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Abstract. In recent years, the energy-awareness has become one of the most in-
teresting areas in our environmentally conscious society. Algorithm designers have
been part of this, particularly when dealing with networked devices and, mainly,
when handheld ones are involved. Although studies in this area has increased, not
many of them have focused on Evolutionary Algorithms. To the best of our knowl-
edge, few attempts have been performed before for modeling their energy consump-
tion considering different execution devices. In this work, we propose a fuzzy rule-
based system to predict energy comsumption of a kind of Evolutionary Algorithm,
Genetic Prohramming, given the device in wich it will be executed, its main param-
eters, and a measurement of the difficulty of the problem addressed. Experimental
results performed show that the proposed model can predict energy consumption
with very low error values.

Keywords: Green computing, energy-aware computing, performance measurements,
evolutionary algorithms.

1. Introduction

Nowadays, power consumption has become a major concern due to electricity cost and
availability constraints. Energy efficiency issues has been extensively addressed in the last
decades by the scientific community. New products, procedures, and systems have been
designed for ensuring the environmental sustainability, and computing environments are
not an exception. The management of the energy consumption is a crucial problem in all
kind of systems: mobile devices battery-powered, desktop computers and large data cen-
ters. A data center includes both traditional servers and new hardware platforms such as
blade systems, which consume a huge amount of energy for both working and dissipating
the heat generated. The energy dissipation causes thermal problems. A portion of the en-
ergy consumed is converted into heat, which affects the system reliability. The problem is
more serious for battery-powered devices. Thus, reducing the power consumption is not
only a matter of environmental awareness but also reliability.

In recent years, new algorithmic techniques to save energy have emerged. The term
proportional computing covers a set of techniques mainly targeted to reduce the energy
consumption in large data centers. A detailed and interesting revision is presented in [1].
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These techniques can be labelled as Green Computing [20] techniques. The latter reduce
the environmental impact and promote the energy efficiency, sustainability, and obtain
positive results under most circumstances. However, the energy consumed by the algo-
rithms executed in those systems has been always forgotten.

In particular, Evolutionary Algorithms (EA) are broadly applied for many complex
optimization problems and diverse areas on previously mentioned hardware platforms. It
is important to note that big systems are not always necessary to address an optimiza-
tion problem. Desktop systems and new and powerful ephemeral platforms [10] help to
experiment and solve problems in different scientific areas in academic and research en-
vironments. They can help to reduce the power consumption when the problem is not
too complex from a computational point of view. These platforms may need lower power
consumption facing a higher execution time.

However, how much energy is needed to get some experiments done for a given opti-
mization problem? It must be noticed that the energy consumed by the algorithm not only
depends on its parameters such as number of generations or population size, but also the
hardware platform and the problem to be addressed. A good prediction about the energy
consumption according to the problem at hand and the parameters of the algorithm would
be very useful to make an appropriate decision. This decision can be oriented towards the
algorithm settings, the solutions quality (which is not addressed in this work) or the hard-
ware platform to be used. One of the goals of the Green Computing approach is modeling
the behavior of a system, for example, for being able to predict and respond to future
events.

Less powerful hardware platforms can run algorithms with higher number of genera-
tions or population size with a lower energy consumption than others more powerful [34].
Therefore, addressing the generation of a predictive model of energy consumption might
be interesting to know a priori the most suitable hardware platform. We deal with the prob-
lem of predicting the energy consumption of a popular kind of EA, Genetic Programing
(GP) [21], which tries to evolve computer programs when looking for optimal solutions
for a given problem.

In particular, we focus on implementing a predictive model for energy consumption
of GP dealing with two typical regression problems on three different hardware plat-
forms. We aim to predict it taking into account the main GP parameters, the difficulty of
the problem addressed, and the hardware platform. For this purpose, we apply a Takagi-
Sugeno-Kang Fuzy Rule-Based System [29] (TSK-FRBS), using k-fold cross validation
as training strategy in order to improve the generalization capability of the predictive
model.

The rest of the paper is organized as follows. Section 2 reviews the related work
about energy optimization techniques. Section 3 describes the optimization framework,
detailing how data are obtained and processed, and how the model has been built. Then,
Section 4 describes the experimental framework and analyzes results obtained. Finally,
Section 5 draws conclusions and future work.

