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1 Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11000 Belgrade, Serbia
{jgraovac,jovana,gordana}@matf.bg.ac.rs

2 School of Informatics and Computing, Indiana University
Bloomington, Indiana, USA

Abstract. Hierarchical text categorization (HTC) refers to assigning a text docu-
ment to one or more most suitable categories from a hierarchical category space.
In this paper we present two HTC techniques based on kNN and SVM machine
learning techniques for categorization process and byte n-gram based document
representation. They are fully language independent and do not require any text
preprocessing steps, or any prior information about document content or language.
The effectiveness of the presented techniques and their language independence are
demonstrated in experiments performed on five tree-structured benchmark category
hierarchies that differ in many aspects: Reuters-Hier1, Reuters-Hier2, 15NGHier
and 20NGHier in English and TanCorpHier in Chinese. The results obtained are
compared with the corresponding flat categorization techniques applied to leaf level
categories of the considered hierarchies. While kNN-based flat text categorization
produced slightly better results than kNN-based HTC on the largest TanCorpHier
and 20NGHier datasets, SVM-based HTC results do not considerably differ from
the corresponding flat techniques, due to shallow hierarchies; still, they outperform
both kNN-based flat and hierarchical categorization on all corpora except the small-
est Reuters-Hier1 and Reuters-Hier2 datasets. Formal evaluation confirmed that the
proposed techniques obtained state-of-the-art results.
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1. Introduction

Text categorization (TC) is the task of classifying unlabelled natural language documents
into a predefined set of categories. In TC research, most of the studies have focused on
flat text categorization (FTC) where the categories to be predicted are treated in isola-
tion and there is no structure defining the relationships among them. However, organizing
the categories into a hierarchy helps us solve the problem of browsing and searching the
categories when their number grows significantly. Also, many important real-world cate-
gorization problems are naturally cast as hierarchical text categorization (HTC) problems,
where the predefined categories are organized into a category hierarchy [34].

There are many HTC techniques that differ in a number of criteria. One of the criteria
is the type of hierarchical structure used: tree (a node can have only one parent node) or
directed acyclic graph (a node can have more than one parent node). The second criterion
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is related to how deep the categorization in the hierarchy is performed: mandatory leaf-
node prediction (always will classify a leaf node) or non-mandatory leaf node prediction
(the classification can stop in any node at any level of the hierarchy). The third criterion
is related to how the hierarchical structure is explored: big-bang classifiers, when a single
classifier is used, coping with the entire category hierarchy; top-down classifiers, when
the system employs a set of local classifiers; or flat classifiers, which ignore the category
relationships, typically predicting only the leaf nodes [34].

Regardless of which HTC technique is chosen, we are faced with many different
challenges and difficulties. One of the difficulties is high dimensionality and variable
length, content and quality of text data. A huge number of text documents on the Web
contains different kinds of textual errors, such as typing, spelling and grammatical errors.
To complicate matters, much of that text is imperfect, having been derived from existing
paper documents by means of an error-prone scanning and character recognition process.
TC has to perform reliably on all inputs, and thus has to tolerate these kinds of problems
to some extent. Although most of the research activity has concentrated on English text,
the management and study of TC in languages other than English is a growing need. This
introduces a number of additional difficulties in text analysis due to specific characteris-
tics of different languages. For example, Asian languages such as Chinese are based on
fundamentally different linguistic paradigm compared to Latin-alphabet languages. They
use unbound morphemes and depend on post-phrase affixes and word order to convey
meaning.

Standard approaches to TC [16] are usually based on traditional word-based vector
document representation (e.g., bag-of-words, BOW). Although representation of a docu-
ment at the level of words seems to be an intuitive solution, in some languages it could
be a particular problem. For example, Chinese does not have word boundaries explicitly
marked in text so word segmentation itself is a difficult problem. One of the main prob-
lems with the BOW technique is that word order information is lost. It ignores the fact that
morphological features can also play an important role in text analysis. Traditional prepro-
cessing of documents, such as eliminating stop words, pruning rare words, stemming and
normalization, may improve the representation but at the same time produce a number of
potential drawbacks: they may require a linguist (or a polyglot) for initial setup and subse-
quent tuning, they are vulnerable to variant spellings, misspellings and random character
errors, and they tend to be both topic-specific and language-specific [6].

The main goal of this paper is to present two HTC techniques that are fully language
independent so as to be efficiently applied to large amount of hierarchically organized
text documents in different natural languages. The techniques that we present here are
based on different machine learning techniques (kNN and SVM) and a byte-level n-gram
document representation, avoiding many of the above mentioned difficulties. Since we
use byte-level n-grams to represent the documents, there is no need for any text prepro-
cessing or higher level processing, such as tagging, parsing, or other language depen-
dent and nontrivial natural language processing tasks. The techniques adapted to byte-
level n-grams document representation can be thus applied to any text hierarchy without
prior knowledge about the language or even about the used coding scheme, which we
consider the main novelty of our contribution. In order to demonstrate the effectiveness
and language independence of the HTC techniques and to test and compare performance
with the corresponding FTC techniques and among themselves, we focus on English and
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Chinese as representatives of different language paradigms and the most widely used
languages on the Internet1. To the best of our knowledge, this has not been done be-
fore, using the proposed techniques and document representation. We use five single la-
beled tree-structured benchmark category hierarchies: Reuters-Hier1, Reuters-Hier2 [25],
15NGHier and 20NGHier [23] in English and TancorpHier in Chinese [37].

