
Computer Science and Information Systems 15(1):163–185 https://doi.org/10.2298/CSIS170328044M

CSDSM: Cognitive Switch-based DDoS Sensing and

Mitigation in SDN-driven CDNi Word

Nishat I Mowla, Inshil Doh, and Kijoon Chae

Department of Computer Science and Engineering, Ewha Womans University,

51, Ewhayeodaegil, Seodaemungu, Seoul, 03760, Korea

nishat.i.mowla@gmail.com, {isdoh1, kjchae}@ewha.ac.kr

Abstract. Content Delivery Networks (CDNs) are increasingly deployed for their

efficient content delivery and are often integrated with Software Defined

Networks (SDNs) to achieve centrality and programmability of the network.

However, these networks are also an attractive target for network attackers whose

main goal is to exhaust network resources. One attack approach is to over-flood

the OpenFlow switch tables containing routing information. Due to the increasing

number of different flooding attacks such as DDoS, it becomes difficult to

distinguish these attacks from normal traffic when evaluated with traditional

attack detection methods. This paper proposes an architectural method that

classifies and defends all possible forms of DDoS attack and legitimate Flash

Crowd traffic using a segregated dimension functioning cognitive process based

in a controller module. Our results illustrate that the proposed model yields

significantly enhanced performance with minimal false positives and false

negatives when classified with optimal Support Vector Machine and Logistic

Regression algorithms. The traffic classifications initiate deployment of security

rules to the OpenFlow switches, preventing new forms of flooding attacks. To the

best of our knowledge, this is the first work conducted on SDN-driven CDNi used

to detect and defend against all possible DDoS attacks through traffic segregated

dimension functioning coupled with cognitive classification.

Keywords: SDN, CDN, CDNi, DDoS, Flash Crowd, Machine Learning, Support

Vector Machine, Logistic Regression.

1. Introduction

Content Delivery Networks (CDN) were originally proposed for content providers to

meet clients' performance requirements by decreasing web latency during content

delivery by distributing content via proximity or edge servers spanning the internet.

There are many kinds of Content Delivery Networks, which can be generally classified

as either industrial or academic. Popular among industrial CDNs are Akamai, Limelight,

and EdgeStream, while CoDeen, Coral, and Globule, are popular academic CDNs.

Though all CDNs differ in the way they serve content, they all have an origin server that

eventually communicates with some other edge servers. However, the customers of one

CDN could not access service from another CDN, which gave rise to various scalability

issues [1]. To solve this issue, the interconnection of the CDNs was proposed and

referred to as the Internetworking of CDNs, or CDNi [2].

164 Nishat I Mowla et al.

Soon after CDNs became popular, the concept of Software Defined Network (SDN)

came into practice, as it promised a better monitoring and controlling scenario for the

entire network and could be programmed from a single point controller. Per the Open

Network Foundation (ONF), the key to an SDN lies in the physical separation of the

control plane from the data plane, while the control plane controls several data plane

components. An application plane is also housed on top of the control plane, where the

network programming applications are stored as modules. The data plane mainly

consists of OpenFlow-enabled switches, which save rules in a flow table by taking

instructions from the central controller in the control plane. These planes are connected

to the Operations System Support (OSS), which constantly extracts basic management

information for the SDN to run [3]. Figure 1 shows an example of an interconnected

Content Delivery Network, or CDNi, consisting of two Content Delivery Networks

(CDN1 and CDN2) communicating with each other to provide contents to a user.

Fig. 1. Interconnect Content Delivery Network (CDNi)

Figure 2 shows the Open Networking Foundation-defined SDN architectural planes

and their basic contents. The figure shows the three main planes (Application, Control,

and Data plane) which interoperate over northbound and southbound API to manage

packet request received at the Data plane switches.

Recently, the combination of SDNs and CDN has received enormous attention due to

improved and synchronous CDN request routing by utilizing the centralization and

programmability of SDN [4] [5]. However, as these networks become increasingly

centralized, they are also becoming potential targets for attacks where a single point of

failure can cause damage to multiple components in the centralized network [6]. One of

the most widely discussed attacks for these networks is a Distributed Denial of Service

(DDoS) attack, which makes the system effectively unavailable [7] [8].

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 165

Fig. 2. Software Defined Network (SDN)

Distributed Denial of Service attacks typically occur when a large number of internet

packets from compromised hosts (zombies) flood the bandwidth or resources of a single

target (victim). The flood of incoming messages to the victim essentially forces it to

respond so slowly as to be rendered effectively unavailable and even to shut down,

thereby causing denial of service for legitimate users of the targeted system [9]. The

number of different types of DDoS attacks is increasing daily, ranging from TCP

flooding, UDP flooding, ICMP flooding, SYN flooding, and other source-based and

destination-based bandwidth and scanning attacks [10]. Along with the evolution of new

next-generation networks, new next-generation attacks are also evolving. These attacks

are often hybrid in nature and difficult to identify when we try to match them against

previously established signature profiles. In the case of SDN-driven CDNi, the

centralized architecture becomes a bottleneck and therefore can be exploited by the

attackers who aim to bring down the backbone network. There are three challenges

faced by this network: 1) detecting close, 2) detecting soon, and 3) differentiating an

attack from a Flash Crowd. Detecting close is critical since attacks can be highly

distributed and attack traffic from each source can be made smaller as camouflage. On

the other hand, detecting soon is also crucial because alarms need to be activated sooner,

especially in big networks, such as SDN/CDNi, on which many devices depend. The last

and the most important issue is to be able to identify the attack traffic correctly without

false alarms and distinguish it from legitimate Flash Crowds. In this research work, we

mainly focus on this last challenge.

By definition, Flash Crowds are large surges of legitimate traffic directed toward

some specific sites on the internet over a relatively short period, which can cause a

website or target system to slow its service for users or even temporarily close due to the

significantly increased traffic. Flash Crowds are quite similar to DDoS attacks in terms

of traffic volume [11]. Motivated by these findings, our attack study approach aims to

approach attacks differently from the conventional ways of categorizing attack types.

