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Abstract. The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP)
consists in reconstructing a DNA chain from a set of fragments taken randomly. This
problem represents an important step in the genome project. Several authors are
proposed different approaches to solve the DNA-FAP. In particular, nature-inspired
algorithms have been used for its resolution. Even they were obtaining good results;
its computational time associated is high. The bio-inspired algorithms are iterative
search processes that can explore and exploit efficiently the solution space. Firefly
Algorithm is one of the recent evolutionary computing models which is inspired
by the flashing light behaviour of fireflies. Recently, the Graphics Processing Units
(GPUs) technology are emerge as a novel environment for a parallel implementation
and execution of bio-inspired algorithms. Therefore, the use of GPU-based parallel
computing it is possible as a complementary tool to speed-up the search. In this
work, we design and implement a Discrete Firefly Algorithm (DFA) on a GPU
architecture in order to speed-up the search process for solving the DNA Fragment
Assembly Problem. Through several experiments, the efficiency of the algorithm
and the quality of the results are demonstrated with the potential to applied for
longer sequences or sequences of unknown length as well.

Keywords: DNA Fragment Assembly Problem, Graphic Processing Units, Paral-
lelism, Firefly Algorithm.

1. Introduction

The Deoxyribonucleic Acid Fragment Assembly Problem (DNA-FAP) consists of: ob-
taining the correct sequence of the DNA by finding the permutation of fragments that
best represents the original DNA chain, given a set of large number (hundreds or even
thousands) of DNA fragments with errors. The DNA-FAP is the primary goal in any
genome project and the remaining phases strongly depend on the accuracy of the re-
sults at this stage. The DNA-FAP is therefore a combinatorial optimization problem that
is NP-Hard [29]. Over the past decade, a lot of tools have been invented to automate
DNA sequencing. Among these tools, PHRAP [10], TIGR assembler [34], STROLL [3],
CAP3 [11], Celera assembler [22] and EULER [29] may be cited. Each one automates
fragment assembly using a variety of algorithms, the most widely used being those based
on greedy techniques.

The problem of DNA fragment assembly has been tackled with different meta-heuristics
in the literature [17,20]. Since they are robust search methods requiring little informa-
tion for searching effectively in large or poorly understood search spaces they have been
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proven to outperform the greedy techniques in small instances of the problem. However,
the quest for new, more accurate and faster techniques still continues. One of the main
problems is scaling up these methods to the size of real organisms.

The Firefly Algorithms (FAs), which were developed by Yang [36,37], are recent bio-
inspired algorithms that have achieved outstanding results in various domains [6,18,40].
The FA is a population-based approach based on the flashing patterns and behaviour of
fireflies [37]. FAs have some significant advantages over other metaheuristics, such as
Genetic Algorithms(GAs) and Particle Swarm Optimizers (PSOs) [9]. A couple of its
distinctive advantages are: the automatic subgrouping and its ability to deal with multi-
modal problems [37]. Fireflies can randomly subdivide into sub-groups and each group
can potentially swarm around a local optimum. All optimal solutions (obviously includ-
ing the global optimum) can be obtained simultaneously if the number of fireflies is much
higher than the number of subgroups [36,37]. In a few years, a lot of research around FA
has been done with excellent results in many different fields, such as Power Energy Sys-
tems [2,6], Mobile Networks [1] and Permutations Combinatorial Problems [18,32,38].
If we consider large instances of the problem, the evaluation of a DNA-FAP solution can
easily require more than several tens of seconds. It may be necessary to perform several
hundred of thousands of evaluations in each iteration process since metaheuristics use
a population of solutions. So, the computational time can be in the order of hundreds of
days. In this context, the Graphics Processing Units (GPUs) is recognized as powerful way
of achieving high-performance on long running scientific applications [23]. Nevertheless,
parallel Firefly Algorithm represents a new developing research area and, to the best of our
knowledge, very little research has been urdertaken with FA on GPU [27,12,35]. Based
in our previous work [35], we propose a Parallel Discrete Firefly Algorithm running en-
tirely on GPU (GPU-DFA) for solving the DNA fragment assembly problem. The idea in
GPU-DFA design is to create a simple but powerful enough algorithm to adapt itself to the
GPU environment. Here we present the characteristics for the main processes of the GPU-
DFA. Also, we demonstrate that the proposed optimization technique is quite amenable
for massive parallelism in order to obtain significant efficiency and substantial gain times.
In order to evaluate our approach, sixteen popular benchmarks have been used [19]. We
employ these benchmarks for making a comparison between our method and some of the
best methods published. The contributions of the paper can be summarized as follows:

– We define the structure of a parallel DFA to be executed mainly in a GPU and deter-
mine the time-consuming operations spent by the GPU-DFA.

– A deep analysis of the behaviour of Discrete Firefly Algorithm design for GPU to
solve the DNA assembly problem was carry out.

– We incorporate an exploitation operator in our canonical proposal addressed for this
problem, a local search strategy, in order to carry out a fine-tuning of solutions.

In the remainder of this paper, we give a description of the Fragment Assembly Prob-
lem in Section 2. Thereafter, Section 3 introduces the canonical DFA and the details of
our algorithmic proposal. In Section 6 we describe the experimental settings, including
a brief explanation about DNA-FAP instances. Then, an analysis of the results is pre-
sented in Section 7. Finally, Section 8 provides the conclusions and also highlights future
research directions.



Solving the DNA FAP with a Parallel DFA implemented on GPU 275

2. The DNA Fragment Assembly Problem

DNA-FAP is one of the fundamental problems in computational molecular biology [29].
This problem involves the combination of partial information from known fragments in
order to find a consistent and complete DNA chain. Hence, large DNA strands need to be
broken into small fragments for sequencing in a process called shotgun sequencing [30],
but this process does not keep either the ordering of the fragments or the portion about
where the particular fragment came from. This leads to the DNA fragment assembly prob-
lem [14] where these short sequences have to then be reassembled in the right order by
using the overlapping portions as landmarks. Most fragment assembly algorithms consist
of the following steps:

– Overlap: Finding the potentially overlapping portions of fragments.
– Layout: Finding the order of the fragments based on similarity scores.
– Consensus: Deriving the DNA sequence from the layout.

