
Computer Science and Information Systems 15(2):321–346 https://doi.org/10.2298/CSIS161130041J

Managing Software Requirements Changes through
Change Specification and Classification

Shalinka Jayatilleke, Richard Lai, and Karl Reed

Department of Computer Science and Information Technology
La Trobe University, Victoria. 3086, Australia
{s.jayatilleke, R.Lai, k.reed}@latrobe.edu.au

Abstract: Software requirements changes are often inevitable due to the changing
nature of running a business and operating the Information Technology (IT)
system which supports the business. As such, managing software requirements
changes is an important part of software development. Past research has shown
that failing to manage software requirements changes effectively is a main
contributor to project failure. One of the difficulties in managing requirements
changes is the lack of effective methods for communicating changes from the
business to the IT professionals. In this paper, we present an approach to
managing requirements change by improving the change communication and
elicitation through a method of change specification and a method of
classification. Change specification provides a way such that communication
ambiguities can be avoided between business and IT staff. The change
classification mechanism identifies the type of the changes to be made and
preliminary identification of the actions to be taken. We illustrate the usefulness
of the methods by applying them to a case study of course management system.

Keywords: Requirements change, change specification, change classification,
ontology, terminology.

1. Introduction

The inevitable development of globalization, service-oriented environments and
continuous technological advances compel organizations to change their strategies and
business processes to meet customer demand. In addition, there is the impact of
software evolution and maintenance. Although change is an evident factor in today’s
highly competitive business environment, many organizations find themselves at the
losing end of this game. Volatile nature of business requirements usually increases the
cost of development [1-6] and also poses a threat to the project schedule [3]. Changing
requirements are considered one of the main contributors to project failure [7-9]. The
real problem is not the changing nature of requirements, but the lack of understanding
of this volatility. Change management, therefore, is a critical task for organizations.

A preliminary version of this paper was presented at the 2013 Australian Software
Engineering Conference

mailto:s.jayatilleke@latrobe.edu.au

322 Shalinka Jayatilleke et al.

Requirements engineering consists of a set of core activities that are in reality
interleaved and iterative [10]. Requirements change is part of this requirements
engineering process and it is not a standalone activity but consists of several core
activities that can be described as a process. This process begins with communicating
the requirements change (change request). Successfully completing this step will result
in the elicitation of the correct goals in relation to the changes (change goals), which is
the next step in the process. . Understanding the change goals leads to the proper
execution of the third step, which is representing the change in the system design. The
second and third steps effectively assist the analysis of the requirements change to
assess its appropriateness and whether it should be accepted. The final step in the
process is based on the results of the analysis. Depending on the outcome, a change can
be accepted or rejected. Therefore, the final outcome of the change request depends
heavily on the first step. This process is iterative, usually due to the inability of
management to agree to the change request and due to insufficient information. It is
further hindered due to poor change communication, misinterpretation of change goals,
incorrect representation of changes in the system design, discrepancies in analysing the
changes, and inaccurate decision making in relation to the requested changes.

One of the key reasons for difficulty in managing change occurs at its initiation.
Effective interpretation and communication change, from the customer to the
development level has proved to be a challenging task [11-14]. Some literature suggests
that this is due to the lack of a formal process specifying change [11, 14]. The
specification method used by change originators should be understood by both business
and IT personnel since it is the bridge between the change originators (users, customers,
etc.) and the change implementers (system analysts, designers, developers, etc.) [15-17].
Therefore, being able to specify and understand the requirements change should make
in the process of incorporating the change into the existing design or system more
seamless.

In this paper, we present an approach to managing requirements change by
improving the change communication and elicitation through a method of change
specification and a method of classification. Change specification provides a way such
that communication ambiguities can be avoided between business and IT staff. This is
the first step towards better and effective management of requirements change in
rapidly changing business environments. The change specification process is
incomplete without classifying the changes. The change classification mechanism
identifies the type of the changes to be made and preliminary identification of the
actions to be taken. To aim readers to have a better understanding of the change
specification and classification methods, we use a simple mail order system as a running
example. Finally, we illustrate their usefulness by applying them to a case study of
course management system.

A preliminary version of this paper was presented at the 2013 Australian Software
Engineering Conference [18]. The following items are contained in this paper but not in
[18]:
(i) a discussion on the related work to give better understanding of our methods;
(ii) a description of the overview of the methods;
(iii) a justification of the use of Goal Question Metrics (GQM) and Resource

Development Framework (RDF) approach; and
(iv) to illustrate the usefulness of our methods, the results of applying them to a

running example and a case study.

Managing Software Requirements Changes 323

2. Overview of the Methods

In this section, we present an overview of our approach to managing requirements
change through a method of change specification and a method of classification.
Managing change begins with an understanding of what is involved in this
phenomenon. But as previous studies have proven, there is no real consensus on the
nature of change, rather there are disparate multifaceted views and approaches. We
therefore see the need for a versatile, consolidated, solution that brings these together.
Based on previous research work and also through industrial interviews described later,
we were able to pinpoint the gap in change identification. There is an inadequacy in
applying change identification in the practical context. Figure 1 using the IDF0 notation
shows the broad layout of the methods aiming to overcome this limitation. Once a
change is requested, the layout follows two steps:

1) Change specification
2) Change classification

Fig. 1. Layout of overview of the methods

Change specification denotes a way of specifying a change so that communication
ambiguities can be avoided between business and IT staff. Once a requirement change
has been initiated from the client side, this method will use the system design diagram
as an input to map out the location of the change. In order to create the specification
template we will use two established methods, i.e. Goal Question Metrics (GQM) [19]
and Resource Description Framework (RDF) [20]. We will also use a set of additional
questions to enable better identification when using the speciation template output. The
purpose of using GQM and RDF is to establish terminology and ontology (respectively)
concepts in the specification method. The use of terminology will enable the
specification template to have standardized terms whilst ontology will ensure a logical
connection between the terms used in the specification template. The purpose of using
both terminology and ontology is further discussed in section 3.2.1. The outcome of the
specification template will be the identification of the location, purpose and focus of the
change.

GQM approach, which was developed by Basili and Weiss and expanded by
Rombach [19], is the most widely known goal-focused approach for measurement in

System Design

Diagram Change
Specification Requirement

Change

Additional Questions

Specification

Template

Change
Classification

Change

Type GQM RDF
Change

Action

Taxonomy

324 Shalinka Jayatilleke et al.

software. One of the reasons for its success is that it is adaptable to many different
organizations (e.g. Philips, Siemens, NASA) [19]. Another reason for the success of
GQM is that it aligns with organizational directions and goals. Rather than using a
bottom-up method (generally problematic) [21], metrics are defined top-down. This
way the measurements are linked to organizational goals [21-23]. This same concept
can be applied in describing change. If the changes described are linked to goals, then
understanding and application of such changes could be far more efficient [24].