Our mechanism considers the occurrence of all possible DDoS attacks and compares

them with real network traffic samples. For example, a modern attacker can use tricks to

166 Nishat I Mowla et al.

mimic a Flash Crowd so that its traffic looks legitimate. Therefore, the goal of this paper

is to introduce a unique architectural technique to distinguish all possible DDoS traffic

from Flash Crowd/Normal traffic in an SDN-driven CDNi using the extraction of

OpenFlow switch traffic features, supported by a segregated dimension functioning

cognitive approach. For doing so, we propose a stretch model to provide insight into real

DDoS and Flash Crowd traffic by utilizing the dimensionalities of traffic features

verified against machine learning classification techniques. In essence, the main

contributions of this paper are as follows:

• We propose a cognitive detection and defense mechanism to distinguish all possible

DDoS attacks and Flash Crowd traffic apart in an SDN based CDNi architecture.

Therefore, we provide a robust framework to distribute the complex detection and

defense problem into various parts of the SDN based CDNi architecture to detect

and defend DDoS attacks more accurately in the presence of legitimate Flash

Crowd traffic.

• We formulate a dimension segregation and functioning approach to simplify the

processing computation of robust machine learning algorithms further. A systematic

stretch model implements the approach to attain higher accuracy rate. Furthermore,

the segregation and functioning based stretch model contributes to significantly

enhance the evaluation time besides increasing the accuracy of the mechanism.

• We also implement a security module in the SDN Floodlight controller to insert

security rules based on the intelligent decision made by segregated dimension

functioned Support Vector Machine, and Logistic Regression. We simulate a DDoS

attack in an emulated SDN based CDNi architecture and defend the attack traffic by

utilizing our security module. In addition, we also evaluate the processing delay

caused by our security module and show that the overall effect is minimal for a set

of standard values of bandwidth provided to the network.

• We perform extensive experimental analysis to evaluate the performance of the

proposed approach. The results show that the dimension segregation and

functioning approach achieves higher accuracy for all the four-evaluated state-of-

the-art machine learning algorithm. In addition, the accuracy of the two state-of-the-

art machine learning algorithms, Support Vector Machine and Logistic Regression

outperforms the other state-of-the-art machine learning algorithm for the given

scenario.

This paper is, thus, organized as follows. Section II presents some related works in

DDoS detection and discrimination from Flash Crowd and classification techniques.

Section III introduces our proposed model and architectural mechanism followed by the

defense algorithm. The implementation and performance analysis are presented in

Section IV. Section V concludes our paper, summarizing the contributions and

outcomes.

2. Related Works

There has already been significant research on the detection of DDoS attacks [12]. In

[9], DDoS attacks in MANET was considered and proposed a defense using protection

nodes forming a tree topology, where the low-level nodes inform the high-level nodes

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 167

about a possible attack. However, the paper mainly focuses on attack defense, rather

than on establishing a concrete way of detecting an attack and differentiating it from

non-attack traffic. In [13], the concept of separating the identifier and locator to detect a

DDoS attack was proposed, which distributes the work of detection over the network.

The conventional way of detecting attacks has been to create profiles of different attacks

and then match them to the sample of concern. However, along with the evolution of

new next-generation networks, the number, and type of attack are also evolving daily as

attackers tweak their attack patterns in order to bypass these simple network intrusion

detection systems.

In [14], the NOX controller was used with OpenFlow for flow analysis using Self-

Organizing Maps (SOM) to detect DDoS attacks. The paper focuses on proposing a

lightweight mechanism for DDoS detection using the platform provided by NOX. In

[15] a clustered neural network was proposed and in [16] a random neural network was

proposed for enhancing the separating boundaries of normal and attack. However,

neural network techniques can also sometimes classify Flash Crowds as DDoS traffic

and vice versa, particularly if the attacker tweaks the traffic features to mimic a Flash

Crowd. Besides, in [17] the combination of Bayesian networks and Regression Trees

was proposed for optimized feature deduction. In [18], combining classification trees for

increasing accuracy in intrusion detection was proposed. A flow-based detection

mechanism was proposed in [19], where they tried to differentiate normal traffic with

false alarms and DDoS attack traffic using functions for each attack type. Their

mechanism consisted of creating a chart of characteristics of the different flooding

attacks and matching the sample functions to the flooding attack characteristics.

However, the parameters that they used as the standard to calculate the functions could

also lead to false alarms in the case of a Flash Crowd.

In [20], [21], [22], and [23] the use of machine learning classifiers was considered to

distinguish DDoS from normal traffic, and their experimental results suggest that SVM

can be useful for such classifications, detecting fewer false positives and leading to

higher accuracy. However, with pure SVM-based classification, an attacker tweaking

traffic features can still be successfully misclassified as a Flash Crowd. In, [24] the

difference of using machine learning in network intrusion detection was discussed and in

other domains and they pointed out the need of illuminating the problem space and

binding careful decisions with the problem. In [6] and [25], some of the attack defense

capabilities of SDN architecture were discussed as a futuristic next-generation network.

However, while they talked about the many security solutions that SDN architecture

offers, they did not focus on specifically what sort of attacks the SDN architecture itself

can face and therefore the sort of detection measures required for those attacks.

In, [26], [10], [27], and [11] specific discriminating techniques were proposed to

differentiate attack traffic from Flash Crowds. Most of these techniques rely on creating

packet arrival patterns or measuring the flow distances (based on flow distance

calculation methods such as Sibson’s distance) to distinguish attack traffic. As discussed

earlier, Flash Crowds can also lead to traffic flows with similar distances, and attackers

can tweak attack profile information to bypass intrusion detection. In [11], the idea of a

correlation coefficient between flows was proposed. This technique considers all packets

incoming to a certain destination as one flow, and while it differentiates traffic quite

well, it does not help to categorize traffic based on the incoming traffic’s unique header

combination. Because our approach uses OpenFlow-enabled traffic extraction, we can

168 Nishat I Mowla et al.

uniquely identify and categorize the packets with the same 5-tuple headers as one flow

and thus can better categorize flows for our attack analysis.