The rest of the paper is organized as follows. Sect. 2 introduces related work. Sect. 3
presents kNN and SVM algorithms for the HTC n-gram techniques proposed. Experimen-
tal framework is presented in Sect. 4 while Sect. 5 reports on experimental results and
comparisons with other BOW SOA (bag-of-words, state-of-the art) methods. In Sect. 6
we give a conclusion.

2. Related Work

Many FTC and HTC techniques have been developed and extensively applied in different
areas such as economy [42], medicine [2], news industry [14], oil industry [32], etc.
Although there is a number of techniques developed and applied to larger corpora ([10],
[4]), we will mention only previously published techniques, applied to the same Reuters
and 20-Newsgroups hierarchies in English, and TanCorpHier dataset in Chinese that we
used in this article.

The use of the Reuters hierarchies in the field of HTC dates back to at least 1997, when
Koller and Sahami [20] proposed the use of a local classifier per parent node approach.
Six years later Sun and his colleges [36] presented two top-down level-based hierarchical
classification methods based on binary Naı̈ve Bayes (NB) and SVM classifiers. They pro-
posed a new performance measurement framework for hierarchical categorization. In this
framework, they incorporate the contributions of misclassified documents into the defi-
nition of performance measures. Using the framework, they evaluated the performance
of the two HTC techniques using the Reuters hierarchies constructed in a similar way
as Koller and Sahami did. They showed that SVM classifiers performed well when there
were enough training documents and that extended performance measures could help
to better determine the performance of HTC techniques by considering contributions
from misclassified documents. Many recent studies used different hierarchical versions
of Reuters corpus as well ([18], [39], [15], [24]).

Important results of the TC on English dataset 20-Newsgroups are achieved by Lan
et al. [22]. They have investigated several widely-used unsupervised and supervised term
weighting methods in combination with SVM and kNN algorithms. They introduced new
techniques called tf.rf (term frequency - relevance frequency) which have proved to be
more effective than others. Hierarchical version of this corpus was used in [30]. The au-
thors built a two-level hierarchy from 15 categories from this dataset. They showed that
the accuracy of the naive Bayes text classifier can be considerably improved by taking
advantage of a hierarchy of categories.

The TC problem for languages other than English has been considered as well. Re-
garding TC focused on Chinese, the TanCorpHier dataset used in this work has been
widely used. Authors in [26] have been concentrated on single-label, tree-structured,
mandatory leaf-node prediction problem. They proposed an instance-centric HTC frame-

1 http://www.internetworldstats.com/stats7.htm
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work based on decision-theoretic rough set model. Using TanCorpHier dataset they demon-
strated that the proposed technique performs better than the FTC and standard HTC.
The same authors in [27] proposed blocking distribution based topology reconstruction
method for HTC problem. Firstly, they employed blocking distribution recognition tech-
nique to mining out the high-level misclassification category. Then, original hierarchical
structure is constructed using blocking direction information obtained ahead, which in-
creases the path for the blocking instance to the correct subcategory.

It should be mentioned that the machine learning techniques that we adapted and ap-
plied to HTC and specific document representation (kNN and SVM) have been previously
successfully extended to handle structured outputs and applied to hierarchical classifica-
tion in different (non-textual) domains [31], [40].

3. HTC Techniques

Prior to running TC process, a text document has to be transformed from the full text into
a document vector which describes the contents of the document. In this paper we chose
byte-n-gram based document representation approach. Extracting byte n-grams from a
document is like moving an n-byte wide “window” across the document internal repre-
sentation, byte by byte. Each window position covers n bytes, defining a single n-gram.
In the case of English and most other Latin-alphabet languages, character-level and byte-
level n-gram models are quite similar due to the fact that one character is usually repre-
sented by one byte. The only difference is that character-level n-grams use letters only
and typically ignore digits, punctuation, and whitespace while byte-level n-grams use all
printing and non-printing characters. In the case of Asian languages, one character is usu-
ally represented by two bytes, depending on the coding scheme that is used.

N-grams of bytes and n-grams of characters are equally used for text representation
in solving different data mining tasks, with similar results. Although byte n-grams some-
times do not have specific meaning, especially for humans (for example, when they con-
tain only one of two bytes that represent a character), their extraction from a text does
not require the information about the used coding scheme, which is why they represent
simplified representation for computer processing. Therefore, byte n-grams have been
successfully used to represent text in order to solve many problems in the field of natural
language processing ([19], [1], [9], [33]).

The use of byte n-grams has a lot of advantages: language independence, relative
insensitivity to spelling variations/errors, word stemming is got essentially for free, no
linguistic knowledge is required, independence of alphabet, only one pass processing is
required end others. The main disadvantage of using n-gram technique is that it yields
a large number of n-grams. N -gram techniques have been successfully used for a long
time in a wide variety of problems and domains. In natural language processing they turn
out to be effective in many applications, for example, text compression [43], spelling er-
ror detection and correction [44], information retrieval [7], language identification [38],
authorship attribution [19], sentiment polarity detection [13] etc. They also prove useful
in domains not related to language processing such as music representation [8], computa-
tional immunology [29], protein categorization [35] etc.
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3.1. kNN based approach

Flat Text Categorization Technique As a baseline TC technique we use kNN n-gram-
based flat text categorization techinque (kNN nF), first used to solve the FTC problem
in Serbian, English and Chinese [12] and then to solve the problem of sentiment polarity
detection in movie reviews in English and Spanish [13] (the technique was first introduced
in [19] to solve the authorship attribution problem).

In kNN nF, category, training and test document profiles are defined as ordered sets of
pairs (x1, f1), (x2, f2),..., (xL, fL) of the L most frequent byte n-grams xi and their nor-
malized frequencies fi obtained by dividing the number of occurrences of the n-gram xi

with the number of occurrences of all n-grams in the corresponding document. Assigning
a document to a category is performed based on (dis)similarity between their two profiles.

