
Computer Science and Information Systems 18(1):1–22 https://doi.org/10.2298/CSIS200131031C

Throughput Prediction based on ExtraTree for Stream
Processing Tasks

Zheng Chu1, Jiong Yu1, and Askar Hamdulla1

School of Information Science and Engineering, Xinjiang University, Urumqi 830046, PR China
chuzheng@stu.xju.edu.cn,{yujiong,askar}@xju.edu.cn

Abstract. In the era of big data, as the amount of streaming data continues to in-
crease, stream processing tasks (SPTs) face serious challenges in real-time process-
ing scenarios with low latency and high throughput. However, much of the current
literature on the performance of SPTs pays attention to the reactive approach, which
cannot well avoid the problem of system crashes due to the inherent performance
volatility. In this paper, a novel throughput prediction method based on ExtraTree
for SPTs is presented to address these challenges. A volatility detection algorithm
was proposed to obtain the reasonable metric values after the performance volatility
of SPTs was studied. Moreover, a selection algorithm of regression function was
proposed to output the performance values of SPTs under a relative stead state.
Furthermore, a ExtraTree-based algorithm was proposed to predict the throughput
of SPTs. The experimental results from two open-source benchmarks running on
Apache Flink, a popular stream processing system (SPS), indicated that the average
of the accuracy and efficiency of the proposed method could achieve 90.535% and
0.835 s/10,000 samples, which proved the effectiveness of the proposed method on
the task of predicting the throughput of SPTs.

Keywords: streaming data, stream processing tasks, performance prediction, en-
semble learning, ExtraTree.

1. Introduction

The emergence of big data processing systems enables organizations to store and process
high-dimension, diverse, and high-speed data [17]. Data processing approaches are usu-
ally divided into batch processing and stream processing. The former is generally used for
static data, and the latter is used for streaming data. For dynamically changing data, most
of the systems based on the Map-reduce [6] computing algorithm use the batch process-
ing approach to process and analyze the data. Products in the ecosystem include HDFS
[2], HBase [25], and Hive [27]. Accordingly, popular stream processing systems (SPSs)
include Apache Flink [4], Twitter Heron [16], and Apache Storm [26], etc. These systems
mainly use stream processing approach to process and analyze data.

With the rapid development of social media [8], news sources, and the Internet of
Things (IoT) [14], large-scale streaming data from various sensor devices [20], mobile
devices [15], and smart devices [13] generated and streamlined by the SPS in real time.
Due to the streaming data with the characteristics of large scale, rapid change, and contin-
uous generation, SPSs and SPTs must ensure low latency and high throughput as much as
possible. To achieve the dual goals of low latency and high throughput, current research
efforts are focusing on task scheduling [29], load balancing [18], elastic computing [11],

2 Zheng Chu, Jiong Yu, and Askar Hamdulla

etc. In these studies, all strategies are triggered after streaming data occurs a burst and
the performance of SPT cannot meet the requirements of users, i.e., reactive approach.
This approach may render the system unavailable for a certain period. If the streaming
data continues to fluctuate or oscillate, the above-mentioned reactive approach will cause
the system to enter a continuous adjustment process, which will cause the continuous
adjustment time exceed the available time, and even cause the system to crash.

A reasonable approach is to predict the throughput of SPTs under different conditions,
i.e., different streaming data rates. If the current throughput can be predicted in advance,
system crashes can be better prevented. To avoid this situation that SPTs cannot cope
with the rapid increase in the amount of streaming data due to its limited processing
capacity, the study of this paper aims to predict the maximum throughput of SPTs with
latency guarantees. This issue is also an important research in load management, query
scheduling, permission control, schedule monitoring, system scale customization, etc.,
and these studies will not be described here.

To predict the maximum throughput of SPTs with latency guarantees, we analyzed
the performance volatility of SPTs and proposed a detection algorithm for performance
volatility. Moreover, a polynomial regression algorithm was applied to the performance
volatility analysis to accurately estimate the throughput at a specific data rate. Further-
more, the throughput of SPTs in a relatively stable state was output using a volatility
regression algorithm. Finally, an ExtraTree-based algorithm was used for predicting the
throughput of SPTs.

The main contributions of this paper are as follows:
(1) A volatility algorithm was proposed to detection the performance volatility of

SPTs after the volatility was studied.
(2) A polynomial regression algorithm was proposed to apply to the performance

volatility to evaluate the performance of SPTs in a relatively stable state by configuring
different regression items and selecting the appropriate regression function automatically.

(3) An ExtraTree-based algorithm was proposed to predict the throughput of SPTs. In
particular, we first predict the maximum throughput of SPTs in this paper;

(4) The experimental results from two open-source benchmarks running on Apache
Flink, a popular SPS, indicated that the average of the accuracy and efficiency of the
proposed method could reach 90.535% and 0.835 s/10,000 samples, which proved the ef-
fectiveness of the proposed method. More importantly, the proposed method outperforms
other ensemble learning algorithms in term of accuracy and efficiency.

The structure of this paper is organized as follows: Section 2 gives an overview of the
related work. Section 3 describes the performance volatility phenomenon and volatility
detection algorithm in detail. The performance evaluation method for SPTs are described
in Section 4. Section 5 elaborates on the performance prediction algorithm. In Section 6,
we evaluate the effect of the ExtraTree-based throughput prediction algorithm on SPTs
through experiments and analysis. Section 7 concludes the paper with a summary and
suggestions for future works.