2. Related Work

The behavior of EAs has been widely analyzed for years from several points of view. Par-
ticularly, the behavior of GP and its parameters have been extensive analyzed [22,9,17].
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Some works have developed models to predict the performance of a GP algorithm until the
optimal solution is found. Graff and Poli [15] introduce two models of performance based
on difficulty indicators for EPAs (Evolutionary Program-induction Algorithm). They were
applied to symbolic regression and Boolean induction problems. However, the prediction
of the performance do not include any study neither about the energy consumed nor the
hardware platform that can be used. Trujillo et al. [30,31] developed an approach for pre-
dicting the performance of GP applied to data classification. Recently, Martinez et al. [25]
presented a predictive model of expected performance. This predictor adds new descrip-
tive measures and evaluates the performance of the GP classifier on the test set of fitness
cases.

One of the main goals for last decades has been both to increase the performance and
built more energy efficient hardware systems. However, a performance increasing implies
a significant growth in energy consumption. Thus, both must evolve at the same speed to
improve the energy footprint.

The optimization of the power consumption can be addressed from a hardware or
software perspective. In this regard, some successfull techniques have been designed to
improve the energy efficiency. The Dynamic Power Management (DPM) [7] is a method-
ology for dynamically reconfiguring systems by turning off/on some components without
performance loss. Power-down mechanism [5] applies different DPM techniques and
off/on line algorithms that allow systems to move from a high power state to a lower
one (standby or hibernate mode), when there is no activity for a period of time accord-
ing to an algorithm. Dynamic Voltage Frequency Scaling (DVFS) [8,18] is a stable and
powerful technique in power management to save energy. It provides the ability to adjust
voltage and work frequency based on the workload requirements. Speed Scaling has long
been applied at a chip level for save energy and nowadays is applied at all systems lev-
els [6,28]. Moreover, the search for the optimal algorithms is a promising research field
nowadays [2]. These techiques are based on processor speed scaling and power-down
mechanisms and assume that they are supported by the CPU technology. Therefore, EAs
benefit from this techniques.

On the other hand, new hardware technologies and core-based processor technologies,
such as ARM [4], allow changing others hardware settings like the structural parameters
of the cache memory according to the running application to be more efficient in terms of
performance and energy.

The energy management is a key issue not only in computer based systems. EAs have
been applied in different areas to improve the energy efficiency. Literature mentioned
below uses tangentially EAs to optimize the energy consumption. Vasicek et al. [32]
proposed a new systematic method for designing energy efficient electronic component
based on circuit approximation and Cartesian Genetic Programming (CGP). DVFS com-
bined with scheduling techniques and multicore systems at the task level can improve the
memory energy consumption [26]. Diaz et al. [3] presented a multi-objective algorithm
(NSGA-II) approach to find cache configurations for reducing power consumption and
execution time.

Hameed et al. [16] presented a review of the techniques applied in cloud platforms for
reducing the power consumption and the energy dissipation, which are important concerns
in this kind of platforms. EAs are present in many of the techniques proposed in this
area. For instance, Gao et al. [14] applied a multi-objective ant colony algorithm to map
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efficiently virtual machines to physical machines and improve the energy efficiency and
reduce the wasted resources.

Regarding mobile devices, for example, Linares et al. [23] proposed a Graphical User
Interface of Android applications, which uses a colour palette aiming to optimize the
energy consumption. This colour palette is generated using a multi-objective optimization
technique.

From other different perspectives, Lu et al. [12] reviewed several research works,
where multi-optimization algorithms are applied for solving problems in the area of re-
newable and sustainable energy. Logenthiran et al. [24] presented a management strategy
from the demand side to be applied in smart grid. They developed a heuristic optimiza-
tion based on evolutionary algorithms to help clients to take decisions about their energy
consumption.

However, works where EAs are applied, including all previously mentioned, generally
consider EAs as a tool to improve the energy efficiency when facing a given problem,
and they do not take into account their own energy consumption whilst the optimization
process is carried out.

In this context, a preliminary work [33] measured the energy consumed by an EA,
particularly GP. The behavior of the multiplexer problem was analized on several different
platforms such as blade systems, tablet, laptop and Raspberry-pi. The main goal was to
determine the relationship between the main parameters of the algorithm and the power
consumption. As a conclusion, a device like Raspberry-Pi can be more energy efficient
when not a very computationally complex problems are addressed.

Wang et al. [35] presented an instruction-level energy model for a single core and
RISC processor architecture, however their approach is different the one we present.

