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Abstract. Edge and Mist Computing are two emerging paradigms that aim to 

reduce latency and the Cloud workload by bringing its applications close to the 

Internet of Things (IoT) devices. In such complex environments, simulation 

makes it possible to evaluate the adopted strategies before their deployment on a 

real distributed system. However, despite the research advancement in this area, 

simulation tools are lacking, especially in the case of Mist Computing [11], where 

heterogeneous and constrained devices cooperate and share their resources. 

Motivated by this, in this paper, we present PureEdgeSim, a simulation toolkit 

that enables the simulation of Cloud, Edge, and Mist Computing environments 

and the evaluation of the adopted resources management strategies, in terms of 

delays, energy consumption, resources utilization, and tasks success rate. To show 

its capabilities, we introduce a case study, in which we evaluate the different 

architectures, orchestration algorithms, and the impact of offloading criteria. The 

simulation results show the effectiveness of PureEdgeSim in modeling such 

complex and dynamic environments.  

Keywords: Simulation, modeling, tasks orchestration, load balancing, Mist 

Computing, Edge Computing.  

1. Introduction 

With the emergence of IoT, connected devices are gradually invading our daily lives 

with increasingly broad fields of application: personal health equipment, smart 

buildings, smart grids, connected vehicles, etc. A recent study estimates that the number 

of connected devices will exceed 38.6 billion by 2025, with economic benefits in the 

health, energy, transportation, and construction sectors [1]. However, due to this growth, 

Cloud Computing has faced many challenges. Not only has it become unable to support 

the growing number of IoT devices and the data they continually generate, but it is also 

unable, due to its remote location, to meet their quality of service requirements such as 

low latency. To face this, a new paradigm is needed. The latter must provide computing, 

storage, and services like the conventional Cloud and meet the quality of service 

requirements of IoT applications such as low latency, high scalability, and mobility. 
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This need for a new computing paradigm gave birth to Edge and Mist Computing. 

While Edge Computing covers a wide range of applications such as Fog Computing, 

Mobile Edge Computing, and Cloudlets all of which extend the Cloud by providing 

resources in the network layer of the IoT architecture [10, 16], Mist Computing allows 

resources to be harvested through the computation and communication capabilities 

offered in the perception layer [11]. As a result, most of the data generated by these 

devices can be processed locally, which reduces the latency, increases scalability, and 

minimizes energy consumption by saving the energy that would have been used to 

transfer data. However, in these complex and distributed environments, many issues 

need to be solved (e.g., load balancing, application placement, and resource discovery) 

and experimenting on a real distributed environment or testbeds [24] is not practical due 

to the cost and limited scalability.  

The simulation makes it possible to evaluate the performance of the proposed 

approaches in a repeatable and controllable manner before their actual deployment in a 

real distributed system. Nevertheless, due to their heterogeneous, dynamic, and 

distributed nature, the simulation of Edge and Mist Computing environments is not such 

a simple task. Each IoT application (smart cities, connected vehicles, etc.) uses a 

heterogeneous mix of sensing and actuation devices. These devices, connected to 

telecommunication networks, can interact with one another or with computing 

infrastructures in order to compute their tasks. Simulating such environments will, 

therefore, require modeling the network, computation resources, the heterogeneity of 

devices, their behaviors, and the data they generate. Fig. 1 presents the aspects of 

modeling of Edge Computing environments. To model the virtualized resources (e.g., 

CPU, memory, storage), many existing solutions have extended and exploited Cloud 

Computing simulators such as CloudSim [3], which is a rich and highly extensible 

framework that enables the simulation of Cloud resources (virtual machines, hosts, data 

centers) and services. However, since transmission delays are directly proportional to 

the network workload, the use of fixed transmission delays as in these existing 

simulators is not practical, especially when evaluating the scalability of the system. On 

the other hand, the use of network simulators, such as OMNET++ [20] and NS-3 [7], 

allows efficient network modeling. However, users have to define all the other aspects of 

the simulation (Fig. 1) such as load generation, tasks orchestration, mobility model, and 

resources utilization models in order to assess the performance of their solutions, which 

takes a lot of time and effort.  

Motivated by this, in this paper, we present PureEdgeSim, a simulation framework 

that enables the evaluation of resources management strategies and the performance 

evaluation of Cloud, Edge, and Mist Computing environments [11]. It covers all the 

modeling and simulation aspects of Edge Computing that are given in Fig. 1. 

PureEdgeSim offers a modular architecture where each of its modules deals with a 

specific part of the simulation. The Network Module, for example, is responsible for 

data transfer and bandwidth allocation. The Location Manager module deals with the 

geo-distribution of devices and their mobility. The Data Centers Manager module takes 

care of the generation of devices and their heterogeneity. Finally, the Orchestrator 

module, which is responsible for tasks offloading decisions. These modules also provide 

a default implementation and a set of adjustable parameters in order to ease 

experimentation and prototyping. As a result, researchers can quickly implement their 

solutions without wasting time on the specification of low-level details. To demonstrate 
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its capabilities, a case study is introduced, in which we propose a simulation scenario 

that mimics a smart university campus. During this case study, we propose a multi-tier 

architecture that takes advantage of smart edge devices that have sufficient computing 

capacity. To support their heterogeneity and meet the QoS, we present a tasks 

orchestration algorithm that is based on the Fuzzy Decision Tree. The simulation results 

show the effectiveness of PureEdgeSim in modeling such complex, heterogeneous, and 

dynamic environments. They also highlight the advantages of adopting Mist Computing 

and the effectiveness of the proposed algorithm that outperformed the competitor 

algorithms in every aspect of the comparison. 

