source of bias is not entirely insignificant because it impacts 4 of the ana-
lyzed files and is therefore responsible for 8% of the files with differentNbo values. All of
these sources of bias influence the linking rate: in certain cases, they lead to the omission
of obvious links, whereas in other cases, they cause the creation of links to bugs from
different releases or different projects.

OBS8: The linking techniques do not yield consistently different outputs across
different contexts . This observation is to OBS6 but confirmed in a different metric,
this one related to the number of bugs per file. The intersection of the results is greater
than 70% for all PDE releases and drops to below 45% for the JDT project. The trend of
the change in the level of intersection is different for the two projects as well. The level
of intersection drops from 72.3% to 43.9% for later JDT releases, whereas for the PDE
project, it initially rises from 83.8% to 87.1% and then drops to 71.1%. We also observe
various trends in the categories of files with unequal numbers of bugs. The number of files
with lower Nbo rises from 13.5% to 27.7% and then drops slightly to 26.7% over time



190 Goran Mauša et al.

Table 9. Linking comparison: The total number of links Nlo and the quantity of links in each of
the manually validated categories is presented for each technique.

Project JDT 2.0 OpenNLP
Linking approach Relink BuCo Regex Relink BuCo Regex

Nlo 2979 2830 115 128
Equal Nlo 2793 93.8% 2793 98.7% 115 90.6% 127 100.0%

Incorrect Nlo 61 2.0% 3 0.1% 0 0.0% 1 0.8%
Correct Nlo 12 0.4% 34 1.2% 0 0.0% 11 8.6%

Questionable Nlo 114 3.8% 0 0.0% 0 0.0% 0 0.0%
Precision 94.13% - 97.87% 99.89% 100% 99.22%

Recall 98.80% 99.58% 90.55% 100%
F-measure 96.44% - 98.34% 99.74% 95.16% 99,61%

for the JDT releases. By contrast, it remains approximately 0% for all releases of PDE.
The number of files with greater Nbo is constantly rising from 14.2% to 29.5% over time
for the JDT project, and for the PDE releases, it initially drops from 15.7% to 12.7% and
then rises to 28.9%. It is clearly impossible to observe any trends from the sole release
analyzed by D’Ambros. However, for the 3 subsequent JDT releases analyzed by SZZ,
both categories of files with unequal numbers of bugs change at similar rates. For the 3
PDE releases, we observe no change in the category of Lower Nbo, but we observe a
sudden jump in the category of Greater Nbo after the second release. Therefore, again
we observe the influence of context in two layers: the project and different releases of the
same project.

Linking Comparison The second analysis consists of determining the numbers of equally
and unequally linked commits between BuCo and ReLink for the JDT 2.0 project and
among BuCo, ReLink and Benchmark for the OpenNLP project. For unequally linked
commits, we distinguish the number of correctly and incorrectly established links. The
correctness of the links is evaluated through the following parameters: the presence of the
Bug ID in the commit message, the authorship correspondence between the bug assignee
and the commit author and the time correlation between bug closing and commit submis-
sion. Because the Bug ID is the parameter of dominant relevance, we also label commits
without any Bug ID in the commit message as questionable links. Such commits are sub-
sequently evaluated through the remaining two parameters. The results are presented in
Table 9. The rows present the following pieces of information: the release of the analyzed
projects, the linking approach, the total number of links (Nlo), the number of commits
equally linked by ReLink and BuCo Regex (Equal Nlo), the number of incorrect links
(Incorrect Nlo), the number of correct links (Correct Nlo) and the number of question-
able links (QuestionableNlo). For each commit category, we also provide the percentage
with respect to the total number of commits (Nlo). We also calculate precision, recall and
F-measure as it was explained in Section 3.1 and in Table 1. The precision for ReLink
in JDT 2.0 project has a range of values, from the worst case scenario in which all the
Questionable Nlo are considered as FP, to the best case where they all are marked as TP.

