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Abstract. The computing method of the average optimal position is one of the
most important factors that affect the optimization performance of the QPSO al-
gorithm. Therefore, a particle position weight computing method based on particle
fitness value grading is proposed, which is called HWQPSO (hierarchical weight
QPSO). In this method, the higher the fitness value of a particle, the higher the level
of the particle, and the greater the weight. Particles at different levels have differ-
ent weights, while particles at the same level have the same weight. Through this
method, the excellent particles have higher average optimal position weight, and
at the same time, the absolute weight of a few particles is avoided, so that the al-
gorithm can quickly and stably converge to the optimal solution, and improve the
optimization ability and efficiency of the algorithm. In order to verify the effective-
ness of the method, five standard test functions are selected to test the performance
of HWQPSO, QPSO, DWC-QPSO and LTQPSO algorithm, and the algorithms are
applied to the task scheduling of the cloud computing platform. Through the test
experiment and application comparison, the results show that the HWQPSO algo-
rithm can converge to the optimal solution of the test function faster than the other
three algorithms. It can also find the task scheduling scheme with the shortest time
consumption and the most balanced computing resource load in the cloud platform.
In the experiment, compared with QPSO, DWC-QPSO and LTQPSO algorithm,
HWQPSO execution time of the maximum task scheduling was reduced by 35%,
23% and 21% respectively.

Keywords: QPSO algorithm, hierarchical weight, cloud computing, task schedul-
ing, average optimal location.

1. Introduction

Particle swarm optimization (PSO) is one of the most widely used swarm intelligence
algorithms. The algorithm is relatively easy to implement, needs to determine fewer pa-
rameters and has the advantages of efficient parallel search, which can effectively solve
complex optimization problems. Its performance is a hot research issue in the field of In-
telligent Computing in recent years, and it has been widely used in resource scheduling,
pattern recognition, complex optimization and other issues. However, the PSO algorithm
is easy to fall into the local optimal solution when searching, later the particle conver-
gence efficiency is lower, and it can not converge to the optimal solution with probability
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1[1-3]. To improve the global search ability of particles, SUN et al. based on the aggre-
gation of particle swarm, established the delta potential well model in quantum state, and
then set the control parameters according to the coordination and self-organization of par-
ticle swarm, proposed the quantum behaved particle swarm optimization algorithm, i.e.
QPSO algorithm[4,5]. In the QPSO algorithm, particles in the quantum space can appear
at any point in the search space with a certain probability, and the motion state of the
particle is represented by wave function instead of Newton space motion of the particle,
and the probability density function of wave function is used to determine the position of
the particle in solution space. This position is random, as long as the particle iterations
continuously, it will pass through any position in solution space with a certain probability
[6-8]. In this way, particles update their positions according to the quantum behavior, and
gradually iterate to the global optimal solution. Compared with PSO algorithm, QPSO al-
gorithm increases the randomness of particles, makes particle updating equation simple,
has few control parameters and fast convergence speed.

Although the QPSO algorithm has more advantages than the PSO algorithm, there
are still many shortcomings in the QPSO algorithm. Many researchers have made a lot of
optimization improvements in its contraction and expansion coefficient, population diver-
sity, convergence efficiency, decision-making strategy of average optimal location, etc.
For example, Zhen-Lun Y proposed an improved quantum-behaved particle swarm op-
timization with elitist breeding (EB-QPSO) for unconstrained optimization in reference
[9]. During the iterative optimization process of EB-QPSO, when criteria met, the per-
sonal best of each particle and the global best of the swarm are used to generate new
diverse individuals through the transposon operators. The new generated individuals with
better fitness are selected to be the newpersonal best particles and global best particle to
guide the swarm for further solution exploration. In addition to the above optimization of
individual and global optimal particles, the dual-group search is also an important QPSO
optimization method. Such as a dual-group QPSO with different well centers (DWC-
QPSO) algorithm, is proposed by constructing the master-slave subswarms in reference
[10]. This algorithm avoids the rapid disappearance of swarm diversity and enhances the
global searching ability through collaboration between subswarms. Xue T considers the
method of mixed optimization of QPSO under complex conditions, so he proposed a
hybrid improved quantum behaved particle swarm optimization (LTQPSO) in reference
[11]. The algorithm combines the individual particle evolutionary rate and the swarm dis-
persion with the natural selection method in the particle evolution process. The algorithm
has good robustness and convergence. In order to improve the evolution of quantum indi-
viduals and the ability to converge to the optimal solution of the QPSO algorithm, Chen W
proposed a mixed quantum algorithm based on local optimization strategy and improved
optimization rotation angle in reference [12].