Introduced by Tim Berners-Lee in 1998, RDF is an ontology language for making
statements about resources [20]. It was designed for describing Web resources such as
Web pages. However, RDF does not require that resources be retrievable on the Web.
RDF resources may be physical objects, abstract concepts, in fact anything that has an
identity. Thus, RDF defines a language for describing just about anything. Furthermore
software modeling languages and methodologies can benefit from the integration with
ontology languages such as RDF in various ways, e.g. by reducing language ambiguity,
enabling validation and automated consistency checking [25]. Given the benefits of
both GQM and RDF, it was deemed appropriate to use these methods for specifying
requirements changes. With these being the general benefits of GQM and RDF, their
specific purpose and use in the specification method are described in detail below.

The change classification method uses the outcome of the specification template to
expand on the type of change along with preliminary guidance for action to be taken in
managing the change. The classification itself is based on the concepts of change
taxonomy that was found in existing change management literature and refined using
unstructured interviews of practitioners in the field of change management. The
outcome of the change classification will provide software developers with a better
understanding of what the change is and the preliminary guidance on how to incorporate
the change into the existing system. We believe the combination of change specification
and classification leads to a better realisation of changes requested.

2.1 A Running Example

To aim readers to have a better understanding of the change specification and
classification methods, we will use a simple mail order system for CDs and DVDs as a
running example which is described below.

Diskwiz is a company which sells CDs and DVDs by mail order. Customer orders
are received by the sales team, which checks that customer details are completed
properly on the order form (for example, delivery address and method of payment). If
they are not, a member of the sales team contacts the customer to get the correct details.
Once the correct details are confirmed, the sales team passes a copy of the order through
to the warehouse team to pick and pack, and a copy to the finance team to raise an
invoice. Finance raises an invoice and sends it to the customer within 48 hours of the
order being received. When a member of the warehouse team receives the order, they
check the real-time inventory system to make sure the discs ordered are in stock. If they
are, they are collected from the shelves, packed and sent to the customer within 48
hours of the order being received, so that the customer receives the goods at the same
time as the invoice. If the goods are not in stock, the order is held in a pending file in
the warehouse until the stock is replenished, whereupon the order is filled. This process
can be illustrated by the following system design diagram.

Managing Software Requirements Changes 325

Fig. 2. Diskwiz customer order fulfillment process diagram

The example consists of a scenario where the specification method is applied in
specifying the change and the change classification method is used to identify change
type and corresponding action. The scenario is as follows:

The management is not satisfied with some parts of the process and point out that the
following issue should be rectified: “It is identified, due to a design error, there is no
communication between finance and the warehouse to confirm discs are in stock so that
the order can be shipped. Therefore finance could be raising invoices when the order
has not been sent.”

3. The Change Specification Method

Figure 3 represents collaboration of the different entities of the change specification
method. The change specification consists of three key elements: a system design
diagram, a specification template and additional questions. The foundation of
specification component is made up of GQM and RDF. The GQM-RDF combination is
a result of amalgamating ontology and terminology which in this paper, we refer to as
onto-terminology. A detailed description of the onto-terminological concept and the
interaction of the three elements in specifying changes are explained in the following
sections. We point out that in fact, or method is “system description technique
agnostic”, and, could be used in any environment where a systematic system description
methodology has been used, reducing the adoption casts.

According to Figure 3, an important input is the use of system design diagrams. In
this cases where the initiation of the change takes place on the business side. Therefore,
the initial part of the change specification should be familiar to the business personnel
involved. To achieve this, system design diagrams are used as part of the change

Place
order

A1

Receive
order A2

Review
order

A3

Customer

Sales
Team

Warehouse

Finance

Check
stock A4

Send
invoice

A5

Check
stock A4

Receive
goods

Receive
invoice

Out of
stock

In
stock

Order
accepted

Order
incomplete

326 Shalinka Jayatilleke et al.

specifying process where the notations and the language used are more business related.
Any business analyst communicating a requirement change to the IT side should be
capable of understanding and interpreting a system design diagram.

Fig. 3. Layout of the change Specification

The successful application of the change specification calls for a few key
assumptions. First, the specification of changes may take place at the operational level
of the organization. We believe that as changes flow from an executive level (top) to the
operational level (bottom), they become less abstract, making it easier to feed the
change into the specification and classification methods. Second, in reality, for a system
to be stable, the changes being made are proportionately small (5% – 10%) in
comparison to the complete system [26]. On the other hand, if the change requires more
than a 50% change to the system, it is usually implemented in a successive release of
the current system. Finally, a design diagram (preferably the system design diagram)
should be available for mapping the change to the system.

3.1 Specification Prerequisites

Although there is a plethora of ways to describe change, most fall into ad-hoc methods
of communication. In the authors’ view, a void exists which could be filled by a more
effective and efficient template and a set of guidelines that can be used to communicate
requirements change. Given the current trend of business being more service-oriented,
the change specification should be a bridge between customer requirements and the
final product [27]. The new specification template introduced in this paper will reflect
this. The following two key properties are essential for a specification method to be
both functional and constructive [27].

A primary objective for the specification method is user friendliness to ensure ease of
adoption. It is important to recognize that the process of specifying either requirements
or changes to requirements is a human activity process [27-29]. Therefore, the method
used for such specifications should be human friendly [27]. The initial response to a
new method is generally resistance and an unwillingness to use it [27, 30]. This is
usually because the difficulty level of the new method is unknown to the users. Also,
both businesses and IT stakeholders involved in the change management process tend to
trust tried and tested methods of specifying change simply because there are no
“surprises” in store. For these reasons, rather than inventing an entirely new method, we
have opted to use a combination of existing methods which we believe has the most

Change
Specification

System Design

Diagram

Requirement

Change

Additional Questions

Specification Template

RDF GQM

Managing Software Requirements Changes 327

desirable qualities of a specification method and with which the users are familiar. This,
in our view, will minimize the short-term productivity losses associated with learning
new process, and also reduce the likelihood of opposition.

The second property is the method style. Text-based specification methods are
formed using either natural language or formal language [27]. Although easier to
understand, the drawback in using natural language is that it may be interpreted in
different ways, resulting in ambiguities. Whereas a mathematically influenced formal
language may be ideal for a computer, it may not be human friendly. Therefore, it is
important to find a balance in textual illustration. Also equally important is that both
business and IT stakeholders involved in the process understand the specification
method. To achieve this, we introduce a semi-formal method which is aided by system
design diagrams.

3.2 Onto-terminology Framework

The Purpose of Ontology and Terminology. The specification method introduced in
this work is a means of semi-formal communication of requirements change. And for
this method to be both informative and useful, it needs to satisfy several conditions. A
specification method should take into consideration: standardised terms, the usage of
the terms, connotative information and linguistic relationships as well as a logical and
philosophical point of view of the standardised terms [31]. We point out that these
features stem from two different concepts i.e. terminology and ontology. The
relationship between terminologies and ontologies has been the subject of analysis by
others, as we see from the following discussions.