An examination of the results presented in Table 7 and a further manual investigation
of all links yield the following observation:



A Systematic Data Collection Procedure for Software Defect Prediction 191

OBS9: The use of prediction based linking technique may be outperformed by
a simpler technique based on regular expression. Although over 93% of the links are
established by both tools, the specific behaviors of these techniques can lead to the estab-
lishment of some incorrect links or the omission of some obvious links. It remains unclear
why the ReLink tool failed to find 45 (1.6%) of the links correctly identified by the BuCo
tool. Among the 12 (0.4%) correct links missed by our method, 8 were duplicated entries
that represented changes in the same Java class files, 3 were duplicated entries that were
stored in different repositories and 1 was a correctly predicted typographical error. The
commit message ”Fixed bug 207141: Inexact Matches dialog check box isn’t properly
positioned [search]” was linked to the Bug ID 20741 by ReLink. The Bug ID 207141 in-
dicated in the commit message was a bug from the BIRT project reported in 2007, and the
commit itself occurred in 2002 on the same day that Bug ID 20741 was closed. However,
the ReLink linking technique that allows for Bug IDs with typographical errors in com-
mit messages typically creates obviously incorrect links. There are 61 (2%) such incorrect
links for which the difference between the Bug ID and the number in the commit message
involves more than 1 digit and the number in the commit message is equal to another,
already linked bug. For example, the commit ”bug 9456” was already correctly linked to
the Bug ID 9456, but ReLink also linked it to the Bug ID 9591, which was still unlinked.
The reason for the incorrect links created by BuCo was always a low Bug ID number. All
3 of the incorrect links created by our method included the Bug ID as part of a Java class
name. These bug identifiers had only 4 digits, and our BuCo Regex technique is prone to
making incorrect links for Bug IDs that are such low numbers. Such behavior of ReLink
and BuCo Regex techniques resulted in better precision, recall and F-measure obtained
by BuCo. The only exception is the recall for OpenNLP, for which ReLink made no FP
links and BuCo made 1 FP link.

OBS10: The linking rate may lead to misleading conclusions regarding the link-
ing effectiveness. The higher linking rate and the higherNfo and Sbo values achieved by
ReLink, which we note in OBS4, do not necessarily indicate that the technique is more
effective than the BuCo Regex technique. Manual investigation reveals that 99.2% of the
links created by BuCo were correct, whereas 94.2% of those created by ReLink were cor-
rect. Moreover, BuCo missed only 0.4% of the links that were identified by ReLink, and
aside from duplicated entries of various types, there was only 1 such link that BuCo could
not have established. By contrast, ReLink missed 1.2% of the correct links. Among the
114 questionable links created by ReLink, 76 were committed within 10 days of the bug
closing date, 25 satisfied the authorship correspondence condition and only 18 satisfied
both of these conditions. Obviously, any comparison of linking technique performance
in which knowledge of the true links is not available (as it is for Benchmark) must be
examined more thoroughly than a mere calculation of the linking rate. It may be overly
difficult to identify all missed links (FNs in the confusion matrix), but the ratio between
the numbers of TP and FP links may provide more conclusive evidence.

4.3. Answers to Research Questions

Our case study resulted in 10 valuable observations that enable us to answer the two RQs
stated in Section 1.

RQ1: How strongly is linking effectiveness influenced by development context
and why? Our results indicated that context does influence the bug linking effective-



192 Goran Mauša et al.

ness. We presented several observations that support this claim: OBS4, OBS5, OBS6 and
OBS8. The development context may be observed in terms of linking rate obtained by two
linking techniques within the same community and within the same project. The linking
rate trend may vary within the same community, as we observed the increasing trend for
JDT and PDE projects that never decreases below 70%, while for BIRT it decreases below
20% after having increased up to 80%. The linking rate may significantly vary within the
same project, as we observed for JDT (49% - 93%), PDE (22% - 95%) and BIRT (18% -
80%).

