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Abstract. Updating applications is an important mechanism to enhance their avail-
ability, functionality, and security. However, without careful considerations, appli-
cation updates can bring other security problems. In this paper, we consider a novel
attack that exploits application updates on Android: a cross-update privacy-leak at-
tack called COUPLE. The COUPLE attack allows an application to secretly leak sen-
sitive data through the cross-update interaction between its old and new versions;
each version only has permissions and logic for either data collection or transmis-
sion to evade detection. We implement a runtime security system, BREAKUP, that
prevents cross-update sensitive data transactions by tracking permission-use his-
tories of individual applications. Evaluation results show that BREAKUP’s time
overhead is below 5%. We further show the feasibility of the COUPLE attack by
analyzing the versions of 2,009 applications (28,682 APKs).
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1. Introduction

Android has become one of the most valuable attack targets due to its popularity. The
global market share of Android is over 80% [28], while 99% of mobile malware targets
Android [46]. Most mobile malware aims to steal a huge amount of sensitive user data
kept in Android devices, e.g., emails, contacts, and photos. Therefore, we should develop
effective solutions to protect such private data from attackers.

To prevent various attacks, Android adopts a permission-based mechanism that re-
stricts the capabilities of an application pursuant to the application specification and a
user’s approval. The security mechanism specifies whether an application can access sen-
sitive user data (e.g., contacts, SMS, or call logs) or system resources (e.g., files, network
sockets, or microphones). Users who worry about their security and privacy would not
install an application that unnecessarily demands critical permissions [25] or use security
extensions, such as Kirin [19], to enforce additional security policies at installation.

However, restricting the capabilities of individual applications still has security prob-
lems because a malicious application can indirectly escalate its privilege by using two
kinds of application-level privilege-escalation attacks: confused deputy [17, 27, 60] and
collusion attacks [49, 37]. In a confused deputy attack, a malicious application exploits the
public interfaces of a vulnerable application to use the permissions granted to the vulner-
able application. In a collusion attack, multiple malicious applications collude to combine
their restricted permissions (e.g., they can access either private data or system resources)
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to leak privileged data and resources. The permission-based security mechanism cannot
detect either attack because each application has restricted permissions. Thus, some re-
searchers propose detection systems that restrict inter-component communication (ICC)
between different applications according to their permissions and security policies [24,
18, 55, 10].

To overcome the limitations of the permission-based mechanism, many researchers
propose information-flow tracking methods for Android that monitors how tainted data
is delivered from a source to a sink within an application or across different applications.
Static information-flow tracking [42, 7, 52, 12, 35] analyzes application code to artificially
explore every data-leak path, whereas dynamic information-flow tracking [20, 29, 16, 56]
runs applications in a monitored environment to track real data flow. Although both static
and dynamic approaches have drawbacks (e.g., implicit flow, native code, and emulation
awareness), they are the state-of-the-art approaches to detect possible privacy leaks.

In this paper, we depict a novel attack that exploits application updates: a CrOss-
Update Privacy-LEak attack, called COUPLE in short. The COUPLE attack separates nec-
essary permissions and logic to leak private data across different versions of the same
application, and let them collude together to bypass popular Android security mecha-
nisms through the application update mechanism of Google Play. For example, if an old
version of an application has the READ SMS permission to access the user’s SMSs, and
the new version has the INTERNET permission, but without READ SMS, then the ap-
plication can exfiltrate the previously read SMSs outside the user’s device. Through this
implicit information channel across application boundary, COUPLE can bypass virtually
all the proposed Android security mechanisms, as far as we know (Section 4).

We introduce three COUPLE attacks according to their channels and functionalities:
direct, indirect, and concurrent. First, in a direct COUPLE attack, the updated version of
a malicious application directly communicates with a Linux process spawned from its
old version via the fork() system call, storing collected sensitive data in memory. The
forked process can stay alive even after an application update because it is outside the
management of the Activity Manager (Section 3.1).

Second, in an indirect COUPLE attack, the updated version of a malicious application
accesses its private resources (e.g., a file or database (DB) within the application’s internal
storage) that contain sensitive data collected by an older version of the application. The
private resources remain after an application update because the Android system tries to
prevent possible damage to such resources when updating applications [54].

Third, unlike direct and indirect COUPLE attacks that are sequential, a concurrent
COUPLE attack allows an adversary to simultaneously collect and send out sensitive data
with only permissions for data collection. An adversary can use this attack to steal time-
limited data, such as a one-time password (OTP) via SMS and the current location. This
attack leverages a time of check to time of use (TOCTTOU) problem when using an im-
portant component of the Android system: a network socket. We identify that the Android
system checks the INTERNET permission when creating a socket, but does not check the
permission when using the created socket to establish connection or to exchange data.

Existing detection methods have difficulties in determining the malice of an applica-
tion conducting the COUPLE attack, since they only inspect a snapshot of each Android
application or system. No detection method (1) considers the correlation between per-
mission request changes at updates, (2) simultaneously analyzes multiple versions of ap-
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plication code to discover separated flow, and (3) continuously runs an application in a
monitored environment across application updates. They should accept considerable com-
putation and storage overhead to satisfy the three requirements for detecting the COUPLE
attacks with dummy updates (Section 7).

To mitigate the COUPLE attacks, we develop a lightweight security extension, called
BREAKUP, that inspects information-flow across application updates. BREAKUP’s method
is similar to information-flow tracking mechanisms [58, 33, 32] in spirit, but it only con-
siders how applications use permissions to minimize system overhead. It maintains per-
mission-use histories associated with processes and private resources of individual third-
party applications. To prevent the COUPLE attacks at application updates, BREAKUP uses
the information to kill processes and remove private resources that possibly leak sensitive
information. In addition, we added some code to the Linux kernel for Android to eliminate
the TOCTTOU problem of network sockets.