The overlap problem consists of finding the best match between the suffix of one read
and the prefix of another one. The common practice is to filter out pairs of fragments that
do not share a significantly long common substring.

Constructing the layout is the hardest step in fragment assembly [20]. The difficulty
is encountered when deciding whether two fragments really overlap, i.e., that their differ-
ences are caused by sequencing errors or they actually come from two different copies of
a repeat. Repeat fragments represent the major challenge for the whole genome shotgun
sequencing and make the layout problem very difficult.

In order to evaluate a solution for DNA-FAP, the following function can be defined:
for a possible order of l fragments (a permutation) i = [0, ..., a, a+ 1, ..., l] the Equation
1 shows the value of the sequence i for DNA-FAP.

f(i) =

l−1∑
a=0

wa,a+1 (1)

where wa,a+1 is the pairwise overlap strength of fragments a and a+ 1 [26].
The final consensus step of fragment assembly amounts to correcting errors in the

sequence of reads. To measure the quality of a consensus, we can look at the coverage
distribution. Coverage at a base position is defined as the number of fragments at that
position. It is a measure of the redundancy of the fragment data, and it denotes the num-
ber of fragments, on average, where a given nucleotide in the target DNA is expected to
appear. It is computed as the number of bases read from fragments over the target DNA’s
length [14]. If no sequencing error is detected at the overlap phase, the process simply
finds the longest suffix of one string that matches exactly the prefix of another one. How-
ever, when sequencing errors exist, the process searches for the best match but a small
percentage of errors still remain (1% to 3%). The only information available during the
assembly process is the sequence of bases; therefore, the ordering of the fragments must
rely primarily on fragment similarity and on how much they overlap.

Once the fragments have been ordered (layout), the final consensus is generated. This
means that a multiple alignment is computed to obtain a consensus sequence that will be
used as the final genomic sequence. The quality of a consensus can be measured by its
coverage distribution.
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The coverage is then computed as the number of bases read from fragments over the
length of the target DNA:

Coverage =

∑l
i=1 length of the fragment i

target sequence length
, (2)

where l stands for the number of fragments. Thus, the higher the coverage and the smaller
the number of gaps, the better the results. A partial coverage is achieved when it is not
possible assemble a given set of fragments into a single contig. More precisely, a contig
in biology is defined as a layout consisting of contiguous overlapping fragments. Overlap-
ping between adjacent fragments must be greater than or equal to a predefined threshold
(i.e., cut-off parameter).

The assembly of DNA fragments into a consensus sequence corresponding to the
parent sequence constitutes the DNA-FAP, which is NP-hard [29].

3. Firefly Algorithm

The Firefly Algorithm (FA) is a recent bio-inspired metaheuristic developed by Yang [36].
It is inspired by mimicking the flashing and attraction behaviour of fireflies. In the scheme
of Yang the fireflies have the following characteristics:

1. All fireflies are unisexual, so that one firefly is attracted to other fireflies regardless of
their sex.

2. Attractiveness is proportional to their brightness. Hence, for any two flashing fireflies,
the less bright one will move towards the brighter one (see Fig. 1(a)). The attractive-
ness decrease as their distance increases. So, the attractiveness has the same value of
brightness when the distance between two fireflies is 0. If no one is brighter than a
particular firefly, it moves randomly as shown in Fig. 1(b).

3. The brightness of a firefly is affected or determined by the landscape of the objective
function.

A canonical FA works with two basic concepts: the variation of light intensity I
(brightness), and the firefly attractiveness β between two fireflies [36]. In the simplest case
for maximum optimization problems, the brightness I of a firefly is its fitness. In addition,
light intensity decreases with the distance from its source, and light is also absorbed in the
media, so we should allow the attractiveness to vary with the degree of absorption. For a
given medium with a fixed light absorption coefficient γ, the light intensity I varies with
the distance r (see Equation 3). As a firefly’s attractiveness β is proportional to the light
intensity seen by adjacent fireflies, we can now define the attractiveness β of a firefly by
Equation 4.

Ij(rij) = I0e
−γrij (3) βj(rij) = β0e

−γr2ij (4)

where I0 is the light intensity (brightness) and β0 the original attractiveness of firefly at
r = 0, respectively. Whilst the intensity is referred to as an absolute measure of emitted
light by the firefly, the attractiveness is a relative measure of the light that should be
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(a) (b)

Fig. 1. Firefly movement considering their attractiveness: (a) j moves to i, the brightest
firefly close to it; (b) j has more brightness than the most attractive firefly i, so j moves
randomly.

seen in the eyes of the beholders and judged by other fireflies [36]. With respect to the
light absorption coefficient γ, if γ → 0 the attractiveness of a firefly i matches with
its brightness (fitness), i.e., the brightness of a firefly will not decrease when viewed by
another one. In the case of γ → ∞, this means that the attractiveness value of a firefly
is close to zero when viewed by another firefly in the sense that fireflies fly randomly.
So, γ determines the speed of convergence and how the FA behaves and the parameter β
controls the attractiveness. Parametric studies suggest that β0 = 1 can be used for most
applications [39]. The distance between two fireflies i and j which are located at two
different locations, can be expressed as a Euclidean distance, as follows:

rij = ‖i− j‖ =

√√√√k=n∑
k=1

(ik − jk)2 (5)

where n denotes the dimensionality of the problem. Taking into account the parameters
like r, β and I , FA can define the kind of movement a firefly i can make with respect to
a firefly j. A pseudocode explanation of canonical FA can be seen in Algorithm 1. First,
in population P all the fireflies are initialized (line 1). Initialize the light intensity of each
firefly i with its fitness (line 2). Next, the γ parameter is defined (line 3). Then, while the
stop condition is not reached (line 4), for each firefly i, FA tries to find the brightest firefly
j near i (line 5 to 13). FA compares Ii and Ij , if Ij > Ii then firefly i will move toward
firefly j (line 8). The movement of a firefly i is attracted to another more attractive firefly
j is determined by

i = i+ β0e
−γr2ij (j − i) + αεi (6)

where the second term is due to the attraction, while the third term is randomization, with
the vector of random variables εi being drawn from a Gaussian distribution and α ∈ [0, 1].
Then, the Attractiveness is updated (line 10). New solutions are evaluated and the light
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intensity is updated (line 11). The fireflies are ranked and the current best is found (line
14). When the iterative process ends, FA returns the results obtained (line 16).