Terminology is a “set of designations belonging to one special language” [32]. The
main purpose of using terminology in a specification method is to eliminate ambiguity
and ensure the use of standard terms [31]. International standards state that the goal of
terminology is to clarify and standardize concepts for communication between humans
[32]. This is a crucial property of our proposals as this is a method of conveying
changes in requirements from business personnel to IT personnel. However,
terminology generally lacks computational representation as well as logic [33]. Of
these, our concern with regard to change specification is logic. Logical accuracy will
ensure that the action taken to implement the change is correct. Therefore terminology,
on its own, cannot be considered for the semi-formal framework of the change
specification method.

Ontologies are similar to terminologies in that both the communication of concepts.
According to Gruber [34], ontology describes a concept and its relationships in a way
that can be manipulated logically. The way ontology defines a concept depends entirely
on the formal language used for the communication of the concept. Ontology is not a
terminology [31]. In fact, ontology lacks the standardized terms and linguistic
relationships of a concept which are key features in terminology [31]. These features are
imperative to change specification as they build the actual form of communication
terms to be used in the specification.

The conceptualization of the change specification method needs to be guided by both
linguistic and logical principles. Given the strengths and weaknesses of terminology and
ontology, the combination of these two concepts will provide a better framework for the
specification. Onto-terminology, which results from this combination, formally defines

328 Shalinka Jayatilleke et al.

the concept (ontology logic) as well as explains the term and its usage from a linguistic
point of view (terminology).

Building the relationship between GQM and RDF. To ensure the correct
combination of logic and terminology, we have selected two well-known methods
where one represents terminology and the other represents ontology. A generalization of
GQM is used as the linguistic function of the specification method representing
terminology. It is important to note that the abstraction of GQM relates to the goal
specification and not to the questions or the metrics. The purpose of using GQM is that
it enables the extraction of specific terms that define the requirements change. Since
these terms have been successfully utilized to extract business goals [21, 22], we found
it’s use satisfactory in change specification. The logical connections for the terms are
sourced from RDF representing the ontology component specification. However, it can
also be used to link information stored in any information source that can be
ontologically defined [33].

Three terms are extracted from the goal specification of GQM that can best describe
a requirement change; Object, Purpose and Focus (of change). The meanings of these
three elements have been adjusted for the purpose of describing change. The Object
needs to be changed due to the Purpose using the Focus. The terms extracted from RDF
are Object, Attribute and Value, which is referred to as the RDF triplet [33]. The logical
relationship of the RDF triplet can be stated as Object O has an Attribute A with a
Value V (Professor; Reads; a Book). The rationale behind the correspondence between
RDF triplet and to the GQM terms is due to the similarity and the meanings of the
terms, which is described in Table 1.

Table 1. Rationale of RDF and GQM relationship

RDF term GQM term Correspondence Rationale
Object Object One-to-one Same concept
Attribute Purpose One-to-one Both terms are activities. Purpose is

an activity that is generated due to
various business requirements.

Value Focus One-to-one Value of RDF creates the significance
for Attribute (of RDF). Focus of
GQM creates the significance for
Object (of GQM) by activating the
term Purpose of GQM.

GQM terms alone could have been used if the three terms have a logical connection;

and we have explained above as to why it is important to have this logical connection in
a specification language. The main reason for using RDF is hence to create the logical
relationship between GQM terms. Figure 4 represents the relationship mapping between
RDF and GQM. As such, the logical relationships between GQM terms can be stated as
Object O needs Purpose P by using Focus F. Given the logical connection established,
any change specified (regardless of the application of the system) using the GQM terms
will satisfy the requirements of a semi-formal method of communication as stipulated
above (see 4.2.1). From now, we shall use these three terms in the specification method.

Managing Software Requirements Changes 329

Object

Attribute Value

Object

Focus Purpose

RDF GQM

corresponds

corresponds

corresponds

activity

end value

Fig. 4. RDF-GQM Relationship

The framework presented in Figure 5 is based on the above relationship and is the

foundation of the specification method. The three elements OBJECT, PURPOSE and
FOCUS are used to capture the requirement change. The OBJECT of change is any
activity in the system design which needs a PURPOSE to change. This purpose is
created as a result of changing business goals, customer requirements, etc. The object is
changed by the FOCUS of change, where any change type can denote the focus.
Therefore, each activity in the system design is an object, each changing business goal
and customer requirement is a purpose and each change type is a focus.

System
Activity

OBJECT PURPOSE

FOCUS

Business goals
Customer requirements

Change type

is an creates

denotes

by using

needs

Fig. 5. Onto-terminology Framework

3.3 Text-based Specification Tool

During the preliminary studies we examined several different types of change request
forms from industry to understand what information is vital for understanding a
requirement change and how it was presented. We discovered two common
denominators that should be included in our specification tool. First, the type of change
which assists the system designers to understand the action they need to take in order to

330 Shalinka Jayatilleke et al.

accomplish the change. Second, the reason for change which gives a better insight as to
why the change was requested.

The template designed for the change specification based on the framework in Figure
4 is given in Table 2. By selecting the object of change using the system design
diagram, designers and decision makers can accurately locate the main target of change,
resulting in a clarification of the location of change. Knowing the reason for the change
through the purpose ensures that change implementers are able to clarify the need for
the change. The focus of change acts as advice on the basic implementation needed to
execute the change, resulting in the clarification of the action of change. It indicates to
the designers what to do instead of how to do the change. We believe that clearly
describing the location, need and action of a change request using this template will
resolve much of the existing miscommunication issues.

Table 2. Template for change specification

An additional question (see Table 3) is used along with the above template based on
the focus of change that investigates additional inputs and/or outputs required for the
change. Answer to this question will be used as input for the change classification
method, which is discussed below.

Table 3. List of addition questions

Focus of change Additional question

Add Need addition Input/output?

Delete Connected to neighbor activity with input/output?

Modify

Input/output modification?
If Yes;
Input modification?
Output modification?

Activity Relocation Relocation requires input /output?

3.4 Results of Applying It to the Running Example

By applying the change specification method to the running example, we obtain the

 Description

OBJECT
The activity name according to the system design
diagram

PURPOSE The reason for the change (can be descriptive)

FOCUS
Select from Add, Delete, Modify or Activity
Relocation
(description given in table 6)

Managing Software Requirements Changes 331

following results.