An energy estimation model, especially aimed at GP algorithms, was proposed in a
subsequent work [11]. This preliminary model applied a simple Fuzzy Rule-Based System
to predict the energy consumption by using an inference engine. Experimental tests with
the multiplexer-6 problem were carried out on Raspberry-Pi, laptop and tablet platforms.
As a result, the energy consumption predictive model has a low error in the predictive
phase. However, this preliminary work obtained one predictive model for each hardware
platform and only the multiplexer problem.

3. Methodology

As mentioned before, in this work we propose an approach to implement an energy pre-
dictive model for EAs, particularly GP. This approach is based on the study of the main
three GP parameters: the number of generations, population size and maximum depth.
We add two new parameters: the hardware platforms to be used and the difficulty of the
optimization problem to be solved, obtained by a profiling.

The method presented in this work to develop the energy predictive model is divided
into three different stages. Fig.1 presents an overview of the whole process. The first
stage we have to calculate the difficulty of the problems chosen, which must be computed
only once for each problem at hand. The second stage corresponds to the execution of
the algorithm according to the problem and defined parameters. In this state, the energy
consumption value is stored in a profiling report for each application. The third stage is
called the FRBS module, which the fuzzy system is designed and optimized taking as



FRBS Energy Prediction Model for GP 639

input the profiling report previously obtained, where the values of the parameters that
describe the problem executed are stored, together the energy consumption value.

First and second stages are intended to provide key information to fulfill the profiling
report needed for the third one. The profile report designed contains a line for every differ-
ent combination of the main GP parameters addressed, the measurement of the problem
difficulty obtained in the first stage, and the energy consumption according to the pa-
rameters. Next, we explain each stage in detail. The following subsection details how we
compute the difficulty of the problems addressed.

Fig. 1. Stages involved in the process to obtain the energy prediction model.

3.1. Optimization Problem Difficulty

To identify the difficulty of a problem, the algorithm must be executed. Different metrics
can be applied to evaluate the problem difficulty until the algorithm finds the optimal
solution. However, the method applied to find the optimal solution is a key factor and it is
represented by the fitness function [17]. Thus, the difficulty of an optimization problem
to be solved by means of EAs is evident in the fitness function, which also identifies the
optimization problem.

We compute the difficulty as the effort needed to solve an optimization problem as
shown in (1), where Cx is the effort the algorithm have to do according to the problem
at hand; Taf is the time computed when the algorithm evaluates each solution with the
fitness function, and Tsf represents the time of the algorithm without implementing the
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Table 1. Main GP Parameters. A total number of 1716 combinations were tested.

Generations 10, 20, 40, 60, 80, 100, 150, 200, 300, 400, 500
Population sizes 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250,

300, 350, 400, 450, 500, 600, 700, 800, 900, 1000
Max depth 3, 5, 6, 7, 8, 9
Crossover probability 0.9
Mutation probability 0.1

fitness function. In order to compute this value accurately, we launch twenty times each
experiment for one generation and 100 individuals and we average the values obtained.
This set of tests are done for each problem and value of maximum depth to be addressed.
As a result, we obtain the time influence of the fitness function in terms of percentage,
with respect to the total time of the algorithm.

Cx =
(Taf − Tsf )

Taf
× 100 (1)

The time measurements are calculated taking the difference between the time just
immediately before launching the algorithm and just after finishing. This measurement
do not take into account the time spent filling the log report neither computing these
measures. Time units used in seconds and the percentage computed will complement the
information obtained by the second stage, which is explained below. Moreover, whilst this
first stage is carried out we measure the average power delivered for each device, which is
used to compute the percentage over the highest power and allow us to adjust the ECPM
proposed.

3.2. Application Profiling

This stage is in charge of executing the GP algorithm for each problem according to the
parameters chosen, and get a profiling report to which computational effort obtained in
the previous stage will be added.

To design this energy consumption estimation model, two well-known GP benchmark
problems have been selected: multiplexer (6 bits) and regression. The multiplexer prob-
lem simulates the behavior of this electronic component. The 6 bits implementation has
two address input and four data entries. The regression problem uses GP to discover the
function Y = X4 + X3 + X2 + X. Both are included in lilgp 4, a well-known GP im-
plementation in C language. The language related decisions have a high computational
influence on the algorithm [27] and, thus on the energy consumption, which is addressed
in this work. Functions and terminal sets are the standard ones described by Koza [21].

