Variable Neighborhood Search for solving Bandwidth Coloring Problem

DOI: 10.2298/CSIS160320012M

Dragan Matić¹, Jozef Kratica², and Vladimir Filipović³

- Faculty of Mathematics and Natural Sciences, Mladena Stojanovića 2 78000 Banjaluka, Bosnia and Herzegovina matic.dragan@gmail.com
- Mathematical Institute of the Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia jkratica@gmail.com
 Faculty of Mathematics, Studentski trg 16 11000 Belgrade, Serbia vladofilipovic@hotmail.com

Abstract. This paper presents a variable neighborhood search (VNS) algorithm for solving bandwidth coloring problem (BCP) and bandwidth multicoloring problem (BMCP). BCP and BMCP are generalizations of the well known vertex coloring problem and they are of a great interest from both theoretical and practical points of view. Presented VNS combines a shaking procedure which perturbs the colors for an increasing number of vertices and a specific variable neighborhood descent (VND) procedure, based on the specially designed arrangement of the vertices which are the subject of re-coloring. By this approach, local search is split in a series of disjoint procedures, enabling better choice of the vertices which are addressed to recolor. The experiments performed on the geometric graphs from the literature show that proposed method is highly competitive with the state-of-the-art algorithms and improves 2 out of 33 previous best known solutions for BMCP.

Keywords: Bandwidth Coloring, Bandwidth MultiColoring, Frequency Assignment, Variable Neighborhood Search, Variable Neighborhood Descent

1. Introduction

Vertex coloring problem (VCP) and its generalizations belong to a well known and widely researched class of graph coloring problems. Various generalizations and variants of VCP have been researched over the years and there are thousands of scientific papers proposing various methods for solving VCP and its generalizations.

In VCP, one needs to color the vertices of the graph in such a way that adjacent vertices must be colored with different colors and the aim is to minimize the number of used colors. During the years, as one of the most studied NP-hard combinatorial optimization problems, VCP has undergone many generalizations. This paper deals with two generalizations of VCP: bandwidth coloring problem (BCP) and bandwidth multicoloring problem (BMCP).

BCP is a straightforward generalization of VCP, where for each two adjacent vertices u and v the distance, d(u,v) is imposed and the difference between two colors assigned to u and v must be larger than or equal to the defined distance. The set of used colors is

assumed to be the set of consecutive integers $\{1, 2, ..., k\}$ and the task of BCP is to color the vertices by colors from the set of available colors, where the number k is as small as possible.

Formally, for a graph G=(V,E) with positive integer distance function d(u,v), $(u,v)\in E$, the objective of BCP is to find the coloring $c:V\to\{1,2,...,k\}$ such that for each pair of adjacent vertices u and v, $|c(u)-c(v)|\geq d(u,v)$ and the total number k of used colors is minimized. Obviously, if the distance between any pair of adjacent vertices is equal to 1, BCP is brought down to VCP.

BMCP generalizes BCP by including the multicoloring of the vertices. For each vertex v in the input graph a positive integer weight w(v) is given, holding the information how many colors must be assigned to that vertex. Additionally, distance between the vertex to itself is also given, holding the condition inherited from BCP. Formally, let G=(V,E) be a graph with positive integer weights on vertices w(v), $v \in V$ and positive integer distance function d(u,v), $(u,v) \in E$. In the case u=v, the value d(u,u) associated to the loop edge (u,u), represents the minimum distance between different colors assigned to the same vertex u. A feasible coloring in BMCP is defined as follows: to each vertex $u \in V$, one needs to assign a set c(u) of total of w(u) distinct colors, such that for each edge $(u,v) \in E$ holds $(\forall p \in c(u))(\forall q \in c(v))(|p-q| \geq d(u,v))$, i.e. the difference between any colors of vertices u and v must be not less than the distance associated to the edge (u,v). In the case of loop edges (u=v), the condition $(\forall p,q \in c(u), p \neq q)(|p-q| \geq d(u,u))$ must be satisfied. BMCP is reduced to BCP if for each vertex u holds w(u)=1.

BMCP can be converted into BCP, by splitting each vertex v into a clique of cardinality w(v). Each edge in the clique is assigned the distance d(u,u), corresponding to the distance of the loop edge of the vertex u in the original graph. By this approach, each instance of BMCP, with n vertices, is transformed to the instance of BCP, having $\sum_{i=1}^n w(i)$ vertices. This fact leads to the approach of constructing the algorithm for solving only BCP which, after the explicit or implicit construction of the appropriate graph, can also be applied to solve BMCP.

Since VCP is NP-hard in the strong sense, BCP and BMCP are NP-hard in the strong sense as well.

Like many other graph - based problems, VCP and its generalizations enjoy many practical applications. For example, it is well known that timetabling problems can be interpreted as graph coloring problems. Timetabling problems typically include the task of assigning timeslots to the events. In university timetabling problems, events (lectures or exams) are interpreted as vertices, constraints by edges and timeslots by colors. If a new constraint is introduced by including the required time distance between two exams, the coloring problem which arises from this approach becomes BCP. Additional constraints can be placed on the each vertex, for example, if one exam has to be organized for many groups of students. In that case, the corresponding coloring problem is BMCP. A detailed survey of university timetabling problems can be found for example in [31].

Recent approaches for solving timetabling problems, based on using graph coloring techniques, involves the hybridization of the methods automated by the hyper-heuristic methods: a generic hyper-heuristic approach of various constructive heuristics for solving VCP is presented in [4]. In a consecutive work [28], the authors presented a random iterative graph based hyper-heuristic, which adaptively hybridise two graph coloring heuristics

at different stages of solution. Another recent hyper-heuristic approach [30] utilizes the hierarchical hybridizations of four low level graph coloring heuristics: largest degree, saturation degree, largest colored degree and largest enrollment. A constructive heuristic for finding a feasible timetable is recently presented in [3]. Much more information and a recent general survey of graph coloring algorithms can be found in [17].

Tasks of managing frequencies are in a connection with vertex coloring, particularly with BCP and BMCP. A common feature of most of frequency assignment problems (FAP) includes the distance constraint imposed on pairs of frequencies, in order to avoid or reduce the interference between close communication devices. In other words, two communication points which are close enough (as so can interfere with each other) must be assigned with the enough different frequencies. Among other variants of FAP problem, of the special interest is Minimum Span Frequency Assignment Problem (MS-FAP): the problem is to assign frequencies in such a way that the interference between the points is avoided, and the difference between the maximum and minimum used frequency, the span, is minimized. This problem is equivalent to the BCP. In a case when the feature that one point is to be assigned with more than one frequency, the problem becomes the BMCP. More detailed classification of various FAP problems is described in [1].