Table 4. Application of the Change specification method

 Description

OBJECT A4 and A5

PURPOSE Resolution of design error

FOCUS Add

Additional
Question

Need addition Input/output? Y

We have used the templates given in Tables 2 and 3 in order to populate the

information in Table 4. It is mentioned in the change scenario that this change is
required due to a design error. Therefore, the purpose of this change is listed as a
resolution for a design error. The activities that are affected by the change are identified
through the design diagram to be Check Stock (A4) and Send Invoice (A5). This is again
based on the change scenario. The analyst then needs to decide with which focus this
change will be executed. In this particular case, it is determined that a new activity
needs to be added to handle the change. The next step is to identify if the addition of the
new activity would cause new input/output between the existing activities (A4 and A5)
and the new activity. As we are trying to bridge the communication between A4 and A5,
based on Table 3 it is most likely that such input/output would be generated and
therefore the answer to the additional question is ‘Yes’.

4. The Change Classification Method

The main purpose of change classification method is to ensure that change
implementers are able to identify and understand unambiguously the requirement
change [11, 35]. Therefore it is essential that the classification itself is not complex. The
change specification method is incomplete without having to classify the change as it
provides a further understanding of the underlying causes of requirements change [35,
36]. This is the first step towards better and effective management of requirements
change in this rapidly changing environment. Other studies [11, 37] also suggests that a
classification of change is a scientific step to improve our ability in understanding
requirements evolution.

4.1 Preliminary Studies

To explore the scope and complexity of the existing change classifications and
determine the criteria for our change classification, two key investigative methods were
undertaken. Firstly, a literature review of existing research on change management with
a focus on change classification was undertaken. Keyword searches included change
management, change classification, change types, change taxonomy, and change
specification. The total result of 43 included journal papers and text books. This was

332 Shalinka Jayatilleke et al.

filtered using selection criteria which were limited to articles referring to classification,
type and taxonomy which yielded in 12 academic works [1, 3, 11, 13, 35-42]. These
papers allowed us to extract the most common and regular change types used in the
industry.

Secondly, unstructured interviews of 15 practitioners in the field of change
management were conducted. Table 5 summarizes the important questions discussed
and how they are related to this study. Respondents included project managers, business
analysts, IT analysts, and software architects. Since these practitioners were from
several software development organizations, the methods followed in change
management was quite diverse. One of the key findings was the difficulty in relaying
the business requirement change down the IT development line. A secondary related
problem which arouse was the misinterpretation of the requirement change and business
goal. There were many cases where parts of the final product did not meet the customer
satisfaction as the changes requested had not been implemented appropriately. This
justified our efforts in creating a change classification that facilitated better
understanding of the requested change. We used these interviews to further confirm the
change types identified through the literature survey and were able to gain better insight
to improve the change classification.

Table 5. Key question of the interview

Question Purpose
How often are changes requested and
where do they originate from?

To understand the frequency of change request
and where they are usually generated from

What are the types of changes that
are often requested?

To identify the different types of changes

Is there a process for requesting
change? If so, what are the details?

To identify the steps involved in a change
request and what vital information needs to be
captured

What are the difficulties in
communicating change?

To understand the existing problems in the
industry and what is lacking in their process of
change communication

Is unambiguous communication of
change important? If so, why?

To identify if there is a need for a new method
of specification and classification of change

4.2 Taxonomy Development

Our classification is based on previous work-see [1, 3, 38, 39]. Table 6, demonstrates
how each previous work has influenced the creation of taxonomy. However, further
adjustment was made to improve the classification as mentioned above. The focus of
change represents the most common forms of changes found in requirement change
requests. Table 7 lists the detailed description of these basic changes. Changes Add,
Modify and Delete were identified initially as the classification as a result of both
previous literature and practitioner interviews. Change, Activity Relocation was
included as a result of information gathered through the interviews as we discovered, is

Managing Software Requirements Changes 333

a frequent form of change requested. In normal circumstances, combinations of these
basic change types can be used to represent more complicated change scenarios. These
same change focuses were used in the specification method in-order to create a clear
connection between the two methods.

Application of Table 7 in the classification method can be described as follows. The
change focus and the answer to the additional question of the specification method will
be used in the classification method as follows. For example, if ‘Add’ was selected as
the change focus and the answer was ‘Yes’ to the question ‘Need additional input
and/or output?’, then according to Table 4 the linking interface(s) of the new activity
and the neighboring activities will mismatch. Therefore the change will be categorised
under ‘Add’ change focus with ‘Mismatched links’. The 4th column in Table 6
represents the necessary action to be executed for each change type.

‘Modification’ change focus is divided into three types of change. Inner property
modification will deal with modifications done to the variables and operation of an
activity that does not affect its external links (input/output) to neighboring activities.
Input and output data modification will respectfully affect neighboring activities linked
to the input/output of the target activity as well as the internal properties of the target
activity depending on the input and/or output added to it.

In ‘Delete’ change focus with ‘Matched links’, no modification is needed once the
target activity has been removed. The rationale behind this action is that the deleted
activity does not provide any output or take in any input from its neighbors. In contrast,
with ‘Mismatched links’, once the target activity is deleted, the neighboring activities
have to be modified depending on the input/output connection(s) to the deleted activity.

Activity relocation will involve moving an activity from its current location and
linking it into a new location in the system design. This can be achieved in two ways.
One, the activity being relocated is not linked to its neighbors through input/output and
able to relocate to the new position without any modifications to the neighboring
activity. Two, the target activity in the current location and the new location are affected
through input/output and needs to be modified.

Table 6. Key literature used in creation of classification

Previous work Concepts extracted Application to the
classification

Nurmuliani,
Zowghi & Williams
[1]

Common types of changes used
(add, delete, modify) and
classification of changes

Helped in creation of the
most common focus types

McGee & Greer [3] Change causes and use of
experts in defining a taxonomy

Leading to different change
activities and the use of
change practitioners

Nurmuliani,
Zowghi & Williams
[38]

Categories of change Helped in creation of the
most common focus types

Xiao, Quo & Zou
[39]

Primitive changes in business
functions

Further expression of change
types

334 Shalinka Jayatilleke et al.

Table 7. Detailed change description

At implementation time, the key elements of the two methods (specification and

classification) are incorporated into a single table (see Table 8). In the table, change
number refers to the number given to each change as they are requested. The object,
purpose and focus in Table 8 correspond to the information given in Table 2 i.e. activity
name according to the system design diagram (this is the activity affected by the
change), reason for change and select from Add, Delete, Modify or Activity relocation
respectively. The additional question selected from Table 3 will be based on what has
been selected for the focus and the information provided through the content of Table 2.
Change type and action can be sourced from Table 7 based on the information provided
for object, focus and additional question respectively. The possibility columns represent
how each change may be described using different focuses. This may not apply to all
changes. The ability to create multiple possibilities which will be based on the
experience of the analyst and complexity of the change. This feature was added to the
implementation template to provide more diversity and flexibility of communicating a
change. Having multiple possibilities also provides flexibility of how the change can be
implemented.

