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Abstract. Multi-Agent system has broad application in real world, whose security 

performance, however, is barely considered. Reinforcement learning is one of the 

most important methods to resolve Multi-Agent problems. At present, certain 

progress has been made in applying Multi-Agent reinforcement learning to robot 

system, man-machine match, and automatic, etc. However, in the above area, an 

agent may fall into unsafe states where the agent may find it difficult to bypass 

obstacles, to receive information from other agents and so on. Ensuring the safety 

of Multi-Agent system is of great importance in the above areas where an agent 

may fall into dangerous states that are irreversible, causing great damage. To solve 

the safety problem, in this paper we introduce a Multi-Agent Cooperation Q-

Learning Algorithm based on Constrained Markov Game. In this method, safety 

constraints are added to the set of actions, and each agent, when interacting with 

the environment to search for optimal values, should be restricted by the safety 

rules, so as to obtain an optimal policy that satisfies the security requirements. 

Since traditional Multi-Agent reinforcement learning algorithm is no more 

suitable for the proposed model in this paper, a new solution is introduced for 

calculating the global optimum state-action function that satisfies the safety 

constraints. We take advantage of the Lagrange multiplier method to determine 

the optimal action that can be performed in the current state based on the premise 

of linearizing constraint functions, under conditions that the state-action function 

and the constraint function are both differentiable, which not only improves the 

efficiency and accuracy of the algorithm, but also guarantees to obtain the global 

optimal solution. The experiments verify the effectiveness of the algorithm. 

Keywords: Markov game, Distributed perception, Multi-Agent cooperation, 

constrained Markov decision process. 

1. Introduction 

Multi-Agent System (MAS) is a combination of several sub-agents, which decomposes a 

large complex system into smaller and intercommunicating subsystems that are relatively 

manageable [1]. MAS is evolved from distributed artificial intelligence, it is applied in 

various areas such as intelligent robot, traffic control, distributed decision making, 
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business management, virtual reality and so on [2]. At present, a new mechanism that 

combines MAS and reinforcement learning is gradually considered to be a research 

hotspot [3]. 

Multi-Agent reinforcement learning (MARL) is to apply reinforcement learning 

algorithm to MAS [4]. Littman in 1900s put forward MARL with Markov Decision 

Process (MDP) being the contextual framework, which offered a simple mathematical 

framework for solving most of reinforcement learning problems [5]. MARL possesses 

certain properties, such as autonomy, distributivity, consistency and so on, and abilities 

such as learning, reasoning and self-organizing [6]. According to different learning 

objectives, MARL can be divided into full cooperation task, full competition task and 

hybrid task [7]. 

In full-cooperation stochastic game, agents are not making decisions independently, 

but are cooperating with each other trying to achieve a mutual goal in a parallel way. 

They share the same reward function and maximize it adopting greedy strategy [8]. 

Littman M proposed the Team-Q algorithm, which solved the cooperation problem 

among agents by hypothesizing an optimal union action [9]. Lauer M and Riedmiller M 

proposed the Distributed-Q algorithm, which solved the cooperation problem among 

agents without hypothesizing the coordination condition, with an infinite computational 

cost. It shares the same computation complexity with the single agent Q-learning 

algorithm [10]. This method, however, is suitable only for deterministic problems with 

non-negative reward functions. All the algorithms introduced above are limited, they all 

rely on the precise measurement of the state. Some of them need also the precise 

measurement of influence to an agent from other agents and may suffer from curse of 

dimensionality. On the other hand, they ignore the safety problem of agents and other 

constraint conditions. 

In full-competition stochastic game, the agent maximizes its own reward while 

minimizes reward of its opponents [11]. Minimax-Q algorithm is a full-competition 

stochastic game that calculates policies and values through minimax principle [12]. 

In hybrid task, the reward function of the agent is not restricted [13], which is suitable 

for a selfish agent. In the game many algorithms are only for static tasks based on the 

concept of equilibrium in game theory [14]. In the process of a hybrid task, an agent 

needs to know the actions and rewards of other agents. The equilibrium selection 

problem arises when different agents obtain different policies. Nash Q-learning is a 

common method for solving this problem [15]. Correlation Equilibrium Q-learning (CE-

Q) method solves the equilibrium problem with the concept of correlation equilibrium 

[16]. Asymmetric Q-learning solves the equilibrium problem using the leader-follower 

equilibrium. The follower needs not model the Q-table of the leader, but the leader 

should know how its followers choose their actions [17]. 