Algorithms 1 and 2 give the detailed procedures for training and test phase, respec-
tively, of the flat kNN n-gram-based classifier kNN nF. The dissimilarity measure playing
an important role in them.

Algorithm 1 Train kNN nF(C,D(Train),n min, n max, L min, L max, step L)

Input: Set of category labels C, training set of documents D(Train), initial and final values (with a step)
for training classifier parameters: n min, n max; L min, L max, step L.

Output: (n,L) which provide the highest accuracy
1: for each n from n min to n max do
2: //Produce the set of “category documents”
3: for each c ∈ C do
4: doc(c)← ConcatenateTextsOfAllTrainingDocsInCategory(D(Train), c)
5: D(C)←

∪
c∈C doc(c)

6: //For each training document and category document, construct its profile
7: for each doc ∈ D(Train) ∪D(C) do
8: Ngrams(doc)← ExtractAllByteLevelNgrams(doc, n)
9: for each x ∈ Ngrams(doc) do

10: frequencies[x]← CalculateTheNormalizedFrequency(x, doc)
11: Profile(doc)← ListNgramsByDescFreq(

∪
x∈Ngrams(doc)(x, frequencies[x]))

12: for each L from L min to L max with step step L do
13: //Calculate dissimilarity measure between each document and category profile, cut of at the length L
14: for each doct ∈ D(Train) do ProfileL(doct)← Profile(doct)|L
15: for each c ∈ C do ProfileL(doc(c))← Profile(doc(c))|L
16: for each doct ∈ D(Train) do
17: for each doc(c) ∈ D(C) do
18: disstc ← DissimilarityMeasure(ProfileL(doct), P rofileL(doc(c)))
19: //Select the most similar category (or categories)
20: c(doct)← argminc∈Cdisstc
21: Compute the accuracy of the produced categorization
22: return n and L which provide the highest accuracy

Definition 1. Dissimilarity measure d is a function that maps the Cartesian product of a
set of profiles Π into the set of positive real numbers R. Symbolically, d : Π ×Π −→ R.
A metric dissimilarity d satisfies the following: nonnegativity, reflexivity, symmetry and
triangle inequality [11].
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Algorithm 2 Test kNN nF(doc, n, L, {ProfileL(doc(c)), c ∈ C})

Input: Test document doc ∈ D(Test), (n,L) obtained from the training phase presented in Algorithm 1,
set of category profiles {ProfileL(doc(c))} for all the category documents doc(c) and the trained n and L
Output: Category (or rarely categories) predicted by classifier

1: //Construct test document profile, Profile(doc), for the given n (steps from 8 to 11 in Algorithm 1)
2: //Cut off obtained test document profile at the length of the given profile length L
3: ProfileL(doc)← Profile(doc)|L
4: for each c ∈ C do
5: diss c← DissimilarityMeasure(ProfileL(doc), P rofileL(doc(c)))
6: //Select the most similar category (or categories)
7: c predicted[]← argminc∈Cdissc
8: return c predicted[]

In this paper we used dissimilarity measure presented by Kešelj [19] which proved
to be the best choice for TC considering 19 different dissimilarity measures presented in
[38]. This measure has a form of relative distance:

d(P1,P2) =
∑

x∈P1∪P2

(2 · (f1(x)− f2(x))

f1(x) + f2(x)

)2

, (1)

where f1(x) and f2(x) are frequencies of an n-gram x in the category profile P1 and the
document profile P2, respectively.

Hierarchical Text Categorization Technique We present a multi label tree-structured
top-down HTC method with mandatory leaf node prediction using k nearest neighbors
(kNN) classifiers, with k = 1. In a top-down HTC approach, there is one or more clas-
sifiers at each level of the category tree (for each internal non-leaf node we build a local
classifier that works as a flat classifier for its child categories). This approach is known
as local classifier per parent node approach. Since the hierarchical category structure
is known in advance, we actually decompose the categorization problem into a set of
sub-problems corresponding to hierarchical splits in the category tree. The whole HTC
process is achieved with the cooperation of all constructed internal node local classifiers
that solve corresponding sub-problems. In the test phase, the document is first classified
by the classifier at the root level into one or more level − 1 categories. It is then further
classified by the one or more classifiers at the current level category(ies) until it reaches
one or more final categories. In the case of mandatory leaf node prediction, these final
categories need to be leaves.

Since HTC process is accomplished with the cooperation of all local classifiers at each
level and each internal node of the hierarchy, it is important to properly choose how to
construct the internal node classifiers in order to guarantee the maximum accuracy for the
whole HTC process. For a given internal node, local classifier works as a flat classifier for
its child categories. In order to achieve maximum accuracy we need to find the best local
classifier for each internal node. Note that effectiveness of the presented basic kNN nF
can be controlled by two parameters: n-gram size n and profile length L. Finding the best
classifier for internal node thus means finding the best choice for classifier parameters n
and L. Alogrithm 3 and Algorithm 4 present the algorithms for training and test phase of
kNN byte n-gram-based hierarchical text categorization technique (kNN nH).
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One of the obvious problems with kNN nH as a top-down approach is that a mis-
classification at a parent category may force a document to be discarded before it can be
classified into the child categories. This is usually known as the “blocking” problem [36].
This gives the opportunity to strengthen and improve this technique by employing some
error recovery solutions.