This work achieves the following contributions:
– New security problem. To the best of our knowledge, this is the first study that

considers security problems of application updates on Android.
– Stealthy attack. The COUPLE attack is stealthy; its malicious data flows and behav-

iors are separated across version updates. Analyzing individual versions is insufficient
to reveal the suspiciousness of applications conducting the COUPLE attack.

– Efficient countermeasure. We develop a lightweight solution against the COUPLE
attacks with a time overhead below 5%.

– Large-scale measurement study. We survey all available versions, from the original
version to the latest, of 2,009 different applications (28,682 versions in total) to study
the feasibility of the COUPLE attacks in terms of the frequency of application updates
and permission changes.
The remainder of this paper is organized as follows. Section 3 presents some back-

ground information and our assumption. Section 4 depict the details of the COUPLE at-
tacks. Section 5 describes our countermeasure against the COUPLE attacks. Section 6
analyzes applications collected from Google Play. Section 7 discusses server-side coun-
termeasures against the COUPLE attacks. Section 2 introduces related studies of our work.
Lastly, Section 8 concludes this paper.

2. Related Work

In this section, we discuss prior studies of existing threats as well as Android security
enhancements related with our work.

2.1. Threats

We first discuss closest related threats to COUPLE attack in terms of their strategies such
as how modules of malware collaborate with each other, and how an attack is deployed in
timely manner to break or circumvent the security.
Application-level privilege escalation. Researchers have considered two application-
level privilege-escalation attacks: confused deputy attack and collusion attack. To conduct
a confused deputy attack, a malicious application should discover vulnerable applications
that open public interfaces. Detection systems for the confused deputy attack analyze each
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application to know whether it has such public interfaces, statically [27, 60, 14, 36, 13] or
dynamically [24, 18, 55]. To conduct a collusion attack, more than one application should
create a channel for combining their restricted permissions. XManDroid [10] monitors all
communication channels in the Android system to detect confused deputy and collusion
attacks by using corresponding permissions and intents.
Attack through system-wide update. We explain Pileup [54] that considers updates as
our work did. Pileup is a security vulnerability that leverages Android platform updates to
escalate privilege. In Pileup, a malicious application requests security-critical permissions
that are newly defined in a new version of Android, but are not defined in old versions, also
called dormant permissions [50]. When a user who uses an old version of Android installs
such an application, the Android system allows installation because the system knows
nothing about the permissions. Later, when the user installs the new version of Android,
the malicious application can use the granted permissions to perform sensitive operations.
Although Pileup is a serious and critical security problem, demanding a platform update
for attacks is a strong assumption.
Dynamic code loading. Dynamic code loading is a well-known technique to circum-
vent malware detection systems [45]. With it, a malicious application can download and
execute malicious logic after it has passed inspections. Since the COUPLE attacks also
change their behaviors via updates, they resemble each other. However, unlike the COU-
PLE attack, dynamic code loading cannot change permission requests or use Google Play
to host malicious logic. Therefore, it should request all dangerous permissions at installa-
tion, which can be prohibited or suspected by security systems.

2.2. Security Enhancements

Next, we discuss security enhancements. Due to the ever growing popularity of malware
and its diversity, a huge number of monitor, detection, and prevention systems have been
proposed.
Permission-based security enhancement. Security researchers have considered how
to fortify and extend the permission-based security model of Android. Kirin [19] modi-
fies the Android application installer to restrict application installation according to user-
defined security rules. Instead of preventing installation, Apex [41] allows users to selec-
tively grant permissions when installing applications. Saint [43] allows application de-
velopers to define security policies to access the public interfaces of their applications.
CrePE [15] extends the Android permission model to be aware of the context of a device,
such as location and time. Lastly, Dr. Android and Mr. Hide [31] provides fine-grained
permissions using an inline reference monitor.
System-level security enhancement. We discuss DroidBarrier [2] and FireDroid [48].
DroidBarrier provides a security model for ensuring strong authentication for application
processes. Although the security model can identify processes spawned without going
through Zygote, it cannot prevent COUPLE because the forked process only conveys col-
lected data to the next version of the application without directly accessing the boundary
of the protected application. FireDroid implements a policy-based system call interposi-
tion mechanism. However, this mechanism lacks information about different versions of
applications thus cannot properly prevent COUPLE.
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Information-flow tracking. Numerous researchers develop static and dynamic taint
analysis tools that track information flow within an application or across applications to
detect unauthorized leakage of sensitive data. In theory, static taint analysis [42, 7, 52, 12,
35] can explore all data leakage paths. However, in practice, this method has limitations:
investigators cannot fully obtain the source code of a malicious application and it takes
much time when analyzing complex source code. In contrast, dynamic taint analysis [20,
29, 56, 16] demands no source code and only inspects the paths that an application has ac-
cessed during execution. However, an adversary can develop a malicious application that
recognizes whether dynamic analysis is performed and behave as a legitimate application
to evade analysis. In addition, some researchers refine information-flow tracking by using
user intention [57], permission-use events [59], or user interface workflow [39]. Lastly,
most state-of-the-art dynamic tracking systems [21, 9] provides interfaces to inject code
to track or monitor applications and processes without any system modification.
Advanced malware detection. Recent works extensively show studies of malware detec-
tion with promising results. Feature-based malware detection scheme [47, 44] uses main
characteristics of real-world malware to provide fast and reliable detection and classi-
fication. More advanced works employs Hidden Markov model to effectively detect and
classify malware [38, 11]. Some researches focus on intents as a feature to distinguish ma-
licious applications form benign ones [30, 22]. Lastly, a work provides native code level
malware detection [1]. Despite the numerous efforts in this area, none of the schemes can
detect COUPLE because of its unique attack pattern.

3. Background and Assumption

In this section, we explain some characteristics of Android exploited to develop the COU-
PLE attack. We also explain our assumption.