2. Related Work

At present, related works have achieved good results in many fields, e.g., natural language
processing [30], speech recognition [7], image processing [21], autopilot [1], etc., using

Throughput Prediction based on ExtraTree for Stream Processing Tasks 3

machine learning algorithms, while there are relatively few works on traditional computer
systems, especially SPSs. In this section, we will describe related works, mainly involving
SPSs, ensemble learning, and performance prediction for SPTs.

Stream processing systems: A stream processing system is a kind of system that
continuously processes, aggregates, and analyzes streaming data. Unlike Hive and HBase,
it is a software system based on a stream computing framework. The processing latency
of a SPS is measured in seconds or even milliseconds level. Such a system typically
uses a Directed Acyclic Graph (DAG) computation algorithm to process streaming data
on the nodes within the graph and pass the streaming data on the edges between the
nodes. In [26], the authors proposed a stream processing system, named Apache Storm,
which is a distributed, reliable, and fault-tolerant SPS. Study [4] proposed a SPS, named
Apache Flink that is used for computing unbounded and bounded streaming data using
a stateful computing framework and a distributed processing engine. In [16], the authors
proposed a SPS, named Twitter Heron that is a real-time, distributed, and fault-tolerant
stream processing engine. An SPT is a DAG task written by users and running in a specific
SPS.

Ensemble learning: Study [5] first proposed the concept of ensemble learning. In
[23], the authors used Boosting algorithm to combine multiple weak classifiers into a
strong classifier. This algorithm makes ensemble learning to become an important re-
search area. Study [9] proposed AdaBoost ensemble learning algorithm that is efficient
and widely used in many fields. In [3], the authors proposed random forest algorithm that
has achieved good results in many fields, so it is regarded as one of the best algorithms
in machine learning. The authors proposed the integration of Gradient Boosting Decision
Tree (GBDT) algorithm in [10]. GBDT is also a member of the Boosting family. In [12],
the authors proposed the ExtraTree algorithm that can construct a completely randomized
tree in extreme cases and its structure is independent of the output value of the learning
sample.

Performance evaluation and prediction for SPSs: Most current performance evalu-
ations for SPSs are based on experience methods [22] [24]. These methods first deployed
SPTs in a specific SPS, and then collected performance metrics for task feedback, e.g.,
latency, throughput, etc. The performance prediction for SPSs is also like performance
evaluation [28]. The above two types of performance evaluation and prediction research
mainly focused on the impact of hardware resource on the performance.

In an actual production environment, once a SPT is deployed, changes in the task
will affect the execution of SPT. The best way is to predict performance in advance and
prevent it from happening this situation. The most direct impact on the performance is the
data rate of the SPT. In this paper, with the latency guarantees, the performance volatility
of SPTs was analyzed and the ExtraTree algorithm was used to predict the throughput of
SPTs under different data rates to avoid the situation of unavailable services.

3. Performance Volatility

In this section, we mainly describe the performance volatility of SPTs during execution.
To obtain the performance of the task under a relatively stable state, a volatility detection
algorithm was proposed and analyzed.

4 Zheng Chu, Jiong Yu, and Askar Hamdulla

(a) Performance volatility on WordCount.

(b) Performance volatility on Iteration.

Fig. 1. Performance volatility on WordCount and Iteration.

3.1. Phenomenon of Performance Volatility

Performance volatility is a common phenomenon in which an SPT exhibits unstable per-
formance over time under normal operating conditions, as shown in Fig.1 (data sets and
experimental environment are described in Section 6).

The horizontal axis of Fig 1(a) represents the running time of an SPT, and the vertical
axis represents the standard deviation of the latency metric. It can be clearly seen from
the Fig 1(a) that the standard deviation reaches more than 250 in the initial stage. After
40 s, standard deviation stays around 20 and keeps relatively stable.

Throughput Prediction based on ExtraTree for Stream Processing Tasks 5

The results of Fig 1(b) are similar to that of Fig 1(a) and shows the phenomenon that
the latency metric fluctuates over time. After 40 s, the standard deviation of the latency
metric is kept at about 5. The performance of SPTs has the following characteristics: (1)
the performance of SPTs fluctuates over time; (2) performance volatility tend to decline
over time and eventually tend to be relatively stable.

3.2. Volatility Detection

Generally, the metrics for volatility detection of samples have extreme values, variances,
and standard deviations. These metrics are formulated as follows:

Xrange = max(X)−min(X) (1)

σ2 =
1

N

N∑
i=1

(
xi − X̄

)2
(2)

σ =

√√√√ 1

N

N∑
i=1

(
xi − X̄

)2
(3)

In Equation 1, the extreme value Xrange is obtained by subtracting the minimum
value from the maximum value in the sample set. In Equation 2, the variance metric σ2 is
the average X̄ of the squared value of the difference between the average of each sample
value xi and the total sample size. In Equation 3, the standard deviation σ is the square
root of the variance σ2.

The extreme metric is very susceptible to noise from the samples. The variance metric
is used to measure the volatility of a group of samples, that is, the deviation of a group of
samples from the mean of samples. Similarly, the standard deviation can also reflect the
degree of deviation among samples. However, the value of the variance is the square of
the difference between the sample and the mean, which is greatly affected by the sample
data. Therefore, it is more reasonable to use the standard deviation as a measure of the
performance volatility for SPTs. The performance volatility detection algorithm uses the
standard deviation to measure volatility.

By executing the volatility detection algorithm, the performance volatility values of
SPTs are easily and efficiently calculated at a certain moment, but we do not know
whether the volatility values are in a relatively stable state. In Section 4, we will eval-
uate stable states and output performance.