Algorithm 3 Train kNN nH(D(Train), T(V,E), TrainingParameters)

Input: Training set D(Train), a category tree T (V = {I ∪ L}, E) with the height H , where I , L are sets
of internal and leaf nodes, respectively, E is set of edges, TrainingParameters is the set of initial
and final values (with a step) for training classifier parameters n and L for each internal node

Output: Set of internal node classifiers ClassifierSet(I)
1: //For the root node r, find (n,L) which produce the best accuracy for flat categorization to roots child categories
2: (nr, Lr)← Train kNN nF (Children(r), D(Train), n r min, n r max,L r min, L r max, step L r)
3: for each ci ∈ I \ {r} do
4: //Find L which produce the best accuracy for flat categorization to ci’s child categories
5: (nr, Lci)← Train kNN nF (Children(ci), D(TrainChildren(ci)), nr, nr, L i min, L i max, step L i)
6: ClassifierSet(I)←

∪
ci∈I(nr, Lci)

7: return ClassifierSet(I)

Algorithm 4 Test kNN nH(doc, T (V,E), ClassifierSet(I))

Input: Test document doc ∈ D(Test), a category tree T (V = {I ∪ L}, E) with the height H , where I , L are sets
of internal and leaf nodes, respectively, E is set of edges, ClassifierSet(I) is set of internal node classifiers

Output: Category (or rarely categories) predicted by classifier
1: h = 0; c predicted current[] = {c root}
2: // From the root down to the leaf node parent
3: while h <= H − 1 do
4: for each c h ∈ c predicted current[] do
5: // Choose the corresponding classifier parameters obtained in the training phase for c h
6: (nc h, Lc h)← ClassifierSet(c h)
7: let c predicted h′[] ∈ Children(c h) be the categories (at the level h′ = h+ 1) assigned to doc
8: // from the set c predicted current[] exclude category c h and add all categories from the c predicted h′[]
9: c predicted current[] = (c predicted current[]/{c h}) ∪ c predicted h′[];

10: h++;
11: // return all predicted leaf categories
12: return c predicted current[]

3.2. SVM struct based approach

Support vector machine (SVM) classifiers have been shown to be efficient and effective
for TC. Here we use the SVM struct ([40]) framework which represents a generalization of
SVM algorithm for structural output (sequences, trees, directed acyclic graphs, etc). We
adjusted the original SVM struct algorithm in two ways: first, to act as a multiclassifier,
following the flat approach (SVM nF), and second, to predict a category as a path in the
category ontology, ending in leaves, following the big-bang approach (SVM nH).

In both techniques, each text document is represented as a sequence of byte level n-
grams. In order to determine how important a byte n-gram x is to a text document d in a
dataset, we use term frequency-inverse document frequency (tf-idf ) numerical statistic as
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a weighting factor. Various ways for determining the exact values of tf and idf statistics
exist [28]. In this paper, we used the following 4 tf-idf statistics:

1. classic tf-idf : tf · log N
1+nx

2. log tf-idf : (1 + log(tf)) · log N
1+nx

3. boolean 1 tf-idf : log N
1+nx

4. boolean 2 tf-idf : log (1 + N
nx

)

where tf represents normalized frequency of the n-gram in the document, N is the total
number of documents in the dataset and nx is the number of documents in which the
n-gram x appears.

Before presenting the SVM nF and SVM nH techniques we provide a brief overview
of binary and structured SVM categorization. A standard approach in training predictors
for binary classification problems is to learn a discriminant function F (x) and classify
the input x according to the sign of F (x). Since linear methods usually have efficient
training algorithms, it is common to assume that the discriminant function is linear:
F (x) = ⟨w,x⟩, where w is a vector of parameters. Input data x can be mapped into
another feature space using a function Ψ(x) which turns the discriminant function into
the function F (x) = ⟨w, Ψ(x)⟩.

A binary classifier can predict whether a text belongs to a specified category or not.
In order to predict the category the text belongs to, we turn to structured output learning.
In this generalization, the discriminant function becomes a function of both inputs and
outputs, F (x,y), where y can be any structured output: tree, sequence, directed acyclic
graph, etc. Here, the discriminant function represents the level of compatibility of the
input x with the output y. If X denotes the input space and Y the output space, structured
output methods infer a label from the following equation:

ŷ = argmax
y∈Y

(F (x,y)).

Again, we assume that F is linear in w, F (x,y) = ⟨w, Ψ(x,y)⟩ in some space defined
by the mapping Ψ . Unlike the standard SVMs, in structural-output setting the function Ψ
is a joint function of both inputs and outputs.

In this paper, we employed the so-called 1-slack formulation of the problem with
margin rescaling ([17]):

min
w,ξ

||w||2

2
+ Cξ

s.t.∀(ȳ1, . . . , ȳN ) ∈ Y N :
1

N
⟨w,

N∑
i=1

[Ψ(xi,yi)− Ψ(xi, ȳi)]⟩ ≥
1

N

N∑
i=1

∆(yi, ȳi)− ξ.

