
Computer Science and Information Systems 18(1):43–66 https://doi.org/10.2298/CSIS200301042M

PureEdgeSim: A Simulation Framework for

Performance Evaluation of Cloud, Edge

and Mist Computing Environments

Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

University of Tunis El Manar, Faculty of Sciences of Tunis,

LIPAH-LR11ES14, 2092Tunis, Tunisia

{charafeddine.mechalikh, taktakhajer, faouzimoussa}@gmail.com

Abstract. Edge and Mist Computing are two emerging paradigms that aim to

reduce latency and the Cloud workload by bringing its applications close to the

Internet of Things (IoT) devices. In such complex environments, simulation

makes it possible to evaluate the adopted strategies before their deployment on a

real distributed system. However, despite the research advancement in this area,

simulation tools are lacking, especially in the case of Mist Computing [11], where

heterogeneous and constrained devices cooperate and share their resources.

Motivated by this, in this paper, we present PureEdgeSim, a simulation toolkit

that enables the simulation of Cloud, Edge, and Mist Computing environments

and the evaluation of the adopted resources management strategies, in terms of

delays, energy consumption, resources utilization, and tasks success rate. To show

its capabilities, we introduce a case study, in which we evaluate the different

architectures, orchestration algorithms, and the impact of offloading criteria. The

simulation results show the effectiveness of PureEdgeSim in modeling such

complex and dynamic environments.

Keywords: Simulation, modeling, tasks orchestration, load balancing, Mist

Computing, Edge Computing.

1. Introduction

With the emergence of IoT, connected devices are gradually invading our daily lives

with increasingly broad fields of application: personal health equipment, smart

buildings, smart grids, connected vehicles, etc. A recent study estimates that the number

of connected devices will exceed 38.6 billion by 2025, with economic benefits in the

health, energy, transportation, and construction sectors [1]. However, due to this growth,

Cloud Computing has faced many challenges. Not only has it become unable to support

the growing number of IoT devices and the data they continually generate, but it is also

unable, due to its remote location, to meet their quality of service requirements such as

low latency. To face this, a new paradigm is needed. The latter must provide computing,

storage, and services like the conventional Cloud and meet the quality of service

requirements of IoT applications such as low latency, high scalability, and mobility.

44 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

This need for a new computing paradigm gave birth to Edge and Mist Computing.

While Edge Computing covers a wide range of applications such as Fog Computing,

Mobile Edge Computing, and Cloudlets all of which extend the Cloud by providing

resources in the network layer of the IoT architecture [10, 16], Mist Computing allows

resources to be harvested through the computation and communication capabilities

offered in the perception layer [11]. As a result, most of the data generated by these

devices can be processed locally, which reduces the latency, increases scalability, and

minimizes energy consumption by saving the energy that would have been used to

transfer data. However, in these complex and distributed environments, many issues

need to be solved (e.g., load balancing, application placement, and resource discovery)

and experimenting on a real distributed environment or testbeds [24] is not practical due

to the cost and limited scalability.

The simulation makes it possible to evaluate the performance of the proposed

approaches in a repeatable and controllable manner before their actual deployment in a

real distributed system. Nevertheless, due to their heterogeneous, dynamic, and

distributed nature, the simulation of Edge and Mist Computing environments is not such

a simple task. Each IoT application (smart cities, connected vehicles, etc.) uses a

heterogeneous mix of sensing and actuation devices. These devices, connected to

telecommunication networks, can interact with one another or with computing

infrastructures in order to compute their tasks. Simulating such environments will,

therefore, require modeling the network, computation resources, the heterogeneity of

devices, their behaviors, and the data they generate. Fig. 1 presents the aspects of

modeling of Edge Computing environments. To model the virtualized resources (e.g.,

CPU, memory, storage), many existing solutions have extended and exploited Cloud

Computing simulators such as CloudSim [3], which is a rich and highly extensible

framework that enables the simulation of Cloud resources (virtual machines, hosts, data

centers) and services. However, since transmission delays are directly proportional to

the network workload, the use of fixed transmission delays as in these existing

simulators is not practical, especially when evaluating the scalability of the system. On

the other hand, the use of network simulators, such as OMNET++ [20] and NS-3 [7],

allows efficient network modeling. However, users have to define all the other aspects of

the simulation (Fig. 1) such as load generation, tasks orchestration, mobility model, and

resources utilization models in order to assess the performance of their solutions, which

takes a lot of time and effort.

Motivated by this, in this paper, we present PureEdgeSim, a simulation framework

that enables the evaluation of resources management strategies and the performance

evaluation of Cloud, Edge, and Mist Computing environments [11]. It covers all the

modeling and simulation aspects of Edge Computing that are given in Fig. 1.

PureEdgeSim offers a modular architecture where each of its modules deals with a

specific part of the simulation. The Network Module, for example, is responsible for

data transfer and bandwidth allocation. The Location Manager module deals with the

geo-distribution of devices and their mobility. The Data Centers Manager module takes

care of the generation of devices and their heterogeneity. Finally, the Orchestrator

module, which is responsible for tasks offloading decisions. These modules also provide

a default implementation and a set of adjustable parameters in order to ease

experimentation and prototyping. As a result, researchers can quickly implement their

solutions without wasting time on the specification of low-level details. To demonstrate

PureEdgeSim: A Simulation Framework for Performance Evaluation... 45

its capabilities, a case study is introduced, in which we propose a simulation scenario

that mimics a smart university campus. During this case study, we propose a multi-tier

architecture that takes advantage of smart edge devices that have sufficient computing

capacity. To support their heterogeneity and meet the QoS, we present a tasks

orchestration algorithm that is based on the Fuzzy Decision Tree. The simulation results

show the effectiveness of PureEdgeSim in modeling such complex, heterogeneous, and

dynamic environments. They also highlight the advantages of adopting Mist Computing

and the effectiveness of the proposed algorithm that outperformed the competitor

algorithms in every aspect of the comparison.

This paper is organized as follows: In section 2, the related work is presented.

Section 3 describes PureEdgeSim architecture. In section 4, a use case scenario is

proposed. The simulation results are assessed in section 5. Finally, section 6 concludes

the paper and highlights future directions.