This paper is organized as follows: In section 2, the related work is presented. 

Section 3 describes PureEdgeSim architecture. In section 4, a use case scenario is 

proposed. The simulation results are assessed in section 5. Finally, section 6 concludes 

the paper and highlights future directions. 

 

Fig. 1. The aspects of modeling Edge and Mist Computing environments 

2. Related Work 

In traditional Cloud Computing, devices at the edge of the network offload their tasks to 

the Cloud for processing them. This task offloading may be necessary for several 

reasons: some devices offload their tasks because of their low computing capabilities, 

devices with capacity-limited batteries must offload their tasks to extend their life, and 

so on.  

Edge and Mist Computing use the same offloading process. Tasks offloading allows 

edge nodes to work cooperatively in order to increase system throughput [18]. In [12], 

the authors proposed a mechanism that offloads tasks between mobile devices to balance 

their power consumption. This mechanism has extended network life by 400%. A 

related system has been developed in [25] called Serendipity. It allows mobile devices to 
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remotely access the resources of other devices to run their applications, which resulted 

in minimizing the local power consumption while reducing the overall tasks completion 

time by 6.6 times. A. Mukherjee et al. [15] have introduced a framework that takes 

advantage of smart devices available at the network edge in order to perform data 

analytics in IoT. To do so, capacity-based partitioning was introduced, where data is 

partitioned according to the capacities of those devices. Although performance has 

decreased when using those devices, the workload of the Cloud has also been reduced, 

which can solve the Cloud scalability challenge. In [22], an energy-sensitive tasks 

offloading algorithm has been proposed. It allows mobile devices to dynamically choose 

the Cloud or the Fog to offload their tasks according to their delay tolerance and power 

consumption. The results show that this approach outperforms Cloud-only and Fog-only 

strategies. In [24], the authors have proposed a platform that orchestrates tasks between 

IoT gateways, Fog servers, and the Cloud, depending on the availability of resources. In 

[14], V. Chamola et al. focused on reducing latency in Mobile Edge Computing, by 

searching for the best Fog node to execute tasks when the nearest node is overloaded. 

This algorithm has achieved a very low latency compared to the traditional scheme that 

only uses the closest Fog node. Always in Mobile Edge Computing, a Fuzzy Logic 

based orchestration algorithm was introduced in [28]. The results show the effectiveness 

of adopting Fuzzy Logic. However, fuzzy logic is not applicable to unknown systems 

that lack information, and setting exact fuzzy rules is a complicated task. Consequently, 

the results may not always be correct and are perceived on the basis of assumptions. 

With the advancement of research in this field, simulation began raising much 

interest, leading to the development of many simulation frameworks such as iFogSim. 

iFogSim is a CloudSim-based simulation framework designed to simulate Fog 

Computing environments [4]. It allows several types of components (sensors, actuators, 

gateways, etc.) to be added and linked to form a topology. Nevertheless, this topology 

remains static, making it lacks mobility support, which is one of the main reasons for 

adopting Fog Computing. Also, simulating large-scale scenarios that involve hundreds 

(if not thousands) of devices will require adding and linking them one by one, which is 

inconvenient, involves a lot of effort, and time-consuming. Moreover, a fixed delay is 

assigned to each link, ignoring the effect of the network load on the transmission delays.  

IoTSim [21] is another simulator that is based on CloudSim. It simulates batch-

oriented IoT applications where data is sent in large amounts to a processing system, 

using a MapReduce large data processing model. SimIoT [9] is a toolkit that simulates 

the communication between IoT devices and the remote Cloud. It allows the 

experimentation of multi-user submission dynamically in the IoT environment. 

Nevertheless, it does not consider the heterogeneity of IoT devices, and their energy 

consumption is ignored. IoT will count more than 38.6 billion devices by 2025 [1]; all of 

them generate data continuously, making energy consumption a major concern. EmuFog 

[6] is an emulation framework for Fog Computing environments. It allows the 

simulation of Docker-based applications. Since EmuFog is based on MaxiNet [8], the 

events of each node (including CPU and memory utilization) are saved in a log. 

However, because it lacks a generic interface, it cannot deal with global metrics, such as 

response delay.  

Finally, EdgeCloudSim [13] is another CloudSim-based simulator for Mobile Edge 

Computing that addresses some iFogSim limitations. It automatically generates the 

required number of edge devices, making it more scalable. It supports mobility to a 
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certain extent, and the network model is more realistic. However, its mobility model is 

over-simplified. It also lacks modeling the power consumption of edge devices, their 

remaining energy, and their death on simulation runtime (i.e., when they run out of 

energy). It cannot execute tasks locally on these devices or offload them to other edge 

devices, limiting its use to Mobile Edge Computing scenarios.  