Traditional MARL ignores the safety problem of the agent which is inescapable in 

practical use. To solve the problem, in this paper we propose a Constrained Multi-Agent 

Cooperation Q-learning (CMACQ) algorithm based on constrained Markov game. 

Compared with traditional methods, this algorithm can ensure the safety of the agent, 

avoiding dangerous states and their consequences. In this method, before the agent 

executes an action, it determines all the safe executable actions based on the current 

state, and chooses the optimal one according to the greedy strategy as well as 

interactions with other agents. The algorithm ensures the safety of each agent when 

agents are cooperating to complete the task. 
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This paper is organized as follows. In section 2, we introduce the related concepts 

and studies. In section 3, we formalize our model and transform the model into a convex 

model by linearizing constraint functions, where we exploit the Lagrange multiplier 

method to obtain the safe action and choose the optimal safe action according to the 

greedy strategy as well as interactions among agents. In section 4, we compare CMACQ 

with MACQ in the firefighting-through-multi-agent-cooperation experiment and Deep 

Sea Fishing experiment. In section 5, a summary of CMACQ and a discussion of future 

work are presented. 

2. Related Work 

2.1. Reinforcement Learning 

In reinforcement learning tasks, the agent detects the environment and takes actions to 

obtain the largest long-term cumulative reward which is a valuable encouraging signal 

[18]. Markov Decision Process framework is used to solve most of the reinforcement 

learning problems, which is denoted by a tetrad (S, A, P, R) [19] where S is the set of 

states which contains finite numbers of elements, A is the set of actions, P is the state 

transition probability and R is the reward function. In MDP, the state transition 

probability contains actions, which is expressed as follows [20]: 

'

'

1 | ,a

t t tss
P P s s s s a a

                                         (1) 

 

environment

agent

（policy π ：s→a）

reward

state action

 

Fig. 1. The illustration of reinforcement learning. 

At time t, the agent is in current state st, chooses action a according to policy π, receives 

a feedback from the environment and proceeds to the next state st+1, and obtains the 

reward rt. The policy π, which is divided into deterministic policy and non-deterministic 
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policy, denotes the mapping from st to at. In reinforcement learning, the cumulative 

discounted reward is defined as [19]: 
'

''

T t t

t tt t
R r 


                                                     (2) 

where the discounted factor γ∈ (0,1]，Rt is the reward value from time t to T. The 

reinforcement learning model is showed as figure 1 [19]. 

The state-action value function, Qπ(s,a), is used to evaluate policies, which denotes 

the sum of cumulative rewards when the agent chooses action at according to the policy 

π under the current state st. The function [19] is shown as: 

   , | , ,t t tQ s a E R s s a a                                    (3) 

As the iteration continues, the state-action value will converge to be optimal. 

Although the optimal policy may not be unique, the optimal state-action value is unique, 

as shown in equation (4) [19]: 

   * , max | , ,t t tQ s a E R s s a a                               (4) 

The state-value function V(s) denotes the expectation of all state-action value 

functions when the agent follows policy π under the state st, which is calculated as 

equation (5) [19]. As the policy iteration continues, the state-value function converges to 

a unique optimal one. The optimal state-value function is obtained by equation (6) [19]: 

   | ,t tV s E R s s                                             (5) 

   * max | ,t tV s E R s s                                         (6) 

Q-Learning algorithm [21] is a typical off-policy algorithm and is one of the most 

widely used reinforcement learning method. The algorithm defines a Q function, and 

updates this function using equation (7) [22] and equation (8) [22], that is, TD error, and 

finally obtains the converged optimal state-action value: 

   
'

'

1 1max , ,t t t t t t t
a

r Q s a Q s a                                 (7) 

   1 , ,t t t t t t t tQ s a Q s a                                          (8) 

where t denotes time step, αt is learning rate, δt is temporal difference error [22], a’ is the 

action taken at next state st+1. When t tends to infinity, the optimal control policy is 

obtained [23], [24]. 