Fig. 1. The aspects of modeling Edge and Mist Computing environments

2. Related Work

In traditional Cloud Computing, devices at the edge of the network offload their tasks to

the Cloud for processing them. This task offloading may be necessary for several

reasons: some devices offload their tasks because of their low computing capabilities,

devices with capacity-limited batteries must offload their tasks to extend their life, and

so on.

Edge and Mist Computing use the same offloading process. Tasks offloading allows

edge nodes to work cooperatively in order to increase system throughput [18]. In [12],

the authors proposed a mechanism that offloads tasks between mobile devices to balance

their power consumption. This mechanism has extended network life by 400%. A

related system has been developed in [25] called Serendipity. It allows mobile devices to

46 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

remotely access the resources of other devices to run their applications, which resulted

in minimizing the local power consumption while reducing the overall tasks completion

time by 6.6 times. A. Mukherjee et al. [15] have introduced a framework that takes

advantage of smart devices available at the network edge in order to perform data

analytics in IoT. To do so, capacity-based partitioning was introduced, where data is

partitioned according to the capacities of those devices. Although performance has

decreased when using those devices, the workload of the Cloud has also been reduced,

which can solve the Cloud scalability challenge. In [22], an energy-sensitive tasks

offloading algorithm has been proposed. It allows mobile devices to dynamically choose

the Cloud or the Fog to offload their tasks according to their delay tolerance and power

consumption. The results show that this approach outperforms Cloud-only and Fog-only

strategies. In [24], the authors have proposed a platform that orchestrates tasks between

IoT gateways, Fog servers, and the Cloud, depending on the availability of resources. In

[14], V. Chamola et al. focused on reducing latency in Mobile Edge Computing, by

searching for the best Fog node to execute tasks when the nearest node is overloaded.

This algorithm has achieved a very low latency compared to the traditional scheme that

only uses the closest Fog node. Always in Mobile Edge Computing, a Fuzzy Logic

based orchestration algorithm was introduced in [28]. The results show the effectiveness

of adopting Fuzzy Logic. However, fuzzy logic is not applicable to unknown systems

that lack information, and setting exact fuzzy rules is a complicated task. Consequently,

the results may not always be correct and are perceived on the basis of assumptions.

With the advancement of research in this field, simulation began raising much

interest, leading to the development of many simulation frameworks such as iFogSim.

iFogSim is a CloudSim-based simulation framework designed to simulate Fog

Computing environments [4]. It allows several types of components (sensors, actuators,

gateways, etc.) to be added and linked to form a topology. Nevertheless, this topology

remains static, making it lacks mobility support, which is one of the main reasons for

adopting Fog Computing. Also, simulating large-scale scenarios that involve hundreds

(if not thousands) of devices will require adding and linking them one by one, which is

inconvenient, involves a lot of effort, and time-consuming. Moreover, a fixed delay is

assigned to each link, ignoring the effect of the network load on the transmission delays.

IoTSim [21] is another simulator that is based on CloudSim. It simulates batch-

oriented IoT applications where data is sent in large amounts to a processing system,

using a MapReduce large data processing model. SimIoT [9] is a toolkit that simulates

the communication between IoT devices and the remote Cloud. It allows the

experimentation of multi-user submission dynamically in the IoT environment.

Nevertheless, it does not consider the heterogeneity of IoT devices, and their energy

consumption is ignored. IoT will count more than 38.6 billion devices by 2025 [1]; all of

them generate data continuously, making energy consumption a major concern. EmuFog

[6] is an emulation framework for Fog Computing environments. It allows the

simulation of Docker-based applications. Since EmuFog is based on MaxiNet [8], the

events of each node (including CPU and memory utilization) are saved in a log.

However, because it lacks a generic interface, it cannot deal with global metrics, such as

response delay.

Finally, EdgeCloudSim [13] is another CloudSim-based simulator for Mobile Edge

Computing that addresses some iFogSim limitations. It automatically generates the

required number of edge devices, making it more scalable. It supports mobility to a

PureEdgeSim: A Simulation Framework for Performance Evaluation... 47

certain extent, and the network model is more realistic. However, its mobility model is

over-simplified. It also lacks modeling the power consumption of edge devices, their

remaining energy, and their death on simulation runtime (i.e., when they run out of

energy). It cannot execute tasks locally on these devices or offload them to other edge

devices, limiting its use to Mobile Edge Computing scenarios.

Although Mist Computing has attracted a lot of interest [12, 15, 22, 25], simulation

tools are still lacking. To the best of our knowledge, there is no simulator capable of

modeling Mist Computing environments (Fig. 2), which involves processing data on

edge devices, modeling their heterogeneity, measuring their energy consumption and

their resources utilization, etc. Motivated by this, we introduce PureEdgeSim, a

simulation toolkit that is designed to simulate Cloud, Edge, and Mist Computing

environments. Thus, enabling the simulation of a multitude of scenarios such as Mobile

Devices Clouds [12, 25], Mobile Edge Computing [13, 14], and multi-level scenarios

where different computing paradigms are used simultaneously (such as Foggy [24]).

Fig. 2. The role of Mist Computing on the internet of things [26]

3. PureEdgeSim Architecture and Design

PureEdgeSim takes advantage of CloudSim Plus features [2], including the native

support for the discrete events simulation, that is used during the communication

between its components. It also leverages its rich and very extensible library that covers

all the aspects of Cloud Computing from resources (i.e., data centers, hosts, etc.) to

services (i.e., virtual machine allocation policies, CPU schedulers, etc.) enabling it to

model computational tasks effectively (the middle layer of Fig. 1). Hence, only a few

classes were added to model Edge and Mist Computing environments. Therefore, the

48 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

CloudSim Plus layer is responsible for providing key components that are extended by

PureEdgeSim (Fig. 3), and it is also behind the interactions of its components.

3.1. PureEdgeSim Modular Design

The simulation of Edge and Mist Computing environments allows evaluating the

adopted resources management strategies before their actual deployment. However, the

heterogeneity of possible scenarios complicates the task, especially when using a

simulator such as Omnet++ or NS-3 where the user has to define all the aspects of the

simulation from the specification of resources, networking, energy, mobility, etc. which

requires a lot of time and effort. To cope with it, PureEdgeSim follows a modular

architecture that consists of seven modules, where each one of them deals with a specific

Edge Computing modeling issue. To facilitate prototyping and experimentation, each

module offers a default implementation with a ready to use set of adjustable parameters.