3.1. Process Management and fork()

We briefly explain how Android manages processes and how we can create an unmanaged
process by calling the fork() system call. When starting an application, the Android
system first contacts the Activity Manager to check whether it should create a new process
to launch the application. If no process is executing the application, the system requests
Zygote to fork a new process, which contains a Dalvik virtual machine (VM) instance and
preloaded classes [34]. The Activity Manager then loads a main thread (ActivityThread)
on the created process. The thread starts some components, e.g., activity and service, and
manages their life cycles by registering itself to the Activity Manager and communicating
with the service via a binder remote procedure call (RPC).

A new process should be registered to the Activity Manager to manage its life cycle.
However, when an application directly creates a process by calling the fork() system
call via the native development kit (NDK), the forked process is not registered to the
Activity Manager service such that the Android system has no mean to manage it.3 We
observe that the forked process remains alive when a user or the system kills the corre-
sponding application, regardless of the way it was killed (e.g., swiping away on the recent

3 https://groups.google.com/forum/#!topic/android-ndk/sjIiMsLkHCM
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Table 1. Example of Google Play’s permission groups and their permissions
Group Permissions

Calendar READ CALENDAR, WRITE CALENDAR
Contacts READ CONTACTS, WRITE CONTACTS
Device/App History GET TASKS, READ HISTORY BOOKMARKS
Device ID, Call Info. READ PHONE STATE
Identity GET ACCOUNTS, MANAGE ACCOUNTS, READ PROFILE,

WRITE PROFILE
Location ACCESS COARSE LOCATION, ACCESS FINE LOCATION
Phone CALL PHONE, PROCESS OUTGOING CALLS,

READ CALL LOG, WRITE CALL LOG
Photos/Media/Files READ EXTERNAL STORAGE, WRITE EXTERNAL STORAGE
SMS READ SMS, RECEIVE MMS, RECEIVE SMS,

RECEIVE WAP PUSH, SEND SMS, WRITE SMS
Wi-Fi Conn. Info. ACCESS WIFI STATE
Other ADD VOICEMAIL, ACCESS WIFI STATE, BLUETOOTH,

CHANGE WIFI STATE, CLEAR APP CACHE,
GET PACKAGE SIZE, INSTALL SHORTCUT, INTERNET,
NFC, RECEIVE BOOT COMPLETED, · · ·

task list or touching a kill button in application setting). Moreover, the forked process is
alive even after the Android system updates or replaces the application, whereas other
legitimate processes of the application terminate. To abort the forked process, a user must
use an adb shell to send a kill command or reboot the device.

3.2. Binder/Intent and fork()

A forked process has an important limitation: it cannot use binder or intent.4 A process
should have binder helper threads to use binder or intent. However, a forked process can-
not have them, because the fork() system call only duplicates the current thread of
the process that initiates it. Furthermore, to send an intent, an application needs to use
a binder. Consequently, a forked process demands other methods to interact with other
applications, such as using the command-line tool am.

3.3. Auto-update and Permission Group

Auto-update. Updating an application to the latest version is important for enjoying
new functions, avoiding crashes due to bugs, and preventing an adversary from exploiting
security vulnerabilities. To provide up-to-date applications to users, Google Play supports
an option “auto-update apps” by default to automatically update installed applications.
The option allows the user’s device to update installed applications when new versions
are available on Google Play.

However, an auto-update can be an attack channel because a user cannot check how
an application has changed before updating. If an adversary adds sensitive permission
requests when developing a new version and uploads it to Google Play, a user’s device

4 http://stackoverflow.com/questions/26309046/android-native-code-fork-
has-issues-with-ipc-binder
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would automatically update the application without user confirmation if no security check
policy exists.

Google Play has a strict policy to avoid the security problem of auto-updates. It stops
an auto-update when the permissions requested by an updated application differ from the
permissions granted to the old version of the application. Google Play then asks whether
the user wants to update the application by displaying the changed permission requests.
Although the explained policy mitigates the security problem, it can annoy Android users
by compelling them to frequently check updated applications.
Permission group. Recently, Google Play introduced permission groups that simplify
the Android permission model by grouping similar permissions, which further simplify
auto-updates [26]. When a user installs an application, instead of displaying the individ-
ual permissions the application requests, Google Play displays the permission groups to
which the requested permissions belong. For example, when an application requests the
READ SMS permission only, Google Play shows that the application requests the permis-
sion group SMS to use SMS, MMS, or both.

We observe that Google Play’s permission groups differ from the Android permission
groups defined in Manifest.permission group [4]. For example, Manifest.
permission group assigns the two permissions READ CALL LOG and READ
CONTACTS to the same group SOCIAL INFO, but Google Play assigns the READ CALL
LOG permission to the Phone group and the READ CONTACTS to the Contacts group.
To identify how Google Play organizes permission groups, we develop a simple applica-
tion that demands all normal and dangerous permissions defined in Manifest.
permission [3], upload it to Google Play, and check its permission groups. Table 1 is
a part of the result obtained with Google Play version 5.4.12.

When a new version of an application additionally requests a permission that be-
longs to a permission group already granted to the old version, Google Play automat-
ically updates the application without user confirmation. If an installed application has
obtained the READ CONTACTS permission and its updated version additionally requests
the WRITE CONTACTS permission, Google Play automatically updates the application.

However, security researchers have criticized the concept of permission groups be-
cause it allows an application to become a malicious application silently [53]. For exam-
ple, the latest version of Facebook (33.0.0.45.19) has the READ SMS permission. Thus,
at the next update, it can obtain the WRITE SMS permission without user confirmation to
modify or delete SMSs stored in a user device. We believe that one possible solution to
this problem is preventing critical permissions, e.g., CALL PHONE and SEND SMS, from
being auto-updated.