As can be seen, some of the detection mechanisms do not consider the similarities of

a DDoS attack and a Flash Crowd, while some do not realize a universally suitable

method to detect them. Although machine learning techniques are known to effectively

classify with very low false positive rates, most of the proposed mechanisms that feed

the traffic into the classifier directly and test the performance of different machine

learning classifiers can still lead to false alarms when we feed in traffic that mimics

Flash Crowd traffic. To the best of our knowledge, the art of feeding more useful input

in order to output more efficient classification has not yet been considered. The goal of

this paper is to address these aspects while proposing a unique approach for DDoS

discrimination from normal or Flash Crowd traffic for next-generation networks.

3. Proposed Detection and Defense Mechanism

Our proposed detection and defense mechanism has two parts. The first part includes the

proposed architecture in which the mechanism will be implemented, and the second part

elaborates on the detection mechanism itself.

3.1. Proposed Architecture

Our proposed SDN-based CDNi architecture consists of interconnected Content

Delivery Network servers connected to OpenFlow-enabled switches, which are in turn

connected to a central controller for SDN services. In this paper, we are considering the

DDoS attack aimed at the OpenFlow switch of the SDN which is also responsible for

implementing the defense mechanism to protect the rest of the network comprising of

CDNs. Therefore, if the OpenFlow switch is protected and defending the DDoS attack

properly, the CDN servers and the rest of the network will also eventually be protected.

Hence, due to the limitation of our emulator and to the fact that, for our paper, we are

considering the DDoS attack aimed at the OpenFlow switch, of the SDN and not at the

CDNs which will eventually be protected by the OpenFlow switch, we do not define the

type of CDN. Instead, we simply consider the CDN until the origin servers. The

application modules, housed on top of the SDN controller, feed rules into the

OpenFlow-enabled switches using the southbound OpenFlow API. When a client makes

a request, it is forwarded to the best-suited CDN/CDNi by the OpenFlow switch in the

SDN network, where a suitable edge server provides services to the requesting client.

Figure 3 shows our proposed architecture with its three main sectors.

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 169

Fig. 3. Proposed SDN-driven CDNi Architecture for DDoS sensing and mitigation

Typically, in a Software Defined Network, all requests should pass through an

OpenFlow switch, which determines its route based on the rules saved in the switch’s

table. Thus, the switch plays an important role and is therefore quite vulnerable to

certain attack types. In our proposed scenario, when a customer wants to access services

from a CDN server, its request is forwarded first to the SDN controller by a proactive

OpenFlow switch. The controller then analyzes the request, before being forwarded by

the OpenFlow Switches in the data plane. The size of the switch table is thus controlled

by a proactive OpenFlow switch which inserts a rule only after being approved by the

SDN controller and not instantly inserting a rule as it happens in a reactive OpenFlow

switch scenario. In the process, the requests remain in a default queue of the SDN

architecture and, therefore, does not immediately overflood the OpenFlow switch until

the controller confirms a rule to be inserted for a certain set of flows. Besides, any

incoming traffic is dropped based on the type of flow and not the type of packets which

allows to categorizing and concise the incoming traffic further. Here, a flow is

170 Nishat I Mowla et al.

considered to be any traffic with the same five tuples consisting of source IP, destination

IP, source port, destination port and protocol. The detection and defense mechanism

consist of three sectors as also shown in Figure 3: the detection sector, the analysis

sector, and the defense sector.

Detection Sector. The detection sector in our proposed mechanism is in the OpenFlow

Switches, where approaching traffic is identified and extracted using curl query API for

the OpenFlow Switches. Through curl queries, we can extract specific feature

information about the ingress flows and packets entering the OpenFlow Switch. The

detection sector thus provides the raw data for analysis from which the proposed

detection technique can operate.

Analysis Sector. The analysis sector is the controller, where a security module converts

the analyzed decisions into security rules to defend against the attack and protect the

attacked switch. The proposed mechanism leverages machine learning classification

techniques for analysis to find traces of an attack in the ingress flow information

extracted at the detection sector.

Defense Sector. In the defense sector, the results from the detection mechanism in the

controller side are leveraged to enact security rules in the OpenFlow Switch via the

southbound API. The classification from the machine learning technique of the analysis

sector is used to set rules of the following form:

Rule R: If xi ϵ Cj

then action = drop with IP==attackFlowIP

where R is the rule for the i-th n-dimensional pattern vector, xi = (xi1, xi2…, xin) which

belongs to j-th class, Cj. The ‘then’ part defines the action that causes the OpenFlow

switch to drop the flow with the IP address of xi. This security rule is translated into the

SDN OpenFlow rule format and applied to the OpenFlow switch, which then uses this

rule to drop malicious flows and thus act as the defense sector.

However, it is important to note that Flash Crowds can also cause flooding of flows like

attack traffic, and attackers may try to mimic Flash Crowds. However, since Flash

Crowds are legitimate packets, they require normal service. This necessitates an

effective analysis mechanism to distinguish Flash Crowd traffic from DDoS traffic. In

the next section, we propose a model based on a dimension segregation and functioning

technique that aims to efficiently differentiate Flash Crowd traffic from DDoS traffic to

aid in machine learning classification. Here we discuss a comparison of our proposed

detection and defense mechanism with other previously proposed approaches as shown

in Table 1.