In connection with FAP problems, Hale [9] introduced so called T-coloring of the graph. For a given graph G = (V, E) and for each edge $\{u, v\} \in E$, we associate a set $T_{u,v}$ of nonnegative integers, containing 0. A T-coloring of G is a function (an assignment) $c:V(G)\to \mathbf{N}$ of colors to each vertex of G, so that if u and v are adjacent in G, then |c(u)-c(v)| is not in $T_{i,j}$. In simple words, the distance between two colors of adjacent vertices must not belong to the associated set T. The span of a T-coloring c is the difference between the smallest and the highest color in c. The optimization version of T-coloring is finding the minimum span of all possible T-colorings. It is obvious if $T_{u,v} = \{0\}$ for each edge $\{u, v\}$, then problem becomes VCP. A generalization of T-coloring is a set Tcoloring problem [32], which introduces the multiple coloring of vertices in the graph. For each vertex v, the set T-coloring problem includes the assignment of a nonnegative integer δ_v , providing the information how many colors need to be assigned to v. Also, for each vertex v a set $T_{v,v}$ is introduced. The constraints for each pair of adjacent vertices, previously introduced in T-coloring problem are extended with the constraints related to each vertex v: the distance of any two numbers (colors) assigned to v must not be in $T_{v,v}$. BCP is a restriction of T-coloring, where the constraint on adjacent vertices is replaced by the proper condition of BCP: |c(u) - c(v)| > t(u, v), where t(u, v) is a numerical value. Similarly, BMCP can be considered as an instance of the set T-coloring problem, where the set $T_{v,v}$ is replaced by the numerical value, corresponding to d(v,v). A survey of the results and problems concerning with T-colorings can be found in [29].

More applications, as well as other discussions considering graph coloring and its generalizations is out of the paper's scope and can be found for example in [17,21,8].

Although BCP and BMCP can be applied to any class of graphs in general case, a central place in solving BCP and BMCP take graphs which simulates real networks, where the level of interference between vertices is proportional to their distance. For that reason, of a particular interest are so called geometric graphs, i.e. the graphs where vertices corresponds to points in the plane, while two vertices are adjacent if their distance is below a fixed threshold. In our paper we follow this approach of considering such kind of graphs

and test our algorithm on commonly used GEOM instances from literature, although the proposed algorithm can also be applied on other classes of graphs.

The rest of this paper is organized as follows. The next section recapitulates previous work regarding BCP and BMCP. VNS approach is described in details in Section 3. Section 4 contains experimental results obtained on the instances from the literature, while the last section contains conclusions and future work.

2. Previous work on solving BCP and BMCP

As stated above, BCP and BMCP, as well as MS-FAP have been intensively solved by a large number of methods. In 2002, in order to encourage research on computational methods for solving graph coloring problems, a "Computational Symposium on graph coloring and its generalization" was organized. The Symposium included the following topics: exact algorithms and heuristic approaches for solving the graph coloring problems, applications and instance generation, as well as methods for algorithm comparison [33]. At the Symposium, several successful heuristic methods were proposed. A problemindependent heuristic implementation called Discropt, designed for "black box optimization", was adapted to graph coloring problems and provided a good test of the flexibility of the system [25]. At the same symposium, Prestwitch [26] proposed a heuristic based on the hybridization of local search and constraint propagation. In the consecutive contribution [27], the author extended his previous work by adding the constraint programming technique of forward checking in order to prune the coloration neighborhoods. Hybrid methods using a squeaky-wheel optimization, combined with hill-climbing and with tabu heuristic, were described in [18] and [19]. Chiarandini et al. in [5] presented an experimental study of local search algorithms for solving general and large size instances of the set T-coloring problem.

Malaguti and Toth [20] proposed a successful method for solving BCP and BMCP, which combines an evolutionary algorithm with a tabu search procedure. Like the method used in [19], Malaguti and Toth's algorithm starts with the construction of an initial solution with a greedy approach. After that, it tries to improve the starting solution by reducing by one unit the number of colors used. Marti et al. [22] proposed the memory-based and memory-less methods to solve the bandwidth coloring problem, based on tabu search and GRASP. Paper presented by Lai and Lü [15] uses Multistart iterated tabu search (MITS) algorithm, which integrates an iterated tabu search with multistart method and a problem specific operator designed for the perturbation. The tabu search proposed in [15] is successfully combined with a path relinking algorithm [16]. In a work presented by Jin and Hao [14], a learning-based hybrid search is used for solving BCP and BMCP.

Lastly, in a very recent unpublished work [6], the authors proposed the constraint and integer programming formulations for solving BCP and BMCP. By using these models, some heuristic solutions from previous works are proven to be optimal and some upper bounds for other instances are given.

From the last paragraph it is evident that in recent years BCP and BMCP have been intensively solved by many highly efficient heuristics. As a consequence, the solutions for the benchmark data got by these methods are of a very high quality. In the next section, we describe the variable neighborhood search, which can further improve two of these intensively solved benchmark instances.

3. VNS for solving BCP and BMCP

This section presents the VNS for solving BCP and BMCP. Recall that each BMCP instance is implicitly transformed to an instance of BCP, by replacing each vertex v of the weight w(v), by the clique of the size w(v).

It should be mentioned that this transformation in most cases is not polynomial if the weights are in the function of the total number of vertices and newly obtained graphs can be of very large dimensions. Practically, this transformation can be effectively performed only in cases when the weights assigned to vertices are relatively small. This is the case with the GEOM instances from [33], considered and tested in this paper. Therefore, only the algorithm for solving BCP is described, but it is also applied on the BMCP, after the mentioned transformation of the instances.

Variable Neighborhood Search (VNS) algorithm was originally described by Mladenović and Hansen ([24,10]). In recent years, VNS has been proven as a very effective and adoptable metaheuristic, used for solving a wide range of complex optimization problems. The basic strategy of the VNS is to focus the investigation of the solutions which belong to some neighborhood of the current best one. In order to avoid being trapped in local suboptimal solutions, VNS changes the neighborhoods, directing the search in the promising and unexplored areas. By this systematic change of neighborhoods, VNS iteratively examines a sequence of neighbors of the current best solution, following the approach that multiple local optima are often in a kind of correlation, holding the 'good parts' of the current best solution and trying to improve the rest of it.

Many successful implementations of the standard VNS, as well as its many variants, prove that this successive investigation of the quality of the current solution's neighbors can lead to better overall solutions. Standard VNS usually imposes two main procedures: shaking and local search (LS). Shaking procedure manages the overall system of the neighborhoods and in each iteration suggests a new point (potential solution) from the current neighborhood. In order to better widen the search, shaking procedure often uses the neighborhoods of the different cardinality. More precisely, for the given numbers k_{min} and k_{max} , a system of neighborhoods $N_{k_{min}}$, $N_{k_{min}+1}$, ..., $N_{k_{max}}$ is constructed. For each value $k \in [k_{min}, k_{max}]$, a (usually random) solution from the neighborhood N_k is chosen, which is the subject of further possible improvement inside the LS procedure.

LS is trying to improve the suggested solution, by investigating the other solutions in its neighborhood, usually formed by some minor changes of it. Local search is usually implemented by using either best improving strategy or first improving strategy. While in the best improving strategy local search investigates all neighbors, keeping the current best one as a new solution, the first improving strategy stops when the first improving neighbor is found.

In the proposed VNS, we enhance the basic LS approach by "splitting" the local search in a disjoint union of smaller ones, enabling the algorithm to "switch" between different neighborhoods inside the LS procedure. The current neighborhood is analysed until the solution is improved. If so, it is restarting from the first neighborhood, otherwise, goes into the next one. This approach requires the introduction of a specific variable neighborhood descent (VND) procedure which manages the examination of the neighborhoods, allowing the algorithm to first analyse the best suitable one. The description of the VND is in details explained in Subsection 3.4.