3.4. Assumption

We assume a victim user who turns on the “auto-update apps” option or frequently updates
a malicious application installed on the user’s device. An application update is an essential
process of the COUPLE attack, and an auto-update guarantees the malicious application
that conducts the COUPLE attack to be updated. Google Play turns the auto-update option
on by default [26], and we expect that many Android users keep the option. Note that
the auto-update is only necessary to increase the probability of successful attacks. The
COUPLE attack is possible even when a victim manually updates applications.
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Fig. 1. Overview of the COUPLE attack

4. Couple Attacks

In this section, we describe the COUPLE attack that old and new versions of a malicious
application collude with each other to leak private data. We show three types of the COU-
PLE attacks based on the method that connects the two versions of the application: direct,
indirect, and concurrent.

4.1. Overview

Fig. 1 illustrates the work flow of a simple COUPLE attack. An adversary first separates
the permissions and logic of a malicious application into two versions (an example shown
in Fig. 2) and uploads the first version of the malicious application for collecting sensitive
data to Google Play (Ê). A user requests and installs the application on the user’s device
through Google Play (Ë). Once the user starts the installed application, the application
gathers data corresponding to the granted permissions and waits until the next version of
the application is installed on the system (Ì). The adversary uploads the second version
of the malicious application for sending out data (Í), and the system updates and runs
the second version (Î). At last, the second version retrieves the data collected by the first
version (Ï) and sends the collected data to the adversary (Ð).

We classify the COUPLE attacks into direct COUPLE, indirect COUPLE, and con-
current COUPLE attacks. Table 2 summarizes three types of COUPLE in terms of attack
channels, secrecy, and reliability, and the freshness of data that the attacks can leak. We
will explain the details of each in the following sections.
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Fig. 2. Separating the permissions and logic of a malicious application into two versions.
The first version only has permissions and logic for data collection, whereas the second
version only has permissions and logic for data transmission.

4.2. Direct Attack

We introduce a direct COUPLE attack that is based on direct interaction between a process
from an old version of a malicious application and a process from a new version.
Overall procedure. We explain the overall procedure of a direct COUPLE attack with
an example described in Fig. 3. When the Android system installs and executes the first
version of a malicious application developed by an adversary, the application starts a
service that collects sensitive data (e.g., a phone number) with the granted permissions
(READ PHONE STATE) (Ê) and stores the data in its memory. The application service
then calls the fork() system call to create a child process that is an exact copy of it,
i.e., the child process also has a copy of the collected data in memory (Ì). The adversary
uploads the second version of the application to Google Play, which only requests the
INTERNET permission and has logic to use network sockets (Í). The system automat-
ically updates the application while killing every process of the old version except the
forked process. Since the update, the forked process has no longer been able to collect
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Table 2. Comparison between three types of COUPLE
Type Channel Secrecy Reliability Data

freshness

Direct Process High Low Low
Indirect File Low High Low
Concurrent Process+Socket High Low High

Telephony

Manager

4. Update

recvData()

send()

Internet

8. Send out

In-memory 

DB

deliverData(phoneNo)

getPhoneNo()

Old (Forked)

INTERNET (changed)

Denied
6. Read

READ_PHONE_STATE

In-memory 

DB

deliverData(phoneNo)

getPhoneNo()

Old Version

2. Store

1. Collect

New Version

INTERNET

7. Transfer

Access denied

Killed

Fig. 3. Overview of a direct COUPLE attack

sensitive data because it now has no permission for data collection. The forked process
wakes a service of the second version of the application (Î), reads the stored data from
memory (Ï), and conveys the data to the waken service via inter-process communica-
tion (IPC) (Ð). Lastly, the service of the second version sends the received data to the
adversary’s server (Ñ).

Identifying update and initiating new version. To deliver data as soon as possible
to a new version, a forked process of a malicious application should identify when the
malicious application is updated and should activate the new version. First, the forked
process can identify whether the application has been updated by inspecting specific files
in the application’s internal storage. For example, an Android application has a sym-
bolic link /data/data/<package name>/lib to a directory /data/app-lib/
<package name>-* that contains custom library files for the application. We observe
that ‘*’ of the directory’s name is switched between 1 and 2 whenever the application is
updated to avoid crashes between old and new library files. So, by monitoring the changes
of lib, the forked process can know that the system has updated the application such that
the next version is available on the device.

Next, the forked process can initiate the new version by sending an intent via the
command-line tool am. In Android, a newly installed or updated application is in a stopped
state such that it cannot receive any messages. The forked process should either wait until
a user runs the new version or wake the new version by sending an intent. However, it
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cannot directly send any intent due to its imperfect binder information (Section 3.2). To
work around this problem, we let the forked process use am that supports various system
actions, such as start an activity or a service, force-stop a process, and broadcast an intent.
Executing the command “am startservice -n <package name>/<service
name>” via the system() function can start the new version’s service.
IPC method. An adversary needs some IPC methods to connect old and new versions
of a malicious application. We explain three IPC methods used to develop the COUPLE
attacks: intent, Unix domain socket, and Android shared memory (ashmem). First, an in-
tent is the default IPC method of the Android system. It allows an application to launch
the components of other applications, such as activities and services, while sending data.
In a direct COUPLE attack, as explained in the prior section, the forked process uses the
command-line tool am to send an intent that contains the collected data to a service of
the new version. Then, the Activity Manager service of the Android system finds the tar-
get service and invokes the service’s onStartCommand() method. Lastly, the service
extracts data embedded in the received intent.

Second, a Unix domain socket is a facility to exchange data for processes on the same
system. A direct COUPLE attack uses a Unix domain socket for exchanging data between
the forked process from the first version of the application and the second version of the
application. Specifically, the forked process creates a Unix domain socket before waking
a service in the second version. Right after the service has run, it prepares another socket
to communicate with the forked process. As soon as communication between the forked
process and the service is established, the forked process transfers security sensitive data
stored in its memory to the service.

