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Abstract. Code clones are frequent in use because they can be created
fast with little effort and expense. Especially for malware writers, it is easier
to create a clone of the original than writing a new malware. According to
the recent Symantec threat reports, Android continues to be the most tar-
geted mobile platform, and the number of new mobile malware clones grew
by 54%. There is a need to develop techniques and tools to stop this attack
of Android malware clones. To stop this attack, we propose DroidClone
that exposes code clones (segments of code that are similar) in Android
applications to help detect malware. DroidClone is the first such effort uses
specific control flow patterns for reducing the effect of obfuscations and de-
tect clones that are syntactically different but semantically similar up to
a threshold. DroidClone is independent of the programming language of
the code clones. When evaluated with real malware and benign Android
applications, DroidClone obtained a detection rate of 94.2% and false pos-
itive rate of 5.6%. DroidClone, when tested against various obfuscations,
was able to successfully provide resistance against all the trivial (Renaming
methods, parameters, and nop insertion, etc) and some non-trivial (Call
graph manipulation and function indirection, etc.) obfuscations.

Keywords: Android, Code Clones, MAIL, Malware Analysis and Detec-
tion, TF-IDF, Machine Learning.

1. Introduction

According to the McAfee threat report [34], number of malware (clones) found
in the Google play increased by 30% in 2017. According to the Symantec [42, 43]
threat reports, Android continues to be the most targeted mobile platform, and
the number of new discovered mobile malware (clones) grew by 54% from 2016
to 2017. Further to this simple attack of clones, there are also Android malware
clones of clones, i.e., clones of a malware family which itself is a clone. For example,
DroidKungFu1, DroidKungFu2, DroidKungFu3 and DroidKungFu4 are 4 different
families of the original Android DroidKungFu malware, and each of these 4 families
have there own clones [47].
? The work presented in this paper is an expansion of the authors’ previously published work
in conference paper [2].
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Malware writers are using stealthy mutations (obfuscations) to continuously
develop malware clones, thwarting detection by signature-based detectors. To pro-
tect Android applications against reverse engineering attacks, even legitimate ap-
plications are obfuscated [15]. Similar techniques are used by malware developers
to prevent analysis and detection. Obfuscation can be used to make the code more
difficult to analyze, or to create clones of the same malware in order to evade
detection.

Code clones are frequent in use because they can be created fast with little
effort and expense. Especially for malware writers, it is easier to create a clone
of the original than writing a new malware. There are different ways to create
code clones, some of them are: when a programmer copies and paste fragment of
code after minor editing; part of a code is embedded (piggybacked) inside another
code/program; when a code is obfuscated to create copies, which are syntactically
different but semantically similar. Finding code clones can be useful for: detecting
malicious software, plagiarism and copyright infringement; bug detection; code
simplification; and code maintainability.

In general, clones are divided into four types [39]. Type-1 (Exact clones): Ex-
act copies of each other except white spaces, blanks and comments, etc. Type-2
(Renamed clones): Similar copies except name of variables, literals, functions, etc.
Type-3 (Near miss clones): Similar except all the above and some added/removed
statements, etc. Type-4 (Semantic clones): Syntactically different but semantically
similar.

There are several researches [9, 10, 16, 18, 22–25, 27–30, 32, 35, 45, 46] that have
focused on code clone detection using different approaches, such as: (1) textual,
based on token [9] and pattern [18] matching, and longest common subsequence
[16]. (2) lexical, based on frequent subsequence mining [30], cosine similarity [46],
and suffix array [35]. (3) syntactical, based on abstract syntax tree (AST) [10,28,
45], hashed blocks [24], and AST to vectors [25]. (4) semantic, based on program
dependence graph (PDG) [23,27,29,32], and serialized AST [22].

Only two [27, 29] of the above approaches claim to detect Type-4 cloning, but
the DR (detection rate) of [29] is low ranging from 17.3% – 45.8% and there is no
DR to report for [27]. These two approaches can only find source code and not
native code clones, and hence is also dependent on the programming language of
the code. Both of them find isomorphic similarity of subgraph PDGs to detect
clones, which is compute-intensive and is not scalable.

Clone detection technique can be improved by combining several different types
of methods or reimplementing systems using a different programming language. It
is hard to determine which is the best tool for detection because every tool has its
strengths and weaknesses. Since text-based and token-based techniques have high
recall and AST-based techniques have high precision, these techniques may be
merged in a tool to get high recall and precision results. A PDG-based technique
detects only Type-3 clones; this technique may be extended to detect Type-1 and
Type-2 clones besides Type-3 clones.

Type-1 and Type-2 clones are easier to detect than Type-3 clones. Sequence
alignment algorithms with gaps may potentially be used to detect Type-3 clones.
To make clone detection independent of the programming language of the clone
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and also combine different techniques in one we use a new intermediate language
MAIL (Malware Analysis Intermediate Language) [3] to improve clone detection.