4. Performance Evaluation

In this section, we first perform a regression algorithm on the volatility values described
in the previous section, and then elaborate on the choice of regression functions. Finally,
the algorithm outputs the performance values in a relatively stable state, that is, evaluates
the relative steady-state performance of SPTs.

6 Zheng Chu, Jiong Yu, and Askar Hamdulla

4.1. Volatility Regression

To reduce the burden on humans to observe performance volatility, it is necessary to
intelligently identify performance when an SPT is in a relatively stable state. Through
the description of the performance volatility described in Section 3.1, the volatility will
decrease and become relatively stable over time. To do this, we first perform a polynomial
regression on the performance volatility, as shown in follows:

ŷ(w, σ) = w0σ
0
0 + w1σ

1
1 + · · ·+ wmσ

m
m + ξ(σ) (4)

where wi denotes the weight, and σi
i denotes the performance volatility value. If σ0 = 1,

Equation 4 is formulated as follows:

ŷ(w, σ) = σ ·W + ξ(σ) (5)

where σ represents an n× (M + 1) matrix, and W represents a (M + 1)× 1 matrix. In
Equation 4 and 5, ξ(σ) represents the error function and it is formulated as follows:

ξ(σ) = min
{
‖σ ·W − y‖2 + α‖w‖2

}
(6)

Regression task is performed by minimizing the sum of squared errors, and α is used
for controlling the amount of expansion and contraction of the coefficients. Thus, the
regression function of the performance volatility of SPTs is obtained by polynomial re-
gression, and the derivative ŷ′(w, σ) of the regression function was obtained. The problem
of determining whether an SPT is in a relatively stable state is converted into a problem
of calculating derivative value of regression function, i.e., ŷ′(w, σ). However, this method
will lead to another problem in selecting regression functions, because configuring differ-
ent regression items will obtain different regression functions.

Some regression functions are capable of solving the volatility selection problem well,
but others will bring unsatisfactory results. This phenomenon is shown in the experiment
in Section 5. Ideally, ŷ′(w, σ) close to 1 or -1 means that the performance of an SPT is
more unstable, and close to 0 proves that the performance is stable.

4.2. Regression Selection

The R-squared valueR2, called the coefficient of determination, reflects the proportion of
all variation of the dependent variable that can be interpreted by the independent variable
through the regression relationship. The higher the value, the better the algorithm. The
maximum value is 1, and R2 is formulated as follows:

R2 = 1−
∑m

i=1 (σi − σ̂)
2∑m

i=1 (σi − σ̄)
2 (7)

By calculating the R2 of the corresponding function of multiple regression terms, the
function with the largest R2 is selected. This function is the best choice among candidate
functions, and the algorithm is briefly described in Algorithm 1.

Regarding the time complexity of Algorithm 1, the complexity of the loop in step 1
is O(m), the loop in step 2 is O(l), the loop in step 3 is O(l), the loop in step 4 is O(l).

Throughput Prediction based on ExtraTree for Stream Processing Tasks 7

Algorithm 1: RIS (Regression Item Selection)
Input: Performance volatility set F = {σ1, σ2, . . . , σm}, regression item set

D = {d1, d2, . . . , dl}.
Output: Regression function ŷmax.
begin

(1) Calculate the mean of samples σ in F :
for i← 0 to m-1 do

σ ← σ + σi;
end
σ ← σ

m
;

(2) Calculate regression set Y = {ŷ1, ŷ2, . . . , ŷl} using regression item set
D = {d1, d2, . . . , dl}:

for i← 0 to l-1 do
ŷi ← Regression(di);

end 3
Calculate R-squared set R2 = {r2

1, r
2
2, . . . , r

2
l } using regression function set

Y = {ŷ1, ŷ2, . . . , ŷl} (refer Equation 7):
for i← 0 to l-1 do

R[i]← 1−
∑m

i=1(σi−σ̂)2∑m
i=1(σi−σ̄)2

;

end 4
Select the maximum r2

max in R2 = {r2
1, r

2
2, . . . , r

2
l }:

r2
max ← 0;

for i← 0 to l-1 do
if r2

i > r2
max then

r2
max ← r2

i

end
end
(5) Calculate the function ŷmax in Y using r2

max:
for i← 0 to l-1 do

if r2
i = r2

max then
ŷmax ← ŷi;

end
end
return ŷmax;

end

In step 5, the loop is also O(l). Therefore, the final time complexity of Algorithm 1 is
O(m+ 4l).

Also, regarding the spatial complexity of Algorithm 1, the complexity of σ in step 1
is O(1). The set Y in step 2 is O(l). The loop R-square set in step 3 is O(l), and r2max

in step 4 is O(1). The ŷmaxl in step 5 is O(1). Therefore, the final spatial complexity of
Algorithm 1 is O(2l + 3), i.e., O(l).

4.3. Performance Output under A Steady State

The optimal regression function is obtained through the regression term selection algo-
rithm, i.e., Algorithm 1. When the value of the derivative function of the regression func-

8 Zheng Chu, Jiong Yu, and Askar Hamdulla

Algorithm 2: POA (Performance Output Algorithm)
Input: Volatility regression function ŷmax, performance metric set

X = {x1, x2, . . . , xn}.
Output: Performance metric xi.
begin

(1) Calculate the derivative ŷ
′
max using ŷmax;

(2) Calculate each derivative ŷ
′
max(xi) in X = {x1, x2, . . . , xn}:

Y [i]← Null;
for i← 0 to n-1 do

Y [i]← ŷ
′
max(xi);

end 3
Output performance xi when the derivative value is equal to 0:
for i← 0 to l-1 do

if Y [i] == 0 then
return xi;

end
end

end

tion is 0, an SPT enters a relatively stable state. At this time, the performance value is
output through the performance output algorithm, i.e., Algorithm 2.