Not limited to the above introduction, many researchers have done a lot of work to
optimize the convergence efficiency of the QPSO algorithm. In this paper, from the point
of view that the weight of each particle’s position should be different in the calculation
of the average optimal position of different particles, it is considered that the excellent
particles should have a larger decision weight, while the inferior particles should have
a relatively smaller decision weight. A weight calculation method is proposed, which
classifies the weights based on the fitness value of particles, to improve the global search
ability and search efficiency of the QPSO algorithm. After the standard test function is



A QPSO Algorithm Based on Hierarchical Weight and Its Application... 191

tested in the HWQPSO algorithm and the original QPSO algorithm, the DWC-QPSO
algorithm in reference [10] and the LTQPSO algorithm in reference [11]. The optimized
QPSO algorithm in this paper has more advantages than other algorithms not only in local
accuracy and global search ability, but also in convergence speed and stability.

With the wide application of cloud computing technology, due to the large amount of
data calculation, the computing efficiency of the platform is paid more and more atten-
tion. In addition to improving the hardware performance of the platform, the computing
efficiency of the software system also greatly restricts the overall performance of the
cloud computing platform. One of the most concerned methods is how to achieve effi-
cient resource scheduling of the cloud computing platform. As one of the most excellent
swarm intelligence algorithms, QPSO algorithm has strong optimization ability. It has
obvious advantages to apply QPSO algorithm to resource scheduling strategy optimiza-
tion of cloud computing platform. In this paper, the optimization performance of QPSO
algorithm is optimized. By grading the weight coefficients in the average optimal posi-
tion calculation of particles, the fairness of the average optimal position calculation is
improved, and the average optimal position can guide particles to converge to the optimal
solution more accurately and quickly. Finally, the optimized QPSO algorithm is applied
to the cloud computing task scheduling, and HWQPSO algorithm is used to allocate the
tasks of cloud computing to different cloud computing resources reasonably, so as to the
overall computing efficiency of the task set is more efficient. The simulation experiment
on the CloudSim cloud platform shows that the algorithm in this paper can provide effi-
cient task scheduling strategy for the cloud computing platform, make the resource load
of the cloud computing platform more balanced, and improve the computing efficiency of
the cloud platform.

2. QPSO Algorithm Model

QPSO algorithm is a kind of PSO algorithm with quantum behavior. Unlike PSO algo-
rithm, the particle in QPSO algorithm is in quantum space, and the particle appears at
any point in space according to probability. It is assumed that there are N particles rep-
resenting the solution in the solution space, The position of the i-th particle in the D
dimensional search space is Xi = (xi1, xi2, . . . , xiD). The local optimal position of par-
ticle i is pbi = (pbi1, pbi2, . . . , pbiD). The global optimal position of the whole particle
swarm is gbi = (gbi1, gbi2, . . . , gbiD). Using wave function ψ to determine the state of
particles in quantum space, the probability of a particle appearing at a certain position in
space can be expressed by |ψ|2. If the potential well in D dimension is pbid(t) in the t-th
iteration of particle i [13-15].

The wave function ψ(x, t) is used to describe the particle’s position and search speed
in space, X=(x, y, z), which is a vector, is the position of particles in three-dimensional
space, then |ψ|2 is the probability density of particles appearing in three-dimensional
space (x, y, z) at time t, as shown in formula (1).

|ψ|2dxdydz = Qdxdydz (1)

In the formula, Q is the probability density function. Q should meet the normalization
requirements, such as formula (2).
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∫ +∞

−∞
|ψ|2dxdydz =

∫ +∞

−∞
Qdxdydz = 1 (2)

In QPSO algorithm, the state change of each particle in the system follows the Schrodinger
equation. At the same time, the δ potential well is introduced into the system, and the po-
tential well is established at pid point. The potential energy function is as formula (3). The
steady state Schrodinger equation of the particle in the potential well can be obtained, such
as formula (4).