These modules are:

Fig. 3. PureEdgeSim layered architecture

Simulation Manager. This module is responsible for initiating and managing the

simulation environment, scheduling events, and generating the output files. It contains

three essential classes, the Simulation Manager class, which initializes the simulation

environment, starts the simulation, and schedules its end. The second class is the

Simulation Logger. It is responsible for generating the simulation output; it calculates

the results, shows them at the end of every iteration, and saves them to a comma-

separated value (CSV) format to easily exploit them later. Finally, the Real-Time

Display class that displays real-time information such as the simulation map and other

charts (network utilization, CPU utilization, and tasks failure rate). This helps to

understand the course of the simulation better, and above all, to analyze the proposed

solution in real-time, especially the mobility model.

PureEdgeSim: A Simulation Framework for Performance Evaluation... 49

Data Centers Manager Module. It consists of three classes (Fig. 4): (i) The Edge

Data Center class that extends the Data Center Simple class of CloudSim Plus to model

the heterogeneity of edge devices, (ii) the Server Manager that generates the required

data centers and edge devices, their hosts, and their virtual machines according to the

configuration files, and finally, (iii) the Energy Model class which is responsible for

updating their energy consumption.

Fig. 4. The Data Centers Manager classes

Tasks Generator. PureEdgeSim supports the generally used applications models: the

sense-process-actuate and the stream-processing models. In the first one, the data

collected by sensors is sent to computing nodes for processing. The results of the

processing are then sent back to the actuator to take the necessary actions. The second

model involves a network of application modules that continuously process the data

streams generated by sensors. The extracted information is stored for large-scale and

long-term analysis [4].

In PureEdgeSim, the data emitted from sensors and edge devices are modeled as

tasks. By default, the tasks generator assigns an application such as e-health,

infotainment, and augmented reality (which can be defined in the applications XML file)

to edge devices, where each application has its specific characteristics (i.e., data size,

CPU utilization, latency-sensitivity, etc.). After that, it will generate the tasks of every

device according to the assigned application type. This module consists of two main

classes (Fig. 5): The first one is the Task class, which is inherited from the Cloudlet

Simple class of CloudSim Plus, and the second is the Task Generator. The latter

generates the tasks that will be offloaded during the simulation.

50 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

Fig. 5. The Tasks Generator classes

Location Manager. Geographical distribution and mobility are the main attributes of

Edge and Mist Computing. Thanks to the geographical distribution of their computing

nodes [5], they can continue serving mobile devices during their mobility while

providing the lowest latency. This has spawned a new generation of latency-sensitive

applications such as connected vehicles. To support such scenarios, this module assigns

an initial location to each device, and realistically manages their mobility. It contains

two main classes (Fig. 6): The Location class, which represents the X and Y coordinate

of the device, and the Mobility class that generates the next location for each mobile

device.

Fig. 6. The Mobility Manager classes

The Task Orchestration Module. The generation, capture, and analysis of data will

be in volumes, variety, and orders of magnitude larger than before. Effective

implementation of the infrastructure requires several key decisions: mainly how the data

will be collected and how it will be processed. These decisions are influenced by two

competing pressures: the use of the infrastructure and the Quality of Service required by

the end-user [19]. Hence, the simulators must allow the implementation of custom

resources management techniques in order to enable their wider applicability [17].

PureEdgeSim: A Simulation Framework for Performance Evaluation... 51

Fig. 7. The Tasks Orchestrator classes

PureEdgeSim allows this through the Tasks Orchestration Module. It consists mainly

of the Orchestrator (Fig. 7), which represents the decision-maker. Depending on the

used policy, it decides whether to offload the task or execute it locally and where to

offload it. Users can quickly implement their orchestration policies (i.e., the tasks

orchestration algorithm) by extending the Orchestrator class.

The Network Module. This module addresses the networking layer presented in Fig.

1. It primarily consists of the Network Model (Fig. 8). Unlike in CloudSim Plus (same

for CloudSim), where the bandwidth allocated to each virtual machine remains static,

this network model takes into account the network load at each instant of the simulation.

When transferring data, at each instant of the transfer (i.e., from the beginning until the

end), its allocated bandwidth will vary based on the network load at that moment. This

network model also takes into consideration the bandwidth limit caused by WAN or

WLAN congestion. As a result, if multiple devices connect to the same WLAN access

point, the bandwidth allocated to each device decreases. If this allocated bandwidth is

below that of the WAN, the transfer speed of the data sent to (or received from) the

Cloud will be limited by the low bandwidth of the WLAN and not by that of the WAN.

Fig. 8. The Network Model classes

The Scenario Manager Module. Each use case requires a heterogeneous

combination of devices. The heterogeneity involves the devices mobility, energy source,

computing capacity, the heterogeneity of applications, and their requirements (e.g.,

latency). Therefore, the simulation framework must be able to support the diversity of

devices and their different Quality of Service requirements [17, 19]. Besides, Edge

Computing simulators need to be easily extended with new types of devices and

applications without modifying their internals [17]. The Scenario Manager module

guarantees this by loading the simulation parameters and the user scenario from the

input files. It contains two principal classes, the Simulation Parameters class, which acts

52 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

as a placeholder for the different parameters, and the Files Parser that loads the user

scenario and settings from specific configuration files representing the input method.

3.2. The Simulation Duration and Realism

As mentioned previously, PureEdgeSim relies on CloudSim Plus, one of the commonly

used Cloud Computing simulators that provides a reliable code base for modeling

computational tasks. To fulfill the remaining simulation requirements (Fig. 1),

PureEdgeSim offers the most realistic network, energy, and mobility models as

compared to existing solutions. However, since it is a discrete event simulator, the

simulation time complexity will depend on the number of events generated at runtime, as

seen in Fig. 9, where there is a clear correlation between the number of events and the

duration of the simulation. To reduce simulation time, PureEdgeSim offers a quick and

full control of the simulation environment through its set of parameters, where users can

trade-off between simulation realism and duration. Hence, the realism will depend on

the user settings, especially the update intervals (Table 3). The shorter these intervals,

the more accurate and realistic the simulation will be, but also, the longer it will take

(Fig. 9).