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 171

Table 1. Comparison Chart

 Previous Approaches Proposed Approach

Proposal Typical detection and defense

techniques [9,12,18]

Proposed an intelligent

SDN controller module

Architecture Traditional architectures [9,12] SDN based CDNi

Feature

deduction

Direct feature use, feature selection

[19,20,21,22,23]

Feature segregation, feature

functioning

Technique and

goal

Correlation coefficient [10, 11],

Sibson’s distance [27],

Bhattacharyya coefficient [26],

Machine learning [20,21,22.23]

etc. to detect DDoS attacks in

general

Machine learning with

segregated feature

functioning to detect all

possible forms of DDoS

attacks including those

trying to mimic Flash

Crowd

Hardware

requirement

Sometimes extra hardware

required [9, 10,11, 13,26,27]

No extra hardware required

Tool used

For machine learning, commonly,

Python (Scikit) requiring python

environment and needs to check

dependency

Matlab considered to be heavy

weight [28]

Weka tool is easy to

implement with a better

interface and can easily be

compiled into native code

with cross-platform tool

[29]

3.2. Dimension Segregation and Functioning Model

Network traffic information can be represented as flows and packets or can be divided

into more dimensions as meaningful information is derived when we segregate basic

features. Flows can be represented in two dimensions by flow count and flow size, and

packets can be represented in two dimensions by packet count and packet rate. The raw

data can be used directly or can be represented with functions that extract more

characteristics from them. Different kinds of flooding attacks give rise to different kinds

of peaks. For example, a TCP SYN flood will have a large flow count, whereas a ping of

death attack might have a smaller flow count but larger flow size. However, these

properties can also be tweaked by an attacker to change the expected profile for a certain

attack. What remains true is that, when the attacker has an immense volume of attack

traffic to manage, the attacker is not able to assign unique sets of properties to each

traffic instance, creating patterns in traffic properties. We can visualize these patterns

when we segregate traffic into useful dimensions. In this model, we segregate based on

four features: packet count, flow size, packet rate, and flow count. The patterns of these

features are most prominent when we look at their standard deviation function. This is

because, it is not easy for the attacker to create high deviations for each packet while

generating a huge number of attack packets; therefore, standard deviations of DDoS

traffic features are smaller than those of Flash Crowd traffic [5]. Classification based on

172 Nishat I Mowla et al.

this dimension segregation and functioning approach can then be verified against

optimized machine learning classification techniques to visualize improvements. Figure

4 shows our dimension segregation and functioning for traffic instance vectors in a four-

dimensional space.

Packet Count

P
acket R

ate

f(Packet Count)

f(P
acket R

ate)

v1 =

f(Packet Rate)

f(Flow Size)

f(Packet Count)

f(Flow Count)

f(A) 𝑓 𝐴 =
μi

αi
∗ βi

n

i=1

 =

=

σPacket Rate

σFlow Size

σPacket Count

σFlow Count

Fig. 4. Proposed Segregation and Functioning Process. A vector v represents a traffic instance

comprised of four traffic features or dimensions represented as a function of themselves

It should be noted that our classification is based on flows. Therefore, if the packet

flow is continuous and simultaneous, we can separate them as flows. This also allows to

categorize and manage the traffic better. Thus, our mechanism can distinguish if the

incoming flows from one switch are a mix of DDoS and Flash Crowd traffic. When we

consider a Flash Crowd flow, the individual standard deviation of all four features,

packet count (pc), packet rate (pr), flow size (fs), and flow count (fc), of that specific

flow during times t1 to t2 and t2 to t3 will tend to be high. On the other hand, if we

consider a DDoS flow, the individual standard deviations should be low for the same

time frames. A challenge could be created by DDoS attacks that try to vary the values of

the features and try to make them random. However, when there is a huge volume of

traffic to manage and send, it is difficult for an attacker to assign individualistic values

to all instances of each flow the attacker sends. Therefore, when we evaluate the

standard deviations of the features in the classification test, the division between the

Flash Crowd and DDoS flows will become more distinct and easily separable. The easy

separability of this technique can also support in reducing the processing time of the

machine learning algorithms as less computation will be required to form the separating

margin

3.2.1 Stretch Model

We propose a stretch model based on dimension segregation and functioning as

described above. In the stretch model, the provided data is divided into vector

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 173

dimensions, analyzed, and then divided further until an optimal point is reached. We test

our stretch model using two machine learning techniques, the Support Vector Machine,

and Logistic Regression, which are each highly optimized for a two-class problem. Each

time the number of dimensions increase, we test the performance of our data input

against these two machine learning classification techniques. At a suitable model

dimension, we apply a function of the standard deviation and apply the Machine

Learning Algorithms, as described in the next subsection. Figure 5 shows the workflow

of our stretch model.

Fig. 5. The Stretch model created by using dimension segregation and functioning subjected to

machine learning classification

Fig. 6. Proposed DDoS Flooding Attack Detection and Defense Algorithm

174 Nishat I Mowla et al.

Figure 6 shows our detection and defense algorithm inspired by the above

mechanism. If the instance is found to be DDoS class, then the security rules are

implemented. If the instance is not a DDoS class, then a further classification is run on

the Flash Crowd class, since Flash Crowd traffic is more prone to false alarms due to its

randomness. This also allows us to double-check the traffic that we tentatively accept as

normal. The complexity of the algorithm itself is linear assuming 1 unit of time cost and

a single processor of the SDN controller conducting sequential execution over a single

loop. Further evaluation of the delay caused by our algorithm will be discussed in

section IV. In the next section, we discuss our mathematical model that is used to

validify our segregated dimension functioning approach.

3.2.2 Mathematical Model

Dimension segregation is used to increase dimensions and to test the vector’s standard

deviation function of feature i, fi, against machine learning classification techniques. For

this, we use two optimal classification techniques, namely the SVM and Logistic

Regression. Machine learning classification techniques are optimal for discrimination

processes in almost all domains. One of the most efficient machine learning technique is

the Support Vector Machine (SVM). Support Vector Machines work by creating a

classification plane in order to separate vectors from two classes onto either side of this

classification plane. If it is a two-dimensional space, the separating plane is called a

linear classification line. However, if it is in three dimensions, the separating plane is

simply called a plane. Apart from that, there are multiple dimensions, the separating

plane is called a hyperplane [30]. Besides Support Vector Machine, Logistic Regression

is also quite optimal with the two-class problem in a multi-dimensional environment. In

Logistic Regression, when there is a two-class problem, the probability of a vector

belonging to a certain class can be quite useful and more important than the value of the

class itself. Therefore, Logistic Regression aims to find the probabilities of vectors

belonging to a certain class [31]. Due to these unique features of Support Vector

Machine and Logistic Regression, we use these two algorithms as our baseline

algorithm, where we apply a proposed feature dimension functioning.