Although Mist Computing has attracted a lot of interest [12, 15, 22, 25], simulation 

tools are still lacking. To the best of our knowledge, there is no simulator capable of 

modeling Mist Computing environments (Fig. 2), which involves processing data on 

edge devices, modeling their heterogeneity, measuring their energy consumption and 

their resources utilization, etc. Motivated by this, we introduce PureEdgeSim, a 

simulation toolkit that is designed to simulate Cloud, Edge, and Mist Computing 

environments. Thus, enabling the simulation of a multitude of scenarios such as Mobile 

Devices Clouds [12, 25], Mobile Edge Computing [13, 14], and multi-level scenarios 

where different computing paradigms are used simultaneously (such as Foggy [24]).  

 

Fig. 2. The role of Mist Computing on the internet of things [26] 

3. PureEdgeSim Architecture and Design  

PureEdgeSim takes advantage of CloudSim Plus features [2], including the native 

support for the discrete events simulation, that is used during the communication 

between its components. It also leverages its rich and very extensible library that covers 

all the aspects of Cloud Computing from resources (i.e., data centers, hosts, etc.) to 

services (i.e., virtual machine allocation policies, CPU schedulers, etc.) enabling it to 

model computational tasks effectively (the middle layer of Fig. 1). Hence, only a few 

classes were added to model Edge and Mist Computing environments. Therefore, the 
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CloudSim Plus layer is responsible for providing key components that are extended by 

PureEdgeSim (Fig. 3), and it is also behind the interactions of its components.  

3.1. PureEdgeSim Modular Design 

The simulation of Edge and Mist Computing environments allows evaluating the 

adopted resources management strategies before their actual deployment. However, the 

heterogeneity of possible scenarios complicates the task, especially when using a 

simulator such as Omnet++ or NS-3 where the user has to define all the aspects of the 

simulation from the specification of resources, networking, energy,  mobility, etc. which 

requires a lot of time and effort. To cope with it, PureEdgeSim follows a modular 

architecture that consists of seven modules, where each one of them deals with a specific 

Edge Computing modeling issue. To facilitate prototyping and experimentation, each 

module offers a default implementation with a ready to use set of adjustable parameters. 

These modules are: 

  

Fig. 3. PureEdgeSim layered architecture 

Simulation Manager. This module is responsible for initiating and managing the 

simulation environment, scheduling events, and generating the output files. It contains 

three essential classes, the Simulation Manager class, which initializes the simulation 

environment, starts the simulation, and schedules its end. The second class is the 

Simulation Logger. It is responsible for generating the simulation output; it calculates 

the results, shows them at the end of every iteration, and saves them to a comma-

separated value (CSV) format to easily exploit them later. Finally, the Real-Time 

Display class that displays real-time information such as the simulation map and other 

charts (network utilization, CPU utilization, and tasks failure rate). This helps to 

understand the course of the simulation better, and above all, to analyze the proposed 

solution in real-time, especially the mobility model. 
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Data Centers Manager Module. It consists of three classes (Fig. 4): (i) The Edge 

Data Center class that extends the Data Center Simple class of CloudSim Plus to model 

the heterogeneity of edge devices, (ii) the Server Manager that generates the required 

data centers and edge devices, their hosts, and their virtual machines according to the 

configuration files, and finally, (iii) the Energy Model class which is responsible for 

updating their energy consumption.  

 

Fig. 4. The Data Centers Manager classes 

Tasks Generator. PureEdgeSim supports the generally used applications models: the 

sense-process-actuate and the stream-processing models. In the first one, the data 

collected by sensors is sent to computing nodes for processing. The results of the 

processing are then sent back to the actuator to take the necessary actions. The second 

model involves a network of application modules that continuously process the data 

streams generated by sensors. The extracted information is stored for large-scale and 

long-term analysis [4]. 

In PureEdgeSim, the data emitted from sensors and edge devices are modeled as 

tasks. By default, the tasks generator assigns an application such as e-health, 

infotainment, and augmented reality (which can be defined in the applications XML file) 

to edge devices, where each application has its specific characteristics (i.e., data size, 

CPU utilization, latency-sensitivity, etc.). After that, it will generate the tasks of every 

device according to the assigned application type. This module consists of two main 

classes (Fig. 5): The first one is the Task class, which is inherited from the Cloudlet 

Simple class of CloudSim Plus, and the second is the Task Generator. The latter 

generates the tasks that will be offloaded during the simulation.    
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Fig. 5. The Tasks Generator classes 

Location Manager. Geographical distribution and mobility are the main attributes of 

Edge and Mist Computing. Thanks to the geographical distribution of their computing 

nodes [5], they can continue serving mobile devices during their mobility while 

providing the lowest latency. This has spawned a new generation of latency-sensitive 

applications such as connected vehicles. To support such scenarios, this module assigns 

an initial location to each device, and realistically manages their mobility. It contains 

two main classes (Fig. 6): The Location class, which represents the X and Y coordinate 

of the device, and the Mobility class that generates the next location for each mobile 

device.  