The optimization process of the VNS algorithm finishes when the stopping criterion is achieved, usually given by the maximum number of iterations or maximum time allowed for the execution and the latter is the case in this paper.

Some recent successful implementation of the VNS using the VND approach can be found for example in [13,12,11].

The overall VNS algorithm is shown in Figure 1. The algorithm inputs the following data: distance constraint matrix, values k_{min} and k_{max} , denoting the minimal and maximal neighborhood structures, $time_{max}$ - maximal allowed execution time and the value p_{move} , representing the probability of shifting from one solution to another, in a case of equal objective functions. After the data input, VNS starts with a greedy heuristic (described in Subsection 3.1), which gives the upper bound (UB) for the total number of colors. After the UB is determined, the initial value of k^* is set to UB (legal coloring with UB colors), and the starting solution of the VNS is constructed by the procedure Init(). Initial solution uses one color less than the value UB. This procedure, together with the objective function, is described in Subsection 3.2. The minimization process is performed in the shaking procedure (Subsection 3.3) and the VND procedure, which is, together with the Compare procedure described in Subsection 3.4. During the minimization process inside the VND procedure the algorithm is trying to improve the solution to the feasible one. If this situation happens, the value k^* is decreased by one, that legal coloring is remembered and the algorithm repeats the search process by decreasing the total number of colors. The algorithm stops when the maximum execution time is reached. The result of the algorithm is the value k^* , i.e. the k^* -coloring of the given graph.

```
Data: Graph, Distance constraint matrix, k_{min}, k_{max}, time_{max}, p_{move}
Result: number k^*
xs \leftarrow \text{GreedyHeuristic()};
x \leftarrow \text{RemoveLastColor}(xs);
k \leftarrow k_{min};
while time < time_{max} do
     x' = \operatorname{Shaking}(x, k);
     x''=VND(x,x');
     if Compare(x'', x, p_{move}) then
          x \leftarrow x'';
     else
          if k < k_{max} then
               k \leftarrow k + 1;
          else
               k \leftarrow k_{min};
          end
     end
end
```

Fig. 1. VNS pseudocode

3.1. Constructive heuristics

Before the minimization process is started, an initial solution (legal k-coloring, for some k) needs to be constructed. Our algorithm uses the greedy approach similar to the greedy algorithm used and minutely described in [19,7]. This greedy algorithm takes a sequence of 'split nodes', greedily assigning colors to them. For each node a set of 'forbidden' colors is first formed and after that the algorithm chooses the smallest color not belonging to that set.

In the literature, other approaches for getting starting solutions are also used. For example, Malaguti and Toth in [20], considered several greedy algorithms proposed for solving VCP: sequential greedy algorithm (SEQ), as well as another greedy approach - DSATUR from [2], similar to SEQ, but one which dynamically chooses the vertex to color next, i.e. the one which minimizes a given score. In order to fast compute an initial upper bound, Malaguti and Toth performed 20 runs of the greedy algorithm SEQ.

Malaguti and Toth's greedy approach in most case instances achieves better (lower) upper bounds than the greedy algorithm we took from [7], but the experiments indicate that presented VNS easily decrease those (higher) upper bounds. Therefore, using slightly greater starting values of k could not significantly aggravate the overall optimization process. The exceptions of this "rule" can appear in some cases of small instances, where Malaguti and Toth's greedy algorithm achieves nearly best known solutions, so iteration process needs to decrease the upper bound only for few values. In these cases, our algorithm needs some more time, since it starts with higher upper bounds.

In recent papers ([15,16,14]), the proposed algorithms simply start with the best known value of k from the literature as a starting value and try to construct the feasible k-coloring. In case of success, i.e. the legal k-coloring is found, the algorithms decrease the value k by 1 and try to find the k-1 coloring. This iterative process stops when no legal coloring can be found. Although this approach appears to be very successful and can speed up the overall process (because the algorithms do not spend any time to construct some starting solution and decrease it many times in the optimization process), we still decided to follow the approach used in [19,20,7]: our basic approach is to construct an initial feasible solution by greedy algorithm and improve it in the iteration process, while the stopping criteria are not satisfied.

3.2. The initialization and the objective function

For the given graph G=(V,E), the solution is represented by an integer array of the dimension $n,\ n=|V|$. After the upper bound (UB) is determined by the greedy approach, the VNS starts with the constructing the initial solution. Each vertex is randomly colored by a color chosen from the interval [1,UB-1]. From this representation, it is obvious that the algorithm deals both with feasible and infeasible solutions. So, in the objective function, each solution is a subject of the evaluation, where the objective value is proportional to the "degree of infeasibility". In order to construct the appropriate function, we took into account not only the number of conflicts (pairs of adjacent vertices i and j for which a conflict appears) but also the "degree" of each conflict, i.e. the difference between the given distance and the distance between two assigned colors. Similar approach can also be seen for example in [15,7].

For the given solution x, represented by the array $(x_1, x_2, ..., x_n)$, where x_i , i =1..n is the color assigned to the vertex i, the objective function Calculate() is defined as follows:

$$Calculate(x) = \sum_{\{i,j\} \in E} \max\{0, d(i,j) - |x_i - x_j|\},$$
(1)

where d(i, j) is the given distance between the vertices i and j. From the equation (1) it can be seen that the infeasible solutions are penalized by increasing the value of the objective function, if the distance conflicts appear. In a case when there are no distance conflicts, the objective function is equal to 0 and in that case the solution is feasible i.e. the legal coloring is found. Additionally to the calculating the objective function, in the procedure Calculate() for each vertex v we remember the value conflicts(v) containing the value of distance conflicts of v. More precisely, this value is calculated by the formula:

$$conflicts(v) = \sum_{j:\{v,j\}\in E} \max\{0, d(v,j) - |x_v - x_j|\}.$$
 (2)

These values, obtained for each vertex $v \in V$, take places for the arrangement of the vertices, performed inside the VND procedure.

Neighborhoods and Shaking procedure

The shaking procedure creates a new solution $x', x' \in N_k(x)$, which is based on the current best solution x.

In order to define the k-th neighborhood we use the following procedure. Some kvertices from V are chosen randomly and for each chosen vertex, the color is randomly changed to some other color from the interval $[1, max_color]$, where max_color is the maximal color used in the coloring. The solution x', formed in the described way is the subject of the further improvements in the VND.

In the algorithm, the value k_{min} is set to 2. Experiments show that the algorithm achieves best performances for $k_{max} = 20$.

Variable neighborhood descent

After the solution x' is obtained by the shaking procedure, a series of special designed local search procedures is called. In each call, the ordering of vertices, which are the subject of change in the VND procedure, is determined. This ordering enables the vertices with more conflicts to earlier become the subject of improvement. This number of conflicts is calculated for each vertex each time when the function Calculate() is called (see Subsection 3.2). This strategy avoids the unnecessary steps in the local search, by increasing the probability that the solution will be earlier improved if the "worse" vertices are considered first, rather than if the vertices are considered sequentially without ordering. At the other hand, experiments show that this criterion is not enough for getting a quality ordering, since many vertices, after a few iterations, have the same number of conflicts (in the sense of the value conflicts(v)). So, additional criteria are involved. First, we started from the fact that the colors used in BCP are not equal among themselves (like in the case of VCP). In fact, the colors which are closer to the middle of the interval [1, nc] (nc is total number of used colors) are harder to be replaced by another, comparing to the colors far off-the middle. So, if two vertices u and v have the same number of conflicts, conflicts(u) = conflicts(v), we first choose u if $|nc/2 - x_u| < |nc/2 - x_v|$, otherwise we first choose v.