RQ2: Which linking technique identifies the highest number of correct links? Our
results indicated that the prediction based linking technique and overly strict linking tech-
niques and procedures may influence the bug linking effectiveness negatively. Finally,
we came to conclusion that the BuCo Regex linking techniques demonstrated the best
performance. We presented several observations that support this claim: OBS2, OBS3,
OBS7, OBS9 and OBS10. The Time Correlation and Authorship Correspondence were
the overly strict linking techniques that yielded significantly lower LR than BuCo Regex
and ReLink. The SZZ approach also used a strict linking technique which made manda-
tory for a commit to contain a key word and the commit must have been made within
the six months period from the date of the release. In comparison with BuCo Regex tech-
nique, these facts lead to increasing discrepancy between the Nbo per file. It ranges from
13% for PDE 2.0 up to 56% for JDT 3.0. The Relink tool was the prediction based link-
ing technique that yielded worse results than the simpler BuCo Regex technique. The
F-measure was lower by 3% for JDT 2.0 and by 4.5% for OpneNLP.

4.4. Threats to Validity

The range of open-source communities and the range of projects we analyzed may be
regarded as a threat to the validity of our analysis. Nevertheless, we used both small and
large projects from the Eclipse and Apache open-source communities, which are com-
monly addressed in related research. We also obtained conclusive evidence that offered
answers to our research questions. The projects of the Eclipse community are the most of-
ten investigated in this type of analysis because of their large size, long-lasting evolution
period and ready availability of data. Our choice of potential projects was also narrowed
by the public availability of data related to SDP research and by our experimental inten-
tion to compare previous results with our own.

The problem of untraceable bugs is one of the major threats to the validity of this
research. Bugs may be untraceable if they are not mentioned in the commit messages that
accompany the bug fixes. The impact of this issue was confirmed in our results through
the linking rates presented in Table 5. However, bugs may also be untraceable if they are
never noted in the bug tracking repository. The impact of this issue is impossible to assess
without access to all activities of the developers and without their personal assistance.
Some natural language processing techniques have been used to cope with the issue of
untraceable bugs but as we observed, with limited and questionable success that came at
the cost of creating incorrect bug-code links.



A Systematic Data Collection Procedure for Software Defect Prediction 193

5. Conclusion

The quality of the data subjected to data collection and analysis is related to the perfor-
mance of the applied linking technique. The performance of a linking technique depends
on the nature of the technique as well as the context to which it is applied. Therefore, if
we wish to produce comparable results and evaluate the performances of various linking
techniques, we should perform our experiments using the same datasets. If we wish to
make progress in evaluating the quality of data available to the SDP research community,
then the datasets on which we conduct comparisons should be made freely available to
other researchers and practitioners in the field. Thus, we will be able to build a common
benchmark base. Because the performance of a technique is highly dependent on the na-
ture of the dataset to which it is applied, it is of vital importance to continue to build a
common evaluation network, as proposed in this article, and to begin to identify context
information that reflects the data bias. As a result of this exhaustive research, we pro-
vided detailed guidelines for researchers for the evaluation of data collection bias in their
studies. To make research in the SDP field more generalizable, researchers must follow
a standardized procedure when collecting bugs to minimize bias. Our research identified
several issues that must be considered and addressed: granularity level, software metrics,
bug severity, repository search order, and duplicated bug-file links. Some of these issues
have not been previously reported in related research papers. Nevertheless, they are often
encountered while performing even exploratory research. It may be dangerous to believe
that these issues are irrelevant or harmless, as some of them have proven to significantly
affect dataset construction and analysis.

It is important to provide all of the details of data collection procedures because the
context in which they are applied may also influence their effectiveness. We proved that
data quality may vary between different research communities, within the same research
community, among projects that share a common development process and even through-
out the evolution of a single project. Should the results of data collection indicate a low
level of data quality, the results of any research based on such data may be incorrect or
questionable at best. Further research should analyze whether it may be possible to estab-
lish a quality threshold to define acceptable data quality.

For the purpose of comparing and validating bug linking techniques and procedures,
we showed how important it is to use the Benchmark datasets and to report all the in-
termediate results that were performed during the data collection procedure. In our case,
the most important intermediate result are the bug commit links. Otherwise, the vali-
dation has to be done manually, which is time consuming and very difficult to perform
on larger projects. However, our empirical study demonstrates which measures and com-
parison procedures can be used to perform such a manual comparison. The goal of such
procedures should not be to quantify the inconsistencies, but to discover the root causes
that lead to inconsistencies. We believe this to be the proper way to further develop this
research area.