 

Fig. 6. The Mobility Manager classes 

The Task Orchestration Module. The generation, capture, and analysis of data will 

be in volumes, variety, and orders of magnitude larger than before. Effective 

implementation of the infrastructure requires several key decisions: mainly how the data 

will be collected and how it will be processed. These decisions are influenced by two 

competing pressures: the use of the infrastructure and the Quality of Service required by 

the end-user [19]. Hence, the simulators must allow the implementation of custom 

resources management techniques in order to enable their wider applicability [17]. 
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Fig. 7. The Tasks Orchestrator classes 

PureEdgeSim allows this through the Tasks Orchestration Module. It consists mainly 

of the Orchestrator (Fig. 7), which represents the decision-maker. Depending on the 

used policy, it decides whether to offload the task or execute it locally and where to 

offload it. Users can quickly implement their orchestration policies (i.e., the tasks 

orchestration algorithm) by extending the Orchestrator class. 

The Network Module. This module addresses the networking layer presented in Fig. 

1. It primarily consists of the Network Model (Fig. 8). Unlike in CloudSim Plus (same 

for CloudSim), where the bandwidth allocated to each virtual machine remains static, 

this network model takes into account the network load at each instant of the simulation. 

When transferring data, at each instant of the transfer (i.e., from the beginning until the 

end), its allocated bandwidth will vary based on the network load at that moment. This 

network model also takes into consideration the bandwidth limit caused by WAN or 

WLAN congestion. As a result, if multiple devices connect to the same WLAN access 

point, the bandwidth allocated to each device decreases. If this allocated bandwidth is 

below that of the WAN, the transfer speed of the data sent to (or received from) the 

Cloud will be limited by the low bandwidth of the WLAN and not by that of the WAN.  

 

Fig. 8. The Network Model classes 

The Scenario Manager Module. Each use case requires a heterogeneous 

combination of devices. The heterogeneity involves the devices mobility, energy source, 

computing capacity, the heterogeneity of applications, and their requirements (e.g., 

latency). Therefore, the simulation framework must be able to support the diversity of 

devices and their different Quality of Service requirements [17, 19]. Besides, Edge 

Computing simulators need to be easily extended with new types of devices and 

applications without modifying their internals [17]. The Scenario Manager module 

guarantees this by loading the simulation parameters and the user scenario from the 

input files. It contains two principal classes, the Simulation Parameters class, which acts 
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as a placeholder for the different parameters, and the Files Parser that loads the user 

scenario and settings from specific configuration files representing the input method. 

3.2.  The Simulation Duration and Realism  

As mentioned previously, PureEdgeSim relies on CloudSim Plus, one of the commonly 

used Cloud Computing simulators that provides a reliable code base for modeling 

computational tasks. To fulfill the remaining simulation requirements (Fig. 1), 

PureEdgeSim offers the most realistic network, energy, and mobility models as 

compared to existing solutions. However, since it is a discrete event simulator, the 

simulation time complexity will depend on the number of events generated at runtime, as 

seen in Fig. 9, where there is a clear correlation between the number of events and the 

duration of the simulation. To reduce simulation time, PureEdgeSim offers a quick and 

full control of the simulation environment through its set of parameters, where users can 

trade-off between simulation realism and duration. Hence, the realism will depend on 

the user settings, especially the update intervals (Table 3). The shorter these intervals, 

the more accurate and realistic the simulation will be, but also, the longer it will take 

(Fig. 9).  

 

Fig. 9. The impact of update interval on the number of generated events and the simulation 

duration 

3.3. Ease of Use and Extensibility 

Simulators can be used to compare the performance of different configurations in order 

to determine the factors that affect performance the most, e.g., the network settings, the 

number of entities used in the simulation, the amount of resources, etc. Treating all these 

variables programmatically is a challenge. To reduce time and effort, each module 



PureEdgeSim: A Simulation Framework for Performance Evaluation...           53 

 

 

provides a default implementation (e.g., the Default Edge Data Center class in the Data 

Centers Manager (Fig. 4), the Default Mobility Model (Fig. 6), etc.). These ready-to-use 

models also offer a fully customizable environment through a multitude of parameters 

and configuration files, allowing users to customize the components behavior without 

changing the original code.  

Extensibility is another essential feature of PureEdgeSim. Even though 

PureEdgeSim uses its pre-built models by default, users can always create and integrate 

their custom models when building their simulation scenarios if any of these default 

implementations do not meet their needs, without having to modify the PureEdgeSim 

code base. 

As a result, the simulation scenario can be quickly built by following these simple 

steps:  

a) The implementation of custom models, if needed.   

b) The definition of Cloud and Edge resources and the application characteristics: 

This can be done by editing the following configuration files that are located 

under the settings/ folder: 

 The Cloud data centers file: In this file, the user defines the Cloud data centers, 

their power consumption rate, describes their hosts (CPU, storage, ram), and 

the virtual machines of each of these hosts. 

 The Edge data centers (i.e., Cloudlets, servers) file: Like the Cloud data centers 

file, this file defines the edge data centers, their specifications, their locations, 

and their energy consumption rates.  