2.2. Multi-Agent Cooperation 

With rapid development in areas such as sensor technology, wireless communication 

technology and computer vision, intelligent robot system was transformed from stand-

alone system into multicomputer system. Multi-Agent system is widely applied in which 

the cooperation between agents played an important role [25]. Therefore, to study the 

cooperation between two agents is a key procedure when developing Multi-Agent 

systems [26]. At present, the research is divided into two categories: one is to apply the 

research of Multi-body behaviors to the cooperation of agents; the other is to 

concentrating on programming and solving of the problem [27], [28]. Allen et al studied 

the effect of minor changes on social evolution by assessing the cooperation tendencies 



 Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game           651 

in many different population structures [29]; Mcavoy studied the effect of Evolutionary 

Game Dynamics on changing the scale of agents by public good game [30]; Engesser et 

al applied the cognitive programming to Multi-Agent system and solved program tasks 

in a decentralized way, by expanding the cognitive programming framework and the 

perspective conversion [31]. 

Reinforcement Learning is one of algorithms to solve cooperation problems among 

agents which treats Cooperative Game as the core issue in the cooperation research. 

Agents cooperate by delivering message with each other to achieve the mutual objective 

[32]. In game mechanism, mechanisms that promote cooperation are divided into 

categories of strong-weak reciprocity, network reciprocity and group selection [33], 

[34]. Elise discussed the internal mechanism of strong reciprocal behaviors: when 

treachery appeared in an agent group, the strong reciprocal individual would conduct a 

altruism punishment to the individual who betrayed others, which made betraying 

individual to be more cooperative [35]; Perolat et al modeled subjects who occupied 

public resources using Markov Observation Model. The model revealed relations among 

exclusiveness, sustainability and inequality and demonstrated the solution, which 

improved efficiency of resource management [36]; Tuyls et al put forward the LDQN 

algorithm, which imported toleration policy to Deep Q-network that updated passive 

policy with leniency methods, thus to improve convergence and stability of Multi-Agent 

cooperation algorithm [37]; Hwang et al combined the multi-agent cooperative Q-

learning algorithm with Stochastic recording real-valued unit to solve the problem that 

the agent is prone to fall into local solution [38]. 

2.3. Constrained Markov Game 

Reinforcement learning, based on MDP, consists of an agent and several states. While 

MARL is a game of stochastic multi-player cooperation game, including more than one 

player and state, based on which a Markov game (stochastic) is defined [39]. Markov 

game is expressed as a tuple (n,S,A1,… ,An,T,γ,R1,… ,Rn) [40], where n is the number of 

players, S is the set of states. The state here is referred as the union state of all players at 

a certain time instant. T:S×A1×… ×An×S→[0,1] is the transition function, Ai(i=1,… ,n) is 

the action set of player i, γ∈[0,1] is the discounted factor, Ri: S×A1×… ×An×S→ℝ is the 

reward function of player i. In a stochastic game, the transition function probability of 

next states is determined the current state and the action taken by the player. A reward 

function Ri(s,a1,… ,an,s’) denotes the reward obtained by the player after the player takes 

the union action (a1,… ,an) and transfers from state s to state s’. Similar with MDP, the 

stochastic game also possesses markov property [41], that is, the next state and reward 

of the player depends only on the current state and current action of all players. Multi-

Agent reinforcement learning model is shown as figure 2 [42]. 
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Fig. 2. Model of multi-agent reinforcement learning 

Constrained Markov game adds constraint function to the Markov game, which is 

denoted by a tuple (n,S,A1,… ,An,T,γ,R1,… ,Rn,C), where C is the constraint function set. 

In constrained MDP model, the goal of the agent is changed into maximizing the reward 

function of the whole plot under condition that the agent satisfies the constraints. The 

constraint function set is shown as follows: 

 : | 1ij i nC c S A A j k     
                         (9) 

where k is constant and denotes the number of constraint functions. 

2.4. Lagrange Multiplier Method 

Adding constraints to the objective function can ensure the safety of the agent in the 

learning process. Lagrange multiplier method is to find optimal solution in the case of 

equality constraint. Optimization problem with inequality constraint can be solved using 

Lagrange multiplier method and Karush Kuhn-Tucker conditions (KKT) [43]. KKT is a 

sufficient and necessary condition only when the model is convex, otherwise it is only 

the necessary condition when used to decide whether the solution obtained by Lagrange 

multiplier method is optimal [45]. 