Change
focus

Answer to
Additional
Question

Change type Action

Add No Matched links Add new activity without
changing the current activity or
any connected links

Yes Mismatched links Add new activity by changing
the activity and/or connected
links

Modification No Inner property
modification

Modify the implementation of a
activity without changing the
connected links

Yes Input data
modification

Modify the input link and
internal properties of a activity

Yes Output data
modification

Modify the output link and
internal properties of a activity

Delete No Matched links Delete activity without changing
the activity or connected links

Yes Mismatched links Delete activity by changing the
activity and/or connected links

Activity
Relocation

No Relocation with
matched links

Relocate existing activity
without changing the activity or
connected links

Yes Relocation with
mismatched links

Relocate new activity by
changing the activity and/or
connected links

Managing Software Requirements Changes 335

Table 8. Template for implementation

4.3 Results of Applying It to the Running Example

By applying the template for implementation for the above scenario, we obtain the
following result as given in Table 9:

Table 9. Application of the implementation template

In Table 9, we describe the two possibilities for the scenario provided in the running
example. For both possibilities, the object and the purpose remains the same and
coincide with what has been discussed in Table 4. We are of the opinion that there are
two ways this change can be described and the focus of each possibility demonstrates
this fact. Possibility 1 was introduced in Table 4. The sections above the Results row of
Table 9 is based on applying Tables 2 and 3 of change specification and were discussed
in section 3.4. Based on the information provided for the Focus and Additional
question, change type and action can be extracted from Table 7. This extraction is

Change No. Possibility 01 Possibility 02 Possibility n

OBJECT

PURPOSE

FOCUS

Additional
Question

RESULT

CHANGE
TYPE

ACTION

Change 01 Possibility 01 Possibility 02

OBJECT A4 and A5 A4 and A5

PURPOSE Resolution of design error Resolution of design error

FOCUS Add Modify

Additional
Question

Need addition Input/output? Y Input/output modification? Y

Result

Change
Type

Add new activity between A4 and A5

(Mismatched links)

Inner property modification and
Output data modification A4 and
input data modification of A5

Action
Add new activity by changing the
activity and/or connected links of A4
& A5

Modify A4 to send message to A5

Specification

Method

Classification

Method

336 Shalinka Jayatilleke et al.

shown in Table 9, for each possibility based on the different change Focus which has
been identified. In the case of Possibility 1, the Focus identified is ‘Add’ and the
Additional question has been given an answer ‘yes’. When this information is mapped
to Table 7, it provides a Change type of ‘Mismatched links’, which requires a change
Action of ‘Add new activity by changing the activity and/or connected links’. When
adding the new activity between A4 and A5, connections need to be made with both
activities. Therefore, both A4 and A5 will be directly affected by this addition. The
modification possibility of A4 will directly affect A5 as there will be link input from A4
to A5. In both possibilities, all activities that are connected to A4 and A5 will be
indirectly affected by the alterations.

5. An Application of the Methods

Yin [43, 44] explained the usefulness of using case studies to explore the merits of an
application of a research idea/ hypothesis. We therefore demonstrate the usefulness of
the change specification and classification methods by applying them to a software
project case study. We make two key assumptions with the case study that the project is
in a state where the requirements elicitation has occurred and the process diagram has
been established. We have already used a simple case study as a running example. The
case study introduced in this section enable us to illustrate the versatility of the methods
by way of using various change focus, various change types and how the outcome of the
change classification differs with the need for input/output modifications.

5.1 The Case Study

Figure 6 represents a partial system design diagram of a course management system
adopted from [45]. The diagram illustrates the relationships and some dependencies the
activities have with each other. The relationships denoted in the diagram can be defined
as follows:
 Requires (Req): An activity A1 requires an activity A2 if A1 is fulfilled only when

A2 is fulfilled. A2 can be treated as a pre-condition for A1 [45].
 Refines (Ref): An activity A1 refines an activity A2 if A2 is derived from A1 by

adding more details to it [45].
 Contains (Con): An activity A1 contains information from A2...An if A1 is the

conjunction of the contained information from A2...An [45].

The identification of these relationships is beneficial in determining the impact of
change when applying our methods to the case study. The detailed purpose of each
activity is described as follows:
A1. The system allows end-users to provide profile and context information for

registration.
A2. The system provides functionality to search for other people registered in the

system.
A3. The system provides functionality to allow end-users to log into the system with

their password.

Managing Software Requirements Changes 337

A4. The system supports three types of end-users (administrator, lecturer and student).
A5. The system allows lecturers to set an alert on an event.
A6. The system maintains a list of events about which the students can be notified.
A7. The system notifies the students about the occurrence of an event as soon as the

event occurs.
A8. The system actively monitors all events.
A9. The system notifies students about the events in the lectures in which they are

enrolled.
A10. The system allows students to enroll in lecturers.
A11. The system allows lecturers to send e-mail to students enrolled in the lecture given

by that lecturer.
A12. The system allows students to be assigned to teams for each lecture.
A13. The system allows lecturers to send e-mail to students in the same group.
A14. The system allows lecturers to modify the content of the lectures.
A15. The system gives different access rights to different types of end-users.
A16. The system supports two types of end-users (lecturer and student) and it will

provide functionality to allow end-users to log into the system with their password.

Fig. 6. Partial system design diagram of a course management system.

5.2 Applying Them to the Case Study

The example consists of two scenarios, where we apply the specification and
classification methods. These scenarios are based on our observations as university

338 Shalinka Jayatilleke et al.

academics who use similar course management systems. The following hypothetical
new requirements are identified:
1. In an emergency, it would be more effective to send an SMS notification to

students as well as an email.

2. Marking attendance manually tends to be rather ineffective, especially when a
census needs to be carried out. It would be better to mark attendance electronically.

The application of the implementation template yields the following results.

Table 10. Change 01 result

Table 11. Change 02 result

5.3 Discussion of the Results

Tables 10 and 11 demonstrate how the specification and classification methods can be
applied to this case study. The template given in Table 8 has been used for obtaining the
result for each change.

Multiple possibilities can be created for each change event, depending on the event,
availability of existing activities and various combinations that could be incorporated to

Change 01 Possibility 01 Possibility 02

Object Enrol for lectures A10 Send email to all students A11

Purpose Functionality enhancement Functionality enhancement

Focus Add Modify

Additional
Question

Need additional Input / Output?
Y

Input/output modification? Y

Result

Change Type Add new activity
Inner property + Output
interface modification

Action
Add new activity by using
information from A10

Modify A11 internally and the
output interface

Change 02 Possibility 01

Object Enrol for lectures A10

Purpose Identification of new requirement

Focus Add

Additional Question Need additional Input / Output? Y

Result

Change Type Add new activity

Action Add new activity by using information from A10

Managing Software Requirements Changes 339

realize the change. Such an instance has been provided for the 1st change event. In this
change, the need to send SMS to students can be accomplished by either creating a new
activity or modifying an existing activity (A11). As such, when creating a new activity, it
requires information from A10. Therefore, the activity directly affected by the event is
A10. Rest of the table for the case study follows the process as explained through the
simple stock control example.