Third, ashmem allows a process to create a memory region that can be shared with
other processes. To share the memory region, processes should know its name and a file
descriptor to access it. An adversary’s strategy is that the first version of the application
creates a shared memory region to store data to which the application aims. When the
second version of the application runs, the forked process sends the file descriptor to the
second version via Unix domain socket connection. The second version can then access
the shared memory with the region’s name and the received file descriptor.

4.3. Stealthy Direct Attack
Preventing the direct COUPLE attack explained in the prior section is relatively easy. Dur-
ing an application update, a monitoring system can determine which processes are possi-
bly involved in a direct COUPLE attack according to their same user ID (UID) or process
name. The system then will kill such processes to prevent possible COUPLE attacks.

However, in this section, we will show how an adversary can assign different UIDs
and names to each of the processes involved in a direct COUPLE attack. This makes the
COUPLE attack stealthy such that we demand a countermeasure that will be explained in
Section 5.
Changing UID. First, by using an isolated process, an adversary can create a process
whose UID differs from its parent process. An isolated process is a new feature of An-
droid that allows an application to create a zero-permission process to run an untrusted
component [8]. The UID of an isolated process differs from its parent process and is cho-
sen from a pool of isolated UIDs. An application can isolate its service by adding an
android:isolatedProcess="true" attribute to the service in its manifest file.
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Fig. 4. An example of complicating a direct COUPLE attack to be stealthier

However, as shown in Fig. 4, an adversary can use the isolated process feature to
manipulate the UID of an attack service. When the system executes the service for the
COUPLE attack, an isolated process for the service runs with a different UID. It leads
the subsequent processes forked from the service to also have the UID. Therefore, a sim-
ple countermeasure that terminates a group of processes having the same UID no longer
works.
Changing process name. Next, an adversary can change the name of any process by ma-
nipulating its first command-line argument argv[0]. Originally, all processes belonging
to an application inherit the package name of its application. Thus, even if the adversary
lets the forked process have a different UID, the system still can eliminate the threat of
the COUPLE attack by terminating all processes with the package name. However, if the
process changes its name, all the above mitigations become ineffective. In specific, the
adversary can use a pointer to access and modify the global variable environ. By in-
specting the content of the global variable, the forked process can identify the address of
the first command-line argument and replaces it with the desired name. For example, the
process can disguise itself as a legitimate process by having a well-known process name
such as com.android.chromesandboxed.process. <NUM>, a typical name of
an isolated process of Chrome browser.

4.4. Indirect Attack

We introduce an indirect COUPLE attack that uses an indirect channel for communication
between old and new versions of a malicious application. Notable examples of an indirect
channel are private files and DBs stored in the internal storage of an application. An
indirect COUPLE attack is more reliable than a direct COUPLE attack, though it may
encounter some delay in sending out data.
Overall procedure. Fig. 5 depicts the overview of an indirect COUPLE attack. The first
version of a malicious application developed by an adversary starts a service to retrieve
all contacts with the READ CONTACT permission (Ê). The service writes the data into
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Fig. 5. Overview of an indirect COUPLE attack

a file in its internal storage, i.e., /data/data/<package name>/ (Ë). Later, the
adversary uploads the second version that only requests the INTERNET permission and
has logic to use network sockets to Google Play, and Google Play automatically installs
the updated application (Ì). When the second version runs, it starts a service to read the
contacts data from the file in the local storage (Í), and send the data to the adversary’s
server (Î).
Reliability of indirect attack. An indirect COUPLE attack uses a reliable channel, a
private resource stored in an application’s internal storage. The Android system should
preserve such resources during application updates because they may contain some im-
portant data to run the application. Thus, an indirect COUPLE attack is more reliable than
a direct COUPLE attack that can fail due to an unscheduled termination of a child process.
Delay in data leaks. In an indirect COUPLE attack, data leaks from the second version of
a malicious application can be postponed, because the attack has no method to wake the
second version from a stopped state. The indirect COUPLE attack has no forked process
to send an intent to the second version such that the attack cannot directly run the second
version. Therefore, data delivery would start after a user runs the second version or reboots
the device if the application has registered a broadcast receiver to listen for the broadcast
intent ACTION BOOT COMPLETED.

4.5. Concurrent Attack

The COUPLE attacks explained so far are sequential; they collect sensitive data first and
send out the collected data later, but cannot conduct both at the same time. Hence, an
adversary cannot use them to steal real-time data, such as peeking at an OTP via SMS or
monitoring the current location. In this section, we describe a concurrent COUPLE attack
that allows a malicious application to simultaneously collect and send out sensitive data
even if it has no permission for either operation.
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TOCTTOU problem in Internet use. We explain the details of the INTERNET per-
mission and its TOCTTOU problem. In the Android system, an application should obtain
the INTERNET permission to create a network socket to connect to external servers or
clients, known as Android paranoid networking. If an Android user grants the applica-
tion the INTERNET permission, the Android system adds the application to the group
ID AID INET. Later, when the application attempts to access the Internet, it calls the
socket() system call that eventually calls a kernel function inet create() to cre-
ate an inet socket. Unlike Linux, Android’s inet create() has additional code to
deny socket creation when the effective group ID of a calling process is not AID INET,
so an application can create an inet socket only when its effective group ID is AID INET.
After creating an inet socket, the application may call other system calls, e.g., bind(),
listen(), accept(), and connect(), to connect to others.