Just like in classic SVM, we allow for certain training examples to be misclassified, which
is penalized by variable ξ. Parameter C regulates the influence of the misclassification on
the objective function and its value is tuned during the validation process. Function ∆
represents loss function between two outputs. We used SVM struct framework with the
cutting plane algorithm as an underlying optimizer ([17]). The details of the algorithm
can be found in original papers ([40],[41],[17]).
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In the first approach (SVM nF), we adjusted original SVM struct to work as a multi-
classifier. Input set X consists of vectors that contain values of the selected tf-idf statistics
(classic, log, boolean1 or boolean2) for each n-gram in training text, for selected length
n ∈ {2, 3, 4, 5, 6, 7, 8} of byte n-grams. Each text is represented by one such vector, and
for different tf-idf statistics used and n-gram length, there are 28 variations of representa-
tion for each corpus (7 for each of 4 tf-idf statistics: tf − idf = classic, n = 2, . . . , n =
8, . . . , tf − idf = boolean2, n = 2, . . . , n = 8). The dimension of each input vector is p,
the total number of different n-grams in the training set. Output set Y consists of integers
from 1 to q, where q is the total number of categories. Function Ψ was constructed as a
vector of dimension p · q. That way, each category obtained a block in the joint repre-
sentation with zero values, if the text does not belong to that category, or values equal to
the input vector x, otherwise. Here is an example of the function Ψ for the text x which
belongs to the category k (xi is the number of occurrences of the i-th n-gram in the text):

Ψ(x, k) = [ 0, . . . , 0︸ ︷︷ ︸
block for class 1

, . . . , 0, . . . , 0, x1, . . . , xp︸ ︷︷ ︸
block for class k

, 0, . . . , 0, . . . , 0, . . . , 0︸ ︷︷ ︸
block for class q

].

In the second approach (SVM nH), we exploited the ontology of each corpus and
considered each category as its path beginning in the ontology’s root and ending in one
of its leaves. Input set X is equivalent to the one in the first approach whereas output set
Y is the set of sparse vectors y, which dimension is equal to the number of nodes in the
specific ontology. If a category contains a certain node in its graphical representation, the
value of the vector y will be 1 on the position corresponding to that node, zero otherwise.
For example, if we enumerate the nodes of the Reuters-Hier1 ontology in the following
way: corn-1, wheat-2, ship-3, natural gas-4, grain-5, crude oil-6, root-7 (see Fig. 1),
then the category corn can be described as [1, 0, 0, 0, 1, 0, 1]. Here, the dimension of the
function Ψ is equal to the total number of nodes in the considered ontology multiplied
by the number of different byte n-grams. Analogously, each node obtained its block in
the joint representation, with zero values, if the category that the text belongs to does not
contain that node, or values equal to the input vector x otherwise. Here is an example of
function Ψ for text x which belongs to a category 1:

Ψ(x, 1) = [x1, . . . , xp︸ ︷︷ ︸
block for node 1

, 0, . . . , 0, x1, . . . , xp︸ ︷︷ ︸
block for node 5

, 0, . . . , 0, x1, . . . , xp︸ ︷︷ ︸
block for node 7

].

Since in this particular application the cardinality of Y is not large, the argmax for
prediction and for separation oracle ([17]) in both SVM nF and SVM nH techniques were
computed by explicit enumeration. In the opposite case, if the cardinality had been large,
more sophisticated algorithms would have had to be exploited.

Algorithm implementations for both kNN and SVM, flat and hierarchical techniques,
can be obtained on request from the authors.

4. Experimental Settings

4.1. Data Collections

In order to test presented HTC techniques, we used five tree-structured banchmark datasets:
Reuters-Hier1, Reuters-Hier2, 15NGHier and 20NGHier in English and TancorpHier in
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Chinese. All text documents can only be assigned to leaf categories and every leaf node
has the same height.

Reuters-Hier1 and Reuters-Hier2 Reuters corpus is one of the most popular datasets
used in TC [25]. Much work in HTC have also used this collection. The Reuters corpus has
21,578 text documents labelled by 135 categories which are not organized in hierarchical
manner. To conduct the experiment, category trees needed to be manually derived. We
have derived two category trees from the Reuters-21578 dataset using the same structure
of the trees as Sun and others in [36] (see Fig. 1) and the same approach of extracting
trees as Koller and his colleges in [20]. In our hierarchies every document contained one
(and only one) major topic and one (and only one) minor topic (or subtopic). For example,
in the Reuters-Hier1 corpus document belongs to the category “corn” if the topic of that
document is set to “corn” and “grain” but is not set to “crude oil”, “wheat”, “ship”, or
“natural gas”. The minor topics are grouped together to the major topics, and major topics
are all grouped together at the top level of the hierarchy. For example, all documents that
belong to the “corn” or “wheat”, at the same time belong to the “grain” category. In the
classification process, we used only title and body parts of the Reuters articles. The major
and minor topics in the two hierarchies are described in Table 1. We used Lewis Split to
split the Reuters collection into training and test sets (as has been done in [36]). These
hierarchies represent only small percentage of the entire Reuters corpus, and we made
them publicly available2.

z

Fig. 1. Reuters hierarchical trees used in our experiments

Table 1. Number of training and test documents for Reuters hierarchies

Reuters-Hier1 Reuters-Hier2

Major topic Minor topic Dataset size Major topic Minor topic Dataset size
Training Testing Training Testing

grain
corn 121 36

livestock
carcass 37 10

wheat 147 50 hog 12 6

crude
ship 41 38

veg-oil
oilseed 17 10

nat-gas 51 18 palm-oil 26 10

Total 360 142 Total 92 36

2 Available at www.matf.bg.ac.rs/˜jgraovac/HTC/ReutersHierarchies.zip
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15NGHier and 20NGHier The 20-Newsgroups3 is a collection of approximately 20000
newsgroup documents, evenly divided into 20 different newsgroups, each corresponding
to a different topic. It was first collected by Lang [23]. Three versions of this dataset
are publicly available but the most popular is bydate version that is sorted by date into
training (60%) and testing (40%) sets. This is the corpus edition we used for the TC
technique presented. 20-Newsgroups corpus is a single label dataset so each document is
guaranteed to have only one category label. There are 18846 documents in this corpus.