Fig. 9. The impact of update interval on the number of generated events and the simulation

duration

3.3. Ease of Use and Extensibility

Simulators can be used to compare the performance of different configurations in order

to determine the factors that affect performance the most, e.g., the network settings, the

number of entities used in the simulation, the amount of resources, etc. Treating all these

variables programmatically is a challenge. To reduce time and effort, each module

PureEdgeSim: A Simulation Framework for Performance Evaluation... 53

provides a default implementation (e.g., the Default Edge Data Center class in the Data

Centers Manager (Fig. 4), the Default Mobility Model (Fig. 6), etc.). These ready-to-use

models also offer a fully customizable environment through a multitude of parameters

and configuration files, allowing users to customize the components behavior without

changing the original code.

Extensibility is another essential feature of PureEdgeSim. Even though

PureEdgeSim uses its pre-built models by default, users can always create and integrate

their custom models when building their simulation scenarios if any of these default

implementations do not meet their needs, without having to modify the PureEdgeSim

code base.

As a result, the simulation scenario can be quickly built by following these simple

steps:

a) The implementation of custom models, if needed.

b) The definition of Cloud and Edge resources and the application characteristics:

This can be done by editing the following configuration files that are located

under the settings/ folder:

 The Cloud data centers file: In this file, the user defines the Cloud data centers,

their power consumption rate, describes their hosts (CPU, storage, ram), and

the virtual machines of each of these hosts.

 The Edge data centers (i.e., Cloudlets, servers) file: Like the Cloud data centers

file, this file defines the edge data centers, their specifications, their locations,

and their energy consumption rates.

 The edge devices file: Instead of defining the devices one by one (which takes a

considerable amount of time and effort due to the large number of devices), in

PureEdgeSim, the user will only define the types of devices and the

percentage of each one of them. Then, according to this percentage and the

total number of devices (which is set in the simulation parameters file), the

Data Centers Manager will generate the devices of each type. To support the

heterogeneity of devices, PureEdgeSim offers endless possibilities, varying

from simple sensors (i.e., without any computing capacity) to smartphones,

laptops, as well as sophisticated servers that run hundreds of virtual machines.

It can be done by specifying the mobility of the device (i.e., whether the

devices of this type are mobile), the power source (i.e., if they are battery-

powered), the capacity of the battery in watt-hour if it is battery-powered, the

power consumption rates in watt-Hour, and the computing capacity in MIPS

(Million Instructions Per Second). Fig. 10 gives an example of a device type

(see the laptop type in Table 1).

 The applications file: This file defines the set of IoT applications that are

needed by the Tasks Generator (see Table 2). Each application is defined by:

the usage percentage that represents the proportion of devices running that

application, the generation rate which is the number of tasks generated per

minute, its delay tolerance in seconds, the task length which refers to the

number of its instructions in MI (Million Instructions) and determines its

execution time, the size in Kbytes of the offloading request, the container

image, and the returned results.

54 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

Fig. 10. The edge devices XML file

c) Setting the simulation parameters: To ease the implementation of simulation

scenarios, each of the previous modules provides a set of adjustable

parameters (Table 3), that can be found in the

simulation_parameters.properties file.

To demonstrate the capabilities of PureEdgeSim, especially when it comes to the

simulation of Edge Computing environments and its support for the heterogeneity of

both edge devices and scenarios, in the next section, we propose a case study.

4. Application and Case Study

As proof of concept, in this section, we propose a simulation scenario. We will focus on

aspects that can only be modeled by PureEdgeSim, such as the support for Mist

Computing scenarios, network utilization, mobility of devices, and their energy

consumption. First, we will introduce a tasks orchestration platform. We also propose a

tasks orchestration algorithm that is based on Fuzzy Decision Tree. Finally, a simulation

scenario is given by which we evaluate their performance.

<?xml version="1.0"?>

<edge_devices>

 </device>

 <mobility>false</mobility>

<speed>0</speed>

 <battery>true</battery>

 <percentage>20</percentage>

 <batteryCapacity>56.2</ batteryCapacity >

 <idleConsumption>1.7</idleConsumption>

 <maxConsumption>23.6</maxConsumption>

 <generateTasks >false</generateTasks >

 <hosts>

 <host>

 <core>8</core>

 <mips>110000</mips>

 <ram>8192</ram>

 <storage>1048576</storage>

 <VMs>

 <VM>

 <core>8</core>

 <mips>110000</mips>

 <ram>8192</ram>

 <storage>1048576</storage>

 </VM>

 </VMs>

 </host>

 </hosts>

 </device>

 ...

</edge_devices>

PureEdgeSim: A Simulation Framework for Performance Evaluation... 55

Fig. 11. The proposed architecture

4.1. The Tasks Orchestration Platform

We introduce a multi-tier architecture (Fig. 11). It consists of: The IoT sensors layer,

that represents the source of data, the smart edge devices layer, the Fog layer, and the

Cloud one. By relying on close devices equipped with enough computing capacity (PCs,

smartphones, tablets, smart TVs, etc.), it enables QoS compliance and better scalability.

While these devices may offer low computing capabilities compared to the Fog or the

Cloud, their potential lies in their ever-growing number, which is expected to exceed 10

billion by 2025 (excluding IoT sensors) [1]. Additionally, they can deliver the lowest

latency and support mobility to some extent, given their massive geographical

distribution and location (i.e., a hope away from each other). Hence, latency-sensitive

applications can be placed in these devices, while computationally intensive ones can be

placed on the Cloud or Fog servers based on their delay tolerance.

Fig. 12. The task offloading flow and the role of the orchestrator

It consists of the following entities (Fig. 12):

a) IoT sensors, which are resource-limited devices. They must offload their tasks

elsewhere for processing. For this purpose, a task offloading request will be sent

56 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

to the orchestrator. The request provides information about the status of the

device and its requirements, e. g. application ID (i.e., container ID), data to be

processed, task latency sensitivity, that are necessary to find the best offloading

destination.

b) The application: A piece of software hosted on a container (e.g., Node.js script).
c) The registry: The repository from where the required application will be pulled.
d) The resource: The potential destination of the task, where it will be executed.
e) The orchestrator (i.e., the decision-maker): decides where the task will be

executed, using a specific orchestration algorithm. This algorithm will also be
hosted on a container, to facilitate its download, execution, and update.

f) The inventory (i.e., the list of available resources): When a device joins the
network, it communicates its meta-data (Fig. 11), including its resources and its
remaining energy, to the orchestrator. The orchestrator will add this device to its
inventory. Then, when receiving a task offloading request, it will classify the
resources (its inventory) to find the one that best suits this task.