As mentioned earlier, Android mobile platform is facing an attack of clones.
We need to find ways for detecting and stopping this attack. There are several
researches [5,13,17,20,31,41] that have focused on Android malware clones detec-
tion. [17] uses API call graphs, [41] uses components based API calls to find code
reuse, and [13] uses a text-based near-miss source code clone detector. [5] mines
dominant API calls to find the reuse of malicious modules to detect malware. [31]
captures system calls at thread level to detect malicious clones embedded inside
an Android application and [20] uses SDHash [38] to detect application similarity
for detecting malware. We believe using control flow patterns is a more general
technique for malware analysis and detection than using API call patterns, and it
is difficult for a malware to change control flow patterns than changing API call
patterns of a program, for evading detection.

In this paper, we propose DroidClone as a step towards detecting and stopping
these clones in Android malware. For this purpose, we utilize the new intermediate
language MAIL [3] that helps us use specific control flow patterns to reduce the
effect of obfuscations and unlike [5, 17, 41] can detect malware clones at a much-
refined level that helps detect smaller size clones. Our technique, unlike [13, 20],
can detect malware clones that are syntactically different but semantically similar
up to a certain threshold. A malware writer has to employ an excessive (beyond
a certain threshold, which is difficult to find) control flow obfuscation to create
a clone to evade detection by such an anti-malware. [31] is based on dynamic
analysis, may not cover all the program paths and hence can miss some malicious
behaviors. DroidClone performs static analysis and covers all the program paths.
DroidClone finds clones at a much refined level than [5]. Moreover, DroidClone
can process and analyse Android native code clones.

DroidClone, when tested with 4180 real malware and benign Android appli-
cations using different validation methods, obtained detection rates (DRs) in the
range of 90.3% – 94.2% and false positive rates (FPRs) in the range of 4% – 11%.
DroidClone, when tested against various obfuscations (malware variants), was able
to successfully provide resistance against all the trivial (Renaming methods, pa-
rameters, and nop insertion, etc) and some non-trivial (Call graph manipulation
and function indirection, etc.) obfuscations.

Following are the major contributions of this paper:

– DroidClone is the first such effort that uses a new intermediate language MAIL
for building the signatures to find Android clones for malware detection. We
first build a MAIL CFG (control flow graph) and then extract specific control
flow patterns to reduce the effect of obfuscations and detect code clones that
are syntactically different but semantically similar (i.e., Type-3 and Type-4
clones) up to a threshold. Sometimes malicious code (bytecode or native code)
clone consists of only a few statements, such as setting up a few registers and
a jump to the actual malicious code location. To accommodate such clones,
DroidClone uses MAIL blocks at a statement level, and can detect clones
at a much-refined level (smaller size clones ≥ 3 statements) than other such
techniques.
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– We extend TF-IDF with a new weighting scheme for feature (control flow pat-
terns) selection and improve the clone detection scheme. Moreover, we perform
serialization of a MAIL CFG into strings of specific control flow patterns at
block level, which also improves application matching.

– Most of the Android applications are written in C/C++ and Java. It is neces-
sary to build a cross-platform clone detector for such applications. DroidClone
designs cross-platform signatures for Android at the native code level, and is
able to process, analyse and detect malware cloned as either bytecode or na-
tive code. This makes DroidClone independent of the programming language
of the Android code clone.

– This paper significantly enhances the previous version of DroidClone [2] by:
• updating and enhancing the clone detection scheme;
• using only MAIL blocks for building the signatures, in turn improving
accuracy and also runtime of the overall system;

• improving the feature selection method;
• lowering the false positive rate (8.5% ⇒ 5.6%);
• increasing the Accuracy (91% ⇒ 94.3%);

– We provide cross-validation of DroidClone, using two methods holdout and
n-fold, which is a more systematic way of determining the performance and
accuracy of a system than is provided by most other similar works. We also
test the resistance of DroidClone against various obfuscations.

The remainder of this paper is organized as follows. We discuss related works
in Section 2. We present a detailed overview of our approach, its design and im-
plementation in Section 3. Section 4 presents the evaluation and comparison of
our approach with six other such works. Section 5 finally concludes the paper and
presents some future works.

2. Related Works

A very detailed survey of the research done on code clones is presented in [39]. In
this section, we briefly highlight seven recent research works of finding Android
clones for detecting malware.

Lin et al. [31] propose SCSdroid, which captures thread-grained system call
sequences during runtime to detect malicious clones embedded inside an Android
application. A thread-grained system call sequence is the system calls recorded for
a thread. The authors believe that the malicious behavior happens during a single
thread, so mixing the system calls recorded for a process and for a thread can make
it difficult to identify the malicious behavior. Android applications are usually
multi-threaded, so it is possible to miss some malicious actions that encompass
multiple threads.