V (x) = −γδ(X − pid) (3)

d2ψ

d(X − pid)2
+

2m

h2
[E + γδ(X − pid)]ψ = 0 (4)

E is the energy of the particle, h is the Planck constant, and m is the mass of the
particle.

The wave function can be obtained by solving the Schrodinger equation, such as for-
mula (5).

ψ(X − pid) =
1√
L
e−|X−pid|/L, L = 1/β = h2mγ (5)

Monte Carlo method is used to sample the particle position randomly, and the position
component of the i-th particle in the d dimension is obtained in the (t + 1)-th iteration, as
shown in formula(6).

xid(t+ 1) = pbid(t)±
Lid(t)

2
ln[

1

uid(t)
] (6)

In the formula(6), uid(t) ∼ U(0, 1). The characteristic length of potential well Lid(t)
is calculated by formula(7).

Lid(t) = 2α(t)|mbd(t)− xid(t)| (7)

The mb is called the average optimal position, it is the center of the optimal position
of all particles. In D dimensional space, mb(t) can be calculated by formula(8).

mb(t) = (mb1(t),mb2(t), ...,mbD(t)) =
1

N

N∑
i=1

pbi(t)

= (
1

N

N∑
i=1

pbi1(t),
1

N

N∑
i=1

pbi2(t), ...,
1

N

N∑
i=1

pbiD(t)) (8)

In the formula(7), α is the contraction expansion coefficient, whose value will directly
affect the convergence performance of the algorithm. The value of α(t) in this paper is
shown in formula(9).
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α(t) = 0.5 +
(1− 0.5)(tmax − t)

tmax
(9)

In the formula(9), t is the current number of iterations and tmax is the maximum num-
ber of iterations. The necessary and sufficient condition for QPSO algorithm to converge
to the center of potential well is that the coefficient α <1.78 [16].

The updated formulas of particle’s current optimal position pbi and global optimal
position gb are shown in formula (10) and formula (11) respectively.

pbi(t+ 1) =

{
xi(t+ 1) f [xi(t+ 1)] < f [pbi(t)]

pbi(t) f [xi(t+ 1)] ≥ f [pbi(t)]
(10)

gbg(t+ 1) = argmin{f [pbi(t)]} (11)

In the formula, f is the objective function.
In the QPSO algorithm, the particle has only displacement value but no velocity vec-

tor in quantum space. The determination of particle position is mainly to obtain the wave
function by solving the Schrodinger equation, such as formula (6), to calculate the proba-
bility density function and the probability of particle appearing at a certain point in quan-
tum space, and then use Monte Carlo method to randomly sample the particle position to
obtain the particle position component, such as formula(6). In the potential well charac-
teristic length Lid(t), as shown in formula(7), the average best position mb of particles is
introduced, as shown in formula (8), to measure the creativity of particles. To improve the
ability of interaction between particle swarm and enhance the global search ability of the
algorithm. Therefore, the average optimal position mb, which is the center of the optimal
position of all particles, is one of the core parameters of the whole algorithm.

3. Average Optimal Position of Particles Based on Hierarchical
Weight

The biggest difference between the QPSO algorithm and the PSO algorithm is that the
particle position update method is different. When updating the particle position, it not
only considers the local and global optimal position of the current particle, but also intro-
duces the average optimal position mb, which increases the interaction between particles
and strengthens the global search ability of particle swarm.