To minimize energy consumption and delays, a decentralized orchestration strategy

will be used, in which, the orchestrators will be selected using a cluster head selection.

4.2. The Orchestration Algorithm

The proposed architecture can guarantee a high quality of service. However, managing

these heterogeneous resources is not an easy task. Several factors, such as the remaining

power, resource utilization, and network condition, should be taken into account. These

dynamic factors can vary unexpectedly. Traditional multi-constraint optimization cannot

be applied due to insufficient information about the nature of the tasks and arrival times,

which necessitates an online solution that can adapt to this ever-changing environment.

To guarantee this, we present a tasks orchestration algorithm that is based on the fuzzy

decision tree. Fuzzy decision trees combine the advantages of fuzzy logic and decision

tree, among which are: it can handle uncertainties without requiring a complex

mathematical model and support multi-criteria decision processes, its computing

complexity is low, which is essential for an online decision algorithm, and it requires

less preparation effort. This algorithm is based on Yuan et al. [29] fuzzy decision tree

approach, and consists of two stages (Algorithm 1):

a) The first stage: During this stage, the tasks are classified into Cloud, Fog, or Mist

tasks based on the following criteria: (i) the task latency-sensitivity: the reason for

adopting Edge and Mist computing; if a task is tolerant to delay it will be sent to

the Cloud, otherwise to the Fog or edge devices depending on Fog utilization and

the device mobility. (ii) Fog resources utilization: Fog servers are not supposed to

be as powerful as the Cloud; for this reason, they may be overloaded. This may

lead to high delays, causing the failure of many tasks. In this case, the Cloud can be

a good alternative if the WAN bandwidth is high enough. (iii) Device mobility: if

the device offloading the task is mobile, edge devices should be avoided. (iv)

WAN bandwidth: if it is below a certain threshold, the Cloud should be avoided.

b) The second stage: If the Cloud or the Fog has been chosen in the first stage, the

task will be directly offloaded. However, if the choice has been made on edge

devices, the algorithm will classify them during the second stage to find the most

PureEdgeSim: A Simulation Framework for Performance Evaluation... 57

suitable one. This classification will be based on the following criteria: (i) The

utilization of device resources. (ii) Energy source: battery-powered devices should

be skipped when possible. (iii) The mobility of both devices: The failure of a task

due to mobility happens when a device (the one offloading the task or the one

executing it) relocate before finishing it. Thus, offloading the task to a mobile

device may cause its failure. This risk of failure becomes even higher when both

devices are mobile.

Algorithm 1. The proposed algorithm

1. procedure findDestination(request, inventory)

2. type ← fuzzyDecisionTree1.classify (request)

3. if (type = ‘Cloud’)

4. offload(offloadingRequest, Cloud)

5. else if (type = ‘Fog)

6. offload(offloadingRequest, Fog)

7. else

8. maxTruthLevel ←

9. destination ← null

10. finestClass ← low

11. for each resource ∈ inventory do
12. (class, truthLevel) ← fuzzyDecisionTree2.classify(resource)

13. if (class > finestClass) //get the optimal destination

14. finestClass ← class

15. maxTruthLevel ← truthLevel

16. selectedDevice ← resource

17. else if (class = finestClass)

18. newTruthLevel ← truthLevel

19. if (maxTruthLevel or newTruthLevel > maxTruthLevel)

20. maxTruthLevel ← newTruthLevel

21. selectedDevice ← resource

22. end_if

23. end_if

24. end_for

25. offload(request, selectedDevice)

26. end_if

27. end

4.3. The Simulation Scenario

To demonstrate the capabilities of PureEdgeSim, we introduce a simulation scenario

that imitates a smart university campus. A smart campus consists of integrating

information and communication technologies by deploying sensors in several locations

to get useful information that will be exploited to manage and optimize resources,

increase energy efficiency, and improve education [23]. In this scenario, students who

own mobile devices (e.g., smartphones) relocate after a random amount of time. To do

this, the Default Mobility Model will be used. The area also involves other devices

(Table 1): simple sensors (e.g., wearables) and non-mobile devices (e.g., laptops and

gateways).

58 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

Table 1. The types of Edge devices

Edge devices types Laptop Smartphone IoT Gateway Sensor

Mobility No Yes No No

Speed (meters per second) 0 1.4 0 0

Battery-powered Yes Yes No No

Generate tasks No Yes No Yes

Percentage of devices (%) 20 30 10 40

Battery-capacity (Wh) 56.2 18.75 - -

Idle energy consumption rate (Wh) 1.7 0.078 1.6 0.036

Max energy consumption rate (Wh) 23.6 3.3 5.1 -

CPU (GIPS) 70 25 16 -

CPU Cores 8 8 4 -

Ram (Gbyte) 8 4 2 -

Storage (Gbyte) 1024 128 32 -

The last type refers to simple sensors that do not have sufficient computing capacity

(only generate data/tasks). The energy consumption rates were measured from the

following devices under different workloads: a laptop running Windows 10 (Intel®

processor Core™ i7-8550U), a smartphone running Android 10 (HiSilicon Kirin 710),

and a Raspberry Pi 3 Model B+ running Raspbian. On the other hand, the CPU values

are obtained by running a Dhrystone benchmark [27].

To extend their lives, battery-powered devices should, if possible, offload their tasks,

while devices with computationally intensive tasks should offload them to minimize

execution time. The Proposed multi-tier architecture will be evaluated against:

1. The Cloud-Only architecture where all the tasks are offloaded to the Cloud.

2. The widely adopted Fog-and-Cloud architecture: in this case, the tasks can be

offloaded either to the Cloud or Fog servers.

The Cloud will be represented by one data center with a total of 4000 GIPS,

distributed over 16 virtual machines, while the Fog will have a similar data center but

with lower computing capacity (3200 GIPS), which should be enough for this small

simulation area.