According to subject matter, we divided this corpus into 2 hierarchical levels. The
first level consists of 6 categories and the second consists of 20 subcategories (see figure 2
(right)). We called this hierarchy 20NGHier. In [30] the authors built a two-level hierarchy
from 15 categories that fit into 5 top level categories (see figure 2 (left)), so we called this
hierarchy 15NGHier. We used both hierarchies in our work.

Fig. 2. 20-Newsgroups hierarchical trees used in our experiments

TanCorpHier The TanCorpHier corpus4 is a collection of 14,150 text documents in
Chinese collected by Songbo Tan [37]. The corpus is divided in two hierarchical levels.
The first level contains 12 large categories (major topics) (art, car, career, computer, eco-
nomy, education, entertainment, estate, medical, region, science and sport) and the second
consists of 60 subclasses (minor topics). This corpus can serve as three categorization
datasets: one hierarchical dataset (TanCorpHier) and two flat datasets (TanCorp-12 and
TanCorp-60). To evaluate the proposed HTC techniques, we conducted experiments on
the hierarchical structure. In our work, documents are randomly sampled for training set
and test set in the ratio 2 : 1.

4.2. Evaluation Metrics

To analyze the performance of the HTC, we used the typical evaluation metrics for FTC:
Precision (P), Recall (R), and F1 measure [3]. All these measures can be aggregated over

3 20-Newsgroups: people.csail.mit.edu/jrennie/20Newsgroups/
4 Available at http://www.searchforum.org.cn/tansongbo/corpus.htm
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all categories in two ways: micro-averaging – the global calculation of measure conside-
ring all the documents as a single dataset regardless of categories, and macro-averaging –
the average on measure scores of all the categories. In this paper we used micro-averaged
F1 measure (mi-F1).

Most researchers used these standard FTC evaluation measures for HTC. Main disad-
vantage of these measures are penalizing the errors at different levels of the hierarchy in
the same way so some authors have proposed their own HTC evaluation measures ([36],
[5], [21]).

5. Experimental Results

Here we present the results obtained by kNN and SVM techniques (flat and hierarchical).
We compare the results obtained for different granularity of n-grams (byte, character and
word level) in document representation, then we present results of statistical comparison
of the techniques performance and compare techniques with the previously published
BOW SOA results and finally give a brief discussion. In the case of both kNN and SVM
approaches, all document processing is done on the training set only so we avoid creating
overly optimistic experimental results from having any prior access to the test data.

5.1. kNN techniques

As an accuracy baseline, we ran the kNN nF where each minor topic is treated as a sep-
arate category. We trained classifier parameters n and L (using Algorithm 1) for n = 3
to 8 and L = 100 to 5000 with step 100 in the case of Reuters datasets, L = 10000 to
600000 with step 10000 in the case of 15NGHier and 20NGHier and L = 1000 to 10000
with step 1000 in the case of TancorpHier dataset. The best results are obtained for n = 3,
L = 4600; n = 3, L = 3400; n = 7, L = 250000; n = 8, L = 300000 and n = 8,
L = 10000 for Reuters-Hier1, Reuters-Hier2, 15NGHier, 20NGHier and TancorpHier
datasets, respectively (see Table 2).

Then we ran top-down kNN nH. As we already mentioned in the Sect. 3.1, test docu-
ments are classified in the hierarchy by filtering them through the first level classifier and
then sending the document down to the chosen internal node on the second level where a
final category assignment (into a minor topic) is made. Note that errors made at the first
level of the hierarchy are unrecoverable at the second level. Thus, our technique needs
to make two correct predictions in order for a test document to be considered properly
classified. At first, we trained classifier parameters (using Algorithm 3) for n = 3 to 8
and L = 1000 to 10000 with step 1000 at the first level and L = 100 to 5000 with
step 100 at the second level of hierarchy in the case of Reuters datasets; for n = 3 to
8 and L = 10000 to 600000 with step 10000 at the both levels of hierarchy in the case
of 15NGHier and 20NGHier datasets and in the case of Tancorp hierarchy, we trained
parameters for n = 3 to 8 and L = 10000 to 100000 with step 10000 at the first level and
L = 1000 to L = 10000 with step 1000 at the second level of hierarchy. Best values for
n and L for the flat and hierarchical kNN (at the first and second level of the hierarchies),
as well as the results obtained on the test datasets for the corresponding classifeirs, for all
five hierarchies, are presented in the Table 2.
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Table 2. Mi-F1 results for kNN nF and kNN nH learning (all the values are in percentage). Best
values for n and L for the flat kNN and the hierarchical kNN (at the first level and each of the
nodes at the second level of the hierarchies), as well as the results obtained on the test datasets for
the corresponding classifiers, for all the three corpora, are presented. Considerably better results
between flat and hierarchical approach, for each dataset, are marked with boldface

Methods
Datasets

Reuters-Hier1 Reuters-Hier2 15NGHier 20NGHier TancorpHier
n L Mi-F1 n L Mi-F1 n L Mi-F1 n L Mi-F1 n L Mi-F1

kNN nF 3 4600 85.21 3 3400 83.33 7 250000 82.57 8 300000 81.61 8 10000 79.77

kNN nH

3
7000

87.32 3
3000

83.33

7

550000

82.62
7

270000

80.08

5
100000

78.142600 (grain) 2600 (livestock) 300000 (vehicles) 250000 (comp) 10000
4600 (crude oil) 4600 (veg-oil) 250000 (computers) 300000 (rec) (for all nodes)

420000 (politics) 300000 (sci)
310000 (religion) 270000 (forsale)
310000 (sports) 420000 (politics)

310000 (religion)