Algorithm 1 Canonical Firefly Algorithm.
1: Initialize a population P of fireflies (i = 1, 2, 3, ..., n)
2: Initialize light intensity of each firefly i, Ii = f(i)
3: Define light absorption coefficient γ
4: while no stopping condition is satisfied do
5: for i = 1 : n all fireflies do
6: for j = 1 : n, with i 6= j do
7: if Ij > Ii then
8: Move firefly i towards j
9: end if

10: Attractiveness varies with distance r via e−γr
2

11: Evaluate new solutions and update light intensity
12: end for
13: end for
14: Rank the fireflies and find the current best
15: end while
16: return Inform results

As can be seen from Algorithm 1 where it has an inherentO(n2×t) complexity, where
t is the number of iterations of the while, since every firefly i must evaluate Equation 4 n
times, for every other firefly j. This complexity is not easy to reduce.

3.1. Discrete Firefly Algorithm

Discrete FA (DFA) is a variation of canonical FA used for combinatorial problems with
success for diverse problems [6,13,25,32]. In the Section 5, the discrete firefly algorithm
approach is described in the context of its GPU approximation.

4. Graphic Processing Units

The model for GPU computing uses a CPU and GPU together in a heterogeneous co-
processing computing model, the CPU is considered as the host and the GPU is used
as the device coprocessor. The sequential part of the application runs on the CPU and
the computationally-intensive part is accelerated by the GPU. GPUs may contain several
hundred simple processors. The set of processors are usually considered as a Single In-
struction Multiple Data (SIMD) computer. A GPU is used by means of a kernel that is
a function callable from the host and executed on the device by each thread. Compute
Unified Device Architecture (CUDA) [4] is an extension of the C programming language
and was created by nVidia. CUDA is a C language environment that provides services to
programmers and developers ranging from common GPU operations in the CUDA library
to traditional C memory management semantics in the CUDA run-time.

Two important concepts with CUDA programming are thread batching and manage-
ment of the memory model [4]. The host launches a kernel to be executed by a batch of
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threads on the GPU. The batch of threads can be organized as a grid of thread blocks.
A thread block is a batch of threads that can cooperate together by efficiently sharing
data through diverse levels of memory and synchronizing their execution to coordinate
memory accesses.

5. GPU Discrete Firefly Algorithm

The goal of this section is to present our algorithmic proposal, which has been called
GPU-DFA. Our primary concern when designing DFA accelerated by GPU is to establish
an efficient model that runs the main processes of DFA entirely on GPU. The objectives
are: (1) to minimize the data transfers between the CPU and the GPU, thus avoiding com-
munication bottlenecks; (2) we will also aim to support n-dimensional optimization prob-
lems using the firefly model interaction with the chance that our algorithm can support
large numbers of fireflies due to optimized data-structures. The CUDA software model is
employed so as to exploit maximum parallel execution and high arithmetic intensity of
GPUs [24].

Fig. 2. GPU Discrete Firefly Algorithm Model.
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The flowchart of the GPU-DFA model is presented in Fig. 2. The major resource-
consuming part is computed by the GPU and the rest is handled by the CPU. Adapting this
kind of bio-inspired algorithm is not a straightforward task because hierarchical memory
management on GPU has to be handled. Memory transfers from CPU to GPU are slow and
these copying operations have to be minimized. Our proposal starts with the initialization
of the FA parameters. All parameters are transferred to the GPU main memory. Then,
GPU-DFA creates and evaluates in each thread a firefly solution from P in each thread.
Next, we use a group of kernels that execute several tasks until the stop condition has been
reached: compute distance between fireflies, parallel reduction, evaluate new solutions,
apply parallel sort and select best fireflies. The division in multiple kernels is due to the
heterogeneity of the tasks and the complexity thereof.

Algorithm 2 shows the organization of the different processes for the GPU-DFA. The
following sections explain each procedure one by one in detail.

Algorithm 2 GPU Firefly Algorithm.
1: Define light absorption coefficient γ
2: Allocate problem inputs on GPU memory
3: Copy problem inputs on GPU memory
4: Allocate solution structure population on GPU memory
5: Initialize a population P of n fireflies
6: for each firefly (i) of P in parallel do
7: initializeSolution(i);
8: evaluateSolution(i);
9: end for

10: while non stop condition do
11: temp=∅
12: for each pair i and j from P in parallel do
13: A=computeDifferences(i, j);
14: rij=computeDistance(i, j,A);
15: βij=computeAttractiveness(rij ,i,j);
16: end for
17: apply reduction function
18: for all j ∈ P in parallel do
19: if j is attracted to other firefly i then
20: k = random(2, A)
21: temp.add(move2−opt(j, k))
22: else
23: temp.add(moveRandom(j))
24: end if
25: end for
26: P = Take best n fireflies in temp
27: end while
28: return best firefly in P
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5.1. Parallel initialization

First of all, problem information and additional structures associated with the operation
must be copied on GPU. It is important to notice that data inputs are read-only structures
and never change during the whole execution of GPU-DFA. Therefore, the copy is only
performed once during the whole execution.

Since GPUs require parallel massive computations with predictable memory accesses,
it is necessary to allocate a structure for storing all the solutions.

In our GPU-DFA approach, the initialization and evaluation of each solution will be
achieved one-by-one. Each firefly i is created randomly (line 7) by permutation of DNA
fragments. Next (line 8), the firefly i is evaluated and its fitness (Brightness) is calculated.
Hence, GPU-DFA computes them through parallel threads. A set of consecutive threads
can access successive memory spaces. In this way we try to follow recommendations and
patterns for memory coalescence [15] (lines 6-9).

5.2. Computing distances, Attractiveness and Reduction Operation

For each evolution step, GPU-DFA computes rij , β, and I in parallel between each pair
of fireflies i and j. When evaluating each combination, it is necessary to run a parallel
reduction kernel in order to define whether solution j performs a random movement or
moves closer to a brighter solution (lines 12-15).