To model the different possibilities, four types of applications with different

characteristics are used (Table 2): (i) A health application: The data generated by

wearables will not exceed a few kilobytes and will not use significant processing power

[28]. (ii) An augmented reality application [30]: The data sent is an image, usually about

1 Mbyte in size. (iii) Other heavy computing tasks requiring additional computing

power, e.g., machine learning, may also be included [30]. (iv) An infotainment

application [31].

Table 2. The types of applications

Applications types Health Augmented

reality

Computation-

intensive

Infotainment

Usage percentage (%) 20 30 20 30

Generation rate (tasks per minute) 20 20 2 4

Latency sensitivity Yes Yes No No

Task length in Giga Instructions

(GI)

1500 5 50 10

Request size (Kbytes) 20 1500 3000 50

Results size (Kbytes) 20 50 200 50

PureEdgeSim: A Simulation Framework for Performance Evaluation... 59

When offloading the task, the orchestrator will choose the offloading destination

using one of the following orchestration algorithms:

1. Proposed: The proposed Fuzzy Decision Tree based algorithm.

2. ECOOA: The energy-oriented tasks orchestration algorithm [22], which is the

closest in terms of criteria.

3. Fuzzy Logic: The Fuzzy Logic based tasks orchestration algorithm [28].

The simulation parameters for this scenario are resumed in Table 3.

Table 3. The simulation parameters

Parameter Value

Simulation duration 30 (min)

Update interval 0.01 (s)

Min number of Edge devices 100

Max number of Edge devices 500

Edge devices counter step size 100

Edge devices range 10 (meters)

Simulation area size 200 x 200 (meters)

Network update interval 0.1 (s)

WLAN bandwidth 300 (Mbits/s)

WAN bandwidth 20 (Mbits/s)

WAN propagation delay 0.2 (s)

Orchestrators deployment Decentralized.

Orchestration algorithm Proposed, ECOOA, Fuzzy Logic.

Architectures Cloud-Only, Fog-and-Cloud, Proposed.

5. Simulation Results and Discussion

To demonstrate the effectiveness of PureEdgeSim in modeling Cloud, Edge, and Mist

computing environments, in this section, the proposed platform will be evaluated against

existing solutions. Although PureEdgeSim can generate charts automatically, the figures

presented in this section have been created from the output CSV file using Microsoft

Excel. This file offers more than 60 different ready-to-use metrics, from which the user

can also derive others as well. For instance, the network delay in Fig. 13 is obtained by

dividing the total network utilization by the number of sent tasks. Similarly, the service

time is the sum of network delay and execution time. During this evaluation, we will

focus on meaningful metrics that determine the Quality of Service and reflects the

scalability of the proposed solution, such as the tasks failure rate, energy consumption,

delays, network usage, and CPU utilization.

60 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

Fig. 13. Average tasks service time

Fig. 14. A comparison between the different architecture

5.1. Evaluating the Architectures

The average service time, which consists of execution time and network delay, is given

in Fig. 13. The latter is considered an essential factor that has a direct effect on the

Quality of Service. When using the Cloud-Only architecture in which all the tasks are

offloaded to the remote Cloud, the service time has been very long, although the Cloud

PureEdgeSim: A Simulation Framework for Performance Evaluation... 61

provides the highest computing capacity, due to the high use of the backhaul network.

By using the Fog along with the Cloud, the delay has been reduced remarkably.

However, it increases as the number of devices grows. On the other hand, the tasks

completion delay stayed almost stable when using the proposed architecture; despite

their low computing capacity, the use of edge devices has managed to decrease the

average delay regardless of the number of devices to an average of 0.5 seconds.

Fig. 14 shows the average CPU usage of the Fog and edge devices, as well as the

allocated bandwidths using the different architectures. Since all tasks are transferred to

the Cloud when using the Cloud-Only architecture, the backhaul network becomes

overloaded, resulting in the lowest allocated bandwidth, as shown in Fig. 14 (a). This

low bandwidth justifies the high service time depicted in Fig. 13. The use of Fog servers

has managed to double the average allocated bandwidth for each task. However, the Fog

CPU utilization rose dramatically when the number of devices grows (Fig. 14(b)). This

increase will force it to offload their tasks surplus to the Cloud, thus, raising the network

utilization again, as seen in Fig. 14(a).

Thanks to its horizontal scalability, Mist Computing benefits from the rapid growth

of devices. The growth of devices, in this case, means the availability of more resources.

Thus, the workload remains stable regardless of the number of devices, which is

confirmed by Fig. 14(c), where the average CPU usage of edge devices has remained

stable at around 2% when the proposed multi-tier architecture was used. As edge

resources grow, there is less need to offload tasks to the Fog or the remote Cloud,

resulting in low Fog CPU usage, and an increase in allocated bandwidth.

62 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

Fig. 15. A comparison between the different algorithms in terms of service time, energy

consumption, and failure rate

5.2. Evaluating the Orchestration Algorithms

Fig. 15 compares the different algorithms in terms of service time, the power

consumption of battery-powered devices, and tasks failure rate, which are the main

performance criteria. The Fuzzy-Logic algorithm offloads delay-tolerant tasks to the

Cloud when network bandwidth is sufficient, while the other ones are offloaded to the

Fog or edge devices as long as their utilization is low. When the number of devices

grows (the overloaded area that is highlighted in gray in Fig. 15(a)), the Cloud workload

increases. To compensate, this algorithm will offload the excess to the Fog and edge

devices, increasing their utilization and consuming their power. When their CPU

utilization exceeds a certain threshold, the algorithm will switch to the Cloud regardless

of bandwidth, resulting in long service time. This high delay has caused the failure of

many tasks, which justifies the correlation between all these three charts. The ECOOA

has performed better since it aims to minimize delays and energy consumption.

However, because it does not distinguish between tasks, a significant portion of latency-

sensitive tasks were offloaded to the Cloud. As a result, higher tasks failure rate.

Besides avoiding mobile devices, the proposed algorithm avoids battery-powered

devices as much as possible. As a result, the energy consumption of those devices has

been reduced by 79.9% as compared to competitor algorithms (if we exclude the idle

energy consumption highlighted in gray in Fig. 15(b)). Because it avoids those devices,

a considerable number of tasks are offloaded to the Fog (as long as its utilization is low),

reducing the service time by 50.8%, and the failure rate by 60% compared to the closest

competitor algorithm.