5.2. SVM techniques

As described in Chapter 3.2, for each corpus totally 28 representations were generated, for
4 different tf-idf statistics (classic,log,boolean1,boolean2) and for 7 lengths of n-grams
(n ∈ {2, 3, 4, 5, 6, 7, 8}). Both types of SVM struct classifiers (flat and hierarchical) were
applied on each representation for all corpora in the following way:

1. In order to tune the value of parameter C and two metaparameters: the type of tf-idf
statistics and n-gram length, we performed 10-fold cross-validation. For the purpose
of validation, the training set was divided into 10 parts of approximately equal size.
We trained models with different combinations of parameters on 9

10 of the training
set and tested it on the remaining 1

10 and repeated this process ten times for different
tenth of the training set aside. We used the average value of the obtained results for
each combination of parameters. Since corpora Reuters 1 and Reuters 2 are small,
cross-validation was performed 10 times on randomly shuffled dataset, and the results
obtained were again averaged. For each corpus, the validation set was separated from
the test set.

2. For optimal values of method’s parameters, classification model was trained on the
entire training set

3. Classification model has been tested and evaluated on the test set

Validation results for both flat and hierarchical SVM struct classifier for all corpora
can be found online5. Table 3 displays the evaluation of the selected models (with pa-
rameters tuned on the validation set) on the test set for each corpus. Overall, best result
obtained with SVM struct is for Tancorp corpus, hierarchical type of classifier, boolean
2 tf-idf statistics and n-gram lenght 3. Tf-idf statistics that showed best performance is
boolean 2 which was selected for 5 out of 6 proposed results (boolean 1 was selected
for flat classifier for Reuters 2 corpus). n-gram lengths that showed best performances
are 4 (Reuters 1, Reuters 2 for flat classifier) and 3 (Tancorp, Reuters 2 for hierarchical
classifier).

5 http://www.matf.bg.ac.rs/˜jovana/HTC/htc_complete_results.xlsx
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Table 3. Mi-F1 results of flat (SVM nF) and hierarchical (SVM nH) SVM clasifier (all the values are
in percentage). Considerably better results between flat and hierarchical approach, for each dataset,
are marked with boldface

Methods
Datasets

Reuters-Hier1 Reuters-Hier2 15NGHier 20NGHier TancorpHier
n tf-idf Mi-F1 n tf-idf Mi-F1 n tf-idf Mi-F1 n tf-idf Mi-F1 n tf-idf Mi-F1

SVM nF 4 boolean2 85.92 4 boolean1 75 4 boolean 86.63 4 boolean 85.40 3 boolean2 86.73
SVM nH 4 boolean2 85.21 3 boolean2 80.56 5 boolean 84.04 4 boolean2 85.37 3 boolean2 87.04

5.3. Byte-level n-grams vs. character and word level n-grams

In order to make the comparison between byte and character or word n-gram based doc-
ument representations, we conducted additional experiments for character and word n-
grams in the case of Reuters-Hier1 dataset, for flat and hierarchical kNN and SVM tech-
niques. Results are presented in Table 4. In the case of byte and char n-grams we obtained
the best results for 4-grams (in the case of SVM) and 3-grams (in the case of kNN), while
in the case of word n-grams, the winner is 1-gram document representation (BOW) for
both techniques, SVM and kNN. From this table we can see that the best results are ob-
tained for byte n-grams (in the case of kNN techniques) and for word n-grams (in the
case of SVM techniques). As we already mentioned, in this paper we used byte n-grams,
because they ensure full language independence of the techniques.

Table 4. Mi-F1 results (in percentages) of flat and hierarchical kNN and SVM for the Reuters-Hier1
corpus. Best results between byte, character and word n-grams are marked with boldface

Mi-F1 kNN nF kNN nH SVM nF SVM nH
byte n-grams 85.21 87.32 85.92 85.21
char n-grams 83.10 85.21 83.10 85.21
word n-grams 82.39 81.69 88.03 85.92

5.4. Comparison with the previous state-of-the-art results

In order to evaluate the presented results, we compare them, based on mi-F1 measure, with
the results published by other authors, obtained by different techniques, using the same
datasets. In the case of English Reuters hierarchies we compare results with the Sun’s
[36] results. We used the same structure of Reuters hierarchies and similar procedure
for constructing the hierarchies. In the case of 20-Newsgroups corpus, for comparison
purposes we used reported BOW kNN and SVM results cited in [22], while in the case of
15NGHier, as the baseline for our comparison we used results of McCallum et al. [30].
In the case of TanCorpHier dataset, we compare our results with the results of Li et al.
[26]. Comparison results are presented in Table 5. In case of the smallest ReutersHier2
corpus, both kNN and SVM hierarchical techniques outperform earlier published ones,
while kNN nH performs the best of all on the smallest ReutersHier2 corpus. Additionally,
SVM nH outperforms current results for the largest TanCorpHier corpus, while SVM nF
outperforms current results for the 15NGHier and 20NGHier datasets.
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Table 5. Mi-F1 comparison of the kNN and SVM techniques with the previous results (all the
values are in percentage)

Authors Technique Datasets Mi-F1

Sun
(2003)

BOW SVM
Reuters-Hier1 88.59
Reuters-Hier2 73.41

BOW NB
Reuters-Hier1 76.54
Reuters-Hier2 65.97

McCallum et al.
(1998)

BOW NB 15NGHier 84

Lan et al.
(2009)

BOW SVM
20NGHier

80.81
BOW kNN 69.1

Li et al.
(2010)

BOW SVM TanCorpHier 82.45

Our proposal

kNN nH / kNN nF
(top-down approach)