GPU-DFA uses an auxiliary structure located in the shared memory for storing the
partial values computed by each thread. The algorithm launches n block of threads to
evaluate the values stored in the shared memory (line 16).

In continuous optimization problem, distance between two fireflies is simply calcu-
lated using Euclidian distance. For the DNA-FAP the distance between two fireflies, rij
is defined by Equation 7 (line 14). In this equation, A is the number of different edges
between fireflies i and j through the number of consecutive differences in the array posi-
tions (line 13). The parameter l indicates the size of problem (number of fragments). In
Equation 7, rij ∈ [0, 10] and it will be used in attractiveness calculation (line 15) [13].

rij =
A

l
× 10 (7)

In order to clarify A, considerer the Figure 3. It shows the part of fireflies i and j with
differences in the order of DNA fragments. The value of A is five, the different edges
between them are (2, 4), (4, 5), (7, 1), (10, 3) and (3, 6).

The attractiveness is calculated exactly as Canonical FA. The light intensity I of a
firefly i is define as the fitness value of the firefly.

5.3. Parallel Modifications

Once each firefly j has a defined movement, GPU-DFA creates and evaluates n×m new
solutions (by disturbing each one with a specific operator or randomly and saves them
in temp (lines 17-24). m is number of new fireflies created considering each firefly j
movement. In order to explore the solution space, GPU-DFA uses a 2-opt movement for



282 Pablo Javier Vidal and Ana Carolina Olivera

order 8 9 10 11 12 13 14 15 16 17
i . . . 2 4 5 7 1 10 3 6 . . .

j . . . 2 5 7 4 1 10 6 3 . . .

Fig. 3. Fragment of fireflies i and j, A is calculated for two fireflies i and j as the number
of different edges between them.

DNA-FAP. The movement is applied k times (line 21), where k is a number selected ran-
domly between 2 and parameter A (line 20). Otherwise, random movement is generated
by applying a 2-opt operator without any restrictions (line 23).

5.4. Bitonic Sort

The firefly scheme needs to sort the temp according to its fitness by using parallel Bitonic
Sort [28] to get the n best fireflies to replace on P . Bitonic sort has primarily been used
by previous GPU sorting algorithms even though the classic complexity is of n(log n)2.
This method needs a total number of comparison/exchange operations of O(n log n). The
hidden constant in the asymptotic is smaller than in other parallel sorting methods. It can
be implemented in a highly parallel manner on modern architectures, even without any
scatter operations, that is, without random access writes, which would involve passing a
sequential execution mode within the GPU. Next, select n solutions in parallel to replace
the population P (line 26).

5.5. Random Number Generation

The performance of a nature-inspired algorithm largely depends on the quality of its ran-
dom number generator across the entire evolution. We used a Mersenne Twister random
generator approach [31] for this study. At the beginning of the execution, GPU-DFA set
a global seed that is passed and it is used to set up one local seed per thread. Finally,
this local seed is invoked continuously by each thread for subsequent random number
generation. This approach has been successfully tested in other work [35].

5.6. Solution Encoding

In order to make an efficient mapping between a thread and a particular solution, we
use a discrete vector representation. This codification uses an alphabet Σ = {1, . . . , l}
where l is the total number of fragments to be sorted. Then, a solution is a permutation
of fragments of DNA. In this representation, each variable takes its value over the finite
alphabet Σ.

The memory layouts of the GPU population are carefully designed. The chromosome-
based layout [33] simplifies the solution movements in the selection, comparison, pertur-
bation phases, and replacement phases in order to preserve the data locality.



Solving the DNA FAP with a Parallel DFA implemented on GPU 283

5.7. GPU-DFA exploitation: Local Search

In addition to improve the model of canonical GPU-DFA, we incorporate other proposal
with a Local Search defined as 3-opt movement. This process is performed after line 26 in
Algorithm 2 for all the fireflies in P . The 3-opt analysis involves deleting 3 connections
(or edges) in a DNA sequence, reconnecting the sequence in all other possible ways, and
then evaluating each reconnection method to find the optimum one. This process is then
repeated for a different set of 3 edges at random.

6. Experimental settings

In this section we present our experimental set-up. First, we show the features of the
selected DNA-FAP instances. Next, the methodology and the parameter settings used in
the tests are summarised.

6.1. Instances

We carried out several experiments with different instances of DNA-FAP benchmark data
sets, which were described in [19].

Table 1. Information of datasets

Instances (Acronym) Coverage Mean fragment length Num. of fragments Original sequence length Optimum

GenFrag Instances
x60189 4 (x 4) 4 395 39

3835

11478
x60189 5 (x 5) 5 386 48 14161
x60189 6 (x 6) 6 343 66 18301
x60189 7 (x 7) 7 387 68 21271
m154216 5 (m 5) 5 398 127

10089
38746

m154216 6 (m 6) 6 350 173 48052
m154216 6 (m 7) 7 383 177 55171
j02459 7 (j 7) 7 405 352 20000 116700
bx842596 4 (b 4) 4 708 442

77292
227920

bx842596 7 (b 7) 7 703 773 445422
DNAgen Instances

acin1 (a 1) 26 182 307 2170 47618
acin2 (a 2) 3 1002 451 147200 151553
acin3 (a 3) 3 1001 601 200741 167877
acin5 (a 5) 2 1003 751 329958 163906
acin7 (a 7) 2 1003 901 426840 180966
acin9 (a 9) 7 1003 1049 156305 344107

The benchmarks can be divided in two groups, the first one was generated using Gen-
Frag [5] and the DNAGen program [19] was used for the second one. Table 1 summarizes
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the instances information with their names, coverage, sizes (mean fragment length and
number of fragments per instance), original sequence length and the optimum, respec-
tively. The instances are ordered by group and number of fragments. A more detailed
description of these benchmarks can be found in [19]. In order to test the GPU-DFA we
use n = 32 (number of fireflies) and m = 16 (number of new solutions generated) as
parameter settings. These values were obtained from a previous study presented in [35].