 The edge devices file: Instead of defining the devices one by one (which takes a 

considerable amount of time and effort due to the large number of devices), in 

PureEdgeSim, the user will only define the types of devices and the 

percentage of each one of them. Then, according to this percentage and the 

total number of devices (which is set in the simulation parameters file), the 

Data Centers Manager will generate the devices of each type. To support the 

heterogeneity of devices, PureEdgeSim offers endless possibilities, varying 

from simple sensors (i.e., without any computing capacity) to smartphones, 

laptops, as well as sophisticated servers that run hundreds of virtual machines. 

It can be done by specifying the mobility of the device (i.e., whether the 

devices of this type are mobile), the power source (i.e., if they are battery-

powered), the capacity of the battery in watt-hour if it is battery-powered, the 

power consumption rates in watt-Hour, and the computing capacity in MIPS 

(Million Instructions Per Second). Fig. 10 gives an example of a device type 

(see the laptop type in Table 1).  

 The applications file: This file defines the set of IoT applications that are 

needed by the Tasks Generator (see Table 2). Each application is defined by: 

the usage percentage that represents the proportion of devices running that 

application, the generation rate which is the number of tasks generated per 

minute, its delay tolerance in seconds, the task length which refers to the 

number of its instructions in MI (Million Instructions) and determines its 

execution time, the size in Kbytes of the offloading request, the container 

image, and the returned results. 
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Fig. 10. The edge devices XML file 

c) Setting the simulation parameters: To ease the implementation of simulation 

scenarios, each of the previous modules provides a set of adjustable 

parameters (Table 3), that can be found in the 

simulation_parameters.properties file.  

To demonstrate the capabilities of PureEdgeSim, especially when it comes to the 

simulation of Edge Computing environments and its support for the heterogeneity of 

both edge devices and scenarios, in the next section, we propose a case study. 

4. Application and Case Study 

As proof of concept, in this section, we propose a simulation scenario. We will focus on 

aspects that can only be modeled by PureEdgeSim, such as the support for Mist 

Computing scenarios, network utilization, mobility of devices, and their energy 

consumption. First, we will introduce a tasks orchestration platform. We also propose a 

tasks orchestration algorithm that is based on Fuzzy Decision Tree. Finally, a simulation 

scenario is given by which we evaluate their performance.  

<?xml version="1.0"?> 

<edge_devices>  

      </device> 

  <mobility>false</mobility>  

<speed>0</speed> 

  <battery>true</battery>   

  <percentage>20</percentage>   

  <batteryCapacity>56.2</ batteryCapacity >   

  <idleConsumption>1.7</idleConsumption>  

  <maxConsumption>23.6</maxConsumption>  

  <generateTasks >false</generateTasks >   

  <hosts> 

   <host> 

    <core>8</core> 

    <mips>110000</mips> 

    <ram>8192</ram> 

    <storage>1048576</storage> 

    <VMs> 

     <VM> 

      <core>8</core> 

      <mips>110000</mips> 

      <ram>8192</ram> 

      <storage>1048576</storage> 

     </VM> 

    </VMs> 

   </host> 

  </hosts> 

      </device>  

         ... 

</edge_devices>     
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Fig. 11. The proposed architecture 

4.1. The Tasks Orchestration Platform 

We introduce a multi-tier architecture (Fig. 11). It consists of: The IoT sensors layer, 

that represents the source of data, the smart edge devices layer, the Fog layer, and the 

Cloud one. By relying on close devices equipped with enough computing capacity (PCs, 

smartphones, tablets, smart TVs, etc.), it enables QoS compliance and better scalability. 

While these devices may offer low computing capabilities compared to the Fog or the 

Cloud, their potential lies in their ever-growing number, which is expected to exceed 10 

billion by 2025 (excluding IoT sensors) [1]. Additionally, they can deliver the lowest 

latency and support mobility to some extent, given their massive geographical 

distribution and location (i.e., a hope away from each other). Hence, latency-sensitive 

applications can be placed in these devices, while computationally intensive ones can be 

placed on the Cloud or Fog servers based on their delay tolerance. 

 

Fig. 12. The task offloading flow and the role of the orchestrator 

It consists of the following entities (Fig. 12):  

a) IoT sensors, which are resource-limited devices. They must offload their tasks 

elsewhere for processing. For this purpose, a task offloading request will be sent 
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to the orchestrator. The request provides information about the status of the 

device and its requirements, e. g. application ID (i.e., container ID), data to be 

processed, task latency sensitivity, that are necessary to find the best offloading 

destination. 

b) The application: A piece of software hosted on a container (e.g., Node.js script).  
c) The registry: The repository from where the required application will be pulled.  
d) The resource: The potential destination of the task, where it will be executed.  
e) The orchestrator (i.e., the decision-maker): decides where the task will be 

executed, using a specific orchestration algorithm. This algorithm will also be 
hosted on a container, to facilitate its download, execution, and update.  

f) The inventory (i.e., the list of available resources): When a device joins the 
network, it communicates its meta-data (Fig. 11), including its resources and its 
remaining energy, to the orchestrator. The orchestrator will add this device to its 
inventory. Then, when receiving a task offloading request, it will classify the 
resources (its inventory) to find the one that best suits this task.  