Algorithm 2 is relatively simple, so no specific analysis is performed here. The time
complexity of the algorithm is O(n), and the spatial complexity is O(1).

5. Performance Prediction

In Section 4, the performance output algorithm outputs the throughput of an SPT in a
relatively stable state, so the ExtraTree algorithm is used for predicting performance at
different data rates. In this section, this algorithm is described.

5.1. ExtraTree Introduction

ExtraTree is a novel tree-based ensemble learning algorithm for supervising classification
and regression problems. It mainly emphasizes on randomness and selection for segment
point when splitting tree nodes. In extreme cases, it is constructed completely randomly.
The structure of the tree is independent of the output values of the learning samples.
Compared with the random forest algorithm, this algorithm has higher computational ef-
ficiency and higher accuracy. The ExtraTree algorithm is very similar to the random forest
algorithm. Although they are composed of multiple decision trees, the ExtraTree and the
random forest have two differences: (1) the random forest uses the Bagging algorithm,
that is to say, the training samples for each weak learner are not all, but the ExtraTree
uses all training samples to train every weak learner. In addition, ExtraTree adopts a ran-
dom selection strategy to select features, so its results are better than random forests; (2)
the random forest obtains the best bifurcation attribute in a random subset, but the Extra-
Tree obtains the bifurcation value completely and randomly to implement the bifurcation

Throughput Prediction based on ExtraTree for Stream Processing Tasks 9

Fig. 2. The structure of ensemble learning.

of the decision tree. Ensemble learning forms a strong ensemble learning algorithm by
constructing and combining multiple weak learners to complete specific learning tasks.

Fig 2 shows a general structure of ensemble learning that combines a group of weak
learners through a specific strategy. Weak learners are usually trained by existing learn-
ing algorithms, such as C4.5 decision tree algorithm, BP neural network algorithm, etc.
One of the most important advantages of ensemble learning is that the algorithm achieves
superior excellent generalization than a single learner by combining multiple weak learn-
ers. In general, it combines non-optimal learners into one piece and gets the best learner.
Therefore, the combination strategy for weak learners is particularly important. Assuming
that ensemble learning includes T weak learners h1, h1, . . . , hT , where the output of hi
on x is hi(x). Average, and voting strategy are formulated as follows:

H(x) =
1

T

T∑
i=1

hi(x) (8)

H(x) =
1

T

T∑
i=1

wihi(x) (9)

where wi is the weight of the weak learner hi. To be noted, wi ≥ 0 and
∑T

i=1 wi = 1 are
required.

5.2. Algorithm Construction

Fig 3 shows a schematic diagram of the ExtraTree structure. The ExtraTree algorithm con-
tains multiple decision trees, each of which contains a tree-like decision node sequence.
Based on this sequence, the tree splits into various branches until it reaches the end of the
tree (the leaf node). The prediction result of each decision tree is output through the leaf
nodes, and the final outputs of the multiple decision trees are combined for prediction.

For the throughput prediction algorithm of SPTs, assuming that data set is D =
{(x1, y1) , (x2, y2) , . . . , (xN , yN)}, where N denotes the sample size, xi denotes the
sample data, and yN denotes the throughput of an SPT. When generating each decision

10 Zheng Chu, Jiong Yu, and Askar Hamdulla

ExtraTree

...

Tree 2Tree 1 Tree p

Prediction

Fig. 3. The structure of ExtraTree.

Algorithm 3: EBA (ExtraTree Building Algorithm)
Input: Data set D, the number of trees Nt.
Output: ExtraTree Ftree.
begin

for i← 0 to Nt − 1 do
(1) Calculate the optimal feature j and the point s to split current node:
minj,s[

∑
xi∈R1(j,s) (yi − ĉ1)

2 +
∑
xi∈R2(j,s) (yi − ĉ2)

2];
(2) Calculate output value ĉm using min(j, s) in the current node:
ĉm ← 1

Nm

∑
xi∈Rm(j,s) yi,

where R1(j, s) =
{
x|x(j) ≤ s

}
, R2(j, s) =

{
x|x(j) > s

}
;

(3) Repeat (1) and (2) using R1(j, s) and R2(j, s);
(4) Divide input space into m nodes R1, R2, . . . , Rm and generate decision tree
fi(x):
fi(x)←

∑M
m=1 ĉmI (x ∈ Rm).

where I =

{
1 if (x ∈ Rm)
0 if (x /∈ Rm)

;

(5) Add current decision tree fi(x) into Ftree:
Ftree[i]← fi(x);

end
return Ftree

end

tree, the algorithm calculates the best features j and output value s, as shown in follows:

min
j,s

 ∑
xi∈R1(j,s)

(yi − ĉ1)
2

+
∑

xi∈R2(j,s)

(yi − ĉ2)
2

 (10)

where R1(j, s) =
{
x|x(j) ≤ s

}
and R2(j, s) =

{
x|x(j) > s

}
are two regions divided by

j and s. ĉ1 and ĉ2 are the throughput output values. In addition, (yi − ĉ1)
2 and (yi − ĉ2)

2

are the mean square error (MSE). The algorithm repeats the above steps until all features
are segmented, and the construction process is shown in Algorithm 3.

For algorithm 3, it is assumed that the number of features is k, steps 1-2 need to be re-
peated k times. Moreover, a total of cycles is required Nt. Therefore, the time complexity
of Algorithm 3 is O(kNt).