However, a TOCTTOU problem occurs when using the Internet because the Android
system checks the effective group ID of a calling process only when it creates a socket.
An application should have the INTERNET permission when creating a socket, but does
not need to keep the permission when using the socket to connect to servers, to wait
for clients, or to send or receive data packets. Consequently, an adversary can perform a
concurrent COUPLE attack that creates a socket using the first version and connects to the
socket while collecting sensitive data using the second version. To avoid such a security
problem, Linux checks the effective user and group IDs of a calling process not only when
the process calls open(), but also when it calls read(), write(), and ioctl(). We
believe that the Android system needs to take a similar approach.
Details of concurrent attack. Fig. 6 describes a concurrent COUPLE attack that exploits
the TOCTTOU problem of the INTERNET permission. In contrast to a direct attack, an
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Table 3. Example of permissions for data collection and transmission
Data collection Data transmission

ACCESS WIFI STATE INTERNET
READ PHONE STATE CALL PHONE

READ SMS SEND SMS
ACCESS FINE LOCATION BLUETOOTH
READ EXTERNAL STORAGE WRITE EXTERNAL STORAGE

READ CALENDAR NFC
READ CONTACTS

READ HISTORY BOOKMARKS
. . .

adversary requests the INTERNET permission at the first version of a malicious applica-
tion, and requests a permission to collect sensitive data (e.g., READ SMS) at the second
version of the application. The first version starts a service that forks a child process (Ê),
and the forked process creates an inet socket with the INTERNET permission (Ë). The
adversary uploads the second version of the application implemented to collect sensitive
data to Google Play, and the application is updated (Ì). The forked process can no longer
create a new inet socket, but it can use the already created socket. When the forked pro-
cess recognizes that Google Play has updated the application, it wakes a service of the
second version with the same method used in a direct COUPLE attack (Í). The service of
the second version of the application then reads all SMS messages (Î) and transfers them
to the forked process via an IPC (Ï). Finally, the forked process sends the received data
to the adversary’s server through the socket that was created before the update (Ð).

5. Countermeasure: BreakUp

In this section, we explain a runtime security extension, called BREAKUP, that runs on
an actual device to prevent the COUPLE attacks. BREAKUP keeps track of processes and
resources of installed applications that possibly have security sensitive data. Whenever
an application updates, BREAKUP eliminates suspicious processes and over-privileged
resources not to leak the data to the next versions of the application.

5.1. Architecture Overview

BREAKUP is a system to detect and prevent the COUPLE attacks (Fig. 7). It consists of
four components: BREAKUP Service, modified Activity Manager, kernel-level monitor,
and modified Package Manager. First of all, the BREAKUP Service is a core component
that manages interactions between other components. Second, the modified Activity Man-
ager monitors how individual applications use permissions during their runtime. Third, the
kernel-level manager propagates the permission-use histories of individual applications to
their private resources by intercepting system calls, e.g., read(), and write(). Fourth,
the modified Package Manager selectively deletes private resources with sensitive data
while terminating every forked process at application updates via the BREAKUP Service
to prevent the COUPLE attacks.
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Source and sink permissions. We summarize some source and sink permissions that can
be used for COUPLE. We first choose 10 permissions among the lists of mostly checked
permissions and most common unnecessary permissions [23]. We further select 13 other
permissions classified as dangerous, e.g., READ SMS and READ CALL LOG. In total,
BREAKUP considers 23 permissions consisting of 17 source permissions and six sink
permissions (Table 3).

5.2. Preventing Direct Attacks

We explain how BREAKUP prevents a direct COUPLE attack. The basic strategy of BREAKUP
against a direct attack is to kill all forked processes at update, which corresponds to the
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Table 4. Source lines of code (SLOC) we have added or changed
Android framework

JAVA C++ Kernel

SLOC 730 204 369

application update strategy of the Android system. When updating an application, the
Android application installer terminates all running processes of the application to avoid
getting into a confused state while the new versions of the application gets installed [6].
However, as described in Section 3.1, the installer cannot terminate arbitrarily spawned
processes because it has no knowledge about them, letting a direct COUPLE attack pos-
sible. BREAKUP solves this problem by killing all active forked processes at application
update.

BREAKUP has two challenges to identify all forked processes of an application: they
can have different UIDs or process names as explained in Section 4.3. To overcome these
challenges, BREAKUP maintains the UIDs belonging to the active isolated processes of
each application (Fig. 7a) and terminates the processes with the maintained UIDs or the
application’s UID when the application is being updated.

5.3. Preventing Indirect Attacks

We further explain how BREAKUP protects the system from indirect COUPLE attacks.
Similar to the idea used for preventing direct attacks, BREAKUP removes resources as-
sumed to have security sensitive data during an application update. To track over-privileged
resources, BREAKUP maintains a permission-use history representing the source permis-
sions each application actually uses. Whenever an application accesses to sensitive data
(e.g., SMS and call logs) during runtime, BREAKUP updates its per-app permission-use
history DB. BREAKUP propagates the permission-use history of an application to a re-
source (e.g., a file) when the application writes data into it, since the written data may
contain sensitive information. Also, when an application reads data from a resource,
BREAKUP adds the permission-use history stored in the resource to the application’s
permission-use history. Later, when an application loses permissions at an update, BREAKUP
finds the application’s resources associated with the lost permissions and deletes them to
prevent potential privacy leakage.