We also developed the BuCo Analyzer tool with the goal of supporting researchers
in obtaining equivalent datasets regardless of the open-source project they choose to
analyze10. We demonstrated its effectiveness in collecting and analyzing data from all
projects used in the establishment of the SZZ, D’Ambros, ReLink and Benchmark datasets.

10 We encourage all researchers interested in performing such an analysis to contact us.



194 Goran Mauša et al.

This tool is applicable to any project that contains the specified input data or for which
both Bugzilla and GIT repositories are available. It is capable of analyzing both large-
scale projects, such as JDT, and smaller ones, such as OpenNLP. It also offers a bug
linking technique based on regular expressions, for which we demonstrated performance
superior to that of other more complex techniques, such as the approach used by ReLink.
Furthermore, this tool incorporates our bug linking approach, which offers several advan-
tages compared with the popular SZZ approach. Our future efforts will include making
this tool available to the entire research community.

Acknowledgements. This work has been supported in part by Croatian Science Foundation’s fund-
ing of the project UIP-2014-09-7945 and by the University of Rijeka research grant Grant 13.09.2.2.-
16.

References

1. Ali, N., Guhneuc, Y.G., Antoniol, G.: Trustrace: Mining software repositories to improve the
accuracy of requirement traceability links. IEEE Trans. Software Eng. 39(5), 725–741 (2013)

2. Bachmann, A., Bernstein, A.: Data retrieval, processing and linking for software process data
analysis. Tech. Rep. IFI-2009.0003b (2009)

3. Bachmann, A., Bird, C., Rahman, F., Devanbu, P., Bernstein, A.: The missing links: Bugs and
bug-fix commits. In: Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering. pp. 97–106. FSE ’10, ACM, New York, NY, USA
(2010)

4. Basili, V.R., Weiss, D.: A methodology for collecting valid software engineering data. IEEE
Computer Society Trans. Software Engineering 10(6), 728–738 (1984)

5. Bass, J., Garfield, C.: Statistical linkage keys: How effective are they? In: Proceedings of the
12th Symposium on Health Data Linkage. pp. 40–45. Public Health Information Development
Unit, Syndey, NSW, Australia (2002)

6. Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A., Filkov, V., Devanbu, P.: Fair and
balanced?: Bias in bug-fix datasets. In: Proceedings of ESEC/FSE ’09. pp. 121–130. ACM,
New York, NY, USA (2009)

7. Bird, C., Nagappan, N., Gall, H., Murphy, B., Devanbu, P.T.: Putting it all together: Using
socio-technical networks to predict failures. In: ISSRE. pp. 109–119. IEEE Computer Society
(2009)

8. Bissyande, T.F., Thung, F., Wang, S., Lo, D., Jiang, L., Reveillere, L.: Empirical evaluation of
bug linking. In: Proceedings of CSMR ’13. pp. 89–98. IEEE Computer Society, Washington,
DC, USA (2013)

9. Christen, P., Goiser, K.: Quality and complexity measures for data linkage and deduplication.
In: Guillet, F., Hamilton, H.J. (eds.) Quality Measures in Data Mining, Studies in Computa-
tional Intelligence, vol. 43, pp. 127–151. Springer (2007)

10. D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change coupling and soft-
ware defects. In: Antoniol, G., Pinzger, M., Chikofsky, E.J. (eds.) WCRE. pp. 135–144. IEEE
Computer Society (2009)

11. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches.
In: MSR. pp. 31–41 (2010)

12. D’Ambros, M., Lanza, M., Robbes, R.: Evaluating defect prediction approaches: A benchmark
and an extensive comparison. Empirical Softw. Engg. 17(4-5), 531–577 (Aug 2012)

13. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American Statistical
Association 64, 1183–1210 (1969)