In segregation model, we consider every instance vector, x, described by particular

dimensions. Instead of using the raw dimensional value, we calculate the standard

deviation value for the dimensions at specific intervals, denoted as a function of the

feature i defined as

fi = σ of feature i. (1)

where feature i can be one of our selected features: packet count, packet rate, flow size,

or flow count. Accordingly, in terms of the SVM, we can consider x= fi in the function

G(x) as

G(fi)= ω
T
 fi +b =0. (2)

where ω
T
 is the orientation of the separating hyperplane, and b is the position. The

values of ω
T
 and b come out of the training and optimization process, which maximizes

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 175

the separation of the support vectors from the classifying hyperplane, G(fi). The default

optimization mechanism for SVM is used to extract the optimal values for w and b for

the hyperplane, G(fi), where we then input the vectors in the form of our vector function

fi to produce the optimal classification.

In the case of a dichotomous output, which in our case is a DDoS or a Flash Crowd, it is

also useful to classify based on the probability of a sample belonging to either of these

two classes. Here we used Logistic Regression to calculate the probability p by equating

our function-based features in the probability equation, denoted as

p = e
b
0

+b
1

f
1
+b

2
f
2

…b
n

f
n / (1+e

b
0
+b

1
f
1
+b

2
f
2

…b
n
f
n). (3)

where bi is the associated coefficient for feature i, denoted as a feature function fi. Using

this probability, we derive the Logistic Regression equation as

Logit(p)= b0+b1f1+b2f2…bnfn (4)

which presents the probability of a vector belonging to a particular class. In the next

section, we discuss the performance analysis of our mechanism based on the above

described methodologies.

4. Experimental Result and Performance Analysis

4.1. DDoS Detection Mechanisms

For implementing our proposed mechanism, we verified our model with real datasets,

namely the World Cup 98 dataset [32] that caused one of the biggest Flash Crowd

events in history, and the CAIDA DDoS 2007 dataset [33] for real DDoS attack traffic.

Both the datasets are standardized and publicly available State-of-the-art datasets.

Besides, the World Cup 98 dataset for Flash Crowd is one of the few comprehensive

datasets available for Flash Crowd evaluation. Like other networks, the SDN based

CDNi is also used as a basic network which can be prone to DDoS attacks in a similar

manner. Therefore, we believe the two selected datasets to be well suited for this

network evaluation. We also used attack tools to generate DDoS attack traffic in the

Mininet emulator, which was later defended by the security rules inserted into the

OpenFlow Switch.

We used two main tools for our experimentation. The Mininet 2.2.0 emulator [34]

was used to build the architecture of the SDN-driven CDNi, where security rules were

also implemented. Weka 3.8 was used to analyze the performance of our proposed

classification techniques against machine learning algorithms. Results of the

performance analysis were then plotted for graph generation.

176 Nishat I Mowla et al.

4.2. System Architecture

The proposed architecture, comprised of the three sectors of detection, analysis, and

defense, was implemented via the SDN-driven CDNi architecture emulated in Mininet.

Ten hosts were connected to the OpenFlow Switches, which were in turn connected to

four CDN origin servers. A Floodlight controller was implemented on a remote server

machine, which was connected to the OpenFlow switches. When a request approaches

the OpenFlow Switch to access a CDN server, the rules saved in the OpenFlow switch

are used to decide whether to redirect the request to the CDN server or to drop it. The

rules come from the controller, which is responsible for delivering security rules to the

OpenFlow switch via a security module housed in the application plane of the controller.

Figure 7 shows the simulated architecture in Mininet.

Fig. 7. Mininet Simulation Environment

Our proposed mechanism requires monitoring the traffic in terms of packet count,

packet rate, flow size, and flow count, each extracted through curl queries used for the

classification test. The classification test in Weka was performed using the World Cup

98 Flash Crowd and CAIDA DDoS datasets. The datasets are used to validate our

proposed mechanism via experimentation, following which traffic collected from the

OpenFlow Switch can be similarly treated to defend flooding attacks.

The simulation has two major parts. The first part includes conducting the

classification tests while managing dimensions and applying the proposed function. The

second part includes emulating an attack environment in Mininet and implementing

security rules to defend against the malicious flows.

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 177

Our experimental setup contains a lab environment where we set up a controller in

one Linux machine (Ubuntu 14.04, 2.94 GHz, and 4 GB RAM). We set up the emulated

SDN-based CDN servers in another Linux machine also running Ubuntu 14.04 in

Virtual Box with hosts operating with the controller over the Mininet 2.2.0 emulator.

The joining point is the OpenFlow Switch, which collects information about the flows,

which are then segregated into useful dimensions by converting them to their standard

deviation functions. These vectors are then fed into the Weka tool as ARFF (Attribute-

Relation File Format) files, where classification tests are run using the machine learning

techniques. The results of the classification test are discussed in the next section.

4.3. Implementation and Performance Evaluation

Machine Learning Classification Performance. We used a total of 38,484,863 Flash

Crowd flows and 22,569,183 DDoS flows for the classification test. Due to the dataset

format and processing limitations, we rearranged the data into 14 different sets. To

verify our results, we tested the results using cross-validation in 10-fold, the full training

set as well as percentage split tests of 50:50, 60:40, 70:30, 80:20, and 90:10 training/test

datasets, for both the SVM and Logistic Regression classifiers. The traffic data was first

divided into two dimensions, flows and packets. The two dimensions’ classification was

then tested against SVM and Logistic Regression classifiers. In the next experiment, we

increased the number of dimensions to four where we used the four dimensions of

packet count, packet rate, flow size, and flow count. The same seven tests in both SVM

and Logistic Regression were repeated for the 4-dimension case. Next, we processed our

dimensions with the standard deviation functions and re-ran the classification tests.

Figure 8 shows the classification performance for the three experiments.