Throughput Prediction based on ExtraTree for Stream Processing Tasks 11

Algorithm 4: TPA (Throughput Prediction Algorithm)
Input: ExtraTree Ftree, Sample x.
Output: The predicted throughput p.
begin

psum ← 0;
for i← 0 to Nt − 1 do

Predict throughput p and add it to psum:
psum ← psum + fi(x);

end
Calculate the mean predicted throughput:
p← psum

Nt
;

return psum;
end

5.3. Throughput Prediction

The output of Algorithm 3 during the prediction phase is the mean of the output values of
multiple decision trees and it is formulated as follows:

f(x) =
1

Nt

Nt∑
i=1

fi(x) (11)

where Nt is the number of decision trees, fi(x) is the predicted throughput value, and the
prediction process is shown in Algorithm 4.

Algorithm 4 is relatively simple, giving the time complexity of the algorithm isO(Nt),
and the space complexity is O(1).

6. Experimental Evaluation

In this section, we describe the methodology, experimental environment, evaluation met-
rics, volatility regression, comparison of errors, comparison of accuracy and efficiency,
and the impact of different sample ratio on errors in detail.

6.1. Methodology

In the experiments, the proposed methodology and the proposed prediction model are
applied on an evolving data stream. The overall work principal is shown in Fig. 4.

As shown in Fig. 4, the experimental methodology consists of two components: (1)
Online prediction, and (2) Offline learning. The first component firstly detects volatility
(Section 3), and then evaluates performance (Section 4) in a real-time fashion. When the
performance in steady state is evaluated, the output performance is used to predict the
throughput in a real-time style. In addition, an copy of the output is used for training the
proposed model in a offline style. During the offline learning phase, the model continu-
ously optimizes itself.

Two open-source benchmarks, i.e., WordCount (WC), and Iteration (ITE) were used
to evaluate the effectiveness of the proposed method. An external server was built outside

12 Zheng Chu, Jiong Yu, and Askar Hamdulla

Online prediction

Offline learning

Streaming data

Predict throughput Output throughput

Train model

�

......

Model

Continuous

optimization

Detect volatility

Evaluate

performance

Fig. 4. The experimental methodology.

an SPS cluster that includes one JobManager and three TaskManagers. The external server
undertaken the task of collecting throughout of SPTs in real time, and executed real-time
throughput prediction for SPTs.

In these benchmarks, WC sent English sentences to an SPT by configuring different
sending rates. The SPT first segmented the received English sentences, and then continu-
ously counted the number of occurrences of each word. ITE continuously sent values to
an SPT, and then the SPT iteratively calculated the values. Table 1 summarized all data
sets from two benchmarks.

Table 1. The description of data sets.
Benchmarks Total sample size Training sample size Predicting sample size

WC 99,980 79,984 19,996
ITE 100,002 80,002 20,000

During the performance prediction phase, three ensemble learning algorithms were
used to compare the proposed algorithm.

AdaBoost (Adaptive Boosting), a typical Boosting algorithm, belongs to the Boosting
algorithm family. The core of the algorithm is the process of promoting weak learner

Throughput Prediction based on ExtraTree for Stream Processing Tasks 13

to a strong learner. The working mechanism is as follows: (1) a weak learner is trained
from the initial training set; (2) the training sample distribution is adjusted according to
the performance of the weak learner, so that the training samples of the previous weak
learner’s errors receive more attention on the subsequent training process; (3) train the
next weak learner based on the adjusted sample distribution. Repeat these processes until
the number of weak learners reaches T , and finally combine the weights of all weak
learners. The AdaBoost algorithm is a linear combination based on the weak learners,
and it is formulated as follows:

H(x) =

T∑
t=1

αtht(x) (12)

where αt is the proportion of weak learners to a strong learner, which is different from
the weighted average method.

GBDT is also a member of the Boosting family. When training a single weak learner,
the algorithm considers the loss function of the previous weak learners. In addition, GBDT
also uses an iterative approach through a forward-distributed algorithm. Note that weak
learners in this algorithm can only use the CART regression tree algorithm.

Random Forest (RF), an extension of Bagging, is based on the ensemble learning
of Bagging with decision tree learners, and adds the characteristics of random attribute
selection. The Bagging randomly selects training data, and then constructs multiple weak
learners. Finally, it combines multiple decision trees to improve the overall performance.
In short, a random forest is obtained by constructing multiple decision trees and merging
all the decision trees together to achieve accurate and stable prediction results. It has the
advantages of simplicity, easy implementation, and low computational cost. Therefore,
this algorithm is one of the comparison algorithms in this paper.

Additionally, to fairly evaluate the performance of different algorithms, the param-
eter values for each algorithm used in the experimental study is set to the same. Main
parameter configurations are summarized in Table 2.

Table 2. Main parameter configurations of different algorithms.
Parameters Values Description

n estimators 50 The number of trees in the forest.
max depth 30 The maximum depth of the tree.

min samples split 2 The minimum number of samples required to split an internal node.
min samples leaf 1 The minimum number of samples required to be at a leaf node.

Other parameter configurations use the default values in scikit-learn packages [19].

6.2. Experimental Environment

There are many popular SPSs, such as Apache Flink, Twitter Heron, Apache Storm,
Apache Spark, etc. Apache Spark simulates real-world stream processing using a micro-
batch processing approach. Twitter Heron is an enhanced version of Apache Storm. Be-
cause Apache Flink has strong state support and high performance for streaming data, it
was used as the carrier for all experiments.