Sun et al. [41] propose a technique using CBCFG (component-based control
flow graph). CBCFG is a graph of Android APIs as nodes and their control flow
precedence relationship as edges. These CBCFGs are then used to detect code
reuse in Android repackaged applications and malware variants. The technique
may not be able to detect malware applications that obfuscate by using fake API
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calls, hiding API calls (e.g, using class loading to load an API at runtime), inlining
APIs (e.g, instead of calling an external API, include the complete API code
inside the app), and reflection (i.e, creation of programmatic class instances and/or
method invocation using the literal strings, and a subsequent encryption of the
class/method name can make it impossible for any static analysis to recover the
call).

Deshotels et al [17] use API call graph signatures and machine learning to
identify piggybacked applications. Piggybacking can be used to inject malicious
code into a benign app. First, a signature is generated of a benign application
and used to identify whether another application is a piggyback of this app. This
technique has the same limitations as discussed above regarding detection schemes
based on API calls.

Chen et al. [13] present a technique that uses NiCad [16], a near-miss clone
detector, to detect Android malware. First, they develop signatures from a subset
of malware applications by finding clone classes in these applications and then use
these signatures to find similar malware applications in the rest of the malware
applications. Their clone detector works at the Java source code level and hence is
not able to detect native Android clones. NiCad compares the source code linewise
using an optimized longest common subsequence algorithm to detect similar clones.
This is a good text-based technique, but may not be efficient for detecting malware
clones. For example, it may be defeated just by changing the names of the functions
and variables, and hence may not be able to detect clones that are syntactically
different but semantically similar.

Faruki et al. [20] propose a technique to use the similarity of applications to
detect Android malware. They use SDHash [38], a statistical approach for select-
ing fingerprinting features. Therefore the results in the paper have a better false
positive rate. Although the FPR reported in [20] is low (1.46%), because of the
SDHash technique used, whose main goal is to detect very similar data objects,
the ability to detect malware clones is much lower than the technique proposed in
this paper.

Alam et al. [5] propose a technique that mines the dominant tree of API calls
in an Android application to detect malware. Reused dominant API modules in
an Android application are extracted to find clones. The technique works at the
dominant API level and is more suitable for finding coarse (higher) level clones.
Whereas, DroidClone works at MAIL CFG block level and is more refined.

Kalysch et al. [26] propose a technique based on the centroid of CFGs to
measure the similarity between Android native codes. The centroid approach is
faster than other approaches for matching CFGs. They achieve a DR of 89% and
FPR of 10.8%. Disassembling native code to an intermediate code (e.g., a CFG or
MAIL) is a non-trivial problem. The work presented in [26] processes only native
code libraries and not native code applications. Moreover, they cannot process
Intel x86 and 64 bit ARM native code, because of the limitations of the tools used
for disassembling. Whereas, DroidClone processes both native code libraries and
standalone applications, for both Intel x86 (32 and 64 bit) and ARM (32 and 64
bit) architectures.
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Except [26], none of the other above works can find clones in Android native
code. Some of them, such as [13] and [20] may not be able to detect syntactically
different but semantically similar clones. The technique proposed in [31] is based
on dynamic analysis and hence suffers from the known fact that it does not cover
all the paths of a program, and may miss certain malicious behaviors.

The techniques proposed in [41], [17] and [5] are based on API calls. In general,
changing (obfuscating) control flow patterns is more difficult (i.e, it needs a com-
prehensive change in the program) than changing just API call patterns of a pro-
gram to evade detection. API based techniques look for specific API call patterns
(including call sequences) in Android malware programs for there detection, which
may also be present in Android benign applications that are protected against
reverse engineering attacks. These API call patterns can be packing/unpacking,
calling a remote server for encryption/decryption, dynamic loading, and system
calls, etc.

3. Overview of the System

Figure 1 provides an overview of the DroidClone architecture. Android applications
are present either in bytecode or native code. First, the Android applications in
bytecode are compiled to native code. Then, we use the tool DroidNative [4] to
translate the native code to a MAIL program which is transformed into a CFG,
called MAIL CFG for malware analysis and detection. In the next Sections, we
explain these steps, and why and how MAIL is adapted for analysis and detection
of Android malware code clones.
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Fig. 1. Overview of DroidClone.
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3.1. Android Runtime (ART) and DroidNative
Android applications are distributed in the form of APKs (Android application
packages), and contains code as Android bytecode (in a dex file) and precom-
piled native binaries. The dex (Dalvik Executable Format) [44] files are specific
to Android platform. These dex files were used to run under the Dalvik Virtual
Machine [6] on older Android versions, and are similar to Java class files. Starting
with Android 5.0, dex files are compiled to native binaries before they are installed.
This task is performed by the ART (Android runtime) [7]. ART uses ahead-of-time
(dex2oat) compiler for this purpose, which improves the overall execution efficiency
and reduces the power consumption of an Android application.