The average optimal position mb of the original QPSO algorithm is shown in for-
mula(8). It can be seen that it is the average of the local optimal value of each particle
position, which determines the update of particle position. In the calculation process of
mb, the weight of the local optimal value pbi(t) of each particle is the same, as shown
in formula(12), the proportion of each particle’s position in the calculation of mb is 1,
that is, each particle has the same influence on the final average optimal position mb deci-
sion. This is not in line with the group intelligent decision-making strategy. In reality, the
decision weight of excellent particles is higher than that of inferior particles.

mb(t) = (mb1(t),mb2(t), ...,mbD(t)) =
1

N

N∑
i=1

pbi(t) =
1

N

N∑
i=1

[1× pbi(t)] (12)
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Aiming at the problem of unbalanced influence of particles in the calculation of the
average optimal position in QPSO algorithm, this paper also introduces a weight factor
δ, δi(t) represents the weight of the local optimal value pbi(t) of the i-th particle in the
calculation of the average optimal position mb(t) of the particle in the t-th iteration. After
introducing the weight factor δ, the calculation formula(8) of the average optimal position
mb(t) of the particle can be expressed as the formula(13) [17-20].

mb(t) =
1

N

N∑
i=1

[δi(t)× pbi(t)] (13)

First, the fitness value fi(1 ≤ i ≤ N, i ∈ Z) of particles is sorted from large to small,
and the fitness value after sorting is f ′j(1 ≤ j ≤ N, j ∈ Z), f ′1 ≥ f ′2 ≥ f ′3 ≥ ... ≥ f ′N .
According to the fitness value f, the particles are divided into r(1 ≤ r ≤ N, r ∈ Z)
levels, F1, F2, F3...Fr. Particles with the same level have the same weight value δ, and
the weight values of particles with different levels are δ1, δ2, δ3, ..., δr, δ1 ≥ δ2 ≥ δ3 ≥
... ≥ δr. Let δr obey the uniform distribution of some subinterval on [θ1, θ2], and assume
that θ1 ≤ ar ≤ br ≤ ... ≤ a3 ≤ b3 ≤ a2 ≤ b2 ≤ a1 ≤ b1 ≤ θ2, then δ1 ∼
U1(a1, b1), δ2 ∼ U2(a2, b2), δ3 ∼ U3(a3, b3), ..., δr ∼ Ur(ar, br). Then the weight value
δi(t) in formula(9) can be calculated by formula(14).

δi(t) =



δ1(t) ∼ U1(a1, b1), f ′1 ≥ f [pbi(t)] ≥ f ′d(b1−a1)·Ne
δ2(t) ∼ U2(a2, b2), f ′b(b1−b2)·Nc ≥ f [pbi(t)] ≥ f

′
d(b1−a2)·Ne

δ3(t) ∼ U3(a3, b3), f ′b(b1−b3)·Nc ≥ f [pbi(t)] ≥ f
′
d(b1−a3)·Ne

...
δr(t) ∼ Ur(ar, br), f ′b(b1−br)·Nc ≥ f [pbi(t)] ≥ f

′
N

(14)

Through the calculation method of formula(10), the particles with the same fitness
level will have the uniform distribution value that obeys the corresponding level interval
of [θ1, θ2]. This can make the particles with higher fitness occupy a higher weight in
the calculation of individual average optimal position mb(t), otherwise, the smaller the
weight is, so that the decision-making influence of particles with different fitness can be
well balanced. It is beneficial to increase the interaction between particles and enhance
the search ability of particle swarm. The comparison between the weight value of the
improved algorithm and the original QPSO algorithm is shown in figure 1 and figure 2.
In figure 1, the traditional particle swarm optimization method, no matter what the ability
of particle optimization is, each particle gets the same weight 1. In figure 2, the improved
method in this paper, the stronger the particle optimization ability is, the higher the weight
is in the calculation of the average optimal position.

4. HWQPSO for Function Optimization

In order to evaluate the performance of HWQPSO algorithm, it has been applied to some
well-known benchmark functions, these functions are used in both reference [10] and
[11]. These standard test functions have been adopted in many literatures and are very
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representative. They can well evaluate the performance of the optimization algorithm. The
details of the benchmark functions are given in Table 1, including function name, specific
formula, range min value and search ability. These benchmark functions are minimization
problems and the global best value for all these functions is zero. The experimental results
of HWQPSO are compared with those of QPSO [4], DWC-QPSO [10] and LTQPSO [11].
The parameters of QPSO, DWC-QPSO and LTQPSO select original paper parameters.
The weight parameter of HWQPSO algorithm is shown in Table 2. r=4, θ1=0.5, θ2=1.5.
we compare the convergence rate of the four algorithms in the process of 8 standard
function tests, in which the average optimal value of the objective function changes with
the number of iterations. Figures 3 ∼ 10 show average of convergence curves for 50 runs
of QPSO, DWC-QPSO, LTQPSO and HWQPSO under the condition of N = 40, D = 30,
M = 2000, but the Schaffer function under the condition of N = 40, D = 2, M = 2000. In
order to show the results more intuitively, when drawing the contrast curves, the log value
of the fitness value is calculated on the vertical axis.