6.2. Experimentation

In order to analyse both the behaviour and performance of our approach, we need to
clarify some parameter definitions and mechanisms.

In order to make a meaningful comparison between both the DFA implementations
-CPU and GPU-, we have chosen a stop condition so that we can guarantee a similar
exploration of the search space for all the instance problem sizes. The stop condition for
both algorithms is defined in one million of evaluations.

We perform 30 independent runs to evaluate the instances. We have marked a result
in dark grey when it is the best and in light grey when it is the second best result.

The experiments were performed using the host with a CPU AMD FX(tm)-8320
Eight-Core Processor, with a total physical memory of 16GB. The operating system is
Ubuntu Precise 12.04. In the case of the GPU, we have an NVIDIA GeForce GTX 780Ti
with 3GB of DRAM on the device and we used the CUDA version 6.0.

7. Results and Analysis

This section presents the experimental results obtained with the GPU-DFA approach and
GPU-DFA with Local Search (GPU-DFA+LS). We measured the quality of the solution
by considering the fitness value achieved as well as the number of contigs obtained solv-
ing different DNA-FAP instances. Next, the time performance of GPU-DFA and GPU-
DFA+LS was analysed and compared with respect to the CPU-DFA algorithm. Finally,
an analysis for each GPU-DFA kernel time execution was provided.

7.1. Numerical Analysis

Table 2 shows the results of GPU-DFA approaches for all the DNA-FAP instances. The
first column presents the acronym of each instance. Column two shows the best fitness
value obtained and column three the hit-rate (percentage of successful runs that obtain the
optimum). Columns four and five indicate the average fitness for 30 runs with its standard
deviation. The same results are presented from column six to nine for the GPU-DFA+LS.

From Table 2 we observe that the two approaches obtain the optimal value, or near to
it, in most of the instances considered. GPU-DFA finds the optimal value at least once in
the small instance sizes. The GPU-DFA achieves the optimum in 6 of 16 instances. For the
DNAgen instances, our approach does not reach the optimum with the biggest instances.
The GPU-DFA+LS obtain the optimum in 8 of 16 instances. Between both approaches,
the one that uses LS obtains results much closer to the optimum value (highest) in the rest
of instances. The adddition of a LS improve all the results of the canonical GPU-DFA.
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Table 2. GPU-DFA results for DNA-FAP instances.

Instance
GPU-DFA GPU-DFA+LS

Best Hit-rate Avg. Std. Best Hit-rate Avg. Std.
GenFrag Instances

x 4 11478 7 11477.67 ±0.72 11478 30 114778.00 ±0.00
x 5 14027 24 13783.33 ±1.09 14161 28 14100.36 ±0.74
x 6 18301 25 18297.40 ±1.27 18301 28 18299.27 ±0.58
x 7 21271 28 21267.83 ±0.41 21271 30 21271.00 ±0.00
m 5 38592 18 38585.80 ±4.37 38746 26 38715.85 ±2.61
m 6 48048 13 47969.29 ±11.79 48052 18 47969.78 ±3.05
m 7 55067 0 54748.50 ±58.50 55072 0 54921.09 ±13.37
j 7 114358 0 114343.60 ±59.45 116700 2 116119.93 ±19.36
b 4 225858 0 225173.60 ±678.54 227233 0 225173.46 ±408.88
b 7 441992 0 433958.00 ±753.02 444162 0 443719.33 ±102.94

DNAgen Instances
a 1 47618 1 45976.60 ±28.62 47618 8 47576.07 ±15.66
a 2 144634 0 144513.00 ±33.93 144705 0 144535.79 ±69.13
a 3 156776 0 155751.30 ±147.10 162961 0 161453.53 ±515.69
a 5 147880 0 145304.50 ±435.86 160227 0 159304.47 ±286.26
a 7 157032 0 156439.90 ±317.15 168025 0 167582.23 ±152.67
a 9 329015 0 328201.70 ±536.77 335488 0 334868.20 ±215.29

The best solutions obtained by GPU-DFA are competitive and close to the optimum.
The results indicate that GPU-DFA is capable of exploring the search space in an effective
way showing promising behaviour.

Table 3 summarizes the results obtained by the GPU-DFA+LS and others DNA-FAP
assembler algorithms [7,16,17,21]. Values in bold with gray background indicate that
an algorithm reaches the optimal solution for the instance and values in italic with gray
background show values with the second best solution found.

From Table 3, we observe that the algorithms with a more intelligent behaviour ben-
efits the search process, obtaining in general competitive results for all the instances. For
small and medium benchmarks, the efficiency of all the algorithms is roughly comparable.
Our approach obtain the optimum or stay very near being secondly.

Table 3 indicates that for larger instances, the behaviour is similar, obtaining values
very near to the optimum as is the case of DNAgen instances where only the PPSO+DE
overcome GPU-DFA+LS results. In the case of GenFrag instances, GPU-DFA+LS was
superior to the other algorithms. In general, the second best solution is obtained by the
GPU-DFA+LS in large instances. The simulation results demonstrate that the proposed
GPU-DFA+LS optimizes the overlap score for the 16 benchmark instances tested.

7.2. Comparison of the contigs

This section presents a comparison of our approach with other well-known assembler al-
gorithms. For this analysis we focus on the significance of the contigs. The contig calcula-
tion ensures that the best solution obtained represents a continuously assembled sequence.

Table 4 shows the contig solution obtained with the two GPU-DFA proposals com-
pared to other algorithms. These ones are used to solve the DNA-FAP:Artificial bee
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Table 3. Results for the 16 benchmark datasets along with GPU-DFA results for the addit.