The main EAs parameters have a considerably impact on the algorithm performance
and, hence on the energy consumption. Table 1 shows the main parameters and their set
of values considered to carried out the experimental tests and obtain the profiling report.
The stop condition is set when the optimal solution is found. The more information we
provide to the fuzzy system, the better prediction we obtain.

4 http://garage.cse.msu.edu/software/lil-gp
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Each individual experiment has been launch 30 times because of the stochastic nature
of EAs and we compute the performance and energy consumption as the average of the
30 runs. Each run is parameterized with a different seed and the same thirty seeds are
used in all experiments and devices. We use seconds to compute the performance as the
difference between time before launching the algorithm with a particular combination of
parameter values and just after finishing. We do not compute the time needed to store log
information neither computing.

The energy consumption is computed assuming devices are working at the highest
power according to Energy = Power ∗ Time. This decision was taken given the in-
terest of this work in testing this methodology to provide a model to predict the energy
consumption. Future development will need accuracy measures about the average power
delivered by each device and problem addressed, whilst the algorithm is carried out. As
previously mentioned, for each different combination of the main parameters of GP algo-
rithms described in Table 1, the algorithm is run thirty times and computes the average
time and energy consumption in each device.

Results obtained for each GP problem and devices are stored in a different profiling
report for being further processed by the fuzzy system in order to build the energy estima-
tion model, where units used for energy, power and time are Joules, Watts and Seconds,
respectively. As soon as the profiling stage finishes, the next stage executes the FRBS
module, which is addressed in the following subsection.

3.3. FRBS Module

As previously stated, the prediction model is performed by the FRBS module, as seen in
Fig. 1. The Energy Consumption Predictive Model (ECPM) we propose needs, first of all,
to establish the relationship among the set of parameters defined, whose values are col-
lected in the profiling report previously mentioned, by executing the GP problems chosen.
These data or input variables are included as key information during the learning phase
to design the ECPM, what will allow subsequently evaluate the energy consumption. The
variables defined for the ECPM described are:

– Input Variables
• device
• population size
• number of generation
• maximum depth
• problem difficulty

– Output Variable
• energy consumption, defined as the value to be predicted.

In this work, we propose a predictive system based on METSK-HD [13], an evo-
lution of TSK-FRBS [29], which improves the accuracy and convergence when high-
dimensional and large-scale regression datasets are managed. The structure consists of
a Knowledge Base (KB) and Rules Database (RB). The KB stores the knowledge ex-
tracted of the problem at hand, and establishes the relationship between the input and
output variables by means the well-known Membership Functions(MF). The knowledge
is finally stored as fuzzy rules with an IF-THEN format. Fuzzy rules have a structure with
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Fig. 2. TSK-FRBS model.

an antecedent and a consequent. The antecedent is composed of linguistic variables, and
the consequent is a polynomial function of the input variables. Thus, the rules format of a
TSK-FRBS has the following structure:

IF X1 i s A1 . . . and Xn i s An

t h e n Y = p1 ∗ X1 + . . . + pn ∗ Xn + p0

where the system inputs variables are denoted as Xi, Y is the system output variable, pi
represents real-values coefficients and Ai are fuzzy sets.

Fig. 2 shows the flow of the TSK-FRBS model. Considering the KB contains m TSK
rules the output of TSK system is computed as the weighted average of each individual
rule output Yi as shown (2):

∑i=1
m hi · Yi∑i=1

m hi

(2)

where i = 1...m, hi = T (A1(x1)...An(xn)) represents the matching degree between
the antecedent part of the ith rule and the current system inputs x = (x1...xn), and with
T being a t-norm.

TSK FRBSs have been applied successfully to a large quantity of problems. The main
advantage of these kinds of systems is the fact that they present a compact system equa-
tion for estimating the parameters pi using classical methods, and obtaining an accurate
system, which can be very useful for accurate fuzzy modeling.

Problems with large or high-dimensional data sets make non-feasible an ad-hoc im-
plementation and need an automatic learning process for the KB and RB. The process
is divided into different stages due to the high complexity of the search space involved,
although KB and RB should be learnt and optimized together. Different techniques have
been applied for this task, but the Genetic Fuzzy Systems (GFS) [19] has the best results.
EAs are able to learn the antecedents and consequents of the rules system together, and to
optimize the MF of the KB. Figure 3 shows the summary of the optimization process of
TSK FRBS.