In the second change event, we considered only one possibility. The requirement is
to allow lecturers to mark attendance electronically. There doesn’t seem to be any
existing activity that can be modified to serve this purpose, therefore the only option is
to create a new activity. As such a new activity is created that requires student
information, which is provided by A10. Therefore, the activity directly affected by the
event is A10 and the rest of the table also follows the same principle as explained
through the simple stock control example.

This example demonstrates how the specification and classification methods can be
used to generate multiple possibilities for a single change. This outcome provides
decision makers with the option of choosing the most appropriate way of implementing
the change. The example above illustrates the way these methods can help both business
and IT personnel involved, analyse business changes and thereby assist in the change
management process. At the business level, the business analyst can use Tables 1 and 2
to define and describe the requirements change without any ambiguities. As a result of
this IT personnel are able to not only understand the change but also understand the
need for change and identify the location of change.

6. Comparison with Related Work

We shall describe what the literature has said about the related work and concepts like
taxonomies and classification which are important concepts in studying change
identification and classification.

6.1 Taxonomies

1) Research analysing change uses a plethora of techniques in order to build a
taxonomy that can be used to identify changes as well as their impact. One such
mechanism is the use of requirement engineering artifacts, such as use cases. The
research done by Basirati et al. [46] establishes a taxonomy of common changes
based on their observation of changing use cases that can then be used in other
projects to predict and understand RCs. They also contribute to this research space
by identifying which parts of use cases are prone to change as well as what changes
would create difficulty in application, contributing also to the impact analysis of
change.

2) The taxonomy developed by Buckley et al. [47], proposes a software change
taxonomy based on characterizing the mechanisms of change and the factors that
influence software change. This research emphasizes the underlying mechanism of
change by focusing on the technical aspects (i.e. how, when, what and where)
rather than the purpose of change (i.e. the why) or the stakeholders of change (i.e.

340 Shalinka Jayatilleke et al.

who) as other taxonomies have done. This taxonomy provides assistance in
selecting tools for change management that assist in identifying the changes
correctly.

3) McGee and Greer [3] developed a taxonomy based on the source of Requirements
Change (RC) and their classification according to the change source domain. The
taxonomy allows change practitioners to make distinctions between factors that
contribute to requirements uncertainty, leading to the better visibility of change
identification. This taxonomy also facilitates better recording of change data which
can be used in future projects or the maintenance phase of the existing project to
anticipate the future volatility of requirements.

4) Gosh et al. [48] emphasize the importance of having the ability to proactively
identify potentially volatile requirements and being able to estimate their impact at
an early stage is useful in minimizing the risks and cost overruns. To this effect,
they developed a taxonomy that is based on four RC attributes i.e. phases (design,
development and testing), actions (add, modify and delete), sources (emergent,
consequential, adaptive and organizational) and categories of requirements
(functional, non-functional, user interface and deliverable).

5) The taxonomy established by Briand et al. [41] is the initial step in a full-scale
change management process of UML models. In their research, they establish that
change identification is the first step in the better management of RCs. The
classification of the change taxonomy is based on the types of changes that occur in
UML models. They then use this taxonomy to identify changes between two
different versions of UML models and finally to determine the impact of such
changes.

6.2 Classifications

There are many benefits of using a classification, the main benefits being to manage
change to enable change implementers to identify and understand the requirements of
change without ambiguity [49, 50]. The classification of RC has been studied in various
directions. Table 12 lists the different directions which have been the subjects of
studies.

6.3 Other Change Identification Methods

1) Kobayashi and Maekawa [4] proposed a model that defines the change
requirements using the aspects where, who, why and what. This allows the system
analyst to identify the change in more detail, resulting in better impact
identification as well as risk and effort estimation. This method consists of
verification and validation and can be used to observe the RCs throughout the
whole lifecycle of the system.

2) The change identification method usually has a pre-established base upon which its
semantics are built. Ecklund’s [42] approach to change management is a good
example of this. The approach utilizes use cases (change cases) to specify and
predict future changes to a system. The methodology attempts to identify and

Managing Software Requirements Changes 341

incorporate the anticipated future changes into a system design in order to ensure
the consistency of the design.

Table 12. Direction is change classification

Direction Parameters Comment
Type [40,
48, 50-54]

Add, Delete, Modify The most common way of
classifying change.

Origin [11,
48, 55]

Mutable, Emergent,
Consequential, Adaptive,
Migration

Derived from the places where
the changes originated from.

Reason [13,
50, 51]

Defect fixing, Missing
requirements, Functionality
enhancement, Product
strategy, Design
improvement, Scope
reduction, Redundant
functionality, Obsolete
functionality, Erroneous
requirements, Resolving
conflicts, Clarifying
requirements, Improve,
Maintain, Cease, Extend,
Introduce

Helps determine the causes of
change and understand change
process and related activities.

Drivers [56] Environmental change, RC,
Viewpoint change, Design
change

Helps change estimation and
reuse of requirements.

6.4 Identifying limitations and comparison

We use the work listed in Table 13 (discussed above) to describe the limitations of the
existing work and compare our methods to define what has been achieved.
An examination of the work reported above lead to the identification of four key
limitations;
1. There is little agreement and commonality between the studies;
2. for the process of specification and classification of change to be used

successfully, in our view it needs to be a part of the same process (change
request); they complement each other by providing a better understanding of the
requirements change;

3. there has been little emphasis on designing specification methods related to
change; and

4. a common limitation of the above classifications is the lack of guidance in
applying them to change management activities.

As a result, we believe that a void exists in the practical application of change
specification and classification and our methods address this research gap.

342 Shalinka Jayatilleke et al.

Table 13. Comparison with the related work

Technique Limitations What our methods can
address

Basirati et al. [46] and
Ecklund [42]

Can only be applied if use
cases are available or used in
the development process.

They are applied at a design
phase, which enables the
identification of changes at
an early stage. Can be used as
long as there is a form of
design diagram of the system.

Buckley et al. [47] It did not directly address
issues arising from
miscommunication of change.

They can be directly used for
managing changes for the
purpose of identifying
changes.

McGee and Greer [3]
and Ecklund [42]

They are limited to providing
assistance in predicting
change.

They provide a way of
communicating change as
well identifying them in an
early stage as to where and
how the change should be
applied.

Gosh et al. [48] Only used for identification of
change.

Provide preliminary guidance
on how to manage the
changes.

Briand et al. [41] Can be used only if UML
models are available.

Can be used as long as there
is a form of design diagram
for the system.

Kobayashi and
Maekawa [4]

This is a complex method for
verifying changes.

They address change
management issues arising
from miscommunication.

7. Conclusions and Future Work

The purpose of the change specification and classification methods presented in this
paper is to manage requirements change by improving change communication and
elicitation. Under normal circumstances, business changes flow from the business side
to the IT side. Therefore, the impact of this study belongs to both these categories i.e.
business and IT. First, considering the business side, we ensure a requirements change
has been clearly communicated to the IT side. As mentioned earlier, there is often
difficulty in promoting effective dialogue about the nature of the change between these
two parties. Therefore, a change specification method would be essential for business
analysts in communicating change.