Instance GPU-DFA+LS PPSO+DE QEGA SA PALS SAX POEMS
GenFrag Instances

x 4 11478 11478 11476 11478 11478 11478 11478
x 5 14161 13642 14027 14027 14021 14027 −
x 6 18301 18301 18266 18301 18301 18301 −
x 7 21271 20921 21208 21271 21210 21268 21261

m 5 38746 38686 38578 38583 38526 38726 38610
m 6 48048 47669 47882 48048 48048 48048 −
m 7 55072 54891 55020 55048 55067 55072 55092
j 7 116700 114381 116222 116257 115320 115301 116542
b 4 227233 224797 227252 226538 225783 223029 227233
b 7 444162 429338 443600 436739 438215 417680 444634

DNAgen Instances
a 1 47618 47264 47115 46955 46876 46865 −
a 2 144705 147429 144133 144705 144634 144567 −
a 3 162961 163965 156138 156630 156776 155789 −
a 5 160227 161511 144541 146607 146594 145880 −
a 7 168025 180052 155322 157984 158004 157032 −
a 9 335488 335522 322768 324559 325930 314354 −

colony (ABC) [8], Queen Bee Evolution Based on Genetic Algorithm (QEGA) [16],
Simulated Annealing (SA) [7], Problem Aware Local Search (PALS), and Genetic Al-
gorithm [7].

For GenFrag instances, GPU-DFA obtains an optimal layout of the DNA sequence.
In the case of the largest DNAgen instances, GPU-DFA cannot find the best layout. How-
ever, PALS, SA and GPU-DFA return similar fitness values. So, we can infer that canon-
ical GPU-DFA needs a better exploitation operation to find the best contigs. In fact, the
results obtained by the GPU-DFA+LS prove this point. The results of our proposals are
competitive with respect to other approaches presented in the literature. Nevertheless, in
the case of GPU-DFA, for instances m 7, a 1, a 7 and a 9 as the contig value did not
improve the results obtained by PALS and SA. The GPU-DFA+LS enhances the contig
value obtained in m 7, a 1 and a 9.

From Table 4 we can conclude that the use of an intelligent search method for search
space exploitation obtains better results (a lower number of contigs) than a random seed-
ing or other bio-inspired techniques.

As a final remark, the numerical results of GPU-DFA indicate that the algorithm is
able to generate accurate solutions and it explores the search space effectively, so as to
identify the region where the optimal solution is located.
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Table 4. Best final number of contig for our assembler (using the best configuration) and
for other specialized systems.

Instance GPU-DFA GPU-DFA+LS ABC QEGA SA PALS GA
GenFrag Instances

x 4 1 1 1 1 1 1 1
x 5 1 1 1 1 1 1 1
x 6 1 1 1 1 1 1 1
x 7 1 1 1 1 1 1 1
m 5 1 1 3 1 1 1 1
m 6 1 1 2 1 1 1 2
m 7 2 1 2 1 1 1 2
j 7 1 1 3 1 1 1 1
b 4 1 1 12 8 1 1 6
b 7 1 1 12 3 1 1 3

DNAgen Instances
a 1 2 1 8 4 1 1 5
a 2 1 1 237 233 1 1 236
a 3 1 1 362 358 1 1 358
a 5 1 1 556 552 1 1 522
a 7 722 722 726 722 1 1 722
a 9 552 1 552 552 1 1 552

7.3. Execution Time Analysis

Table 5 provides the average time consumed in seconds for the CPU and GPU implemen-
tation of DFA. The table shows the acronym of each instance in the first column. Column
two and three indicate the average time for the CPU-DFA and GPU-DFA models. Finally,
column four provides the gain time computed.

Concerning the amount of gain time obtained, we have computed this metric by di-
viding the average time of the CPU-DFA over the average time for the GPU-DFA. As an
initial observation, we can say that the gain time is above the value 1.00 indicating that
the CPU always spent more execution time than the GPU.

Table 5 illustrates that while the number of fragments increased, the GPU-DFA times
did not rise significantly, in contrast with the times of the CPU-DFA version.

Table 5 indicates that the GPU-DFA algorithm obtained lower times in all the in-
stances. The gain time for the GPU-DFA ranges from 1.73× to 9.88×. We can observe
that the largest value differences exist in medium/large instances. For the case of the in-
tegration of a Local Search to the GPU model, we can see that runtimes are increased but
not significantly. The results of execution tiems are better (less) than those obtained by the
implementation in CPU. With respect to the gains of times obtained, they do not surpass
the canonical model GPU-DFA.

These time differences of both GPU approaches with respect to the CPU model might
be due to the intrinsic characteristics of certain operations in the DFA model, which have
a high degree of parallelization that can maximize the efficiency of each thread and thus,
the simplicity of each kernel is maintained. By considering the time performance, we can
say that GPU-DFA has a balanced behaviour. GPU-DFA is able to reach, or be close to,
the optimal solution in the shortest execution times.
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Table 5. Mean time (in seconds) to find the best fitness obtained for each implementation
in all instances.

Instance CPU-DFA GPU-DFA Gain Time GPU-DFA+LS Gain Time
GenFrag Instances

x 4 4.13 2.38 1.74 2.76 1.50
x 5 5.58 2.33 2.39 2.70 2.06
x 6 18.58 2.33 7.97 2.80 6.65
x 7 21.59 3.82 5.65 4.47 4.83
m 5 39.12 7.20 5.43 8.35 4.68
m 6 52.37 5.16 10.15 8.77 5.97
m 7 55.21 6.71 8.23 9.39 5.88
j 7 186.31 34.37 5.42 39.18 4.76
b 4 393.18 139.73 2.81 159.29 2.47
b 7 502.66 140.41 3.58 160.07 3.14

DNAgen Instances
a 1 171.98 29.54 5.82 34.86 4.93
a 2 382.93 134.58 2.85 158.80 2.41
a 3 486.36 136.95 3.55 161.60 3.01
a 5 719.58 157.91 4.56 186.33 3.86
a 7 1156.12 138.18 8.37 163.05 7.09
a 9 1418.25 143.57 9.88 169.41 8.37
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Fig. 4. Average percentage of six time-consuming operations spent by the GPU-DFA
model for six DNA-FAP instances.

An important point is the relative execution time spent on GPU-DFA processes with
respect to the total execution time of the algorithm. Indeed, these times can help to de-
scribe the use of each GPU-DFA process impact over an execution. Fig. 4 and Fig. 5
show the percentage of time spent by each relevant operation in the GPU-DFA and GPU-
DFA+LS implementation, respectively. In particular, we focus on: the data transfer be-
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Fig. 5. Average percentage of seven time-consuming operations spent by the GPU-
DFA+LS model for six DNA-FAP instances.

tween CPU and GPU, evaluation, reduction, sort, generation of movement, and other mi-
nor operations (such as computing distance between two fireflies and replacing solutions
between temp and P ). Fig. 2 presents the GPU-DFA operations that are analysed. In
addition, Fig. 5 shows the time used by the local search procedure in GPU.