This process is divided into two stages, called Learning and Tuning. In the first stage,
Learning, the initial Data Base (DB) based on a fuzzy grid in order to obtain zero-order
TSK candidate rules, is learned. The second stage, Tuning, applies an advanced post-
processing for fine scatter-based evolutionary tuning of MFs combined with a rule selec-
tion. Figure 4 shows the process described previously.

Additionally, we use K-fold cross validation (CV) with K = 5 as training strategy,
which is widely applied for model evaluation in classification. K-fold CV splits the train-
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Fig. 3. Processes involved in the FRBS module.

ing data into K different sets, S = (S1.....Sk). For a particular evaluation i, Si represents
the test set and the combination of the remaining sets are used for model fitting.

4. Experimental Results

4.1. Experimental Framework

In order to test our proposal, we have selected the two benchmarks previously mentioned
from the lilgp suite: multiplexer-6 and regression, which are representative benchmark
problems. Three computational platforms have been tested: Raspberry-Pi, laptop and
tablet. Table 2 provides the technical details of the hardware architectures and operat-
ing systems. Facing an optimization problem, the power consumption depends not only
on the algorithm but also the architectural features of the device in which it is executed.
Future decisions on the hardware to run an optimization algorithm may take into account
the processor speed, instruction set architecture and operating system, which we do not
take into account in this work.

We are aware of the possibility of disabling services unused such as wifi, bluetooth,
hdmi connection, leds on the board, etc. to reduce the power consumption. In this paper,
we consider all components are enabled and devices are plugged whilst the GP algorithm
is running.

As stated before, the difficulty of the problems addressed has been computed as the
time taken by the algorithm when the fitness function is computed or not. Next, the algo-
rithms have been launched on each hardware platform and the set of parameters chosen.
As a result, the profiling report needed to the next step has been completed. The profiling
report obtained contains five input variables and the output one, defined in Section 3.3.
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Fig. 4. TSK FRBS optimization process.

Table 2. Computational platforms (devices) used in this work.

Device raspberry pi tablet laptop
Processor Cortex-A7 Samsung Galaxy Tab 3 Intel(R) Core(TM)

900 MHz SM-T311. Exynos 4212 1.5 GHz i5-2450M 2.5GHz
Cores 4 2 4
RAM 1GB 1.5GB 8GB
OS Raspbian

GNU/Linux 7
Android 4.4.2 (kernel 3.0.31)4 Ubuntu 12.04.5 LTS

Watt-hour 12.5 14.8 75

Finally, the ECPM is built after the execution of TSK-FRBS with 5-fold cross valida-
tion as the training strategy. As mentioned before, TSK-FRBS is launched 30 times for
each experiment due to the stochastic nature of this kind of algorithms.

For the sake of clarity, we would like to remark that in this work an ECPM model for
each kind of problem have been built. The TSK-FRBS used has two different processes.
The first process is called Learning, in this process the systems used a EA to design the
whole KB (DB and MFs). In this process the system begins with an initial FRBS designed
randomly and, be means of an EA, the systems describe the whole system, where the DB
and MFs are described. The second process tries to improve the FRBS designed in the
above stage. In this stage, again a EA is applied to reduce the number of MFs obtained in
the learning process. But not only do they try to reduce the rules, but also try to improve
their efficiency again. In both processes, the method applied will try to eliminate variables
that apparently are not necessary.

The energy consumption is highly dependent on the hardware platform, and the pop-
ulation size, number of generations and maximum depth the main parameters of GP algo-
rithms. Moreover, the problem difficulty is together with the previously mentioned param-
eters the key to estimate the time needed to reach a solution, and consequently the energy
consumption. Therefore, an ECPM particularly targeted at evolutionary algorithms cannot
ignore them.
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4.2. Experimental Analysis

This section analyzes the experimental results obtained. Fig.5 shows the evolution of
the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) metrics for the
multiplexer problems in training and test. Results obtained with our methodology reach a
high hit rate, values predicted are close to the original values. More detailed information
is given in Appendix A, Table 3, which compiles results obtained for each individual
experiment of FRBS, particularly: the number of rules, MSE and RMSE for training and
test. We can see values for MSE and RMSE are close to 0, which would be the perfect
tuning between the observed value and the estimated value.
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Fig. 5. MSE and RMSE values for the multiplexer problem in training and test through 30
executions.
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Fig. 6. MSE and RMSE values for the regression problem in training and test through 30
executions.