Reuters-Hier1 87.32 (-1.27) / 85.21 (-3.38)
Reuters-Hier2 83.33 (+9.92) / 83.33 (+9.92)
15NGHier 82.76 (-1.24) / 82.57 (-1.43)
20NGHier 81.61 (+0.8) / 80.08 (-0.73)
TanCorpHier 78.14 (-4.31) / 79.77 (-2.68)

SVM nH / SVM nF
(big-bang approach)

Reuters-Hier1 85.21 (-3.38) / 85.92 (-2.67)
Reuters-Hier2 80.56 (+7.15) / 75 (+1.59)
15NGHier 84.04 (+0.04) / 86.63 (+2.63)
20NGHier 85.37 (+4.56) / 85.40 (+4.69)
TanCorpHier 87.04 (+4.59) / 86.73 (+4.28)

Note: With boldface we marked the best results obtained for each dataset. For our proposal, in
brackets we presented differences between our results and the best Sun’s [36], Lan’s [22], McCal-
lum’s [30] and Li’s [26] results obtained for corresponding data collection.

5.5. Discussion

N-gram based text representation, either byte-level, character-level or word-level, depend-
ing on granularity, proves useful in application of different text classification methods.
Although it seems not to be a single n that performs the best, n-gram size can be effi-
ciently trained – or chosen – by different machine learning methods, on specific corpora
in specific languages, so as to produce the state-of-the-art results.

Although trained parameters differ for different methods and corpora, results of the
corresponding best classifiers for each corpus and each method (kNN and SVM, flat and
hierarchical) are compared with other relevant classification results and among them-
selves. The proposed methods achieved state-of-the-art results for Reuters-Hier2 (kNN nH),
15NGHier (SVM nF), 20NGHier (SVM nF) and TanCorpHier (SVM nH) datasets. The
results presented show higher accuracy of kNN nH over SVM nH for Reuters-Hier1 and
Reuters-Hier2 datasets, whereas SVM nH performs more accurately than kNN nH for
15NGHier, 20NGHier and TanCorpHier datasets. The reason for this may be the fact that
15NGHier, 20NGHier and TanCorpHier datasets are much larger than Reuters hierar-
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chies so that more sophisticated SVM-with-structural-output method is better trained on
such corpora. Furthermore, flat kNN variant outperforms hierarchical one on TancorpHier
dataset. Again, the reason for this may be the fact that TancorpHier corpus, although very
large, has a very simple and shallow hierarchy so that hierarchical methods cannot be fully
employed. Also, the reason may be suffering from the “blocking” problem. Finally, flat
and hierarchical SVM methods do not perform substantially different for the largest Tan-
CorpHier and 20NGHier corpora. The reason for this may be shallow (2-level) hierarchy
that prevents this powerful mechanism from riching its best performance.

Overall, we may conclude that the question of whether HTC approach is better than
FTC approach remains an open question depending on many factors. One of them is the
evaluation measure used. In TC process it does not only matter how many mistakes are
made, but also how serious they are. This suggests that, since HTC approaches show si-
milar or better results against the FTC approach when using flat categorization evaluation
metrics, they may produce much better results if a hierarchical categorization evaluation
measure was used instead [34].

6. Conclusion and Future Work

We presented two new hierarchical text categorization (HTC) techniques based on kNN
and SVM machine learning techniques. Due to the byte n-gram based document represen-
tation, presented HTC techniques do not require word or character segmentation, do not
need any text preprocessing or higher level processing, such as tagging, parsing, or other
language-dependent and non-trivial natural language processing tasks. For conducting
experiments, we used five tree-structured benchmark datasets: Reuters-Hier1, Reuters-
Hier2, 15NGHier and 20NGHier in English and TanCorpHier in Chinese.

In the case of kNN we developed a byte n-gram-based top-down HTC technique
(kNN nH). Experimental results confirm that this technique in the case of (smaller) Reuters
hierarchies and 15NGHier gives better or equal results than flat text categorization tech-
nique, but in the case of (larger) 20NGHier and TanCorpHier it gives lower accuracy.
The reason for the latter may be that the HTC technique developed may suffer from the
“blocking” problem so it may be improved by incorporating some error recovery mecha-
nism to correct the mistakes made by the parent classifier. This will be our task for future
work.

In the case of SVM approach we used SVM struct in two ways: first, to act as a flat
multiclassifier (SVM nF), and second, to act as a hierarchy classifier (SVM nH) following
the big-bang approach. In the case of TanCorpHier, 15NGHier and 20NGHier datasets,
we obtained the state-of-the-art results. Since SVM technique is sensitive to the size of
the dataset, we obtained lower performance for Reuters hierarchies. We need to stress out
that we applied the SVM technique without any feature selection (FS) or feature extraction
(FE) technique, which gives this technique great potential for improvements. We plan to
test the technique for combination of different size n-grams (for example, 3-grams and
4-grams), for different weight measures (not only the basic tf-idf), for different kernel
functions and different FS or FE techniques.

The presented techniques may be extended in different ways. First, different hierar-
chical evaluation metrics may be applied in order to give different weights to successful
classification at different levels of the hierarchy. Also, we plan to test the technique on
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more complex hierarchies (directed acyclic graph, non mandatory leaf-node prediction
and multi-label case). We expect that the SVM nH will be superior in that case. Another
possible research direction would be combining both kNN and SVM approaches in order
to improve accuracy. Since our techniques are topic and language independent, we plan
to apply them to other domains and languages as well.

Acknowledgments. The work presented has been financially supported by the Ministry of Sci-
ence and Technological Development, Republic of Serbia, through Projects No. 174021 and No.
III47003.
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