A first observation that can be made on Fig. 4 is about the data transfers between the
CPU and the GPU. The time associated with the transfers is less than 3% and is kept
for all instance sizes. Indeed, from the first instance (x60189 4), the time corresponds to
2.60% and it reaches 1.47% for the last instance (bx842596 7). The time dedicated to the
data transfers in the iteration-level parallel model is not significant in comparison with
the rest of the processes. Another observation concerns the time spent by the sort and the
evaluation of the solutions which represents most of the total running time. The evaluation
process time grows accordingly with the instance size (more than 50% time is busy with
this process).

Also, in Fig. 4 we can appreciate the time-consuming sort process. The time consumed
by the sort process ranged between 23% and 21% of the total running time. In this sense,
we can see that as time sorting decreases, the evaluation process grows. These values
can be explained by taking into account that, as the number of fireflies increases, the
number of iterations decreases. So, the evaluation process needs more time to work with
each solution (since the number of elements to be analysed grows). With fewer iterations
the evaluation process consumes almost 55% of the running time in the largest instance.
Moreover, we observe that the parallel reduction time grows by a smaller proportion when
instances become larger (ranging between 8% and 9%).

For the Fig. 5, it can be seen that the execution times obtained are similar to those
achieved in Fig. 4. However, it is also notorious how the LS process consumes approx-
imately 10% of the total execution time. To conclude with the analysis of Fig. 4 and
Fig. 5, the advantage of a full distribution of processes over different GPU kernels shows
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that even when wasting time in the data transfer operations and the sort function, the
algorithm is still fast and effective. The case of the data transmission performed by the
algorithmic model is less time consuming. In regard to the other GPU-DFA processes, we
can see that those related with the main FA model have very similar time cost during GPU
occupation. This indicates that this model can distribute tasks in different kernels and no
single task slows down the system more than others (with the exception of the evaluation
process which for all instances demands the longest time).

As final remarks regarding our approach, these results demonstrate that GPU-DFA
obtains satisfactory results. We have confidence in the algorithmic performance since we
have not yet introduced any specific function or operator related to DNA-FAP in particu-
lar.

8. Conclusions and Future Work

In this paper, we have proposed a Discrete Firefly Algorithm implemented on GPU to
assemble DNA fragments in order to reconstruct a genome sequence. The algorithm was
executed on a GPU platform designed for massive parallel arithmetic computing. The
new algorithm is inspired by the successful experience gathered by the FA in different
fields. We performed the tests over a group of well-known DNA-FAP benchmarks and
compared it with others assemblers. Promising results were obtained considering not only
the optimal values, but also the number of contigs generated by GPU-DFA.

From the analysis of all the results we can observe that the GPU-DFA can achieve
the optimum or is very close to it but cannot find the best layout for largest DNAgen in-
stances. So, we propose a GPU-DFA enhancement approach (GPU-DFA+LS) in order to
exploit the neighbourhood of these solutions. The preliminary results of our experiments
are very promising in regard to the effectiveness of the method that we have developed. In-
deed, GPU-DFA+LS can be considered a satisfactory assembler, in view of its high accu-
racy and real time efficiency for DNA assembler sequence problems. The GPU-DFA+LS
seems to be a favourable optimization tool in part due to the effect of the attractiveness
function and its search model.

In general, both approaches provide a good balance of exploitation and exploration.
The implementation on a parallel platform allows the optimal values to reached in a short
time, which is interesting, with the idea of applying this algorithm for big database of
genomes. Moreover, we have found that the GPU-DFA model provides a robust parallel
model that allows instances of different sizes to be solved without great degradation in
the quality of the solutions and time execution.

Another conclusion that can be easily observed from the results, is the better scala-
bility of the GPU-DFA approach with respect to the execution time. The gain time of our
model in front of the CPU-DFA ranges between 1.50× to 9.88×. Furthermore, commu-
nication times are quite short compared with the time processes of the GPU-DFA model,
so, the numerical performance is not penalized by the communication time. However, this
may be a direct effect of the number of steps that the algorithm executes. The GPU-DFA
and GPU-DFA+LS obtain similar execution times making the proposals capable to dis-
tribute effectively the task in different kernels. It is probe that hybridizing the GPU model
could enhance the quality of results without resounding impact on the execution time.
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Considering comparison with others assemblers, it is clear that we need to explore the
possibility of an intelligent initialization of the fireflies in future work in order to generate
quality initial solutions.

Acknowledgments. Authors thank to Agencia Nacional de Promoción Cientı́fica y Tecnológica
for grant PICT 2014-0430 and grant PIP 2015-2017 from Consejo Nacional de Investigaciones
Cientı́ficas y Técnicas (CONICET). Authors are thankful to Universidad Nacional de la Patagonia
Austral (UNPA). In the same way, the work of Pablo Javier Vidal and Ana Carolina Olivera has
been partially funded by the PI-UNPA 29/B209.