Moreover, the number of final rules in the tuning phase has been reduced more than
a 20.9% with respect to the preliminary work [11], previously mentioned. The latter gen-
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erated a model for the multiplexer problem and each hardware platform, thus we refer to
the average number of rules 81. A lower number of rules allows to improve the system
interpretability and makes easier a further development to provide predictions to users.

Fig.6 plots the evolution of the MSE and RMSE for the regression problem. More
extended information is represented in Appendix A, Table 4. Values obtained for the MSE
and RMSE metrics are more relevant in the case of the regression problem. These metrics
are lower than in the multiplexer problem and they are closer to 0, which shows the tuning
obtained is near the perfect tuning. On the other hand, the number of rules for the ECPM
built is low enough to make easier the development of an interactive applications for
final users. Users could introduce their custom parameters and the system would give
as answer the energy consumption of the set of tests, using a given hardware platform.
Users could take the decision according to the information that best fits the desired energy
consumption.
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Fig. 7. MSE for the multiplexer problem for an individual kfold

Moreover, it might be interesting to analyze the prediction accuracy according to GP
parameters. Fig. 7 and 8 show MSE for each profiling data in one of the k-folds for the
multiplexer and regression problems, respectively. Note that we have chosen different k-
folds for both problems in order to avoid any possible bias. If we analyze firstly MSE
values in Fig. 7 for each of the 61 profiling data in the selected k-fold, we observe that the
vast majority of MSE are under 0.2. However, some of the MSE values differs ostensibly
from the latter, reaching values close to 1. We can therefore conclude that the accuracy
of the prediction obtained depend on the values of the profiling data. We have checked
out those profiling data for which MSE are higher, and we have discovered that these
predictions correspond to profiling data with values for the GP parameters at the upper
range (See Table 1). This lower accuracy might me due to the lack of enough samples
at the upper range of GP parameters. While the interval between different values of GP
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parameters is small for the lower range, these intervals increase as we approach the upper
range. Therefore, we think that we could improve MSE by including more values for GP
parameters within their upper ranges. However, it is important to point out that despite
this, the accuracy obtained by our model is outstanding, as MSE values show.

We also perform the same analysis for the regression problem, but using a different
k-fold. Fig. 8 shows the MSE values for each of the 65 profiling data of the chosen k-fold.
In this case, we can clearly see that are much less than in the previous case the values that
move away from the most frequent value, which as can be appreciated is very close to 0.
Again, we can verify that these instances with larger MSE values correspond to instances
with values of the GP parameters in their highest ranges. The conclusions obtained are
therefore very similar to those obtained for the of the multiplexer problem.
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Fig. 8. MSE for the regression problem for an individual kfold

5. Conclusions and Future Work

We have presented an energy estimation model, which is especially aimed at EAs, in
particular, GP algorithms. To implement this model we have applied a TSK-FRBS that
is able to predict the energy consumption by using an inference engine. A 5-fold cross
validation process has been applied as the training strategy. We have addressed two typical
problem of GP, the multiplexer-6 and regression problems developed with lilgp, a well
known C implementation for the GP algorithms. Experimental tests have been carried out
on three different hardware platforms: raspberry pi, laptop and tablet , where a different
operating system is running: Raspbian, Ubuntu and Android.

In this paper, we have obtained one model for each problem addressed. Results ob-
tained show the Energy Consumption Predictive Model reaches a high hit rate, as illus-
trated by the low values of MSE and RMSE in the prediction phase on tests performed.
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As it is expected, the main parameters of the GP algorithm and the difficulty of the prob-
lem must have a considerable influence on the energy consumption. The ECPM is able
to make good predictions, however there are some differences due to the lack of samples
of the high range of the GP parameters. This can be solved running the algorithm with
these parameters and adding values to the profiling report to improve both the learning
and tuning phase.

The main conclusion we may present from the results is that this ECPM built with
TSK-FRBS is able to correctly estimate the energy consumption of GP for each problem
addressed. The usefulness is extensive when some problems need to be solve, an upper
limit of energy is established, and different hardware platforms are available to be used.
The model would allow to compare several settings before launching the run and propose
the best option at the least energy consumption. Moreover, this model can be improved
associating the energy consumption with the solutions quality in order to reach the best
compromise between the energy efficiency and the solutions quality found.