Table 1. Mathematical benchmark functions

Function Formulation Range
Min
value

Scarch
ability

Sphere f1(x) =
∑D

i=1 x
2
i (-100,100) 0 Local

DeJong’s f2(x) =
∑D

i=1 i · x
4
i (-100,100) 0 Local

Rosenbrock f3(x) =
∑D−1

i=1 (100 · (xi+1

−x2i )2 + (xi − 1)2)
(-5.12,5.12) 0

Global/
Local

Griewank
f4(x) =

∑D
i=1 x

2
i /4000

−
∏D

i=1 cos(xi/
√
i) + 1

(-600,600) 0 Global

Rastrigin f5(x) =
∑D

i=1(x
2
i − 10 · cos(2πxi) + 10) (-5.12,5.12) 0 Global

Ackley f6(x) = −20exp(−0.2
√

1
D

∑D
i=1x

2
i )

−exp( 1
D

∑D
i=1 cos(2πxi)) + 20 + e

(-32,32) 0 Global

Schaffer f7(x) = 0.5 + ((sin
√
x21 + x22)

2

−0.5)/((1 + 0.001(x21 + x22))
2)

(-2.048,2.048) 0 Global

Schwefel f8(x) = 418.9829D −
∑D

i=1 xi sin(
√
|xi|) (-500,500) 0 Global

From the experimental results curves in figure 3 to figure 10, it can be seen that the
HWQPSO algorithm has the best optimization ability and search stability compared with
the other three algorithms, Among them, HWQPSO algorithm performs best in the Sphere
and DeJong’s function tests, and worst in Rosenbrock function tests. Among the eight
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Table 2. Particle weight distribution table

The value of r Distribution interval Distribution ratio

r=1 δ1 ∼ U1(1.4, 1.5) 10%

r=2 δ2 ∼ U2(1.2, 1.4) 20%

r=3 δ3 ∼ U3(0.9, 1.2) 30%

r=4 δ4 ∼ U4(0.5, 0.9) 40%
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Fig. 6. Convergence curve of the Griewank function
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Fig. 8. Convergence curve of the Ackley function
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Fig. 10. Convergence curve of the Schwefel function

standard test functions, Sphere and DeJong’s are unimodal functions, which are generally
used to test the local search ability of the algorithm. From the comparison of the experi-
mental results on these two functions, HWQPSO algorithm has better local search ability
and search stability than the other three algorithms, but from the average optimal value
data, DeJong’s function has higher search accuracy and stability than Sphere function,
and DWC-QPSO algorithm also shows the performance close to HWQPSO algorithm on
Sphere function. Rosenbrock function is usually used to test the local and global search
ability of optimization algorithm. Each contour line of Rosenbrock function is approxi-
mately parabola shaped, and its global minimum value is located in the parabola shaped
Valley, which is easy to find, but because the value in the valley changes little, it is very
difficult to find the global minimum value. So in eight test functions, the results of four
algorithms on Rosenbrock function are the worst, but the results of hwqpso algorithm in
this paper are still better than the other three algorithms. Griewank, Rastrigin, Ackley,
Schaffer and Schwefel functions are nonlinear multi peak functions, which are usually
used to test the global search ability of optimization algorithms. The experimental results
show that the optimization effect of the four algorithms on these five functions is not
as good as that of sphere and DeJong’s unimodal functions, but better than Rosenbrock
functions. The global optimization results of HWQPSO are better than those of other three
algorithms. Among them, the search performance of Rastrigin and Schwefel functions is
better than that of the other three functions.