With four dimensions, more packets were correctly identified than the two-

dimensional case, and almost all tests in both SVM and Logistic Regression resulted in

higher values. Logistic Regression achieved 100% correct classification in the training

set test and 90% in the percentage split test. The performance in all experiments

improved when we applied the proposed function, with nearly every test resulting in

100% correct classification. Logistic Regression achieved 100% correct classification in

six tests and over 90% correct classification in the seventh test performed. SVM

achieved 100% correct classification in five tests and over 90% in the remaining two

tests, still much higher compared to the results for the four-dimensional case. To verify

the performance further, we ran the classification test for two other state-of-the-art

classifiers in a four-dimensional case and a functioned four-dimensional case. Figure 9

shows the average classification performance of all four classification techniques with

the proposed function. As can be seen, all the four classifiers’ performance is higher

with functioned four-dimensional case than that in four-dimensional case. This is

because the functioning of the features allows making the features of DDoS and Flash

Crowd more differentiable. The functioning is based on standard deviation value which

will eventually be low for DDoS when we combine all the DDoS data features while it

will be sparser for Flash Crowd. The functioned four-dimensional case is further

elaborated for all the classifiers through the same seven tests as shown in Figure 10.

178 Nishat I Mowla et al.

Fig. 8. Classification performance with dimensional segregation and dimensional segregated

functioning

Fig. 9. Average performance of four classification technique with and without dimension

functioning

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 179

Fig. 10. Classification performance of four classification techniques with proposed function

Though the average performance is higher with the functioned four-dimensional case

for all classifiers, Logistic Regression and SVM significantly benefit from the

functioning in all seven tests. This is because both SVM and Logistic Regression are

robust in detecting noisy and sparse data that is introduced here by the Flash Crowd data

instances. SVM and Logistic Regression perform comparably in practice. However, the

performance of SVM was little lower than Logistic Regression in the pure training set

test. This phenomenon is expected, as SVM is trying to simplify a problem that is

already simplified by the feature functioning process while Logistic Regression utilized

the feature functioning and solves it better with a more probabilistic approach. The

performance of our proposed segregation function for SVM is further discussed with

precision and recall in the next subsection.

Precision and Recall. In practice, there is always a possibility of false positive or false

negative results. In our set of tests, the possibility of false positive is more likely for a

Flash Crowd, as it can accept any randomness that is introduced. However, our

mechanism should be able to correctly classify all DDoS traffic, as the standard

deviation will have a similarity that is difficult for attackers to avoid. The difficulty lies

in giving unique features to each instance of thousands and thousands of requests. The

above-discussed scenario is also illustrated through our TPR, FPR precision and recall

tests subjected to SVM shown in Table 2 and 3.

Table 2. True Positive Rate and False Positive Rate

 DDoS Flash Crowd

True Positive Rate 0.929 1

False Positive Rate 0 0.071

180 Nishat I Mowla et al.

Table 3. Precision and Recall

 DDoS Flash Crowd

Precision 1 0.933

Recall 0.929 1

As per the precision and recall tests, all Flash Crowd traffic is predicted correctly,

which also results in a True Positive Rate (TPR) of 1; however, some DDoS is identified

as a Flash Crowd, which results in a False Positive Rate (FPR) of 0.071. However, no

Flash Crowd traffic is identified as DDoS, for which the False Positive Rate (FPR) is 0,

but not all DDoS is predicted correctly, resulting in a True Positive Rate (TPR) of

0.929. This means that, in cases of DDoS, there were some False Negatives, causing the

False Negative Rate (FNR) for it to be 1-TPR = 0.071. In this regard, our approach

improves the State-of-the-art architectures in a significant way as shown by the above

results. Also, we consider the issue of detecting all Flash Crowd correctly could be dealt

with further learning by a second level of security. Hence, we consider this issue as a

future work of our mechanism.

In terms of nodal delay, which is a summation of transmission delay, propagation

delay, processing delay and queuing delay, our architecture is subject to queuing delay

and processing delay [35]. This is because the transmission delay is dependent on the

channel capacity while the propagation delay depends on the environment. Therefore,

considering the above discussed two delays remain the standard values, we evaluate the

processing delay and queuing delay of our proposed algorithm. Figure 11 shows the

average processing delay for the machine learning algorithm with and without dimension

functioning.

Fig. 11. Average processing delay with and without proposed dimension functioning

Our segregation and dimension functioning method significantly reduces the

processing delay of the machine learning algorithm since the segregated dimension

functioning causes easy separability of the two classes. The delay with no dimension

functioning, however, remains very high as it takes a lot of computation for the machine

learning algorithm to create a separating plane for raw DDoS and Flash Crowd

instances. In case of the machine learning algorithm with dimension functioning, the

functioned features easily separate for DDoS and Flash Crowd with lower values for

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 181

DDoS and higher values for Flash Crowd. This aids in a quicker generation of a

separation plane for the machine learning algorithm resulting in much lower processing

delay.

Security Rule Implementation. Once the decision-making process is complete, the

next step is to feed the decision from the controller application plane security module

into the defense sector, which is in the OpenFlow switch. To do so, we write our own

API in the application plane module that can be used to insert security rules based on

our command into the OFSwitch and drop malicious flows. For our security rule

insertion, we manipulated a Floodlight built-in module that helps to drop packets. Here,

we wrote our own API to drop flows in order to proactively control the OpenFlow

Switches from being overflooded with rules.

For experimentation, we generated an ICMP flood-based DDoS attack in a Mininet

emulator against the OpenFlow Switch associated with the controller. We tested our

experiment over 10 hosts, where 6 hosts were creating a DDoS attack on the OpenFlow

Switch. We monitored the other 4 hosts and their service as the OpenFlow Switch

experienced a DDoS attack.

DDoS traffic was generated from an IP of 10.0.0.2 toward another IP of 10.0.0.5 (one

of our CDN origin servers), causing an ICMP flood and was viewed from OpenFlow

switch S1. Another 5 hosts were also used to make the flooding attack stronger. The

simulated DDoS attack caused a 16% packet loss from one of the legitimate hosts.

Similar packet losses were observed in another 4 hosts. After the flooding attack, we

implemented a curl POST to insert the rule with the following commands:

curl -X POST -d {switched: 00:00:00:00:00:00:00:01}

http://localhost:8080/wm/firewall/rules/json

curl -X POST -d {{“src-ip”: <attack host ip>, “flood”:

“takeaction”}

http://localhost:8080/wm/firewall/rules/json

in which the first command selects the switch facing the attack, and the second

command causes the flows of the host creating the flooding attack to be dropped.