To minimize energy consumption and delays, a decentralized orchestration strategy 

will be used, in which, the orchestrators will be selected using a cluster head selection.  

4.2. The Orchestration Algorithm 

The proposed architecture can guarantee a high quality of service. However, managing 

these heterogeneous resources is not an easy task. Several factors, such as the remaining 

power, resource utilization, and network condition, should be taken into account. These 

dynamic factors can vary unexpectedly. Traditional multi-constraint optimization cannot 

be applied due to insufficient information about the nature of the tasks and arrival times, 

which necessitates an online solution that can adapt to this ever-changing environment. 

To guarantee this, we present a tasks orchestration algorithm that is based on the fuzzy 

decision tree. Fuzzy decision trees combine the advantages of fuzzy logic and decision 

tree, among which are:  it can handle uncertainties without requiring a complex 

mathematical model and support multi-criteria decision processes, its computing 

complexity is low, which is essential for an online decision algorithm, and it requires 

less preparation effort. This algorithm is based on Yuan et al. [29] fuzzy decision tree 

approach, and consists of two stages (Algorithm 1): 

a) The first stage: During this stage, the tasks are classified into Cloud, Fog, or Mist 

tasks based on the following criteria: (i) the task latency-sensitivity: the reason for 

adopting Edge and Mist computing; if a task is tolerant to delay it will be sent to 

the Cloud, otherwise to the Fog or edge devices depending on Fog utilization and 

the device mobility. (ii) Fog resources utilization: Fog servers are not supposed to 

be as powerful as the Cloud; for this reason, they may be overloaded. This may 

lead to high delays, causing the failure of many tasks. In this case, the Cloud can be 

a good alternative if the WAN bandwidth is high enough. (iii) Device mobility: if 

the device offloading the task is mobile, edge devices should be avoided. (iv) 

WAN bandwidth: if it is below a certain threshold, the Cloud should be avoided. 

b) The second stage: If the Cloud or the Fog has been chosen in the first stage, the 

task will be directly offloaded. However, if the choice has been made on edge 

devices, the algorithm will classify them during the second stage to find the most 
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suitable one. This classification will be based on the following criteria: (i) The 

utilization of device resources. (ii) Energy source: battery-powered devices should 

be skipped when possible. (iii) The mobility of both devices: The failure of a task 

due to mobility happens when a device (the one offloading the task or the one 

executing it) relocate before finishing it. Thus, offloading the task to a mobile 

device may cause its failure. This risk of failure becomes even higher when both 

devices are mobile. 

Algorithm 1. The proposed algorithm 

1. procedure findDestination(request, inventory) 

2. type ← fuzzyDecisionTree1.classify (request) 

3. if (type = ‘Cloud’)  

4. offload(offloadingRequest, Cloud) 

5. else if (type = ‘Fog)  

6. offload(offloadingRequest, Fog) 

7. else 

8. maxTruthLevel ←  

9. destination ← null  

10. finestClass ← low 

11. for each resource ∈ inventory do 
12. (class, truthLevel) ← fuzzyDecisionTree2.classify(resource) 

13. if (class > finestClass) //get the optimal destination 

14. finestClass ← class 

15. maxTruthLevel ← truthLevel  

16. selectedDevice ← resource   

17. else if (class = finestClass)  

18. newTruthLevel ← truthLevel 

19. if (maxTruthLevel  or newTruthLevel > maxTruthLevel)  

20. maxTruthLevel ← newTruthLevel 

21. selectedDevice ← resource   

22. end_if 

23. end_if  

24. end_for  

25. offload(request, selectedDevice) 

26. end_if 

27. end 

4.3. The Simulation Scenario  

To demonstrate the capabilities of PureEdgeSim, we introduce a simulation scenario 

that imitates a smart university campus. A smart campus consists of integrating 

information and communication technologies by deploying sensors in several locations 

to get useful information that will be exploited to manage and optimize resources, 

increase energy efficiency, and improve education [23]. In this scenario, students who 

own mobile devices (e.g., smartphones) relocate after a random amount of time. To do 

this, the Default Mobility Model will be used. The area also involves other devices 

(Table 1): simple sensors (e.g., wearables) and non-mobile devices (e.g., laptops and 

gateways).  
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Table 1. The types of Edge devices 

Edge devices types Laptop Smartphone IoT Gateway Sensor 

Mobility No Yes No No 

Speed (meters per second) 0 1.4 0 0 

Battery-powered Yes Yes No No 

Generate tasks No Yes  No Yes 

Percentage of devices (%) 20 30 10 40 

Battery-capacity (Wh) 56.2 18.75 - - 

Idle energy consumption rate (Wh) 1.7 0.078 1.6 0.036 

Max energy consumption rate (Wh) 23.6 3.3 5.1 - 

CPU (GIPS) 70  25 16 - 

CPU Cores 8 8 4 - 

Ram (Gbyte) 8 4 2 - 

Storage (Gbyte) 1024 128 32 - 

The last type refers to simple sensors that do not have sufficient computing capacity 

(only generate data/tasks). The energy consumption rates were measured from the 

following devices under different workloads: a laptop running Windows 10 (Intel® 

processor Core™ i7-8550U), a smartphone running Android 10 (HiSilicon Kirin 710), 

and a Raspberry Pi 3 Model B+ running Raspbian. On the other hand, the CPU values 

are obtained by running a Dhrystone benchmark [27].  