14 Zheng Chu, Jiong Yu, and Askar Hamdulla

Apache Flink is built in a local cluster consisting of four servers. One server is the
JobManager (Master) and others are TaskManagers (Slaves). The JobManager server
is mainly responsible for the distribution and coordination of tasks, and TaskManager
servers are mainly responsible for executing specific SPTs, i.e., WC, and ITE. The four
servers in the cluster have the same hardware configuration as the external server. CPU is
”Intel(R) Core(TM) i7-4790 CPU 3.60GHz”, memory is 8 GB, hard disk is 500 G, and
operating system is CentOS-6.5.

6.3. Evaluation Metrics

To evaluate the performance of the proposed method for the throughput prediction of
SPTs, six metrics were used to compare different algorithms.

(1) Explain variance (EV) is a measure of the ability of a regression equation to
explain the degree of change in the dependent variable or the degree to which the equation
fits a sample. The closer the EV is to 1, the better the algorithm, and the lower the value,
the worse the algorithm. EV is formulated as follows:

EV = 1− Var (yi − ŷ)

Var (yi)
(13)

(2) The R-squared value (R2) is the degree to which the regression equation character-
izes the dependent variables. The R-squared of the best algorithm is 1, and the difference
is smaller. This metric is formulated as follows:

R2 = 1−
∑m

i=1 (yi − ŷ)
2∑m

i=1 (yi − ȳ)
2 (14)

(3) The mean absolute error (MAE) is the average difference between the predicted
value and the true value, and it is formulated as follows:

MAE =
1

n

n∑
i=1

|fi − yi| =
1

n

n∑
i=1

|ei| (15)

(4) The mean square error (MSE) is the expected value of the square of the difference
between the predicted value and the true value. It is recorded as a convenient method
to measure the average error. It was used to evaluate how much the data has changed.
The smaller the value, the better the prediction algorithm will describe the data in the
experiments. This metric formulated as follows:

MSE =
1

n

n∑
i=1

(fi − yi)2 (16)

(5) The root mean square error (RMSE) is the arithmetic square root of the mean
square error, and it is formulated as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(fi − yi)2 =
√
MSE (17)

Throughput Prediction based on ExtraTree for Stream Processing Tasks 15

(6) The median absolute error (MediaAE) is formulated as follows:

MediaAE = media (‖yi − ŷi|, . . . , |yn − ŷn|) (18)

From Equation 13 to Equation 18, fi is the predicted throughput value, yi is the real
throughput value, ei = |fi − yi| is the absolute error. n is the sample size, y is the mean
of throughput.

6.4. Volatility Regression

In Section 3, polynomial regression was introduced and performed on performance volatil-
ity values. In this experiment, by configuring different regression termsD = {d1, d2, · · · ,
dl}, Equation 3 was used to calculate the corresponding regression function set. Regres-
sion items were set to 2, 3, 4, and 5, respectively. The experimental results were shown in
5.

In Fig 5, there was a clear trend of increasing prediction performance as terms in-
creased. For example, the regression function and the performance volatility values were
very different when the regression term was set to 2. In contrast, when the regression term
was set to 5, the function could well regress the performance volatility values. The results
of Fig 5 showed that the tangent of regression function on WC was -1 when the time
was about 30 s, but the corresponding performance volatility scatter plot did not reach a
relative stable state, which explained the necessity of regression term selection, i.e., Al-
gorithm 1, in Section 4. The results from other benchmarks, i.e., ITE, showed the similar
trend as shown in Fig 5. If the algorithm output the throughput of an SPT at this time,
meaning that it was not in a relatively stable performance. When the regression term be-
came larger, e.g., 5, the output of performance was more representative of the throughput
in a relatively stable state, as shown in Fig 5(d), and Fig 5(h). To evaluate the performance
of regression item selection algorithm in more detail, the R-squared valuesR2 of different
regression items were shown in Table 3.

Table 3. R2 of different regression items.
Benchmarks Item-2 Item-3 Item-4 Item-5

WC 0.87 0.95 0.98 0.98
ITE 0.84 0.90 0.93 0.96

In Table 3, R2 gradually approached 1 as the regression term on WC, and ITE in-
creased, which also indicated that the selection of regression terms was necessary in the
performance volatility regression process. Therefore, the regression algorithm based on
excellent performance was more accurate to judge a relatively stable state, and the output
was more reasonable.

6.5. Comparison of errors

The purpose of this experiment was to compare the prediction errors of different ensemble
learning algorithms under a steady state at different data rates. The experimental results
were shown in Fig 6.

16 Zheng Chu, Jiong Yu, and Askar Hamdulla

Table 4. The errors of different ensemble learning algorithms.

Benchmarks
MAE MSE MediaAE

A E G R A E G R A E G R

WC 0.21 0.15 0.19 0.23 0.15 0.04 0.14 0.08 0.09 0.07 0.12 0.13
ITE 0.12 0.05 0.10 0.09 0.09 0.03 0.10 0.12 0.05 0.02 0.13 0.10

AVG 0.165 0.10 0.145 0.16 0.12 0.035 0.12 0.10 0.07 0.045 0.125 0.115
Note: (A) AdaBoost; (E) ExtraTree; (G) GBDT; (R) Random Forest; (AVG) Average.

As shown in Fig 6, there were differences between the four ensemble learning algo-
rithms, and ExtraTree had lower errors compared with other algorithms, i.e., AdaBoost,
GBDT, and Random Forest. Table 4 summarized the detailed results.

As shown in Table 4, MAE, MSE, and MediaAE of ExtraTree on all benchmarks
were lower than that of other algorithms. For instance, MAE of ExtraTree, AdaBoost,
GBDT, and Random Forest on the benchmark WC were 0.15, 0.21, 0.19, and 0.23, re-
spectively, which showed that the ExtraTree had the lowest error. On the benchmark ITE,
MSE and MediaAE of all algorithms showed the same results. Moreover, the average
of MAE, MSE, and MediaAE of the ExtraTree were 0.10, 0.035, 0.045, respectively,
which indicated the ExtraTree had the lowest errors compared with other algorithms.