On the other hand, for HWQPSO algorithm, it can be found that the fitness values of
the HWQPSO algorithm are lower than those of the QPSO, DWC-QPSO and LTQPSO
in 2000 iterations of 8 standard functions. That is to say, the red curve representing the
iterative fitness values of the HWQPSO algorithm in 8 figures is always lower than the
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other three curves. At the same number of iterations, the local solution found by the
HWQPSO algorithm is better than the other three algorithms. Especially in Sphere, De-
Jong’s, Griewank, Schaffer, and Schwefel functions, it shows that the local optimization
accuracy of the HWQPSO algorithm is better, and each iteration can find a better solution
than the other three algorithms.

At the same time, the lower red curve also means that the convergence speed of the
HWQPSO algorithm is faster than other three algorithms. The optimal solution of the
HWQPSO algorithm is closer to the optimal value, it will quickly approach the optimal
solution. For example, when 500 iterations in figure 10, the fitness value of the HWQPSO
algorithm is 10−4, which converges to the optimal solution 0 faster than other three algo-
rithms.

It can also be found from the experimental results that the HWQPSO algorithm has
the strongest global optimization ability, which is also higher than the other three algo-
rithms. That is to say, at the abscissa 2000 point in the experimental result graph, the
HWQPSO algorithm has the least fitness value compared with the other three algorithms
in 8 standard functions, that is, the solution is optimal.

All these are mainly due to the particles with higher fitness value of the HWQPSO
algorithm, and the larger the calculated weight of the average optimal position, which
makes the average optimal position tend to be excellent particles and find better solutions
under the leadership of excellent particles.

To sum up, through the experiments of the QPSO, DWC-QPSO, LTQPSO and HW-
QPSO algorithm on 8 standard test functions, the results show that the HWQPSO al-
gorithm proposed in this paper has more advantages than the QPSO, DWC-QPSO and
LTQPSO in local accuracy, convergence speed and global search ability.

5. HWQPSO for Task Scheduling in Cloud Computing

Assuming that there are H computing resources available in the cloud computing plat-
form, the computing resources are the position X of particles in the space search, that is,
the resource set X = {x1, x2, x3, . . . , xH}; There are D computing task requests in the
cloud computing system at a certain time, Task set S = {s1, s2, s3, . . . , sD}; The matrix
T is used to represent the time when different tasks calculate data on different resources,
such as formula (15), that is tij represents the time required for the i-th task to complete
data processing on the j-th calculation resource, 1 ≤ i ≤ D, 1 ≤ j ≤ H . In the process of
searching space, the position of the i-th particle is Xi = {xi1, xi2, . . . , xiD} , 1 ≤ i ≤ D,
and the value of dimension D is the number of tasks in the cloud computing platform. xid
means that task d is scheduled to execute on resource xi, and its matrix representation is
as shown in formula (16). X is a 0 − 1 matrix, when xij = 1, it means that the data to
be processed by the i-th task is processed by the j-th computing resource; when xij=0, it
means that the data to be processed by the i-th task is not processed by the j-th computing
resource[21-24].
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T =


t11 t12 t13 ... t1H
t21 t22 t23 ... t2H
t31 t32 t33 ... t3H
... ... ... ... ...
tD1 tD2 tD3 ... tDH

 (15) X =


x11 x12 x13 ... x1D
x21 x22 x23 ... x2D
x31 x32 x33 ... x3D
... ... ... ... ...
xN1 xN2 xN3 ... xND

 (16)

In the task scheduling method in this paper, it is expected that all computing tasks in
the task set will be completed, and the less the total time Ttotal is, the better. From the
above analysis, it can be concluded that the total time Ttotal taken by all calculation tasks
is shown in formula (17).

Ttotal = maxHj=1

D∑
i=1

xij × tij (17)

Through the above optimization of QPSO algorithm, it can be seen that the higher the
fitness of particles, the higher the proportion of particles should be when calculating the
average optimal position mb of particles. Therefore, the fitness function f of particles is
defined as shown in formula (18).

f =
1

Ttotal
=

1

maxHj=1

∑D
i=1 xij × tij

(18)

It can be seen from formula (14) that the longer the total execution time of the calcu-
lation task set is, the smaller the value of fitness f will be, and the lower the calculation
efficiency of the cloud computing platform will be; on the contrary, the shorter the total
execution time of the calculation task set is, the larger the value of fitness f will be, and
the higher the processing efficiency of the cloud computing platform will be, which meets
the processing efficiency expectation of the cloud computing platform.