In order to further improve the behaviour of the VND, we involve one additional criterion for the arrangement of the vertices, in cases when first two criteria do not make any difference between vertices. The third criterion is based on two components: for each vertex v we calculate the value weights(v), as the sum of the weights (distances) of the edges incident with v. Additionally, for the vertex v, we take into account the maximal edge weight (distance) for the vertex v (maxw(v)). Finally, the third criterion is calculated by the geometric mean of these two values, i.e. in cases when first two criteria do not determine the priority, the vertex u is chosen before the vertex v if $\sqrt{weights(u) \cdot maxw(u)} > \sqrt{weights(v) \cdot maxw(v)}$. Otherwise, the VND first choose v. Although the third criterion influence on the ordering relatively rarely, the experiments show that it refines the ordering of vertices in a good direction and improves the overall VND.

Beside the main experiments described in Subsections 4.1 and 4.2, in order to justify the usage of these three criteria, additional experiments are performed. In the experiments (described in Subsection 4.3), various combinations of the mentioned criteria are considered. The obtained results indicate that the approach of using all three criteria generally provides better results than variants in which some of these criteria are omitted.

The pseudocode of the VND procedure is shown in Figure 2.

After the objective function for the solution x'' is calculated by the function $\operatorname{ObjF}()$ and the array of vertices is arranged by using the mentioned criteria, the VND iteratively chooses the vertices from that array. For the selected vertex v, the VND is trying to find "better" color in the following way. If the vertex v is currently colored by the color x_v , we first "uncolor" that vertex, also removing the conflicts which arise by using that color for the vertex v. It should be noted that we do not need to calculate the objective function from the beginning, since only conflicts related to the chosen vertex influence on the total sum. Therefore, after only these conflicts are removed, we iteratively color the vertex v by all other colors, trying to find better coloring. Simultaneously, we calculate the new conflicts, which appear by new coloring and remember these values (conflicts). After we tried all the colors for the vertex v, we choose the one, which generates the least total sum of conflicts. In that way, we get a new temporary solution xt'' and three possibilities can happen:

- The objective value of xt'' is equal to 0: That means that the VND was totally successful and not just improved the objective value, but gave the feasible coloring with the less number of colors than the previous best one. In this case, we remember that coloring, set xs = xt'' and continue the search as follows: we set up a new current solution x'' = xt'' and replace the maximal color in x'' by some other, randomly chosen color. The VND, i.e. the improvement process is then applied again on the current x'' and the next vertex. It should be noted that if this case happen, the maximum number of colors may be decreased by more than one in one such step.
- The objective value of xt'' is greater than 0, but still less than the starting one: we hold the changes arisen in the current step, we set x'' = xt'' and continue the VND with the next vertex.

```
Data: x,x'
impr \leftarrow true;
x'' \leftarrow x';
while impr do
    impr \leftarrow false;
    objval \leftarrow \mathsf{ObjF}(x'');
    vertices \gets \mathsf{qsort}(vertices, criteria);
    \textbf{for each } \textit{vertex } v \in \textit{vertices } \textbf{do}
          uncolor(v);
          remove_conflicts(x'',v);
          foreach color\ c do
               recolor(v,c);
               calculate_new_conflicts(x'');
          end
          xt'' = \text{find\_best\_recoloring}(x'');
          if (ObjF(xt'')==0) then
               //feasible coloring is found;
               x'' \leftarrow xt'';
               impr \leftarrow true;
               xs \leftarrow xt'';
               k^* \leftarrow \max\_\operatorname{color}(xt'');
               remove\_last\_color(x'');
          else
               if (ObjF(xt'') < objval) then
                     //improvement happened;
                     x'' \leftarrow xt'';
                     impr \leftarrow true;
                     objval = ObjF(xt'');
               end
          end
    end
end
```

Fig. 2. VND pseudocode

- The objective value of xt'' is greater or equal than the starting one: we continue the VND with x'' and the next vertex, without any change.

The VND finishes when no more improvements can be done and the algorithm analysis the results of the VND in the procedure Compare: In cases when number of colors used in the solution x'' is less than in the solution x, or if the objective value of x'' is less than of the x, the currently best solution x gets the value x''. If the objective values of the two solutions x and x'' are the same, then x = x'' is set with probability p_{move} and the algorithm continues the search with the same neighborhood. In all other cases, the search is repeated with the same x and the next neighborhood.

Because of the fact that there can be a large number of solutions with the same objective value in a neighbor of the current best one (especially when the objective value is decreased to 1), the decision whether the algorithm will move or not to another solution of the same quality is very important step. Therefore, appropriate setting the parameter p_{move} , which influence to that decision is a crucial part for success of the overall searching process. Although some VNS implementations allow low values of p_{move} , even $p_{move}=0$ (see for example [23]), the experiments indicate that the proposed algorithm for solving BCP achieves best performances for the value $p_{move}=0.5$. While in the case of BCP lower values of parameter p_{move} usually leads to premature convergence into suboptimal solutions, higher values should also be avoided, since they can cause the appearance of cycles. The value $p_{move}=0.5$ is a compromise between these two extreme cases, since it gives enough probability to move to another solution of the same quality, while the probability of the appearance of the cycle is still rather low.

4. Experimental results

This section presents the experimental results, which show the effectiveness of the proposed VNS. All the tests are carried out on the Intel i7-4770 CPU @3.40 GHz with 8 GB RAM and Windows 7 operating system. For each execution, only one thread/processor is used. The VNS is implemented in C programming language and compiled with Visual Studio 2010 compiler.

For all experiments we used standard set of GEOM instances, which consists of 33 geometric graphs generated by Michael Trick, available in [33]. In each GEOM instance, points are generated in a 10,000 by 10,000 grid and are connected by an edge if they are close enough together. Edge weights are inversely proportional to the distance between vertices, which simulates the real situations where closer adjacent vertices stronger interference each other. This set contains three types of graphs: for each dimension, one sparse (GEOMn) and two denser graphs (GEOMna and GEOMnb) are given. The instances are originally generated for BCP, but they are also transformed for solving BMCP, by introducing the weights of vertices. For BMCP, vertex weights are uniformly randomly generated, between 1 and 10 for sets GEOMn and GEOMna, and between 1 and 3 for set GEOMnb.

Since there are several state-of-the-art algorithms in the literature, we could not establish a unique set of algorithm parameters to make a complete fair comparison to all these methods. Anyway, we decided to follow similar conditions from the most recent and most successful approaches [20,15,16,14]. To check the speed of the our computer

CPU, we used a standard benchmark program (dfmax), together with a benchmark instance (R500.5) also used in the reference works. For this instance, we report the computing time of 8 seconds, which is similar to the times reported in other recent works. Similar to the approach in [16], we set the timeout limits to 2 hours for BCP instances and 4 hours for MBCP instances. The algorithm stops if it cannot solve the coloring within the time limit. For each instance, we performed 30 independent executions, which is also the case in [15].