Second, on the IT side, it is critical that change enablers have a mutual
understanding of not only the precise nature of the change but also the reason for its
existence, i.e. its purpose. This insight translates into a better realization of the
requirements change. Equally important is a quick response from IT in redesigning the
system to suit the requirements change. The three main categories: object, purpose and

Managing Software Requirements Changes 343

focus of the change specification method enhance understanding while the
classification of the change type and the resulting action assists system designers to
incorporate the change into the system design much faster.

Given the above impact of our methods, we believe that there are substantial
benefits of specification and classification methods that will lead to improvements in
the change management process. In our view, the benefits of these methods are:
 Promotes a mutual understanding of requirements change between business and IT

through the templates provided by Tables 2 and 3.
 Supports the decision-making process by helping to determine the need for the

change.
 Assists in determining the best course of action in implementing the requirements

change through Table 7.
In future work, we plan to use the multiple change identification possibilities to

evaluate the best course of action to enable system designers to respond quickly to
change requests. Furthermore, we suggest it will be useful in evaluating the
interdependencies of these change requests as they relate to interdependencies of the
system requirements and its implementation. Identification of interdependencies
between changes can lead to identification of conflicts between requirement changes.
Also, it would be valuable if it were possible identify the difficulty level and priority
of the changes so that resources such as time and effort can be allocated more
effectively. Identifying the difficult level of the change would further result in
assisting the decision of the plausibility of implementing the change.

References

1. Nurmuliani, N., Zowghi, D., Williams, S. P.: Requirements volatility and its impact on
change effort: Evidence-based research in software development projects. In Proceedings of
the 11th Australian Workshop on Requirements Engineering. (2006)

2. Williams, B. J., Carver, J., Vaughn, R .B.: Change Risk Assessment: Understanding Risks
Involved in Changing Software Requirements. Software Engineering Research and Practice,
pp. 966-971. (2006)

3. McGee, S., Greer, D.: A software requirements change source taxonomy. In Proceedings of
the 4th International Conference on Software Engineering Advances, 51-58. (2009)

4. Kobayashi, A., Maekawa, M.: Need-based requirements change management. In
Proceedings of the 8th nternational Conference and Workshop on Engineering of Computer
Based Systems, 171-178. (2001)

5. Rajabi, B. A., Lee, S. P.: Change management in business process modeling survey. In
Proceedings of the International Conference on Information Management and Engineering,
37-41. (2009)

6. André, C., Mallet, F.: Specification and verification of time requirements with CCSL and
esterel. ACM Sigplan Notices, 2009, Vol. 44, No. 7, 167-176. (2009)

7. Dillingham, G.: Air traffic control: evolution and status of FAA’s Automation Program.
Washington, DC: United States General Accounting Office. (1998)

8. Lock, S., Kotonya, G.: An integrated framework for requirement change impact analysis. In
Proceedings of the 4th Australian Conference on Requirements Engineering. (1999).

9. Sommerville, I., Sawyer, P.: Requirements engineering: a good practice guide. John Wiley &
Sons, Inc. (1997)

10. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering, 35-46. (2000)

344 Shalinka Jayatilleke et al.

11. Harker, S. D., Eason, K. D., Dobson, J.E.: The change and evolution of requirements as a

challenge to the practice of software engineering. In Proceedings of the IEEE International
Symposium on Requirements Engineering, 266-272. (1993).

12. Bohner, S.: Impact analysis in the software change process: A year 2000 perspective. In
Proceedings of the International Conference on Software Maintenance, 42-51. (1996)

13. Nurcan, S., Barrios, J., Grosz, G., Rolland, C.: Change process modelling using the EKD-
Change Management Method. In Proceedings of the European Conference on Information
Systems, 513-529. (1999)

14. Chitchyan, R., Rashid, A., Rayson, P., Waters, R.: Semantics-based composition for aspect-
oriented requirements engineering. In Proceedings of the 6th international conference on
Aspect-oriented software development, 36-48. (2007)

15. Pohl, K.: Requirements engineering: fundamentals, principles, and techniques. Springer
Publishing Company, Incorporated. (2010)

16. Guttag, J. V., Horning, J. J., Larch: languages and tools for formal specification. Springer
Science & Business Media. (2012)

17. Jureta, I. J., Borgida, A., Ernst, N. A., Mylopoulos, J.: Techne: Towards a new generation of
requirements modeling languages with goals, preferences, and inconsistency handling. In
Proceedings of the 18th IEEE International Requirements Engineering Conference, 115-124.
(2010)

18. Jayatilleke, S., R. Lai, R.: A Method of Specifying and Classifying Requirements Change. In
Proceedings of the 22nd Australian Software Engineering Conference (ASWEC), 175-180.
(2013)

19. Van Solingen, R., Basili, V., Caldiera, G., Rombach, H. D.: Goal question metric (gqm)
approach. Encyclopedia of Software Engineering. (2002)

20. Weiss, M.: Resource description framework. Encyclopedia of Database Systems, 2423-2425.
(2009)

21. Koziolek, H.: Goal, question, metric. Dependability metrics: Springer, 39-42. (2008)
22. Berander, P., Jönsson, P.: A goal question metric based approach for efficient measurement

framework definition. In Proceedings of the ACM/IEEE international symposium on
Empirical software engineering, 316-325. (2006)

23. Subramanian, D. V., Geetha, A.: Adaptation of goal question metric technique for evaluation
of knowledge management systems. Review of Knowledge Management, Vol. 1, No. 2, 4.
(2011).

24. Basili, V., J. Heidrich, J., Lindvall, M., Munch, J., Regardie, M., and Trendowicz, A.: GQM
+ Strategies - Aligning Business Strategies with Software Measurement. In Proceedings of
the 1st International Symposium on Empirical Software Engineering and Measurement, 488-
490. (2007).

25. Happel, H. J., Seedorf, S.: Applications of ontologies in software engineering. In
Proceedings of the Workshop on Sematic Web Enabled Software Engineering, 5-9. (2006)

26. Rolland, C., Salinesi, C., Etien, A.: Eliciting gaps in requirements change. Requirements
Engineering, Vol. 9, No. 1, 1-15. (2004)

27. Tse, T., Pong, L.: An examination of requirements specification languages. The Computer
Journal, Vol. 34, No. 2, 143-152. (1991)

28. Checkland, P. B.: Information systems and systems thinking: Time to unite?. International
Journal of Information Management, Vol. 8, No. 4, 239-248. (1988)

29. Mumford, E.: Redesigning human systems. IGI Global. (2003)
30. Davis, A. M.: The design of a family of application-oriented requirements languages.