References

1. Bojic, I., Podobnik, V., Ljubi, I., Jezic, G., Kusek, M.: A self-optimizing mobile network: Auto-
tuning the network with firefly-synchronized agents. INFORM SCIENCES 182(1), pp. 77–92
(2012)

2. Chandrasekaran, K., Simon, S.P.: Network and reliability constrained unit commitment prob-
lem using binary real coded firefly algorithm. INT J ELEC POWER 43(1), pp. 921–932 (2012)

3. Chen, T., Skiena, S.S.: A case study in genome-level fragment assembly. Bioinformatics 16
(2000)

4. Corporation, N.: NVIDIA CUDA C Programming Best Practices Guide. Tech. rep. (2009)
5. Engle, M.L., Burks, C.: Artificially generated data sets for testing DNA sequence assembly

algorithms. Genomics 16(1), pp. 286–288 (1993)
6. Farhoodnea, M., Mohamed, A., Shareef, H., Zayandehroodi, H.: Optimum placement of active

power conditioners by a dynamic discrete firefly algorithm to mitigate the negative power qual-
ity effects of renewable energy-based generators. International Journal of Electrical Power &
Energy Systems 61, pp. 305–317 (2014)

7. Firoz, J.S., Rahman, M.S., Saha, T.K.: Bee algorithms for solving dna fragment assembly prob-
lem with noisy and noiseless data. In: Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation. pp. 201–208. ACM, New York (2012)

8. Firoz, J.S., Rahman, M.S., Saha, T.K.: Bee algorithms for solving dna fragment assembly prob-
lem with noisy and noiseless data. In: Proceedings of the 14th Annual Conference on Genetic
and Evolutionary Computation. pp. pp. 201–208. ACM, New York (2012)

9. Fister, I., Jr., I.F., Yang, X.S., Brest, J.: A comprehensive review of firefly algorithms. CoRR
abs/1312.6609 (2013)

10. Green, P.: Phrap, version 1.090518, http://phrap.org (2009)
11. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome research 9(9), pp.

868–877 (1999)
12. Husselmann, A., Hawick, K.: Parallel parametric optimisation with firefly algorithms on graph-

ical processing units. In: Hamid (ed.) 2012 World Congress in Computer Science, Computer
Engineering, and Applied Computing (2012)

13. Jati, G.K., Manurung, R., Suyanto: Discrete firefly algorithm for traveling salesman problem:
A new movement scheme. In: Yang, X.S., Cui, Z., Xiao, R., Gandomi, A.H., Karamanoglu,
M. (eds.) Swarm Intelligence and Bio-Inspired Computation, pp. 295–312. Elsevier, Oxford
(2013)

14. Jones, N.C., Preface, P.A.P.: An Introduction to Bioinformatics Algorithms. Massachusetts In-
stitute of Technology (2004)

15. Kirk, D.B., Hwu, W.m.W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2010)

16. Knuth, D.E.: The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and Searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA (1998)



292 Pablo Javier Vidal and Ana Carolina Olivera

17. Kubalik, J., Buryan, P., Wagner, L.: Solving the dna fragment assembly problem efficiently
using iterative optimization with evolved hypermutations. In: Proceedings of the 12th annual
conference on Genetic and evolutionary computation. pp. 213–214. ACM (2010)

18. Maher, B., et al.: A firefly-inspired method for protein structure prediction in lattice models.
Biomhc 4(1), pp. 56–75 (2014)

19. Mallén-Fullerton, G.M., Hughes, J.A., Houghten, S., Fernández-Anaya, G.: Benchmark
datasets for the DNA fragment assembly problem. International Journal of Bio-Inspired Com-
putation 5(6), pp. 384–394 (2013)

20. Minetti, G., Alba, E.: Metaheuristic assemblers of DNA strands: Noiseless and noisy cases. In:
Proceedings of the IEEE Congress on Evolutionary Computation, CEC2010, Barcelona, Spain,
18-23 July 2010. pp. 1–8 (2010)

21. Minetti, G., Leguizamón, G., Alba, E.: Sax: a new and efficient assembler for solving dna
fragment assembly problem. In: 2012 Argentine Symposium on Artificial Intelligence (2012)

22. Myers, E.W., Sutton, G.G., Delcher, A.L., Dew, I.M., Fasulo, D.P., Flanigan, M.J., Kravitz,
S.A., Mobarry, C.M., Reinert, K.H., Remington, K.A., et al.: A whole-genome assembly of
drosophila. Science 287(5461), pp. 2196–2204 (2000)

23. Navarro, C.A., Hitschfeld-Kahler, N., Mateu, L.: A survey on parallel computing and its appli-
cations in data-parallel problems using gpu architectures. Communications in Computational
Physics 15(2), pp. 285–329 (06 2015)

24. NVIDIA Corporation: NVIDIA CUDA C Programming Guide (June 2011)
25. Osaba, E., Yang, X.S., Diaz, F., Onieva, E., Masegosa, A.D., Perallos, A.: A discrete firefly

algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system
with recycling policy. Soft Computing pp. 1–14 (2016)

26. Parsons, R., Forrest, S., Burks, C.: Genetic algorithms, operators, and DNA fragment assembly.
Machine Learning 21(1-2), pp. 11–33 (1995)

27. de Paula, L., et al.: Parallelization of a modified firefly algorithm using GPU for variable selec-
tion in a multivariate calibration problem. International Journal of Natural Computing Research
(IJNCR) 4(1), pp. 31–42 (2014)

28. Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place sorting with CUDA based
on bitonic sort. LNCS, vol. 6067, pp. 403–410. Springer (2009)

29. Pevzner, P.: Computational Molecular Biology: An Algorithmic Approach. MIT Press (2000)
30. Pop, M.: Shotgun sequence assembly. Advances in Computers 60, pp. 193–248 (2004)
31. Saito, M., Matsumoto, M.: Variants of mersenne twister suitable for graphic processors. ACM

Trans. Math. Softw. 39(2), pp. 12:1–12:20 (Feb 2013)
32. Sayadi, M.K., Hafezalkotob, A., Naini, S.G.J.: Firefly-inspired algorithm for discrete optimiza-

tion problems: An application to manufacturing cell formation. Journal of Manufacturing Sys-
tems 32(1), pp. 78–84 (2013)

33. Shah, R., Narayanan, P., Kothapalli, K.: Gpu-accelerated genetic algorithms. In: Workshop on
Parallel Architectures for Bio-ispired Algorithms in conunction with Parallel Architectures and
Compilation Techniques (PACT Workshop). pp. 27–34 (2010)

34. Sutton, G.G., White, O., Adams, M.D., Kerlavage, A.R.: Tigr assembler: A new tool for as-
sembling large shotgun sequencing projects. Genome Science and Technology 1(1), pp. 9–19
(1995)

35. Vidal, P., Olivera, A.C.: A parallel discrete firefly algorithm on gpu for permutation combinato-
rial optimization problems. In: Hernndez, G., Barrios Hernández, C.J., Dı́az, G., Garcı́a Garino,
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