A Systematic Data Collection Procedure for Software Defect Prediction 195

14. Fischer, M., Pinzger, M., Gall, H.: Analyzing and relating bug report data for feature tracking.
In: Proceedings of the 10th Working Conference on Reverse Engineering. pp. 90–. WCRE ’03,
IEEE Computer Society, Washington, DC, USA (2003)

15. Gill, L. (ed.): Methods for automatic record matching and linking and their use in national
statistics. Oxford University (2001)

16. González-Barahona, J.M., Robles, G.: On the reproducibility of empirical software engineering
studies based on data retrieved from development repositories. Empirical Softw. Engg. 17(1-2),
75–89 (Feb 2012)

17. Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, S.: A systematic literature review on
fault prediction performance in software engineering. IEEE Trans. Softw. Eng. 38(6), 1276–
1304 (Nov 2012)

18. Hu, W., Wong, K.: Using citation influence to predict software defects. In: Proceedings of the
10th Working Conference on Mining Software Repositories. pp. 419–428. MSR ’13, IEEE
Press, Piscataway, NJ, USA (2013)

19. Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: ASE. pp. 279–289. IEEE (2013)
20. Kamei, Y., Matsumoto, S., Monden, A., Matsumoto, K.i., Adams, B., Hassan, A.E.: Revisiting

common bug prediction findings using effort-aware models. In: Proceedings of the 2010 IEEE
International Conference on Software Maintenance. pp. 1–10. ICSM ’10, IEEE Computer So-
ciety, Washington, DC, USA (2010)

21. Kelman, C.W., Bass, J., Holman, D.: Research use of linked health dataa best practice protocol.
Australian NZ J. Public Health 26, 251–255 (2002)

22. Khoshgoftaar, T.M., Yuan, X., Allen, E.B., Jones, W.D., Hudepohl, J.P.: Uncertain classifica-
tion of fault-prone software modules. Empirical Software Engineering 7(4), 295–295 (2002)

23. Kim, D., Tao, Y., Kim, S., Zeller, A.: Where should we fix this bug? a two-phase recommenda-
tion model. IEEE Trans. Softw. Eng. 39(11), 1597–1610 (Nov 2013)

24. Kim, S., Zhang, H., Wu, R., Gong, L.: Dealing with noise in defect prediction. In: Proceedings
of the 33rd International Conference on Software Engineering. pp. 481–490. ICSE ’11, ACM,
New York, NY, USA (2011)

25. Mauša, G., Galinac Grbac, T., Dalbelo Bašić, B.: Software defect prediction with bug-code
analyzer - a data collection tool demo. In: Proceedings of SoftCOM ’14. Split, Croatia (2014)

26. Mauša, G., Galinac Grbac, T., Dalbelo Bašić, B.: Data collection for software defect prediction
an exploratory case study of open source software projects. In: Proceedings of MIPRO ’14. pp.
513–519. Opatija, Croatia (2015)

27. Mauša, G., Perković, P., Galinac Grbac, T., Štajduhar, I.: Techniques for bug-code linking. In:
Proceedings of SQAMIA ’14. Lovran, Croatia (2014)

28. Mizuno, O., Ikami, S., Nakaichi, S., Kikuno, T.: Spam filter based approach for finding fault-
prone software modules. In: MSR. p. 4. IEEE Computer Society (2007)

29. Nguyen, A.T., Nguyen, T.T., Nguyen, H.A., Nguyen, T.N.: Multi-layered approach for recov-
ering links between bug reports and fixes. In: Proceedings of FSE ’12. pp. 63:1–63:11. ACM,
New York, NY, USA (2012)

30. Ostrand, T.J., Weyuker, E.J., Bell, R.M.: Where the bugs are. SIGSOFT Softw. Eng. Notes
29(4), 86–96 (Jul 2004)

31. Rahman, F., Posnett, D., Herraiz, I., Devanbu, P.: Sample size vs. bias in defect prediction.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering. pp.
147–157. ESEC/FSE 2013, ACM, New York, NY, USA (2013)

32. Robillard, M., Walker, R., Zimmermann, T.: Recommendation systems for software engineer-
ing. IEEE Software 27(4), 80–86 (2010)