4.1. Experimental results on BCP instances

This section reports the experimental results obtained on the first set of instances, related to BCP problem. Table 1 provides the results obtained by the presented VNS. The data in the table are organized as follows: first three columns contain the instance name, number of vertices (|V|) and number of edges (|E|). The fourth column contain the best known result from the literature. The next five columns contain data related to the VNS: column (k^*) contains the best found result, the average result (column avg) obtained in 30 runs, the total average execution time in seconds needed to achieve the presented best result (column time), the hit rate (N_{hit}) , as well as the column $(k^* - best)$, which contains the difference between the best result obtained by the VNS and the previous best-known result from the literature.

Table 1. Results of the VNS obtained on BCP instances

-	Instance	V	E	best	k^*	avg	time[s]	N_{hit}	$k^* - best$
-	GEOM20	20	40	21	21	21	0.00643	30/30	0
	GEOM20a	20	57	20	20	20	0.01507	30/30	0
	GEOM20b	20	52	13	13	13	0.0053	30/30	0
	GEOM30	30	80	28	28	28	0.01023	30/30	0
	GEOM30a	30	111	27	27	27	0.086	30/30	0
	GEOM30b	30	111	26	26	26	0.00817	30/30	0
	GEOM40	40	118	28	28	28	0.01657	30/30	0
	GEOM40a	40	186	37	37	37	1.21	30/30	0
	GEOM40b	40	197	33	33	33	2.9218	30/30	0
	GEOM50	50	177	28	28	28	0.03407	30/30	0
	GEOM50a	50	288	50	50	50	4.2695	30/30	0
	GEOM50b	50	299	35	35	35.0333333	716.35247	29/30	0
	GEOM60	60	245	33	33	33	0.15027	30/30	0
	GEOM60a	60	399	50	50	50	23.6351	30/30	0
	GEOM60b	60	426	41	41	41.8	6430.65223	7/30	0
	GEOM70	70	337	38	38	38	0.32483	30/30	0
	GEOM70a	70	529	61	61	61.0666667	1513.0634	28/30	0
	GEOM70b	70	558	47		49.2333333	7702.62073	2/30	1
	GEOM80	80	429	41	41	41	2.59037	30/30	0
	GEOM80a	80	692	63	63	63.3666667	3487.41707	21/30	0
	GEOM80b	80	743	60		61.8666667	7851.79623	2/30	0
	GEOM90	90	531	46	46	46	1.5592	30/30	0
	GEOM90a	90	879	63		64.1333333		5/30	0
	GEOM90b	90	950	69	71	72.7	7627.29127	4/30	2
	GEOM100	100	647	50	50	50	320.8932	30/30	0
	GEOM100a	100	1092	67	68	69.5666667	8227.2824	4/30	1
	GEOM100b	100	1150	72	73	75.3666667	7945.8779	4/30	1
	GEOM110	110	748	50	50	50.0333333	943.76663	29/30	0
	GEOM110a		1317	71	71		9152.86497	2/30	0
	GEOM110b		1366	77	79		8829.13587	2/30	2
	GEOM120	120	893	59	59	59.0333333	615.18443	29/30	0
	GEOM120a		1554	82	82	84.2666667		2/30	0
	GEOM120b	120	1611	84	86	87.9333333	9159.90177	2/30	2

It should be noticed that there was a doubt in literature about the best results on instances GEOM20, GEOM30 and GEOM40, since results reported in [25] were better than the results from most other papers. In the recent technical report [6], the authors proposed the integer linear formulation for solving BCP and BMCP. It verified optimality of

GEOM20, GEOM30, GEOM40 instances, which are equal to 21, 28 and 28, respectively. From Table 1, it can be seen that the proposed VNS algorithm achieves all best known results for smaller instances up to 60 vertices.

For the rest of the instances (total of 18 middle and larger instances), VNS achieves 12 best results and in 6 out of 18 cases VNS is not able to reach previously best-known solution from the literature.

The proposed VNS solves the sparse graphs (GEOMn) easier than the dense ones (GEOMna and GEOMnb). From the column N_{hit} , it can be seen that the ratio between the number of runs of the VNS when the previously best-known solution is reached and the total number of runs (30) is rather high for sparse graphs.

Table 2 describes the comparison of our approach to the state-of-the-art methods. The data are organized as follows: The first column contain the instance name. The rest of the table contain data related to the approaches: the best result of the Discropt general heuristics (DGH) presented by Phan and Skiena [25] (the execution time is not reported), Prestwich's forward checking coloration neighborhood search (FCNS) from [27], Malaguti and Toth's evolutionary algorithm (EA) from [20], the MITS algorithm presented by Lai and Lu from [15], path relinking (PR) algorithm from [16] and learning hybrid-based search (LHS) from [14]. All these results are extracted from [14]. Last three columns contain best results, the execution times for the proposed VNS and the difference between best VNS and previous best known result. It should be noted that the execution times are very different and are not reasonable comparable, since the algorithms achieve different *k*-colorings and the algorithms were run on the machines with different CPU speeds.

Table 2. Comparison of the proposed VNS algorithm to other reference works on BCP instances

		DGH [25]	FC	NS [27]	Е	A [20]	MITS [15]		S [15] PR [16]		LHS [14]			VNS	
Instance	best	k	k	time[s]		time[s]	k	time[s]	k	time[s]	k	time[s]	k^*	time[s]	diff
GEOM20	21	20*	21	0	21	0	-	-	21	0	21	0	21	0.00643	0
GEOM20a	20	20	20	0	20	0	20	0	20	0	20	0	20	0.01507	0
GEOM20b	13	13	13	0	13	0	13	0	13	0	13	0	13	0.0053	0
GEOM30	28	27*	28	0	28	0	-	-	28	0	28	0	28	0.01023	0
GEOM30a	27	27	27	0	27	0	27	0	27	0	27	0	27	0.086	
GEOM30b	26	26	26	0	26	0	26	0	26	0	26	0	26	0.00817	0
GEOM40	28	27*	28	0	28	0	-	-	28	0	28	0	28	0.01657	0
GEOM40a	37	38	37		37		37		37		37	0	37	1.21	0
GEOM40b	33	36	33		33		33		33		33	0	33	2.9218	0
GEOM50	28	29	28		28		28		28	0	28	0	28	0.03407	0
GEOM50a	50	54	50		50		50		50		50	0.1	50	4.2695	
GEOM50b	35	40	35		35		35		35	1	35	1.2	35	716.35247	
GEOM60	33	34	33		33		33		33		33	0	33	0.15027	
GEOM60a	50	54	50		50		50		50		50	0.1	50	23.6351	
GEOM60b	41	47	43		41	29		277		105		214.7	41	6430.65223	
GEOM70	38	40	38	0	38	0	38	0	38	0	38	0	38	0.32483	0
GEOM70a	61	64	62		61	12	61	45		47		23.7	61	1513.0634	0
GEOM70b	47	54	48	1	48	52	47	8685	47	6678	47	665.4	48	7702.62073	1
GEOM80	41	44	41	0	41	0	41	0	41		41	0.1	41	2.59037	0
GEOM80a	63	69	63	12	63	150		21	63	12	63	6.6	63	3487.41707	0
GEOM80b	60	70	61	0	60	145	60	322	60	191	60	19.9	60	7851.79623	
GEOM90	46	48	46		46	0	46	0	46	0	46	0	46	1.5592	0
GEOM90a	63	74	64	2	63	150	63	230	63	191	63	23.8	63	8082.11243	0
GEOM90b	69	83	72	2	70	1031		20144		23560		779.2	71	7627.29127	2
GEOM100	50	55	50	0	50		50		50		50	1	50	320.8932	
GEOM100a	67	84	68	9	68	273		11407		5556		1557.4	68	8227.2824	
GEOM100b	71	87	73	15	73	597	72	24561		41832		2038.6	73	7945.8779	
GEOM110	50	59	50	4	50		50		50	5	50	1.3	50	943.76663	
GEOM110a	71	88	73	7		171		1529		5140	71	2218.7	71	9152.86497	
GEOM110b	77	87	79		78	676	78	24416		18136	77	2598.7	79	8829.13587	
GEOM120	59	67	60		59		59	1	59	2	59	0.5	59	615.18443	
GEOM120a	82	101	84		84	614	82	34176		62876		171.1	82	,	
GEOM120b	84	103	86	9	84	857	-	-	85	66301	84	3568.7	86	9159.90177	2