 

 

'

'
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, 1, ,
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j j
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                                   (10) 

The above model is the optimization problem with inequality constraints, where 

 j jc y C  and  j jc y C  are abstract expressions of constraint function, γ is discount 

factor, 0<γ<1, k is constant and denotes the number of constraint funtions. k’ is constant 

and denotes the number of equality constraint functions. The number of inequality 

constraint functions is denoted by k-k’. The optimal solution satisfies λ=0 or 

  '0, 1, ,j jc y C j k k    , such that when y satisfies the strict inequality, the 
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constraint functions are not effective. Only when the constraint functions are equality 

constraints can the constraint functions be effective. Therefore, the optimization problem 

with inequality constraints will be turned into the problem with equality constraints and 

then be solved using Lagrange multiplier method, which simplifies the problem [44]. 

The model is shown as follows: 

   ' ' 'max ( , ) ( ) ( ) ( )j j j j j jL y g y c y C c y C                      (11)
 

where the independent variable y is a local optimal solution when satisfying 

( , ) 0yL y    and ( , ) 0L y    [45], which is obtained using gradient descent method. 

When the model is convex, the local optimal solution is the same as the global optimal 

solution. λj is lagrange undetermined multipliers, which denote changes of objective 

functions in accordance with constraint functions. Since the optimal solution satisfies the 

constraint   0j jc y C  , the value of λj will not affect the final solution. 

3. Constrained Multi-Agent Cooperation Q-learning 

Traditional Multi-Agent learning algorithms ignore the safety issues for simplicity while 

the safety issues have been proved to be crucial for completing the task. To handle the 

safety problem of Multi-Agent system, we propose Constrained Multi-Agent 

Cooperation Q-learning algorithms that encode the safety requirement as constraints to 

ensure a stable Multi-Agent system. 

3.1. Model Design 

CMACQ model is described by the tuple (n,S,A1,… ,An,T,γ,R1,… , Rn, C) which is shown 

as figure 3. In the current state, the state-value function of agent i is: 
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Given the current state and the union action of all players, the state-value function of 

agent i is: 
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  '. . , , 1, , , 1, ,i

j t t js t c s a C j k i n                               (13) 

 , , 1, , , 1, ,i

j t t jc s a C j k i n                                         

In the constrained case, when the optimal policy 
*, 1, ,i i n   is obtained, the 

corresponding optimal state-value function and optimal state-action value function are 

obtained at the same time, defined as equation (14) and (15). 

*

( ) max ( ),i i
i

V s V s s S
 

                                       (14) 

*

1 1( , , , ) max ( , , , ),i i
i

n nQ s a a Q s a a s S
 

                    (15) 

Index set {1,2,… ,k’} and {k’+1,k’+2,… ,k} denote the equality constraint index set and 

inequality constraint index set respectively. State st denotes the state of the agent at time 

t, at
i denotes the action chosen by the agent i under the state st. 

 

Fig. 3. Model of constrained multi-agent reinforcement learning 

In CMACQ, by adding constraint conditions, the state set can be divided into safe 

state set and unsafe state set and the action set into safe and unsafe ones. By doing this, 

the safety problem of the agent can be solved at the beginning of the schedule and can 

also decide whether a state is safe or not using constrained conditions. Feasible region of 

CMACQ is shown as: 

  ' '| ( ) , 1, , ; ( ) , 1, ,j j j jS s c s C i k c s C j k k              (16) 

'

'

| ( , ) , 1, , ; ( , ) ,

1, , , 1, ,

i i i
i j j j ja c s a C j k c s a C

A
j k k i n

    
  

    

                (17) 

(st)≤Cj and cj(st,at
i)≤Cj are standard forms of inequality constraints concerning state 

set and action set. If some states satisfies the forms (st)≥Cj and cj(st,at
i)≥Cj, these forms 

can be turned into standard forms by multiplying both sides of inequations with 

-1. For inequality constraints, if there exists j0∈{k’+1,… ,k}, such that (st)<  and 

cj0(st,at
i)<Cj0, the i0th constraint in state st is not effective, and can be removed. The 

effective constraint set is denoted as  . Under the effective constraints, CMACQ model 

can be described as follows: 
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 . . , , , 1, ,i

j t t js t c s a C j i n                                     (18) 

The above learning model includes only equality model so as to simplify the model 

and improve the performance of the algorithm. 