33. Rodriguez, D., Herraiz, I., Harrison, R.: On software engineering repositories and their open
problems. In: Proceedings of RAISE ’12. pp. 52–56 (2012)

34. Salzberg, S.L., Agrawal, A.: On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery 3(1), 317–327 (Feb 1997)



196 Goran Mauša et al.

35. Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design time. In:
Proceedings of the 2006 ACM/IEEE International Symposium on Empirical Software Engi-
neering. pp. 18–27. ISESE ’06, ACM, New York, NY, USA (2006)

36. Shatnawi, R., 0014, W.L.: The effectiveness of software metrics in identifying error-prone
classes in post-release software evolution process. Journal of Systems and Software 81(11),
1868–1882 (2008)

37. Shepperd, M.J., Song, Q., Sun, Z., Mair, C.: Data quality: Some comments on the nasa software
defect datasets. IEEE Trans. Software Eng. 39(9), 1208–1215 (2013)

38. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? SIGSOFT Softw.
Eng. Notes 30(4), 1–5 (May 2005), http://doi.acm.org/10.1145/1082983.1083147

39. Sureka, A., Lal, S., Agarwal, L.: Applying fellegi-sunter (fs) model for traceability link recov-
ery between bug databases and version archives. In: Proceedings of APSEC ’11. pp. 146–153.
IEEE Computer Society, Washington, DC, USA (2011)

40. Thomas, S.W., Nagappan, M., Blostein, D., Hassan, A.E.: The impact of classifier configuration
and classifier combination on bug localization. IEEE Trans. Software Eng. 39(10), 1427–1443
(2013)

41. Wu, R., Zhang, H., Kim, S., Cheung, S.C.: Relink: Recovering links between bugs and changes.
In: Proceedings of ESEC/FSE ’11. pp. 15–25. ACM, New York, NY, USA (2011)

42. ZHANG Jie, WANG XiaoYin, H.D.X.B.Z.L.M.H.: A survey on bug-report analysis. SCIENCE
CHINA Information Sciences 58(2), 21101 (2015)

43. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for eclipse. In: Proceedings of the
Third International Workshop on Predictor Models in Software Engineering. pp. 9–. PROMISE
’07, IEEE Computer Society, Washington, DC, USA (2007)

Goran Mauša received his Masters degree in Electrical Engineering at the Faculty of
Engineering, University of Rijeka, Croatia in 2010. He is a PhD student in Computing at
the Faculty of Engineering and Computing, University of Zagreb, Croatia since 2011 and
a junior researcher at the Software Engineering and Information Processing Laboratory
at the Faculty of Engineering, Rijeka. His research interests are soft computing and their
usage in software defect prediction of complex software systems.

Tihana Galinac Grbac received MS and PhD degree from the University of Zagreb,
Croatia in 2005 and 2009, respectively. She is an assistant professor at the Faculty of
Engineering, University of Rijeka, Croatia, and the leader and founder of the Software
Engineering and Information Processing Laboratory (SEIP Lab) at the same institution.
Until 2007 she was with Ericsson Nikola Tesla for eight years. Her research interests are
in modeling complex software systems behaviour and their evolution, and autonomous
control mechanisms for their reliable and secure operation.

Bojana Dalbelo Bašić is currently full professor at University of Zagreb, Faculty of Elec-
trical Engineering and Computing. She received BS degree in Mathematics at the Faculty
of Natural Sciences and Mathematics, University of Zagreb in 1982. She received MS
and PhD degree at the Faculty of Electrical Engineering and Computing, University of
Zagreb in 1993 and 1997, respectively. She worked as a programmer and project manager
in Croatian companies. Since 2000 she works at the Faculty of Electrical Engineering
and Computing, University of Zagreb. She has been the leader of several international



A Systematic Data Collection Procedure for Software Defect Prediction 197

and national professional and scientific research projects. She is the author of over 90
professional and scientific papers. Her research focuses on using machine learning and
statistical methods in knowledge discovery and natural language processing.

Received: December 28, 2014; Accepted: November 10, 2015.