5.4. Implementation Details

We explain details of how we implement BREAKUP. We implemented and evaluated
BREAKUP on a Nexus 5 phone with Android (kernel version 3.4.0). Table 4 summarizes
the lines of code we have either added to or modified in the Android framework and the
Linux kernel. Code modifications were kept to a minimum.
Tracking application UIDs. We explain how BREAKUP maintains UIDs for running
processes. BREAKUP adds a hook in startProceessLocked() function in the ActivityMan-
agerService. Whenever an application asks the modified Activity Manager to create a
process, the hook notifies BREAKUP Service a pair of the UID of the process and the
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host application name to store it in the UID database. Note that as long as the process is
alive, the UID cannot be used for other application. Thus, BREAKUP Service maintains
the UID-app record until the UID is claimed by another application. If the hook identi-
fies the creation of a process for another application, it implies that there no longer exist
running processes for the previous application. Therefore, BREAKUP Service replaces the
old record with a new pair of UID and the application name.
Creating permission-use history. We describe how BREAKUP creates permission-use
history DBs within the kernel-level monitor. The kernel-level monitor dynamically creates
a permission-use history DB for an application when the first process for the application
starts. BREAKUP keeps permission-use history DBs only for third-party applications by
skipping system UIDs to reduce performance degradation. To track the creation of third-
party processes, we added a hook into the copy process() kernel function that will be
invoked by the system at spawning a process. When the hook is invoked, the kernel-level
monitor checks whether an application has its permission-use history DB. If the check
fails, BREAKUP creates a new DB for the application.
Updating/propagating permission-use history. We first explain how BREAKUP up-
dates permission-use histories. We added a callback function in the Reference Monitor
of the Activity Manager to notify the BREAKUP Service of permission-check events. For
example, when an application has successfully accessed a resource that demands a per-
mission PA through the Reference Monitor, the callback function provides the BREAKUP
Service information on the application and PA. The BREAKUP Service then informs the
kernel-level monitor that the application has used PA. The kernel-level monitor finds the
history DB for the application to update the permission-use history. Throughout the pro-
cess, the BREAKUP Service filters out already reported permission-check events to avoid
performance degradation due to frequent communication between the user and kernel.

Next, we depict how BREAKUP propagates permission-use histories between pro-
cesses and resources. BREAKUP uses the security file permission() function
to intercept every file access event. Upon a write access to a file, the kernel-level monitor
adds all permissions in the permission-use history DB for the application into the xattr
of the file. When an application reads a file, the kernel-level monitor propagates permis-
sions in the xattr of the file to the history DB for the application. The kernel-level
monitor then reports the change of the permission-use history made by the file read event
to the BREAKUP Service.
Deleting permission-use history. We show when BREAKUP discards a permission-use
history DB. The kernel-level monitor deletes the permission-use history DB for an appli-
cation when every process belongs to it has terminated. To intercept termination events for
every third-party process, we placed a hook in the do group exit() kernel function.
When the hook is invoked, and if the terminated process is the last process of an applica-
tion, the kernel-level monitor destroys the permission-use history DB for the application.
Clearing sensitive data at update. We illustrate how BREAKUP eliminates the possibil-
ity of sensitive information leak at application updates. BREAKUP checks two conditions
: (1) the old version has no sink permission and (2) the new version requests one or more
sink permissions. If an update meets the conditions, the BREAKUP Service first finds all
forked processes by the package name of the application and terminates them. Next, the
BREAKUP Service traverses the private directories of the application to check the xattrs
of all files. If the BREAKUP Service notices that the permission-use histories in xattrs of
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Fig. 8. Elapsed time of launching applications on BREAKUP normalized to that of An-
droid

Table 5. The scores returned by PCMark running on Android and BREAKUP. We per-
formed each experiment 10 times.

Test Android BREAKUP Reduction (%)

Work performance 3874.5 3803.5 1.8
Web browsing 3670.9 3634.8 1.0
Video playback 3989.8 3969.4 0.5
Writing 3406.4 3329.9 2.2
Photo editing 4522.8 4354.3 3.7

some files include permissions that the new version does not have, the BREAKUP Service
deletes those files.

5.5. Performance Evaluation

We evaluate the performance of BREAKUP in terms of application launch time, runtime
overhead, and update time. First, we measured launch time of 30 popular applications
on BREAKUP to estimate the overhead of initializing permission history DBs for the
applications. On average, the launch time increased by 4.7% compared with unmodified
Android (Fig. 8).

Second, we used a benchmark application, PCMark for Android5, to check over-
all runtime overhead of BREAKUP. PCMark shows relative scores of an Android device
by executing five realistic applications. As shown in Table 5, BREAKUP decreases bench-
mark scores by only 0.5%–3.7%.

Lastly, we measured update time of the 30 applications on BREAKUP to identify the
overhead caused by enforcing the security enforcement, killing forked processes, and
deleting over-privileged files. The applications that we used for this evaluation created

5 http://www.futuremark.com/benchmarks/pcmark-android
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Fig. 9. Elapsed time of updating applications on BREAKUP normalized to that of An-
droid

about 47 files on average during their execution; we deleted all the files to estimate the
worst-case performance. Fig. 9 shows that BREAKUP has negligible overhead (0.2%).

5.6. Limitation

Since BREAKUP is a coarse-grained information flow tracking system, it may delete some
files without sensitive data at application updates. At worst, BREAKUP will delete all
files that an application created during its execution, to essentially be a newly installed
application. However, as Section 6.2 shows, a small number of updates are treated as the
COUPLE attacks (0.015%). Therefore, we believe that these limitations of BREAKUP are
acceptable.

6. Analysis of Google Play Apps

In this section, we study the feasibility of the COUPLE attacks by collecting and analyzing
all available versions of applications downloaded from Google Play. We first explain how
we collect such applications and describe our analysis results.

6.1. Data Collection

We build our Google Play application crawler based on the PLAYDRONE [51] open source
project. However, PLAYDRONE is only capable of retrieving the latest application version.
To capture real attack cases in official applications, we need to crawl the total version
history of an application starting from its very first release on Google Play. To achieve
this goal, we implement two additional features that help in crawling the total version
history of an application.
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h t t p s : / / a n d r o i d . c l i e n t s . go og l e . com / f d f e / p u r c h a s e
Method : POST
P a r a m e t e r : o t =1

doc=<package name>
vc=<v e r s i o n code>

Header : A u t h o r i z a t i o n : <a u t h cook ie>
X−DFE−Device−Id : <a n d r o i d id>
. . . . . .