Computer, Vol. 5, No. 15, 21-28. (1982)
31. Roche, C.: Ontoterminology: How to unify terminology and ontology into a single paradigm.

In Proceedings of the 8th International Conference on Language Resources and Evaluation,
2626-2630. (2012)

32. Gillam, L., Tariq, M., Ahmad, K.: Terminology and the construction of ontology.
Terminology, Vol. 11, No. 1, 55-81. (2005)

Managing Software Requirements Changes 345

33. Castañeda, V., Ballejos, L., Caliusco, M. L., Galli, M. R.: The use of ontologies in
requirements engineering. Global journal of researches in engineering, Vol. 10, No. 6.
(2010)

34. Gruber, T. R.: A translation approach to portable ontology specifications. Knowledge
acquisition, Vol. 5, No. 2, 199-220. (1993)

35. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of requirements volatility during software
development life cycle. In Proceedings of the Software Engineering Conference, 28-37.
(2004)

36. Lam, W., Loomes, M.: Requirements evolution in the midst of environmental change: a
managed approach. In Proceedings of the 2nd Euromicro Conference on Software
Maintenance and Reengineering, 121-127. (1998)

37. Lam, W., Shankararaman, V.: Managing change in software development using a process
improvement approach. In Proceedings of the 24th Euromicro Conference, Vol. 2, 779-786.
(1998)

38. Nurmuliani, N., Zowghi, D., Williams, S. P.: Using card sorting technique to classify
requirements change. In Proceedings of the 12th Conference on Requirements Engineering
Conference, 240-248. (2004)

39. Xiao, H., J. Quo, J., Zou, Y.: Supporting change impact analysis for service oriented
business applications. In Proceedings of the Systems Development in SOA Environments, 6-
6. (2007)

40. Gupta, G., Singh, Y., Chauhan, D. S.: A Dynamic Approach to Estimate Change Impact
using Type of Change Propagation. JIPS, Vol. 6, No. 4, 597-608. (2010).

41. Briand, L. C., Labiche, Y., Sullivan, L.: Impact analysis and change management of UML
models. In Proceedings of the International Conference on Software Maintenance, 256-265.
(2003)

42. Ecklund Jr, E. F., Delcambre, L.M., Freiling, M. J.: Change cases: use cases that identify
future requirements. ACM SIGPLAN Notices, Vol. 31, No. 10, 342-358. (1996)

43. Yin, R. K.: Discovering the future of the case study method in evaluation research.
Evaluation practice, Vol. 15, No. 3, 283-290. (1994)

44. Yin, R.K.: Case study methods. (2012)
45. Göknil, A., Kurtev, I., van den Berg, K.: Change impact analysis based on formalization of

trace relations for requirements. In Proceedings of the Traceability Workshop (ECMDA-
TW). (2008)

46. Basirati, M. R., Femmer, H., Eder, S., Fritzsche, M., Widera, A.: Understanding Changes in
Use Cases: A Case Study. In Proceedings of the International Symposium on the
Requirements Engineering. (2015)

47. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of software
change. Journal of Software Maintenance and Evolution: Research and Practice, Vol. 17, No.
5, 309-332. (2005)

48. Ghosh, S., Ramaswamy, S., Jetley, R. P.: Towards requirements change decision support. In
Proceedings of the 20th Asia-Pacific Software Engineering Conference (APSEC), Vol. 1,
148-155. (2013)

49. Harker, S. D. P., Eason, K. D., Dobson, J. E.: The change and evolution of requirements as a
challenge to the practice of software engineering. In Proceedings of the IEEE International
Symposium on Requirements Engineering. (1993)

50. Nurmuliani, N., Zowghi, D., Fowell, S.: Analysis of Requirements Volatility during
Software Development Life Cycle. In Proceedings of the Australian Software Engineering
Conference, 28. (2004)

51. Nurmuliani, N., Zowghi, D., and Williams, S. P.: Using card sorting technique to classify
requirements change. In Proceedings of the Requirements Engineering Conference, 240-248.
(2004)

346 Shalinka Jayatilleke et al.

52. Hua, X., Jin, Q., Ying, Z.: Supporting Change Impact Analysis for Service Oriented

Business Applications. In Proceedings of the Workshop on Systems Development in SOA
Environments, 6-6. (2007)

53. Gupta, C., Singh, Y., Chauhan, D.: A dynamic approach to estimate change impact using
type of change propagation. Journal of Information Processing, Vol. 6, No. 4. (2010)

54. Stark, G. E., Oman, P., Skillicorn, A., Ameele, A.: An examination of the effects of
requirements changes on software maintenance releases. Journal of Software Maintenance,
Vol. 11, No. 5, 293-309. (1999)

55. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In Proceedings of the
Conference on The Future of Software Engineering, Limerick, Ireland. (2000)

56. Lam, W., Loomes, M.: Requirements evolution in the midst of environmental change: a
managed approach.Iin Proceedings of the 2nd Euromicro Conference on Software
Maintenance and Reengineering, 121-127. (1998)

Shalinka Jayatilleke holds a BSc (Hons) from Institute of Technological Studies
(Affiliated to Troy University, USA), an MSc from Sri Lanka Institute of Information
Technology and present reading for a PhD (in computer science) at La Trobe
University, Australia. She is currently an Associate lecturer at La Trobe University
with an academic career of 12 years. His current research interests are requirements
engineering and change management.

Richard Lai holds a BE (Hons) and a MEngSc from the University of New South
Wales and a PhD from La Trobe University, Australia. He has spent about 10 years in
the computer industry prior to joining La Trobe University in1989. His current
research interests include component-based software system, software measurement,
requirements engineering, and global software development.

Karl Reed holds an Assc. Dip. in Communications Engineering from the RMIT and
an MSc in Computer Architecture from Monash University. After 12 years in industry
he joined Monash University in 1976. He moved to La Trobe University in 1988. His
research interests include software testing, compilable restricted natural languages,
web-page design, high-level software re-use, design isomorphism, organisational
resilience, cloud computing and industry policy.

Received: November 30, 2016; Accepted: July 2, 2017.

	1. Introduction
	2. Overview of the Methods
	2.1 A Running Example

	3. The Change Specification Method
	3.1 Specification Prerequisites
	3.2 Onto-terminology Framework
	3.3 Text-based Specification Tool
	3.4 Results of Applying It to the Running Example

	4. The Change Classification Method
	4.1 Preliminary Studies
	4.2 Taxonomy Development
	4.3 Results of Applying It to the Running Example

	5. An Application of the Methods
	5.1 The Case Study
	5.2 Applying Them to the Case Study
	5.3 Discussion of the Results

	6. Comparison with Related Work
	6.1 Taxonomies
	6.2 Classifications
	6.3 Other Change Identification Methods
	6.4 Identifying limitations and comparison

	7. Conclusions and Future Work
	References
	Word Bookmarks
	page2
	page1
	page3
	page4