To extend their lives, battery-powered devices should, if possible, offload their tasks, 

while devices with computationally intensive tasks should offload them to minimize 

execution time.  The Proposed multi-tier architecture will be evaluated against: 

1. The Cloud-Only architecture where all the tasks are offloaded to the Cloud. 

2. The widely adopted Fog-and-Cloud architecture: in this case, the tasks can be 

offloaded either to the Cloud or Fog servers.  

The Cloud will be represented by one data center with a total of 4000 GIPS, 

distributed over 16 virtual machines, while the Fog will have a similar data center but 

with lower computing capacity (3200 GIPS), which should be enough for this small 

simulation area.   

To model the different possibilities, four types of applications with different 

characteristics are used (Table 2): (i) A health application: The data generated by 

wearables will not exceed a few kilobytes and will not use significant processing power 

[28]. (ii) An augmented reality application [30]: The data sent is an image, usually about 

1 Mbyte in size.  (iii) Other heavy computing tasks requiring additional computing 

power, e.g., machine learning, may also be included [30]. (iv) An infotainment 

application [31].  

Table 2. The types of applications 

Applications types Health Augmented 

reality 

Computation-

intensive   

Infotainment  

Usage percentage (%) 20 30 20 30 

Generation rate (tasks per minute) 20 20 2 4 

Latency sensitivity  Yes Yes No No 

Task length in Giga Instructions 

(GI) 

1500 5 50 10 

Request size (Kbytes) 20 1500 3000 50 

Results size (Kbytes) 20 50 200 50 
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When offloading the task, the orchestrator will choose the offloading destination 

using one of the following orchestration algorithms: 

1. Proposed: The proposed Fuzzy Decision Tree based algorithm. 

2. ECOOA: The energy-oriented tasks orchestration algorithm [22], which is the 

closest in terms of criteria.  

3. Fuzzy Logic: The Fuzzy Logic based tasks orchestration algorithm [28]. 

The simulation parameters for this scenario are resumed in Table 3. 

Table 3. The simulation parameters 

Parameter Value 

Simulation duration  30 (min) 

Update interval  0.01 (s) 

Min number of Edge devices 100 

Max number of Edge devices  500 

Edge devices counter step size 100 

Edge devices range 10 (meters) 

Simulation area size 200 x 200 (meters) 

Network update interval 0.1 (s) 

WLAN bandwidth 300 (Mbits/s) 

WAN bandwidth 20 (Mbits/s) 

WAN propagation delay 0.2 (s) 

Orchestrators deployment Decentralized. 

Orchestration algorithm Proposed, ECOOA, Fuzzy Logic.  

Architectures Cloud-Only, Fog-and-Cloud, Proposed. 

5. Simulation Results and Discussion 

To demonstrate the effectiveness of PureEdgeSim in modeling Cloud, Edge, and Mist 

computing environments, in this section, the proposed platform will be evaluated against 

existing solutions. Although PureEdgeSim can generate charts automatically, the figures 

presented in this section have been created from the output CSV file using Microsoft 

Excel. This file offers more than 60 different ready-to-use metrics, from which the user 

can also derive others as well. For instance, the network delay in Fig. 13 is obtained by 

dividing the total network utilization by the number of sent tasks. Similarly, the service 

time is the sum of network delay and execution time. During this evaluation, we will 

focus on meaningful metrics that determine the Quality of Service and reflects the 

scalability of the proposed solution, such as the tasks failure rate, energy consumption, 

delays, network usage, and CPU utilization.  
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Fig. 13. Average tasks service time 

 

Fig. 14. A comparison between the different architecture 

5.1. Evaluating the Architectures 

The average service time, which consists of execution time and network delay, is given 

in Fig. 13. The latter is considered an essential factor that has a direct effect on the 

Quality of Service. When using the Cloud-Only architecture in which all the tasks are 

offloaded to the remote Cloud, the service time has been very long, although the Cloud 
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provides the highest computing capacity, due to the high use of the backhaul network. 

By using the Fog along with the Cloud, the delay has been reduced remarkably. 

However, it increases as the number of devices grows. On the other hand, the tasks 

completion delay stayed almost stable when using the proposed architecture; despite 

their low computing capacity, the use of edge devices has managed to decrease the 

average delay regardless of the number of devices to an average of 0.5 seconds. 

Fig. 14 shows the average CPU usage of the Fog and edge devices, as well as the 

allocated bandwidths using the different architectures. Since all tasks are transferred to 

the Cloud when using the Cloud-Only architecture, the backhaul network becomes 

overloaded, resulting in the lowest allocated bandwidth, as shown in Fig. 14 (a). This 

low bandwidth justifies the high service time depicted in Fig. 13. The use of Fog servers 

has managed to double the average allocated bandwidth for each task. However, the Fog 

CPU utilization rose dramatically when the number of devices grows (Fig. 14(b)). This 

increase will force it to offload their tasks surplus to the Cloud, thus, raising the network 

utilization again, as seen in Fig. 14(a).  