3.2. Model Solution 

CMACQ algorithm based on constrained Markov game ensures the safety of all agents 

by adding multi-dimensional constraints, which makes traditional solutions no more 

suitable. To solve CMACQ model accurately and effectively, in this paper we adopt 

Lagrange multiplier method to decide all the safe and optimal actions for the agent under 

the current state. Lagrange multiplier method requires that the objective function and the 

constraint function are first order continuous differentiable. The objective function 

satisfies the condition when time t is continuous. The constraint function is not 

necessarily first order continuous differentiable, which can be solved by linearization of 

the constrained function. Since the next state of agent is decided by the current state and 

union action of all agents, it can be concluded that: 
' 1, ),( , n

t tt t as f as                                           (19) 

                            (20) 

When solving the model, to ensure that the solution is globally optimal, the objective 

function and constraint function need to be convex. It can be known from the model that 

the objective function is convex while the constraint function is not. Therefore, the 

constraint function is linearized. Since linear function is always convex, so is the 

linearized constraint function. By doing this the globally optimal solution is guaranteed. 

Linear approximation of constraint function is shown as: 

 ( , ) ( ) ; , 1, ,
T

i

j t j t t

i

j ttc s c s g s a ia n j    ，                (21) 

In the above equation, g(st;ωj) takes st as input, and output a vector sharing the same 

dimension with at
i, which can be obtained by solving the following equation: 

   
1 '

2
'

( , , , , )

arg min ( ) ( ) ;
n

j
t t t t

T
i

j t j t t j t

s a a s D

c s c s g s a





                     

  1 ', , , , , 1, ,n

t t t tD s a a s i n j   ，                        (22) 

where set D is composed of tuples (st,at
1,… ,at

n,st’) denoting that agent i, under the 

current state st, executes action at
i and switches to next state st’. Optimal solution of the 

objective function is contained in set D. 

After implementing linear approximation, the learning model is shown as: 
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Utilizing Lagrange multiplier method, the following equations should be solved: 
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          (24) 

To avoid falling into locally optimal solution, the linearized constrained function is 

adopted to guarantee the solution in globally optimal. 

3.3. Algorithm Description 

In CMACQ, agents cooperate with each other to achieve the goal. During the learning 

process, under the condition that the constraints are satisfied, the agent chooses an action 

based on its current state and on observing the action-value function. The model ensures 

the safety of all agents through constraint function. That a state is safe means that all 

agents are safe.  

 

Algorithm 1: Constrained Multi-Agent Cooperation Q-Learning 

Input: state set S, union action set A, and reward function 

Output: safety state sequence and safety union action corresponding to each safety 

state sequence after training 

1： Algorithm parameters: step size α∈(0,1], small ε>0, γ∈(0,1] 

2： Initialize: 

a)state-action value function  1, , , , , , 1, ,i n i iQ s a a s S a A i n     

b)Lagrange multiplier
j , 1, ,j k , k N    

c)parameter 
j  

d)   1 ' ', , , , , , , , 1, ,n i iD s a a s s s S a A i n       

3： Loop forever  (for each episode)： 

4：    Initialize initial state s 

5：    Loop forever (for each step of episode): 

6：       Obtain  ; jg s   by solving the formula 

   
1 '

2
* '

( , , , , )

arg min ( ) ( ) ; , , 1, ,
n

j

T
i i i

j j j j

s a a s D

c s c s g s a a A i n
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7：       The constraint function is approximated linearly: 
*( ) ( , ) , , 1, ,T i i i

j j jc c s g s a a A i n      

8：       The Lagrange multiplier method is used to obtain the action 

   
'

1

* arg max{ , , , }, , 1, ,
i

i i n i i

j jj
a j

a Q s a a c C a A i n
 




       

9：       Agent i take action
*, 1, ,ia i n ，observe , 1, ,ir i n , next state

's ， 

10：       

1

1 1 ' 1 1

* * * * 1 * * * *, ,
( , , , ) ( , , , ) max ( , , , ) ( , , , )n

i n i n i n i n

t a a
Q s a a Q s a a R Q s a a Q s a a 

    
 

 