6. Experiments and Analysis

In this paper, Cloudsim4.0, a cloud computing simulation tool, is used as the experimen-
tal platform, and its parameters are shown in Table 3. The main classes and methods of
the simulation process and its implementation based on Java development environment
are shown in Figure 11. According to the modeling requirements of this paper, the task
model and virtual machine model are adjusted on the platform, and the DatacenterBroker
and Cloudlet classes are rewritten. The HWQPSO algorithm is implemented in Datacen-
terBroker, and the standard QPSO algorithm, DWC-QPSO algorithm and LTQPSO algo-
rithm are reproduced. In order to test the search performance of this algorithm in cloud
computing task scheduling, this section will compare the application of QPSO, DWC-
QPSO, LTQPSO and HWQPSO algorithms in cloud platform task scheduling, and verify
the application performance of this algorithm in cloud computing task scheduling from
the following two perspectives [25-28].
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Table 3. Cloud Sim simulator parameter list

Type Parameters Value

number of Datacenter 6

Datacenter number of Host per Datacenter 2-5

type of Manager Space shared/ Time shared

Virtual Machine(VM)

total number of VMs 30

number of PE per VM 4-12

MIPS of PE (processing element) 300-1500 (MIPS)

VM memory 512-2048(MB)

Bandwidth 500-1000 bit

Type of Manager Time shared

Total number of task 50-500

Task Length of task 5000-15000MI(Million Instruction)

Number of PEs requirement 1-6

6.1. Task Execution Time Comparison Experiment

This experiment is based on the task scheduling schemes of QPSO, DWC-QPSO, LTQPSO,
HWQPSO. The experiment is carried out under different scale tasks. The number of tasks
is between [50,500], and the increment is 50. By randomly selecting the cloud computing
resource configuration parameters, the execution time of four different task scheduling
strategies was compared for four times, and the results are shown in figure 12.

According to the experimental results curves in figure 12, the red curve is the task
scheduling time curve of the HWQPSO algorithm. The horizontal axis is the number of
tasks, and the vertical axis is the time spent scheduling tasks. From the overall trend,
the original QPSO algorithm takes the most time when scheduling the same number of
tasks, while the HWQPSO algorithm in this paper takes the least time, and the DWC-
QPSO and LTQPSO algorithm have their own advantages and disadvantages. As shown in
figure 12(a) (d), when scheduling the same number of tasks, the red curve representing the
HWQPSO algorithm is much lower than the black curve representing QPSO algorithm.
The blue curve representing LTQPSO algorithm and the Yellow curve representing DWC-
QPSO algorithm are interwoven, with high and low among them. For example, in figure
12(d), when the number of tasks is 350, the scheduling time of DWC-QPSO algorithm is
more than that of LTQPSO algorithm, but when the number of tasks is 450, the scheduling
time of DWC-QPSO algorithm is less than that of LTQPSO algorithm.

When the number of tasks is small, the difference of task scheduling time between
the four algorithms is small, because the QPSO algorithm has strong optimization ability.
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Fig. 12. Execution time comparison
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When the small-scale task set scheduling is optimized, the optimal scheduling scheme can
be found quickly. However, with the increase of task scale, the task scheduling efficiency
of the HWQPSO algorithm is significantly higher than the other three. For example, when
the number of tasks is 100, the task scheduling time gap of the four algorithms is much
smaller than that of 500 tasks. This is because the algorithm in this paper improves the
decision weight of excellent particles, so that all particles quickly approach to the optimal
particles, and finally quickly converge to the optimal solution, that is to find the optimal
scheduling scheme.