Overloaded

region

PureEdgeSim: A Simulation Framework for Performance Evaluation... 63

Fig. 16. The tasks failure reasons (400 devices)

The rates of the tasks that are failed due to mobility and high delays are depicted in

Fig. 16. As opposed to competitor algorithms, the proposed one considers the

heterogeneity of devices and the requirements of their applications. As a result, if a task

is not latency-sensitive, it will be offloaded to the Cloud if available. Otherwise, it will

be offloaded to the Fog or another edge device. However, because mobile devices are

avoided as much as possible, more tasks have been offloaded to the Fog. Hence,

reducing failure due to mobility by 43.2%, and since it has decreased the service time, as

seen in Fig. 15 (a), the failure due to high delays has also been reduced by 69.8%

compared to competitor algorithms.

6. Conclusion and Future Work

Edge and Mist Computing are two emerging computing paradigms that bring Cloud

applications close to IoT devices. As a result, decreasing the latency and leading to a

more scalable network. In such complex systems, the simulation makes it possible to

evaluate the adopted strategy and to analyze its performance before its deployment.

Motivated by this, in this paper, we introduced PureEdgeSim, a simulation toolkit

designed to simulate the Cloud, Edge, and Mist Computing environments and to

evaluate their performances. To demonstrate its effectiveness, a case study was

introduced. We focused on the aspects that can only be simulated using PureEdgeSim,

such as the support for the heterogeneity of devices, support for mobility, the realistic

network model, etc. which reflects the effectiveness of PureEdgeSim and its

extensibility.

64 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

To conclude, Fog servers will only delay the scalability problem rather than resolving

it permanently. They suffer from that same issue as the conventional Cloud, which

requires continuously scaling them up to accommodate the rapid growth of connected

devices. On the other hand, Mist Computing represents a cost-effective alternative that

makes the growth in the number of connected devices in its favor, thanks to its

horizontal scalability. With the appropriate pricing model, the latter could easily help to

overcome the Cloud limitations. However, due to the heterogeneity of IoT devices,

conventional optimization techniques are not sufficient. Other aspects, such as the

mobility of the devices, their residual energy, and the latency sensitivity of its

application, must be taken into account. By considering them, the proposed

orchestration algorithm, which is based on the Fuzzy Decision Tree, outperformed the

state-of-the-art solutions in all aspects of the comparison. It has reduced the tasks failure

rate by 60%, the energy consumption by 79.9%, and service time by 50.8%, thanks to its

set of criteria.

As future work, we are planning to add a pricing model to this simulator and the

support for virtual machines migration as well. By introducing this simulator, we hope

that this modest work encourages the adoption of Mist Computing in the Internet of

Things and enables the development of novel resource management strategies.

Software Availability. The PureEdgeSim simulator and the examples are available for

download at: https://github.com/CharafeddineMechalikh/PureEdgeSim

References

1. Strategy Analytics (2019). Strategy Analytics: Internet of Things Now Numbers 22 Billion

Devices But Where Is The Revenue?.

2. Silva Filho, M. C., Oliveira, R. L., Monteiro, C. C., Inácio, P. R., & Freire, M. M. (2017).

CloudSim plus: a Cloud Computing simulation framework pursuing software engineering

principles for improved modularity, extensibility and correctness. In Integrated Network and

Service Management (IM), 2017 IFIP/IEEE Symposium on (pp. 400-406). IEEE.

3. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A., & Buyya, R. (2011).

CloudSim: a toolkit for modeling and simulation of Cloud Computing environments and

evaluation of resource provisioning algorithms. Software: Practice and experience, 41(1),

23-50.

4. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K., & Buyya, R. (2017). iFogSim: A toolkit for

modeling and simulation of resource management techniques in the Internet of Things, Edge

and Fog Computing environments. Software: Practice and Experience, 47(9), 1275-1296.

5. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012, August). Fog Computing and its role

in the internet of things. In Proceedings of the first edition of the MCC workshop on Mobile

Cloud Computing (pp. 13-16). ACM.

6. Mayer, R., Graser, L., Gupta, H., Saurez, E., & Ramachandran, U. (2017). Emufog:

Extensible and scalable emulation of large-scale fog computing infrastructures. In 2017

IEEE Fog World Congress (FWC) (pp. 1-6). IEEE.

7. Riley, G. F., & Henderson, T. R. (2010). The ns-3 network simulator. In Modeling and tools

for network simulation (pp. 15-34). Springer, Berlin, Heidelberg.

8. Wette, P., Dräxler, M., Schwabe, A., Wallaschek, F., Zahraee, M. H., & Karl, H. (2014).

Maxinet: Distributed emulation of software-defined networks. In 2014 IFIP Networking

Conference (pp. 1-9). IEEE.

PureEdgeSim: A Simulation Framework for Performance Evaluation... 65

9. Sotiriadis, S., Bessis, N., Asimakopoulou, E., Mustafee, N., Towards simulating the internet

of things. 2014 28th International Conference on Advanced Information Networking and

Applications Workshops; 2014; Victoria, Canada.

10. Marín-Tordera, E., Masip-Bruin, X., García-Almiñana, J., Jukan, A., Ren, G. J., & Zhu, J.

(2017). Do we all really know what a Fog node is? Current trends towards an open

definition. Computer Communications, 109, 117-130.

11. Dogo, E. M., Salami, A. F., Aigbavboa, C. O., & Nkonyana, T. (2019). Taking cloud

computing to the extreme edge: A review of mist computing for smart cities and industry 4.0

in Africa. In Edge Computing (pp. 107-132). Springer, Cham.

12. Mtibaa, A., Fahim, A., Harras, K. A., & Ammar, M. H. (2013). Towards resource sharing in

mobile device Clouds: Power balancing across mobile devices. In ACM SIGCOMM

Computer Communication Review (Vol. 43, No. 4, pp. 51-56). ACM.

13. Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). Edgecloudsim: An environment for

performance evaluation of edge computing systems. Transactions on Emerging

Telecommunications Technologies, 29(11), e3493.

14. Chamola, V., et al. (2017). Latency aware mobile task assignment and load balancing for

edge Cloudlets. In Pervasive Computing and Communications Workshops (PerCom

Workshops), 2017 IEEE International Conference on (pp. 587-592). IEEE.