Fig. 10. HTTP request to obtain a URL to download a specific version of a target appli-
cation from Google Play

First, through our experiments, we found that, after proper device registration and
authentication with Google Play, sending the HTTP request in Fig. 10 will trigger the
checkout process at Google Play that returns either a valid download cookie and URL
(if an application with given <package name> and <version code> exists) or a
message indicating the application does not exist. The version codes for each application
can be enumerated by decrementing the version code of the latest version by 1 each time.

Second, Google Play only allows downloading of applications that are suitable to the
registered device configuration. For example, certain versions of an application might be
hidden from devices with x86-64 CPU architecture due to lack of support. To avoid
missing application versions because of this customization feature, we crawled all pub-
licly available Nexus factory images and created artificial device profiles with the union
of their CPU architectures, feature set, loaded libraries, and OpenGL extensions. We used
these device configurations for all application crawling activities.

6.2. Data Analysis

In March 2015 we collected 2,009 Google Play applications with all available version
histories from the apps topselling free category (28,682 versions in total). Fig. 11
shows the boxplot summarizing the number of versions of individual applications. The
median application in our dataset had nine versions. Among them, we decided to focus
on 1,606 applications with ≥ 3 versions, where 3 is the first quartile of the boxplot, to
avoid errors due to toy applications with a small number of versions. The total number of
versions analyzed was 28,100.
Time interval between updates. We analyzed how frequently the applications were
updated. For each application, we measured the average time difference between the cre-
ation times of two adjacent versions. On average (median), the applications in our dataset
were updated every 330.5 hours (Fig. 12). Among the 1,606 applications analyzed, 382
applications (23.8%) had been updated within one hour at least once. Thus, frequently
updating applications (e.g., several hours) is not a distinguishing feature of an attack.
Frequency of permission-changing updates. We estimated the frequency of application
updates with permission changes, i.e., permission addition, deletion, or both. For each
application, we calculated the number of permission changes over the number of version
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Fig. 12. Average time intervals between application updates. We calculated the differ-
ence between the creation times of every two adjacent versions of the same application.
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Fig. 13. Frequency of permission-changing updates of individual applications

updates. The median frequency of permission-changing update was 0.11 (Fig. 13). This
implies that when an application is updated nine times, its permissions will change once.
The number of auto-updates. We analyzed the number of application updates that can
be automatically performed by Google Play (Section 3.3). Among the 26,494 application
updates inspected, the number of updates with permission additions was 2,165 (8.2%). We
further checked the permission additions of individual updates to recognize the possibility
of auto-updates. Among them, 600 updates (27.7%) could be automatically updated by
Google Play.
The possibility of the COUPLE attacks. We found four updates that could lead to the
COUPLE attacks. When “Magnetic balls bubble shoot” (7), “Kids Piano Games FREE”
(8), “Dominoes Elite” (14), and “Pink Kitty bow Clock Widget” (17) requested a sink
permission INTERNET, they did not request source permissions that they had before
(e.g., GET ACCOUNTS and READ PHONE STATE). Thus, they were able to secretly leak
sensitive data, e.g., telephone number and UID, at those versions if they had forked a
process or stored the data in private resources.

We have manually analyzed the four applications by running and updating them via
an adb shell and confirmed that they were benign applications. They did not fork any
child processes. Also, they either did not create any files or downloaded music files from
their servers. Deletion of the music files by BREAKUP made no problem: the updated
applications downloaded the music files again. Therefore, we believe that the COUPLE
attacks are not yet discovered and performed by adversaries.



Prevention of Cross-update Privacy Leaks on Android 133

7. Discussion

In this section, we discuss a few server-side security methods against the COUPLE attacks
and how attackers can evade them with dummy updates.
Analysis of permission changes. Analyzing the changes of permission requests in ev-
ery application update is the easiest countermeasure against the COUPLE attacks. The
COUPLE attacks frequently makes updates to rotate source and sink permissions, so these
permission-changing patterns can be used to distinguish the COUPLE attacks. However,
attackers can manipulate permission request changes with dummy updates. Between ev-
ery important update, attackers can release a few dummy updates with no or small per-
mission request changes to conceal such patterns.
Static analysis of multiple versions. Static analysis of multiple versions of the same
application could recover separated information flow across application updates. For ex-
ample, if investigators successfully convert multiple versions of the same application into
different applications, they can use a scheme for statically checking ICC (such as [52]) to
detect COUPLE attacks. But, still, attackers can use dummy updates to make the analysis
complex and native code to secure information-flow channels [7].
Monitoring execution across updates. If a detection server runs every application across
version updates for dynamic information flow tracking, it can detect COUPLE attacks.
However, due to a large number of applications, long-term monitoring of every application
is almost impossible. The server can reduce such overhead by executing an application
only around every update. But, this technique is ineffective because dummy updates can
increase the number of application updates. Consequently, a security system running on
an actual client device, such as BREAKUP, is necessary to cope with the COUPLE attacks.
Runtime permissions. Android introduced the runtime permission system in Android
6.0, Marshmallow [5]. Unlike the previous permission system, it allows users to grant
or revoke permissions dynamically while applications are running. However, the change
cannot be a direct solution to the COUPLE attack because custom users are still prone to
grant permissions without doubts. In addition, due to slow update or deployment of new
Android versions [40], the complete deployment for all Android smartphone users will
take several years.

8. Conclusion

In this paper, we considered a novel attack exploiting application updates: COUPLE. The
COUPLE attacks allowed a malicious application to leak sensitive data via cross-update
side channels. Compared to conventional attacks, the COUPLE attacks were easy to per-
form and stealthy. We developed BREAKUP, a lightweight security extension running on
an actual device; its time overhead was below 5%. Lastly, our in-depth analysis of 2,009
applications with all available versions showed the feasibility of the COUPLE attacks.
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