From Table 2, it can be seen that the VNS algorithm is competitive with other methods. VNS achieves total of 27 previous best-known solutions. It is evident that the results

achieved by older methods from [25] and [27] are improved by the newer ones. According to [6], the results of three instances GEOM20, GEOM30 and GEOM40 reported in [25] are probably wrong, so they are marked with the asterisk symbol. The VNS and EA from [20] give 28 same best results, in 3 cases EA is better and VNS is better in two cases. Comparing to the MITS from [15], for VNS and MITS 23 equal best results are reported, in 5 cases MITS is better, in one case VNS is better. In four cases, no solution is reported in [15]. VNS achieve 27 same solutions as the two most recent methods PR and LHS, and in 6 cases PR and LHS are better than VNS.

4.2. Experimental results on BMCP instances

Algorithm developed for BCP instances can also be applied for solving BMCP, after the implicit transformation of each BMCP to BCP instance. From the experimental results presented in this section we see that our VNS achieve many previously known best known results and two new best ones.

Table 3 provides the results obtained on BMCP instances. Table 3 is organized similar to the case of BCP instances: first four columns contain the instance name, number of vertices (|V|) and number of edges (|E|) and the best known result from the literature. The next five columns contain data related to the VNS: column (k^*) contains the best found result, the average result (column avg) obtained in 30 runs, the total average execution time in seconds needed to achieve the presented best result (column time), the hit rate (N_{hit}), as well as the column ($k^* - best$), which contains the difference between the best result obtained by the VNS and the previous best-known result from the literature. In column k^* , new best results are marked in bold.

Table 3. Results of the VNS obtained on BMCP instances

Instance	V	E	best	k^*	avg	time[s]	N_{hit}	$k^* - best$
GEOM20	20	40	149	1/10	149	54.2701	30/30	0
GEOM20a	20	57	169	169	169	3289.39977	30/30	
GEOM20b	20	52	44	44	44	0.02153	30/30	
GEOM30	30	80	160	160	160	5.7033	30/30	
GEOM30a	30	111	209	209	209	4123.7125	30/30	
GEOM30b	30	111	77	77	77	1.2923	30/30	
GEOM40	40	118	167		167.0333333	2107.13567	29/30	
GEOM40a	40	186	213	213	214.1666667		5/30	
GEOM40b	40	197	74	74	74.0333333	1821.8568		
GEOM50	50	177	224	224	224.1	1671.3315	27/30	0
GEOM50a	50	288	311	311	314.2333333	21685.93933	2/30	0
GEOM50b	50	299	83	83	84.2	14260.65607	5/30	0
GEOM60	60	245	258	258	258.4333333	5780.4842	19/30	0
GEOM60a	60	399	353	353	355.3	23989.30317	2/30	0
GEOM60b	60	426	113	114	115.7	16381.0242	2/30	1
GEOM70	70	337	266	267	267.7	12384.2772	14/30	1
GEOM70a	70	529	465	463	465.5333333	20686.36647	2/30	-2
GEOM70b	70	558	115	116	118.2	16783.2271	1/30	1
GEOM80	80	429	379	379	381.0333333	16538.80857	2/30	0
GEOM80a	80	692	357	355	358.5333333	29208.93163	1/30	-2
GEOM80b	80	743	138	138	139.0666667	13704.121	9/30	0
GEOM90	90	531	328	329	330.8333333	18760.85243	2/30	1
GEOM90a	90	879	372	373	374.9	24087.21087	2/30	1
GEOM90b	90	950	142	142	145.0333333	19996.89127	2/30	0
GEOM100	100	647	404	404	405.9333	14816.92453	6/30	0
GEOM100a	100	1092	429			35663.42977	2/30	0
GEOM100b	100	1150	153		159.3666667		1/30	3
GEOM110	110	748	375	375	376.2333333	22997.44417	8/30	0
GEOM110a	110	1317	478	480		46954.99173		
GEOM110b	110	1366	201	202		22076.94307		
GEOM120	120	893	396	396		17919.32823		
GEOM120a		1554		539	545	59717.3869		
GEOM120b	120	1611	187	190	192.5	22835.9246	3/30	3

Data in Table 3 indicate that VNS achieves 21 best known results and in 2 cases VNS obtains new best results. In 10 cases, VNS could achieve results close to the best ones. For all smaller BMCP instances (up to 50 vertices), VNS obtains all previous best-known results, with a relatively high hit rate for most of them. VNS achieves 2 new best results, for two middle instances GEOM70a and GEOM80a. For 9 large-sized instances, (100-120 vertices), VNS achieves previously known best results in 4 cases and in 5 cases VNS achieves nearly best results.

Table 4 shows the comparative results obtained by the state-of-the-art methods from the literature and the proposed VNS. The first column of the table contains the instance name. The next five blocks of two columns contain best results and execution times of the five recent and most successful methods from the literature: FCNS [27] by Prestwich, Malaguti and Toth's EA from [20], the MITS algorithm from [15] presented by Lai and Lu, path relinking (PR) algorithm from [16] and learning hybrid-based search (LHS) from [14]. Like in the case of BCP, all these results are also extracted from [14]. Last three columns contain best results, the execution times for the proposed VNS and the difference between best VNS and previous best-known results.