Thanks to its horizontal scalability, Mist Computing benefits from the rapid growth 

of devices. The growth of devices, in this case, means the availability of more resources. 

Thus, the workload remains stable regardless of the number of devices, which is 

confirmed by Fig. 14(c), where the average CPU usage of edge devices has remained 

stable at around 2% when the proposed multi-tier architecture was used. As edge 

resources grow, there is less need to offload tasks to the Fog or the remote Cloud, 

resulting in low Fog CPU usage, and an increase in allocated bandwidth. 
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Fig. 15. A comparison between the different algorithms in terms of service time, energy 

consumption, and failure rate 

5.2. Evaluating the Orchestration Algorithms 

Fig. 15 compares the different algorithms in terms of service time, the power 

consumption of battery-powered devices, and tasks failure rate, which are the main 

performance criteria. The Fuzzy-Logic algorithm offloads delay-tolerant tasks to the 

Cloud when network bandwidth is sufficient, while the other ones are offloaded to the 

Fog or edge devices as long as their utilization is low. When the number of devices 

grows (the overloaded area that is highlighted in gray in Fig. 15(a)), the Cloud workload 

increases. To compensate, this algorithm will offload the excess to the Fog and edge 

devices, increasing their utilization and consuming their power. When their CPU 

utilization exceeds a certain threshold, the algorithm will switch to the Cloud regardless 

of bandwidth, resulting in long service time. This high delay has caused the failure of 

many tasks, which justifies the correlation between all these three charts. The ECOOA 

has performed better since it aims to minimize delays and energy consumption. 

However, because it does not distinguish between tasks, a significant portion of latency-

sensitive tasks were offloaded to the Cloud. As a result, higher tasks failure rate. 

Besides avoiding mobile devices, the proposed algorithm avoids battery-powered 

devices as much as possible. As a result, the energy consumption of those devices has 

been reduced by 79.9% as compared to competitor algorithms (if we exclude the idle 

energy consumption highlighted in gray in Fig. 15(b)). Because it avoids those devices, 

a considerable number of tasks are offloaded to the Fog (as long as its utilization is low), 

reducing the service time by 50.8%, and the failure rate by 60% compared to the closest 

competitor algorithm. 

Overloaded 

region 
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Fig. 16. The tasks failure reasons (400 devices) 

The rates of the tasks that are failed due to mobility and high delays are depicted in 

Fig. 16. As opposed to competitor algorithms, the proposed one considers the 

heterogeneity of devices and the requirements of their applications. As a result, if a task 

is not latency-sensitive, it will be offloaded to the Cloud if available. Otherwise, it will 

be offloaded to the Fog or another edge device. However, because mobile devices are 

avoided as much as possible, more tasks have been offloaded to the Fog. Hence, 

reducing failure due to mobility by 43.2%, and since it has decreased the service time, as 

seen in Fig. 15 (a), the failure due to high delays has also been reduced by 69.8% 

compared to competitor algorithms. 

6. Conclusion and Future Work 

Edge and Mist Computing are two emerging computing paradigms that bring Cloud 

applications close to IoT devices. As a result, decreasing the latency and leading to a 

more scalable network. In such complex systems, the simulation makes it possible to 

evaluate the adopted strategy and to analyze its performance before its deployment. 

Motivated by this, in this paper, we introduced PureEdgeSim, a simulation toolkit 

designed to simulate the Cloud, Edge, and Mist Computing environments and to 

evaluate their performances. To demonstrate its effectiveness, a case study was 

introduced. We focused on the aspects that can only be simulated using PureEdgeSim, 

such as the support for the heterogeneity of devices, support for mobility, the realistic 

network model, etc. which reflects the effectiveness of PureEdgeSim and its 

extensibility.  
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To conclude, Fog servers will only delay the scalability problem rather than resolving 

it permanently. They suffer from that same issue as the conventional Cloud, which 

requires continuously scaling them up to accommodate the rapid growth of connected 

devices. On the other hand, Mist Computing represents a cost-effective alternative that 

makes the growth in the number of connected devices in its favor, thanks to its 

horizontal scalability. With the appropriate pricing model, the latter could easily help to 

overcome the Cloud limitations. However, due to the heterogeneity of IoT devices, 

conventional optimization techniques are not sufficient. Other aspects, such as the 

mobility of the devices, their residual energy, and the latency sensitivity of its 

application, must be taken into account. By considering them, the proposed 

orchestration algorithm, which is based on the Fuzzy Decision Tree, outperformed the 

state-of-the-art solutions in all aspects of the comparison. It has reduced the tasks failure 

rate by 60%, the energy consumption by 79.9%, and service time by 50.8%, thanks to its 

set of criteria. 

As future work, we are planning to add a pricing model to this simulator and the 

support for virtual machines migration as well. By introducing this simulator, we hope 

that this modest work encourages the adoption of Mist Computing in the Internet of 

Things and enables the development of novel resource management strategies.   

 

Software Availability. The PureEdgeSim simulator and the examples are available for 

download at: https://github.com/CharafeddineMechalikh/PureEdgeSim 
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