It is important to note that, unlike the preliminary work, this model is not dependent on
the hardware platform. The hardware platform is added as an additional input parameter
of the designed model. Moreover, the difficulty of the problem has been also included as
an input parameter to the TSK-FRBS prediction model. Those parameters did not belong
to the preliminary prediction model presented in previous works.

Although the Energy Consumption Predictive Model presented is based on two GP
problem, we think it can be applicable to other EAs. We hope to extend in the future
this model with a wide set of experiments, considering more different problems and EAs.
Moreover, we do not have a system that automatically analyzes the set of rules when a
final user requests information. An interesting future work would be the development of
an application, which give automatically the answer according to the given parameters
values.
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A. Detailed Results

Table 3. Individual experiments of FRBS 5-fold for the multiplexer problem.

Learning Tuning
Rules MSE RMSE Rules MSE RMSE

Training Test Training Test Training Test Training Test
1 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
2 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
3 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
4 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
5 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
6 96 0.0774 0.1036 0.3934 0.4552 63 0.0111 0.0224 0.1487 0.2118
7 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774
8 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774
9 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774

10 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774
11 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774
12 96 0.0711 0.0550 0.3772 0.3317 65 0.0134 0.0157 0.1637 0.1774
13 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
14 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
15 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
16 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
17 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
18 96 0.0654 0.0646 0.3616 0.3596 62 0.0158 0.1895 0.1776 0.6156
19 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
20 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
21 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
22 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
23 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
24 90 0.1094 0.1114 0.4678 0.4719 65 0.0027 0.0042 0.0741 0.0915
25 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541
26 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541
27 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541
28 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541
29 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541
30 96 0.0861 0.1031 0.4150 0.4541 66 0.0245 0.0323 0.2214 0.2541

Mean 94.8 0.0819 0.0875 0.4030 0.4145 64.2 0.0135 0.0528 0.1571 0.2701
DT 2.4410 0.0157 0.0234 0.0376 0.0583 1.4948 0.0072 0.0701 0.0489 0.1840
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Table 4. Individual experiments of FRBS 5-fold for the regression problem.

Learning Tuning
Rules MSE RMSE Rules MSE RMSE

Training Test Training Test Training Test Training Test
1 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
2 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
3 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
4 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
5 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
6 54 0.0171 0.0223 0.1851 0.2112 28 0.0023 0.0038 0.0673 0.0868
7 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683
8 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683
9 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683

10 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683
11 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683
12 72 0.0119 0.0160 0.1542 0.1791 48 0.0016 0.0023 0.0560 0.0683
13 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
14 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
15 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
16 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
17 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
18 96 0.0161 0.0122 0.1794 0.1564 57 0.0013 0.0031 0.0513 0.0787
19 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
20 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
21 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
22 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
23 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
24 72 0.0168 0.0191 0.1835 0.1955 43 0.0019 0.0021 0.0617 0.0653
25 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034
26 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034
27 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034
28 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034
29 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034
30 90 0.0179 0.0206 0.1890 0.2032 61 0.0017 0.0053 0.0587 0.1034

Mean 76.8 0.0160 0.0181 0.1783 0.1891 47.4 0.0018 0.0033 0.0590 0.0805
SD 15,1462 0.0021 0.0036 0.0126 0.0198 11.8018 0.0003 0.0012 0.0055 0.0140
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for a genetic programming classifier. Genetic Programming and Evolvable Machines 17(4),
409–449 (2016)

26. Merkel, A., Bellosa, F.: Memory-aware scheduling for energy efficiency on multicore proces-
sors. In: Proceedings of the 2008 Conference on Power Aware Computing and Systems. pp.
1–1. HotPower0́8, USENIX Association, Berkeley, CA, USA (2008)

27. Nesmachnow, S., Luna, F., Alba, E.: An empirical time analysis of evolutionary algorithms as
c programs. Software: Practice and Experience 45(1), 111–142 (2015), http://dx.doi.
org/10.1002/spe.2217

28. Sharma, R.K., Bash, C.E., Patel, C.D., Friedrich, R.J., Chase, J.S.: Balance of power: dynamic
thermal management for internet data centers. IEEE Internet Computing 9(1), 42–49 (Jan 2005)

29. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE transactions on systems, man, and cybernetics (1), 116–132 (1985)
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