11：       Agent , 1 ,i i n  moves to the next state： 's s  

12： Until s is terminal 

 

Each s of state set S represents a union state s=(s1,s2,…,sn), which is different from 

action set. In ai∈Ai, ai  represents available actions of agent i, and Ai  represents all the 

available actions. According to steps 6-8 in the above algorithm, the constraint function 

is solved using Lagrange multiplier method so as to decide all the safe and executable 

actions that each agent can choose under the condition that the long-term cumulative 

reward is obtained. λj is Lagrange multiplier. Step 6 and step 7 describe the linear 

approximation constraint function to ensure that the constraint functions are 

differentiable. If the initial constraint function is differentiable, then these two steps are 

skipped. In step 8，each agent uses Lagrange multiplier to work out the optimal action 

value under constraints. In step 9, each agent is in safe state after choosing the safe and 

optimal action. CMACQ ensures the safety of each agent under the condition that the 

globally optimal solution is obtained. 

4. Experiment and Analysis 

CMACQ algorithm based on constrained Markov game is suitable for determining a 

policy for multiple agents under a constrained condition and obtaining the optimal long-

term cumulative reward. The constrained algorithm introduced in this paper is mainly to 

solve safety problem of multiple agents. In the experiment, a dangerous state is defined 

as a state that causes great damage when chosen by the agent. 

To simplify the solution procedure, if problem is discrete and state set and action set 

are relatively small, the next state can be judged to be safe or not through only the 

constraint function and can decide all suitable actions for the agent. If the state set and 

action set are large and are even continuous, the safe state is calculated through 

Lagrange multiplier method. 

To ensure the safety of each agent, CMACQ adopts constraint function to prevent 

each agent form falling into a dangerous state. The distance between the agent’s current 

state and dangerous state is measured by Manhattan distance [46]. To ensure the safety 

of the agent, the Manhattan distance between the agent’s next state and the dangerous 

state should be equal or greater than 1. The distance described above is defined as safe 

distance d, as showed below:  
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~

1( , ) 0td s S                                                  (25) 

where 
~

S  is the set of all dangerous states, st+1 is the next state for the agents. 

4.1. Firefighting through Multi-Agent Cooperation Experiment 

The environment of the firefighting through multi-agent cooperation experiment is a 

10×10 grid world with 3 agents starting respectively at (0,9), (9,0), (9,9). In the 

experiment, agents cooperate with each other to complete firefighting missions, 9 origins 

of fire are (1,4), (3,3), (4,9), (9,3), (8,9), (7,3), (4,6), (5,2), (9,7). Each agent carries the 

fire-fighting equipment, and enters into a fire point, quells the fire and receives a reward 

of 20. Agents starting from (0, 9) and (9, 0) are able to quell four firing places while the 

agent starting from (9,9) is able to quell 3 firing places. When firefighting materials are 

used up, agents stop firefighting and go back to starting points. When all 9 firing points 

are quelled, a whole plot is terminated. Agents cooperate with each other to find out 

firing points that are not yet quelled. In the process, the agent may encounter 3 

dangerous states, located at (4, 3), (8, 2), (5, 6). When the agent enters into a dangerous 

state, it suffers from permanent damage and receives a reward of -100. To avoid that 

agents take random walks in the grid world, agents receive a reward of -1 when entering 

into a new state other than the firing state and dangerous state. By doing this, agents are 

able to find the shortest path toward firing place in the shortest period of time. 

In the experiment, step size α is set uniformly to 0.5, discounted factor γ is set to 1. ε-

greedy method is adopted to explore actions in the training process so as to avoid the 

locally optimal solution. Policy parameter ε is set to 0.1. The experiment is 

independently operated for 50 times with 500 plots for each operation.  

Figure 4 demonstrates performance of CMACQ. The result shows that agent 3 

possesses the highest firefighting speed and cumulative reward for each plot. Agent 2 

and agent 1 possess similar cumulative rewards with agent 2 being slightly better which 

is due to the distribution of firing points and the number of firefighting materials carried 

by the agent. The overall distribution is closer to the starting point of agent 3 and agent 3 

carries only 3 units of firefighting materials, which are 1 unit lesser than those of agent 1 

and agent 2, Therefore agent 3 completes the goal in the shortest period of time. Agent 3 

need not wander in the grid to search for firing points such that it receives the highest 

long-term cumulative reward for each plot. 
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Figure. 4. Performance of CMACQ. 