Table 4. Comparison of the proposed VNS algorithm to other reference works on BMCP instances

		FCN	S [27]	7] EA [20] MITS [15]		TS [15]	PR [16] I		LF	LHS [14]		VNS		
Instance	best	k	time	k	time	k	time	k	time	k	time	k^*	time[s]	diff
GEOM20	149	149	4	149	18	149	2	149	1	149	1.8	149	54.2701	0
GEOM20a	169	170	2	169	9	169	15	169	7	169	0.5	169	3289.39977	0
GEOM20b	44	44	0	44	5	44	0	44	0	44	0	44	0.02153	0
GEOM30	160	160	0	160	1	160	0	160	0	160	0.1	160	5.7033	0
GEOM30a	209	214	11	210	954	209	10	209	26	209	16.2	209	4123.7125	0
GEOM30b	77	77	0	77	0	77	0	77	0	77	0	77	1.2923	0
GEOM40	167	167	1	167	20	167	0	167	1	167	0.2	167	2107.13567	0
GEOM40a	213	217	299	214	393	213	328	213	133	213	9	213	13192.2284	0
GEOM40b	74	74	4	74	1	74	2	74	4	74	1.5	74	1821.8568	0
GEOM50	224	224	1	224	1197	224	8	224	2	224	0.3	224	1671.3315	0
GEOM50a	311	323	51	316	4675	314	40373	312	270860	311	1452.6	311	21685.93933	0
GEOM50b	83	86	1	83	197	83	1200	83	723	83	72.1	83	14260.65607	0
GEOM60	258	258	77	258	139	258	19	258	23	258	1.3	258	5780.4842	0
GEOM60a	353	373	10	357	8706	356	38570	354	34580	353	9007.1	353	23989.30317	0
GEOM60b	113	116	12	115	460	113	104711	113	63579	113	910.7	114	16381.0242	1
GEOM70	266	277	641	272	1413	270	7602	266	130844	266	2534	267	12384.2772	1
GEOM70a	465	482	315	473	988	467	38759	466	6952	465	36604.9	463	20686.36647	-2
GEOM70b	115	119	55	117	897	116	213545	116	26110	115	3640.7	116	16783.2271	1
GEOM80	379	398	361	388	132	381	212213	380	34493	379	357.8	379	16538.80857	0
GEOM80a	357	380	109	363	8583	361	41235	358	41772	357	43403	355	29208.93163	-2
GEOM80b	138	141	37	141	1856	139	255	138	705	138	46.5	138	13704.121	0
GEOM90	328	339	44	332	4160	330	4022	328	134941	328	162.2	329	18760.85243	1
GEOM90a	372	382	13	382	5334	375	10427	372	282456	372	16782.1	373	24087.21087	1
GEOM90b	142	147	303	144	1750	144	211366	144	14648	142	7680.8	142	19996.89127	0
GEOM100	404	424	7	410	3283	404	40121	404	16355	404	64.9	404	14816.92453	0
GEOM100a	429	461	26	444	12526	442	381	436	9108	429	78363.1	429	35663.42977	0
GEOM100b	153	159	367	156	3699	156	213949	156	86308	153	10840.1	156	24776.3847	3
GEOM110	375	392	43	383	2344	381	183	375	25401	375	1598.8	375	22997.44417	0
GEOM110a	478	500	29	490	2318	488	926	482	9819	478	49457.1	480	46954.99173	2
GEOM110b	201	208	5	206	480	204	944	201	47653	201	5388.4	202	22076.94307	1
GEOM120	396	417	9	396	2867	-	-	396	15341	396	626.1	396	17919.32823	0
GEOM120a	536	565	41	559	3873	554	1018	539	45147	536	69518.6	539	59717.3869	3
GEOM120b	187	196	3	191	3292	189	213989	189	14371	187	8025.8	190	22835.9246	3

From Table 4 it can be seen that FCNS, EA, MITS and PR could achieve most of the best known solutions for small instances up to 50 vertices, and LHS and VNS achieve all of the best known solutions for small instances. MITS and PR fails to achieve best known solution only for one small instance (GEOM50a).

For the middle-size instances (60 to 90 vertices), the situation is slightly different; FCNS and EA could achieve only one best known solution (instance GEOM60), while MITS could achieve two best known solutions for two instances with 60 vertices. For other middle-size instances, MITS achieves nearly best known solutions. For this class

of instances, PR could achieve 6 best known solutions and in other cases is close to the best ones. LHS achieves all best known solutions except in ten cases and in two cases close to the best ones. VNS achieves five best known solutions, in five cases VNS achieve solutions close to the best ones and in two cases VNS finds new best solutions.

For the large-size instances, FCNS could not find any best known solution, while EA and MITS achieve only one best known solution. PR achieves four best known solutions and for other large-size instances achieve solutions relatively close to the best ones. While LHS achieves all best knows solutions for large instances, VNS achieve best ones for six instances and for the rest nearly best solutions.

Regarding execution times, it is obvious that they are quite different, since different approaches provide results with different k values. Additionally, some of the algorithms (like EA and VNS) spend additional time for the construction phase, while other algorithms (MITS, PR and LHS) start with the previous best known solutions.

4.3. Justification of the usage of the criteria in the VND procedure

In order to further analyse the behaviour of the proposed VND procedure and to justify the usage of the criteria for ordering vertices, additional experiments are performed with three large BMCP instances (namely GEOM110, GEOM110a and GEOM110b). Recall that in the VND procedure three criteria are combined for determining the ordering: the first criterium is the total number of conflicts for the vertex, the second is the distance of the color assigned to the vertex from the middle and the third one is the geometric mean of the total sum of the weights of the edges incident with the vertex and the maximal edge distance for that vertex. In the experiment, total of eight possible different variants of the overall criterium are analysed: each of the mentioned three criteria is or is not used.

Table 5 provides the experimental results obtained in all of these eight cases. Each case is denoted as XYZ, where X, Y and Z belongs to $\{0, 1\}$, indicating if the criterium is used (value 1) or not used (value 0). For each case, best found and average results are shown. The time limit for this experiment is set to 3000s. From Table 5, it can be seen

Toble 5	C	- C 41 :			:4:-	d in the VND
Table 5.	Comparison	of the vari	ous combi	nations of th	e criferia iise	d in the VND

		000		001		010	011		
instance	best		best		best		best		
		379.16667							
GEOM110a					483	487.86667	483	488.33333	
GEOM110b	201	204.06667	201	204.3	202	204.1	202	203.96667	
		100		101		110	111		
instance	best	avg	best		best		best		
		378.2				378.56667			
GEOM110a	482	489.83333	484	488.96667	483	487.73333	481	486.8333	
GEOM110b	203	204.6	202	204.6	202	204.16667	202	204.0333	

that the variant proposed in this paper (column 111 - all three criteria are used) tends to be the best one, although some other variants also gives good results. For the first instance (GEOM110), in the variants denoted as 001, 010 and 011 the best result is also achieved, but the average result is worse than in the proposed variant (111). For the second instance (GEOM110a), in the proposed variant (111) both the best known and the average values are better than in the other cases. For the last instance (GEOM110b), the first two variants achieves better best result than the proposed one, but the average value obtained by the proposed variant is better.

These results indicate that the usage of the proposed combination of the criteria is justified, having in mind that some other variants can also reach high quality results.

5. Conclusions

In this paper we present the VNS algorithm for solving two generalizations of the vertex coloring problems: bandwidth coloring problem and multiple bandwidth coloring problem. Since BCP and MBCP enjoy many applications, presented algorithm and achieved results are of a great interest for both theory and practice.

In the shaking procedure, an increasing number of vertices are permuted, forming the new solution which is subject of the further improvement in the VND. In the VND procedure, vertices are arranged in a way to increase the probability of successful recoloring. This approach of the arrangement of the vertices splits the local search in a series of disjoint procedures, enabling better choices of the vertices which are addressed to re-color. The overall criterion for the ordering the vertices is based on the number of conflicts of each vertex, combined with two additional criteria.