15. Mukherjee, A., et al. (2014). Angels for distributed analytics in iot. In Internet of Things

(WF-IoT), 2014 IEEE World Forum on (pp. 565-570). IEEE.

16. Ai, Y., Peng, M., & Zhang, K. (2018). Edge Computing technologies for Internet of Things:

a primer. Digital Communications and Networks, 4(2), 77-86.

17. Kecskemeti, G., Casale, G., Jha, D. N., Lyon, J., & Ranjan, R. (2017). Modelling and

simulation challenges in internet of things. IEEE Cloud Computing, 4(1), 62-69.

18. Aazam, M., & Huh, E. N. (2015). Fog Computing micro datacenter based dynamic resource

estimation and pricing model for IoT. In Advanced Information Networking and

Applications (AINA), 2015 IEEE 29th International Conference on (pp. 687-694). IEEE.

19. Svorobej, S., Takako Endo, P., Bendechache, M., Filelis-Papadopoulos, C., Giannoutakis,

K. M., Gravvanis, G. A., ... & Lynn, T. (2019). Simulating Fog and Edge Computing

scenarios: An overview and research challenges. Future Internet, 11(3), 55.

20. Varga A, Hornig R. An overview of the OMNeT++ simulation environment. In: Simutools

'08 Proceedings of the 1st International Conference on Simulation Tools and Techniques for

Communications, Networks and Systems & Workshop; 2008; Marseille, France.

21. Zeng, X., Garg, S. K., Strazdins, P., Jayaraman, P. P., Georgakopoulos, D., & Ranjan, R.

(2017). IOTSim: A simulator for analysing IoT applications. Journal of Systems

Architecture, 72, 93-107.

22. Zhao, X., Zhao, L., & Liang, K. (2016). An Energy Consumption Oriented Offloading

Algorithm for Fog Computing. In International Conference on Heterogeneous Networking

for Quality, Reliability, Security and Robustness (pp. 293-301). Springer, Cham

23. Fernández-Caramés, T. M., & Fraga-Lamas, P. (2019). Towards Next Generation Teaching,

Learning, and Context-Aware Applications for Higher Education: A Review on Blockchain,

IoT, Fog and Edge Computing Enabled Smart Campuses and Universities. Applied Sciences,

9(21), 4479.

24. Santoro, D., Zozin, D., Pizzolli, D., De Pellegrini, F., & Cretti, S. (2017). Foggy: a platform

for workload orchestration in a Fog Computing environment. In Cloud Computing

Technology and Science (CloudCom), 2017 IEEE International Conference on (pp. 231-

234). IEEE.

25. Shi, C., Lakafosis, V., Ammar, M. H., & Zegura, E. W. (2012). Serendipity: enabling remote

computing among intermittently connected mobile devices. In Proceedings of the thirteenth

ACM international symposium on Mobile Ad Hoc Networking and Computing (pp. 145-

154). ACM.

66 Charafeddine Mechalikh, Hajer Taktak, and Faouzi Moussa

26. Liyanage, M., Chang, C., & Srirama, S. N. (2018). Adaptive mobile Web server framework

for Mist computing in the Internet of Things. International Journal of Pervasive Computing

and Communications.

27. Weicker, R. P. (1984). Dhrystone: a synthetic systems programming benchmark.

Communications of the ACM, 27(10), 1013-1030.

28. Sonmez, C., Ozgovde, A., & Ersoy, C. (2019). Fuzzy workload orchestration for edge

computing. IEEE Transactions on Network and Service Management, 16(2), 769-782.

29. Yuan, Y., & Shaw, M. J. (1995). Induction of fuzzy decision trees. Fuzzy Sets and systems,

69(2), 125-139.

30. Dong, Z. Y., Zhang, Y., Yip, C., Swift, S., & Beswick, K. (2020). Smart campus: definition,

framework, technologies, and services. IET Smart Cities, 2(1), 43-54.

31. Guo, J., Song, B., He, Y., Yu, F. R., & Sookhak, M. (2017). A survey on compressed

sensing in vehicular infotainment systems. IEEE Communications Surveys & Tutorials,

19(4), 2662-2680.

Charafeddine Mechalikh is a PhD student at the faculty of science of Tunis. He was

born on July 13th, 1993 in Algeria and got his master’s degree in industrial computer

science (2017), from Kasdi Merbah University of Ouargla, Algeria. His PhD project is

about modeling and simulation of IoT-Edge Computing environments, which has been

the subject of this article, and other papers that have been published in well-rated

conferences such as “A Scalable and Adaptive Tasks Orchestration Platform for IoT”

(IWCMC 2019). His area of interests is the Internet of Things, simulation and modeling,

and Edge Computing.

Hajer Taktak is a Doctor that was born on July 26th, 1988 in Tunisia and got a

software Engineering from the national institute of applicate sciences and technologies

(INSAT) in Tunis, Tunisia. She did the final study project in LIRIS laboratory in

France. The project is about A Privacy-aware Execution Model for Data Services. This

latter was the subject of a paper which was published in CAiSE conference. “A

semantic-based method for natively context-aware web services discovery” is the second

paper which was submitted in Mobile Data Management conference. The thesis has

been focused on a common method for both adaptive services and user interfaces. This

research has been published in two international journals and several international

conferences.

Faouzi Moussa is a professor at the faculty of sciences of Tunis, was born in Tunis,

Tunisia. He got a doctoral dissertation from Valenciennes university in France after

getting a master’s degree in computer management. He also obtained an IT clearance in

2005 and wrote many papers on several topics such as human-computer interaction,

context awareness and pervasive computing. He is currently managing a PhD students’

team in the faculty of science of Tunis regarding web services, artificial intelligence,

mobile computing etc. He published many papers in well-rated conferences. Among his

editorials: the journal Towards a Runtime Evolutionary Model of User-Adapted

Interaction, Petri Nets Context Modeling for the Pervasive Human-Computer Interfaces

(CONTEXT, 2013), XML in Formal Specification, Verification and Generation of

Mobile HCI (HCI, 2011) etc. He is also a producer and a radio host.

Received: March 01, 2020; Accepted: August 01, 2020