6.2. Computing Resource Load Comparison Experiment

This experiment is based on the task scheduling schemes of QPSO, DWC-QPSO, LTQPSO,
HWQPSO. When the number of tasks is 100, 200, 300 and 400 respectively, the resource
load of the four scheduling algorithms are compared. In the experiment, for each virtual
machine, the time needed to complete all tasks scheduled to the virtual machine is used
as the load measurement of the virtual machine. For the convenience of comparison, we
calculate the standard deviation of computing resource load of all virtual machines in the
cloud platform to describe the balance of computing resource load of the cloud platform
at this moment. Assuming that there are Nvm virtual machines in the cloud platform in
the current experiment, the computing resource load of the i-th virtual machine at time t
is ui(t), then at time t, the calculation of the standard deviation Srur(t) of the comput-
ing resource load of all virtual machines in the cloud platform is shown in formula (19)
and formula (20). The comparison experiment results of the cloud platform computing
resource load of the four scheduling algorithms are shown in figure 13.

Srur(t) =

√√√√ 1

Nvm

Nvm∑
i=1

(ui(t)− u(t))2 (19)

u(t) =
1

Nvm

Nvm∑
i=1

ui(t) (20)

When the Srur(t) of computing resource load of all virtual machines is smaller, it
means that the load of each virtual machine is relatively more balanced, and vice versa.
According to the experimental results in Figure 13, the red curve is the load balance curve
of the HWQPSO algorithm in resource scheduling, the standard deviation of computing
resource load of all virtual machines in the cloud platform fluctuates greatly under differ-
ent tasks of the four algorithms. As shown in Figure13(a)∼(d), the curves corresponding
to the four algorithms are interleaved in varying degrees. However, from the overall trend
analysis, the standard deviation of the HWQPSO algorithm in this paper is smaller than
that of the other three algorithms, which shows that the load of each virtual machine is
more balanced than that of the other three algorithms. And the standard deviation of com-
puting resource load using the original QPSO algorithm is the largest, and the computing
resource load is the most unbalanced, followed by the LTQPSO and DWC-QPSO algo-
rithm. For example, in figure 13(a)∼(d), the overall trend of the black curve representing
the load standard deviation of all virtual machine resources scheduled by QPSO algorithm
is at the top, the red curve representing HWQPSO algorithm is at the bottom, and the blue
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and yellow curves representing the LTQPSO and the DWC-QPSO algorithm tend to be
in the middle. At the same time, in figure 13(a)∼(d), it can be seen from the horizontal
axis that HWQPSO scheduling time is the shortest, this also shows that HWQPSO al-
gorithm has better optimization ability. And the red curve fluctuates the least, it shows
that HWQPSO is more stable. All these benefit from the HWQPSO algorithm average
optimal location classification weight strategy, improve the optimization accuracy of the
algorithm and make the computing resources of each virtual machine can be better used,
thus play a role of balancing the computing resources load.

7. Conclusion

In this paper, an average optimal position calculation method of the QPSO algorithm is
proposed, which is based on the classification of particle fitness value, and it is used in
cloud computing task scheduling. The selection of the average optimal position in the
QPSO algorithm determines the global search ability and the final convergence speed of
the algorithm. By setting high-level particles with high weight, we can improve the dis-
course power of excellent particles in the process of optimization, so that particles can
quickly approach the optimal solution, to improve the search ability and efficiency of the
algorithm. In this paper, five standard test functions are selected to test QPSO, DWC-
QPSO, LTQPSO and HWQPSO. The experimental results show that the convergence ac-
curacy and speed of the HWQPSO algorithm proposed in this paper are higher than those
of the other three algorithms. At the same time, the HWQPSO algorithm proposed in this
paper is applied to the task scheduling of the cloud computing platform. The performance
of the HWQPSO algorithm proposed in this paper is tested by comparing the efficiency
of the four algorithms QPSO, DWC-QPSO, LTQPSO and HWQPSO in the CloudSim4.0
simulation experiment platform. In the application, when scheduling the same number of
tasks, the algorithm in this paper takes shorter time than the other three algorithms, and
the load of computing resources is more balanced, so the efficiency of cloud platform is
significantly improved. Experiments and application results show that the average opti-
mal position calculation method based on particle fitness value classification improves
the local search accuracy and global search ability of the QPSO algorithm, and the search
stability is also improved.
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