The algorithm is tested on the common used instances. In the case of BCP, VNS achieves many previous best-known results and in the case of BMCP, VNS obtains two new best solutions in a reasonable time. Experimental results indicate that the proposed VNS becomes one of state-of-the-art methods for solving BCP and BMCP.

The further investigation of this problem can include parallelization and running on some powerful multiprocessor system, as well as the application of the proposed method for solving some similar real-life problems.

References

- 1. Aardal, K., Hoesel, S., Koster, A., Mannino, C., Sassano, A.: Models and solution techniques for frequency assignment problems. Annals of Operations Research 153(1), 79–129 (2007)
- Brélaz, D.: New methods to color the vertices of a graph. Commun. ACM 22(4), 251–256 (Apr 1979)
- 3. Budiono, T., Wong, K.W.: A pure graph coloring constructive heuristic in timetabling. In: Computer Information Science (ICCIS), 2012 International Conference on. vol. 1, pp. 307–312 (June 2012)
- Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research 176(1), 177 – 192 (2007)
- Chiarandini, M., Stützle, T.: Stochastic local search algorithms for graph set t-colouring and frequency assignment. Constraints 12(3), 371–403 (2007)
- Diasa, B., de Freitasa, R., Maculanc, N., Michelond, P.: Solving the bandwidth coloring problem applying constraint and integer programming techniques
- Fijuljanin, J.: Two genetic algorithms for the bandwidth multicoloring problem. Yugoslav Journal of Operations Research 22(2), 225–246 (2012)
- 8. Galinier, P., Hamiez, J.P., Hao, J.K., Porumbel, D.: Recent advances in graph vertex coloring. In: Zelinka, I., Snel, V., Abraham, A. (eds.) Handbook of Optimization, Intelligent Systems Reference Library, vol. 38, pp. 505–528. Springer Berlin Heidelberg (2013)

- Hale, W.: Frequency assignment: Theory and applications. Proceedings of the IEEE 68(12), 1497–1514 (Dec 1980)
- 10. Hansen, P., Mladenović, N.: Variable neighborhood search. Springer (2005)
- 11. Hernández-Pérez, H., Rodríguez-Martín, I., Salazar-González, J.J.: A hybrid grasp/vnd heuristic for the one-commodity pickup-and-delivery traveling salesman problem. Computers & Operations Research 36(5), 1639 1645 (2009), selected papers presented at the Tenth International Symposium on Locational Decisions (ISOLDE X)
- 12. Hertz, A., Mittaz, M.: A variable neighborhood descent algorithm for the undirected capacitated arc routing problem. Transportation Science 35(4), 425–434 (2001)
- Hu, B., Raidl, G.R.: Variable neighborhood descent with self-adaptive neighborhood-ordering.
 In: Proceedings of the 7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics. Citeseer (2006)
- 14. Jin, Y., Hao, J.K.: Effective learning-based hybrid search for bandwidth coloring. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(4), 624–635 (2015)
- 15. Lai, X., Lu, Z.: Multistart iterated tabu search for bandwidth coloring problem. Computers & Operations Research 40(5), 1401 1409 (2013)
- Lai, X., Lu, Z., Hao, J.K., Glover, F., Xu, L.: Path relinking for bandwidth coloring problem. arXiv preprint arXiv:1409.0973 (2014)
- Lewis, R., Thompson, J., Mumford, C., Gillard, J.: A wide-ranging computational comparison of high-performance graph colouring algorithms. Computers & Operations Research 39(9), 1933 – 1950 (2012)
- Lim, A., Zhang, X., Zhu, Y.: A hybrid methods for the graph coloring and its related problems.
 In: Proceedings of MIC2003: The Fifth Metaheuristic International Conference. Kyoto, Japan (2003)
- Lim, A., Zhu, Y., Lou, Q., Rodrigues, B.: Heuristic methods for graph coloring problems. In: Proceedings of the 2005 ACM Symposium on Applied Computing. pp. 933–939. SAC '05, ACM, New York, NY, USA (2005)
- 20. Malaguti, E., Toth, P.: An evolutionary approach for bandwidth multicoloring problems. European Journal of Operational Research 189(3), 638 651 (2008)
- 21. Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Transactions in Operational Research 17(1), 1–34 (2010)
- 22. Marti, R., Gortazar, F., Duarte, A.: Heuristics for the bandwidth colouring problem. Int. J. Metaheuristics 1(1), 11–29 (May 2010)
- 23. Matic, D.: A variable neighborhood search approach for solving the maximum set splitting problem. Serdica Journal of Computing 6(4), 369–384 (2012)
- Mladenović, N., Hansen, P.: Variable neighbourhood search. Computers & Operations Research 24, 1097–1100 (1997)
- 25. Phan, V., Skiena, S.: Coloring graphs with a general heuristic search engine. In: Computational Symposium on Graph Coloring and its Generalization. pp. 92–99 (2002)
- Prestwich, S.: Constrained bandwidth multicoloration neighbourhoods. In: Computational Symposium on Graph Coloring and its Generalization. pp. 126–133 (2002)
- 27. Prestwich, S.: Generalised graph colouring by a hybrid of local search and constraint programming. Discrete Applied Mathematics 156(2), 148 158 (2008)
- 28. Qu, R., Burke, E.K., McCollum, B.: Adaptive automated construction of hybrid heuristics for exam timetabling and graph colouring problems. European Journal of Operational Research 198(2), 392 404 (2009)
- 29. Roberts, F.S.: T-colorings of graphs: recent results and open problems. Discrete Mathematics 93(23), 229 245 (1991)
- 30. Sabar, N., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-heuristic for examination timetabling problems. Applied Intelligence 37(1), 1–11 (2012)
- Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2), 87–127 (1999)

- 32. Tesman, B.A.: Set t-colorings. Congressus Numerantium 77, 229–242 (1990)
- 33. Trick, M.: Computational symposium: Graph coloring and its generalizations, http://mat.gsia.cmu.edu/color02/(2002), http://mat.gsia.cmu.edu/COLOR02/

Dragan Matić received his BSc (2001) and MSc (2009) degrees in mathematics at the Faculty of Mathematics and Natural Sciences, University of Novi Sad, Serbia and PhD degree (2013) in Mathematics at the Faculty of Mathematics at the University of Belgrade, Serbia. His research interests in science include combinatorial optimization and metaheuristics, and their application in various fields of mathematics, computer science, industry and education.

Jozef Kratica was born in 1966 in Belgrade, Serbia. He received his B.Sc. degrees in mathematics (1988) and computer science (1988), M.Sc. in mathematics (1994) and Ph.D. in computer science (2000) from University of Belgrade, Faculty of Mathematics. In 2002 he joined Mathematical Institute as a researcher. As a delegation leader participated on the International Olympiads in Informatics (IOI'90 Minsk - Belarus, IOI'93 Mendoza - Argentina). His research interests include genetic algorithms (evolutionary computation), variable neighborhood search, electromagnetism-like metaheuristic, optimization on graphs and location problems.

Vladimir Filipović is associate professor at the Faculty of Mathematics, University of Belgrade, Serbia. He received his PhD degree in Computer Science at the Faculty of Mathematics, University of Belgrade (2006). His research interests include combinatorial optimization, operational research, computational intelligence, metaheuristics and big data. He supervised four PhD theses.

Received: March 20, 2016; Accepted: March 20, 2017.