Figure 5 shows long-term cumulative rewards for each plot without safety constraints. 

The order of rewards for each agent is similar with that of Figure 4, but each reward in 

Figure 5 is lower than that of Figure 4. The lower rewards are because that agents fall 

into dangerous states and receive a reward of -100. 

 

Figure. 5. Performance of MACQ 

Figure 6 compares the average long-term cumulative rewards per plot between 

CMACQ and MACQ [38]. The result shows that CMACQ behaves better than MACQ 

and that CMACQ enables the agent to avoid dangerous states. 
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Figure. 6. Average long-term cumulative rewards per plot of two algorithms. 

4.2. Deep Sea Fishing Experiment  

The environment of Deep Sea Fishing experiment is a 12×12 grid word with 2 agents 

and agents work together to catch fish while steering clear of obstacles in the sea. Agent 

1 starts at (0,0) and agent 2 starts at (0,11). In the process, there are 6 dangerous states, 

located at (3,0), (8,1), (10,4), (11,7), (4,8), (7,11). Dangerous states simulate rocks on 

the bottom of the sea, sea grass and so on. In the experiment, agents need to avoid 

hitting rocks and getting entangled in sea grass in order to avoid irreversible damage, 

continue to fish and return from the sea. States of shoal of fish locate at (7,0), (5,2), 

(10,5), (4,6), (7,8), (11,9), (5,11). There are one unit of fish in each state of shoal of fish. 

Resources carried by one agent that can catch 4 units of fish. If one agent catches 4 units 

of fish, it can no longer fish and leave the sea. 

In the experiment, the agent receives a reward of 20 when it catches 1 unit of fish. 

When the agent enters into a dangerous state, it suffers from irreversible damage and 

receives a reward of -100. To avoid that the agent takes random walks in the grid world, 

agents receive a reward of -1 when entering into a new state other than the state of shoal 

of fish and dangerous state. By doing this, agents are able to find the shortest path 

toward shoal of fish location in the shortest period of time.  

In the experiment, step size α is set uniformly to 0.5, discounted factor γ is set to 1. 

The ε-greedy method is adopted to explore actions in the training process so as to avoid 

the locally optimal solution. Policy parameter ε is set to 0.1. The experiment is 

independently operated for 50 times with 500 plots for each operation. 

Figure 7 shows the experimental results and compares long-term cumulative rewards 

for each plot solved by CMACQ and MACQ respectively. The experimental results 

show that   CMACQ behaves better than MACQ, because CMACQ enables the agent to 

avoid dangerous states and ensures the safety of the agent. In the same algorithm, the 
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difference between the long-term cumulative rewards per plot of agent 1 and those of 

agent 2 is small, because the danger state and the state of shoal of fish are uniform 

distribution, while agent 1 and agent 2 enter the experimental environment from the 

upper left corner and upper right corner respectively. 

 

Figure. 7. Comparison of results of Deep Sea Fishing experiment of two algorithms. 

The reason why the experimental result of CMACQ algorithm are better than that of 

MACQ algorithm is that the CMACQ algorithm can avoid the agents from entering the 

dangerous state and causing irreversible damage, and the safety of agents is guaranteed 

by the constraint conditions. 

5. Conclusion 

Multi-Agent system is widely applied in real world in areas such as robot system, 

distributed decision, traffic control, business management and so on. Reinforcement 

learning algorithm is a key method for solving Multi-Agent problem. However, 

traditional algorithms ignore the safety problem of Multi-Agent system. The agent may 

fall into dangerous states and suffer from great damage. To solve this problem, in this 

paper we introduce CMACQ algorithm based on constrained Markov game and test this 

method through the firefighting cooperation experiment. The result shows that CMACQ 

is able to handle the safety problem. 

The CMACQ algorithm presented in this paper guarantees the safety of Multi-Agent 

system; it can also be applied to the problems where resource or cost is constrained and 

the area of Multi-Agent cooperation, such as robot system and traffic control, where 

agents work with each other and are under certain constraints. In future work we will 

adopt constrained algorithm to solve problems concerning limited resource, 

minimization of the cost and multiple objectives etc. 
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