After we installed the security rules with our API definition, we ensured that the

incoming flooding flows were dropped by our security rule while ongoing flooding

flows were down-linked. After restoring the table utilization of the OpenFlow switches,

we found that the 4 hosts in the network experienced 100% packet reception, and normal

communication was restored. Figure 12 illustrates the cumulative distribution of the

average queuing delay caused by our security rule implementation.

From Figure 12, we observe that the average queuing delay increases slightly more in

the proposed security rule based architecture than the architecture without any security

rule. The reason behind this slight increase in queuing delay is due to the added

overhead caused by the security rule implementation. However, the average delay

distribution with security rule module running and not running concentrates between 0.4

to 0.8 ms. Since the processing delay, on the other side, is significantly reduced by our

proposed approach, the slightly increased amount of queuing delay does not

significantly affect the overall tolerable delay. Additionally, the proposed security rule

182 Nishat I Mowla et al.

based system enhances the security of the architecture for increased performance gain at

the cost of a minor increase in queuing delay.

Fig. 12. Average queuing delay comparison between delay with security rule and without security

rule

5. Conclusion

In this paper, we presented a detection and defense architecture of an SDN-based CDNi

network environment where we utilized network traffic features to detect attack traffic,

such as DDoS, and efficiently differentiated it from other high-volume normal network

traffic, such as a Flash Crowd. For doing so, we proposed a theoretically,

mathematically, and experimentally-supported cognitive classification mechanism based

on the concept of dimensional segregation and functioning. The proposed classification

mechanism can efficiently insert rules in the SDN OpenFlow-enabled switches to

prevent the OpenFlow switch from being over-flooded. We also introduced a deep-

inspection mechanism for DDoS detection in a SDN-driven CDNi network environment

along with a stretch model to enhance performance. Furthermore, Flash Crowd traffic

was used as the normal class instances to rigorously validate the DDoS classification.

The experimental results showed the high-performance gain of our proposed mechanism

with two optimized machine learning classification techniques, SVM and Logistic

Regression. We also contrasted the results with two other state-of-the-art classifiers,

Decision Tree, and Naïve Bayes. Our results suggest that other traditional classifiers can

also benefit from segregated dimensional functioning. However, SVM and Logistic

Regression significantly enhance the overall classification compared to other classifiers

and benefit the most from our proposed model. We believe that our mechanism can be a

useful technique for malicious traffic detection and defense for next-generation networks

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 183

such as SDN-based CDNi, which also tend to experience normal Flash Crowd traffic. To

the best of our knowledge, this is the first work using SDN-driven CDNi to sense and

mitigate DDoS attacks by leveraging the concepts of segregated dimension functioning

to achieve high classification performance.

Our mechanism, however, still does not take the decisions from the machine learning

techniques and dynamically insert security rules, which we consider being a possible

future work. In the future, we will also consider other dimensional utilization processes

that can be effectively used to increase the detection of next-generation attacks and flash

crowds.

Acknowledgements. The work was supported by the National Research Foundation of Korea

(NRF) funded by the Korea government (MSIP) (2016R1A2B4015899). Kijoon Chae is

corresponding author.

References

1. Buyya R., Pathan M., and Vakali A.: Content Delivery Networks,” Vol. 9. (2008)

2. Niven-Jenkins B., Le Faucheur F., and Bitar N..: Content Distribution Network

Interconnection (CDNI) Problem Statement. Internet Engineering Task Force (IETF),

Request for Comments: 6707. (2012)

3. Open Networking Foundation: SDN Architecture,” Open Networking Foundation Issue 1.

(2014)

4. Mowla N., Doh I., and Chae K.: An Efficient Defense Mechanism against Spoofed IP attack

in SDN based CDNi. The 29th International Conference on Information Networking

(ICOIN), 92-97. (2015)

5. Shin M-K., Lee S., Chang D., and Kwon T.: CDNI Request Routing with SDN,” Network

Working Group, 1-9. (2013)

6. Di Maio, A., Palattella, M. R., Soua, R., Lamorte, L., Vilajosana, X., Alonso-Zarate, J., &

Engel, T.: Enabling SDN in VANETs: What is the Impact on Security?”. Sensors, Vo. 16,

Issue 12, pp. 2077. (2016)

7. Luo, S., Dong, M., Ota, K., Wu, J., & Li, J.: A Security Assessment Mechanism for

Software-Defined Networking-Based Mobile Networks”. Sensors, Vol. 15, No. 12, 31843-

31858. (2015)

8. Yan Q. and Yu F.: Distributed denial of service attacks in software-defined networking with

cloud computing,” IEEE Communications Magazine, Vol. 53, Issue. 4, 52-59. (2015)

9. Xiang M., Chen Y., Ku W., and Su Z.: Mitigating DDoS Attacks Using Protection Nodes in

Mobile Ad Hoc Networks. IEEE Global Telecommunications Conference (GLOBECOM), 1-

6. (2011)

10. Thapngam T., Liu S., Zhou W., and Beliakov G.: Discriminating DDoS Attack Traffic from

Flash Crowd through Packet Arrival Patterns. IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), 952-957. (2011)

11. Yu S., Zhou W., Jia W., Guo S., Xiang Y., and Tang F. Discriminating DDoS Attacks from

Flash Crowds Using Flow Correlation Coefficient. IEEE transactions on Parallel and

Distributed Systems, Vol. 23, No. 6, 1073-1080. (2012)

12. Zargar S. T., Joshi J., and Tipper D.: A Survey of Defense Mechanisms Against Distributed

Denial of Service (DDoS) Flooding Attacks,” IEEE communications surveys & tutorials, vol.