6.6. Comparison of Accuracy and Efficiency

The purpose of this experiment was to compare the accuracy and efficiency of differ-
ent ensemble learning algorithms for the throughput prediction of SPTs. Accuracy and
execution time are formulated as follows:

Accuracy =

(
100− 1

n

n∑
i=1

∣∣∣∣fi − yiyi

∣∣∣∣
)
× 100% (19)

where, n is the number of samples, fi is the predicted throughput value, yi is the actual
throughput value.

ET =
10000

n

n∑
i=1

ti (20)

where, n is also the number of samples, and ti is the prediction execution time for one
sample. Since the execution time to predict one sample is short and not good for compari-
son, the constant coefficient 10,000 in Equation 20 is used to estimate the prediction time
for per 10,000 samples. Table 5 summarized the experimental results from the benchmark
WC, and ITE.

From Table 5, it was apparent that ExtraTree on all the benchmarks resulted in the
highest values of accuracy and efficiency. For example, the accuracy of ExtraTree on all
the benchmarks had the highest rates with 91.13%, and 89.94%. The ExtraTree had the
lowest execution time with 0.82, and 0.85 s/10,000 samples. These results indicated that
the ExtraTree had the highest accuracy and the highest efficiency compared with other
algorithms on all benchmarks.

Throughput Prediction based on ExtraTree for Stream Processing Tasks 17

Table 5. Accuracy and efficiency of different algorithms.

Benchmarks
Accuracy (%) ET (s/10,000 samples)

A E G R A E G R

WC 68.36 91.13 75.59 67.84 0.96 0.82 0.85 0.82
ITE 70.61 89.94 77.55 69.71 0.95 0.85 0.86 0.86

AVG 69.485 90.535 76.57 68.775 0.955 0.835 0.855 0.84
Note: (A) AdaBoost; (E) ExtraTree; (G) GBDT; (R) Random Forest; (AVG) Average.

6.7. The Impact of Different Sample Ratio on Errors

To verify the generalization ability of the proposed method, the prediction errors of dif-
ferent training sample ratios were used. The experimental results were shown in Fig 7.

As shown in Fig 7, as the proportion of training samples increased, EV of all ensem-
ble learning algorithms gradually approached 1, and MAE, MSE and MediaAE also
gradually approached zero. In addition, all ensemble learning algorithms was stable in
terms of EV . Moreover, all algorithms showed a clear trend of decreasing errors. These
results indicated that the generalization ability of ExtraTree was stable, and it had lower
errors compared with other ensemble learning algorithms.

7. Conclusion

In this paper, the performance volatility of SPTs were studied and the corresponding
volatility detection algorithm was proposed to accurately output the throughput of SPTs
under a relatively stable state. In the throughput prediction phase, an ExtraTree-based
algorithm was used for predicting the throughput. In the experiments, the prediction per-
formance (i.e., errors, accuracy, and efficiency) of different ensemble learning algorithms
on two benchmarks were compared. The results illustrated that the proposed algorithm
had low error rates and high accuracy rates with a relatively high efficiency. Based on the
research results, our future work will focus on performance prediction in heterogeneous
environments, which requires a deeper study of the internal details of SPTs.

Acknowledgments. The authors are grateful to the anonymous referees for their insightful sugges-
tions and comments. This research was supported by the National Natural Science Foundation of
China under Grant Nos. 61862060, 61462079, 61562086 and 61562078, and the Doctoral Science
and Technology Innovation Project in Xinjiang University under Grant No. XJUBSCX-201901.

References

1. Abe, G., Sato, K., Itoh, M.: Driver trust in automated driving systems: The case of overtaking
and passing. IEEE Transactions on Human-Machine Systems 48(1), 85–94 (2017)

2. Borthakur, D.: The hadoop distributed file system: Architecture and design. Hadoop Project
Website 11(2007), 21 (2007)

3. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)

18 Zheng Chu, Jiong Yu, and Askar Hamdulla

4. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink:
Stream and batch processing in a single engine. Bulletin of the IEEE Computer Society Tech-
nical Committee on Data Engineering 36(4) (2015)

5. Dasarathy, B.V., Sheela, B.V.: A composite classifier system design: concepts and methodol-
ogy. Proceedings of the IEEE 67(5), 708–713 (1979)

6. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Communica-
tions of the ACM 51(1), 107–113 (2008)

7. Edwards, L.: Public relations, voice and recognition: a case study. Media, Culture & Society
40(3), 317–332 (2018)

8. Etter, M., Ravasi, D., Colleoni, E.: Social media and the formation of organizational reputation.
Academy of Management Review 44(1), 28–52 (2019)

9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of computer and system sciences 55(1), 119–139 (1997)

10. Friedman, J.H.: Stochastic gradient boosting. Computational statistics & data analysis 38(4),
367–378 (2002)

11. Gedik, B., Schneider, S., Hirzel, M., Wu, K.L.: Elastic scaling for data stream processing. IEEE
Transactions on Parallel and Distributed Systems 25(6), 1447–1463 (2013)

12. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Machine learning 63(1), 3–42
(2006)

13. Ghajargar, M., Wiberg, M., Stolterman, E.: Designing iot systems that support reflective think-
ing: A relational approach. International Journal of Design 12(1), 21–35 (2018)

14. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): A vision, architec-
tural elements, and future directions. Future generation computer systems 29(7), 1645–1660
(2013)

15. Handel, T., Schreiber, M., Rothmaler, K., Ivanova, G.: Data security and raw data access of
contemporary mobile sensor devices. In: World Congress on Medical Physics and Biomedical
Engineering 2018. pp. 397–400. Springer (2019)

16. Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J.M., Ra-
masamy, K., Taneja, S.: Twitter heron: Stream processing at scale. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. pp. 239–250. ACM (2015)

17. Moertini, V.S., Suarjana, G.W., Venica, L., Karya, G.: Big data reduction technique using par-
allel hierarchical agglomerative clustering. IAENG International Journal of Computer Science
45(1), 188 – 205 (2018)

18. Nasir, M.A.U., Morales, G.D.F., Garcia-Soriano, D., Kourtellis, N., Serafini, M.: The power of
both choices: Practical load balancing for distributed stream processing engines. In: 2015 IEEE
31st International Conference on Data Engineering. pp. 137–148. IEEE (2015)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. Journal
of Machine Learning Research 12, 2825–2830 (2011)

20. Rossi, A., Vila, Y., Lusiani, F., Barsotti, L., Sani, L., Ceccarelli, P., Lanzetta, M.: Embedded
smart sensor device in construction site machinery. Computers in Industry 108, 12–20 (2019)

21. Rossion, B.: Humans are visual experts at unfamiliar face recognition. Trends in cognitive
sciences 22(6), 471–472 (2018)

22. Samosir, J., Indrawan-Santiago, M., Haghighi, P.D.: An evaluation of data stream processing
systems for data driven applications. Procedia Computer Science 80, 439–449 (2016)

23. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions.
Machine learning 37(3), 297–336 (1999)

24. Sun, D., Yan, H., Gao, S., Zhou, Z.: Performance evaluation and analysis of multiple scenarios
of big data stream computing on storm platform. KSII Transactions on Internet & Information
Systems 12(7) (2018)

Throughput Prediction based on ExtraTree for Stream Processing Tasks 19

25. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P.,
Murthy, R.: Hive: a warehousing solution over a map-reduce framework. Proceedings of the
VLDB Endowment 2(2), 1626–1629 (2009)

26. Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J.,
Gade, K., Fu, M., Donham, J., et al.: Storm@ twitter. In: Proceedings of the 2014 ACM SIG-
MOD international conference on Management of data. pp. 147–156. ACM (2014)

27. Vora, M.N.: Hadoop-hbase for large-scale data. In: Proceedings of 2011 International Confer-
ence on Computer Science and Network Technology. vol. 1, pp. 601–605. IEEE (2011)

28. Wang, K., Khan, M.M.H.: Performance prediction for apache spark platform. In: 2015 IEEE
17th International Conference on High Performance Computing and Communications, 2015
IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th
International Conference on Embedded Software and Systems. pp. 166–173. IEEE (2015)

29. Xu, J., Chen, Z., Tang, J., Su, S.: T-storm: Traffic-aware online scheduling in storm. In: 2014
IEEE 34th International Conference on Distributed Computing Systems. pp. 535–544. IEEE
(2014)

30. Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural
language processing. ieee Computational intelligenCe magazine 13(3), 55–75 (2018)

Zheng Chu born in 1991. Ph.D. candidate in the School of Information Science and En-
gineering, Xinjiang University. His main research interests include distributed computing,
in-memory computing, and machine learning.

Jiong Yu born in 1964. Professor and Ph.D. supervisor in the School of Information
Science and Engineering, Xinjiang University. His main research interests include grid
computing, parallel computing, etc.

Askar Hamdulla born in 1972. Professor and PhD supervisor in the School of Informa-
tion Science and Engineering, Xinjiang University. His main research interest is natural
language processing.

Received: January 31, 2020; Accepted: July 15, 2020.

20 Zheng Chu, Jiong Yu, and Askar Hamdulla

(a) WC (Item=2). (b) WC (Item=3).

(c) WC (Item=4). (d) WC (Item=5).

(e) ITE (Item=2). (f) ITE (Item=3).

(g) ITE (Item=4). (h) ITE (Item=5).

Fig. 5. Performance volatility regression using different regression Item. Note that
STDDEV denotes the standard deviation of performance volatility.

Throughput Prediction based on ExtraTree for Stream Processing Tasks 21

(a) AdaBoost (WC). (b) ExtraTree (WC).

(c) GBDT (WC). (d) Random Forest (WC).

(e) AdaBoost (ITE). (f) ExtraTree (ITE).

(g) GBDT (ITE). (h) Random Forest (ITE).

Fig. 6. Throughput regression using different ensemble learning algorithms.

22 Zheng Chu, Jiong Yu, and Askar Hamdulla

(a) EV (WC). (b) MAE (WC).

(c) MSE (WC). (d) MediaAE (WC).

(e) EV (ITE). (f) MAE (ITE).

(g) MSE (ITE). (h) MediaAE (ITE).

Fig. 7. Errors using different ensemble learning algorithms at different training data ratio.

	Introduction
	Related Work
	Performance Volatility
	Phenomenon of Performance Volatility
	Volatility Detection

	Performance Evaluation
	Volatility Regression
	Regression Selection
	Performance Output under A Steady State

	Performance Prediction
	ExtraTree Introduction
	Algorithm Construction
	Throughput Prediction

	Experimental Evaluation
	Methodology
	Experimental Environment
	Evaluation Metrics
	Volatility Regression
	Comparison of errors
	Comparison of Accuracy and Efficiency
	The Impact of Different Sample Ratio on Errors

	Conclusion