15, no. 4, 2046-2069. (2013)

13. Luo H., Lin Y., Zhang H., and Zukerman M.: Preventing DDoS Attacks by Identifier/Locator

Separation. IEEE network, 60-65. (2013)

184 Nishat I Mowla et al.

14. Braga R., Mota E., and Passito A.: Lightweight DDoS flooding attack detection using

NOX/OpenFlow. IEEE 35th Conference on Local Computer Networks (LCN 2010), 408-

415. (2010)

15. Wang, G., Hao, J., Ma, J. and Huang, L.: A new approach to intrusion detection using

Artificial Neural Networks and fuzzy clustering. Journal of Expert Systems with

Applications, Vol. 37, No. 9, 6225-6232. (2010)

16. Saeed, A., Ahmadinia, A., Javed, A. and Larijani, H.: Intelligent intrusion detection in low-

power IoTs. ACM Transactions on Internet Technology (TOIT), Vol. 16, No. 4, 27. (2016)

17. Chebrolu, S., Abraham, A. and Thomas, J.P.: Feature deduction and ensemble design of

intrusion detection systems. Journal of Computers & security. Vol. 24, No. 4, 295-307.

(2005)

18. Kevric, J., Jukic, S. and Subasi, A.: An effective combining classifier approach using tree

algorithms for network intrusion detection. Journal of Neural Computing and Applications,

1-8. (2016)

19. Kim M., Kong H., Hong S., Chung S., and Hong J.: A flow based method for abnormal

network traffic detection. Network Operations and Management Symposium (NOMS), 599-

612. (2004)

20. Kokila R.T, Thamarai S., and Govindarajan K.: DDoS detection and analysis in SDN based

environment using Support Vector Machine classifier. 2014 Sixth International Conference

on Advanced Computing (ICoAC), 205-210. (2014)

21. Peddabachigari, S., Abraham, A., Grosan, C. and Thomas, J.: Modeling intrusion detection

system using hybrid intelligent systems. Journal of Network and Computer Applications,

Vol. 30, No. 1, 114-132. (2007)

22. Shon T., Kim Y., Lee C., and Moon J.: A machine learning framework for network anomaly

detection using SVM and GA,” Proceedings from the Sixth Annual IEEE SMC Information

Assurance Workshop (IAW), 176-183. (2005)

23. Subbulakshmi T., Shalinie S. M., GanapathiSubramanian V., and BalaKrishnan K.:

Detection of DDoS attacks using Enhanced Support Vector Machines with real time

generated dataset. Third International Conference on Advanced Computing (ICoAC 2011),

17-22. (2011)

24. Sommer, R. and Paxson, V.: Outside the closed world: On using machine learning for

network intrusion detection. IEEE Symposium on Security and Privacy, 305-316. IEEE.

(2010)

25. 25. Zhou H., Wu C., Jiang M., Zhou B., Gao W., Pan T., and Huang M.: Evolving defense

mechanism for future network security,” IEEE Communications Magazine, Vol. 53, Issue. 4,

45-51. (2015)

26. Li K., Zhou W., Li P., Hai J., and Liu J.: Distinguishing DDoS Attacks from Flash Crowds

Using Probability Metrics. Third International Conference on Network and System Security,

9-17. (2009)

27. Yu S., Thapngam T., Liu J., Wei S., and Zhou W.: Discriminating DDoS Flows from Flash

Crowds Using Information Distance. Third International Conference on Network and System

Security, 351-356. (2009)

28. Landset S, Taghi M.K., Aaron N.R., and Tawfiq H.: A survey of open source tools for

machine learning with big data in the Hadoop ecosystem." Journal of Big Data, Vol. 2, Issue.

1, 24 (2015)

29. Weka The University of Waikato. Available at https://weka.wikispaces.com/

30. Biswas P. K, Indian Institute of Technology, Lec-29 Support Vector Machine Mod 1.

Available at https://www.youtube.com/watch?v=SRVswRH5Q7E

31. Statistics 101: Logistic Regression. Available at https://www.youtube.com/

watch?v=zAULhNrnuL4

32. Arlitt M. and Jin T.: 1998 World Cup Web Site Access Logs. Available at

http://www.acm.org/sigcomm/ITA/. (1998)

Cognitive Switch-based DDoS Sensing and Mitigation in SDN-driven CDNi 185

33. The CAIDA: DDoS Attack 2007. Dataset, Center for Applied Internet Data Analysis.

Available at https://www.caida.org/data/passive/ddos-20070804_dataset.xml.

34. Mininet: Rapid Prototyping for Software Defined Network. Available at

https://github.com/mininet/mininet

35. Zhang, B., Ng, T. S., Nandi, A., Riedi, R., Druschel, P., and Wang, G.: Measurement based

analysis, modeling, and synthesis of the internet delay space. Sixth ACM SIGCOMM

conference on Internet measurement, 85-98. (2006)

Nishat Mowla received the B.S degree in Computer Science from Asian University for

Women, Chittagong, Bangladesh in 2013, an M.S. degree in Computer Science and

Engineering from Ewha Womans University, Seoul, Korea in 2016. She is currently a

PhD student at Ewha Womans University, Seoul, Korea. Her research interests include

next generation network security, IoT network security and network traffic analysis.

Inshil Doh received the B.S. and M.S. degrees in Computer Science at Ewha Womans

University, Korea, in 1993 and 1995, respectively, and received the Ph.D. degree in

Computer Science and Engineering from Ewha Womans University in 2007. From

1995-1998, she worked in Samsung SDS of Korea to develop a marketing system. She

was a research professor of Ewha Womans University in 2009~2010 and of

Sungkyunkwan University in 2011. She is currently an assistant professor of Computer

Science and Engineering and Cyber Security at Ewha Womans University, Seoul,

Korea. Her research interests include wireless network, sensor network security, and

M2M network security.

Kijoon Chae received the B.S. degree in mathematics from Yonsei University in 1982,

an M.S. degree in computer science from Syracuse University in 1984, and a Ph.D.

degree in electrical and computer engineering from North Carolina State University in

1990. He is currently a professor in Department of Computer Science and Engineering

at Ewha Womans University, Seoul, Korea. His research interests include sensor

network, smart grid, CDN, SDN and IoT, network protocol design and performance

evaluation.

Received: March 28, 2017; Accepted: October 20, 2017.