In this paper we use DroidNative [4] to translate an Android native binary (x86
and ARM) to a MAIL program. This allows us to build cross-platform signatures,
and process, analyse and detect malware cloned as either bytecode or native code.
DroidNative first uses dex2oat to compile APKs into native code and then translate
the native code to MAIL programs for clone detection.

3.2. Malware Analysis Intermediate Language (MAIL)
Intermediate languages have long been used in compilers to translate the source
code into a form that is easy to optimize and provide portability. We apply the same
concepts to malware analysis and detection. Several intermediate languages [3,12,
14, 19, 40] have been developed for optimized analysis and detection of malware.
The reason for using MAIL in DroidClone is that it has certain advantages over
the other languages [12, 14, 19, 40], such as automating and minimizing the effect
of obfuscations that makes it suitable for finding clones. Moreover, its publicly
available formal model and open-source tools make it easy to use.

There are eight basic statements (e.g., assignment, control and conditional,
etc.) in MAIL that can be used to represent the structural and behavioral infor-
mation of an assembly program. Each statement in a MAIL program is assigned a
type also called a pattern. This pattern can be used for matching to assist in clone
detection.

Patterns for Annotation The MAIL language contains a total of 21 patterns
as shown in Table 1. Each pattern represents the type of a MAIL statement and
can be used for easy comparing and matching of MAIL programs.

To assist in matching, a MAIL program is annotated with these patterns.
In this paper, an annotated MAIL program is used for matching clones to find
malicious code in Android applications. For example, a MAIL jump statement with
a constant value and one without a constant value are two different statements, and
a MAIL jump statement with a reference to the stack and one with no reference
to the stack are two different statements. The MAIL program annotations help
make this distinction.

3.3. Control flow analysis
To evade detection, various obfuscations are implemented to create different types
of clones. To build resistance against various obfuscations and successfully find
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Table 1. Patterns used in MAIL. r0, r1, r2 are the general purpose registers, zf
and cf are the zero and carry flags respectively, and sp is the stack pointer.
Pattern Description
ASSIGN Assignment statement, e.g. r0 = r0 + r1;
ASSIGN_CONSTANT Assignment statement with a constant, e.g. r0 = r0 + 0x1234;

CONTROL
Control statement with unknown jump, e.g. if (zf = 1) JMP [r0 +
r1 + 0x1234];

CONTROL_CONSTANT Control statement with known jump, e.g. if (zf = 1) JMP 0x1234;
CALL Call statement with unknown call, e.g. CALL r2;
CALL_CONSTANT Call statement with known call, e.g. CALL 0x1234;
FLAG Statement with a flag, e.g. cf = 1;

FLAG_STACK
Statement that includes flag with stack, e.g. eflags = [sp = sp –
0x1234];

HALT Halt statement, e.g. halt;
JUMP Jump statement with unknown jump, e.g. JMP [r0 + r2 + 0x1234];
JUMP_CONSTANT Jump statement with known jump, e.g. JMP 0x1234
JUMP_STACK Return jump, e.g. JMP [sp = sp – 0x1234]
LIBCALL Library call, e.g. compare(r0, r2);
LIBCALL_CONSTANT Library call with a constant, e.g. compare(r0, 0x1234);
LOCK Lock statement, e.g. lock;
STACK Stack statement, e.g. r0 = [sp = sp – 0x1];
STACK_CONSTANT Stack statement with a constant, e.g. [sp = sp + 0x2341] = 0x1234;
TEST Test statement, e.g. r0 and r2;
TEST_CONSTANT Test statement with a constant, e.g. r0 and 0x1234;
UNKNOWN Unknown assembly instruction that cannot be translated.

NOTDEFINED
The default pattern, and is assigned to every newly created state-
ment.

clones, we extract control flow patterns in a MAIL program of an Android appli-
cation. For extracting control flow patterns we perform control flow analysis and
build a control flow graph (CFG) [1] of a MAIL program as follows.

Definition 1 A basic block is a sequence of MAIL statements, and there are
no branches except at the entry and exit points. MAIL statements starting a basic
block can be: the first statement; a call to a function or a return statement; a
statement following a branch; and target of a branch or a function call. MAIL
statements ending a basic block can be: the last statement; call to a function; a
return statement; and an unconditional or conditional branch.

Definition 2 Control flow edge is an edge between two basic blocks. A CFG is a
directed graph G = (V, E), where V is a set of basic blocks and E is a set of control
flow edges. The CFG of a MAIL program represents all the paths that can be taken



DroidClone: Android Malware Clones - A Step Towards Stopping Them 75

during program execution. An annotated MAIL CFG is a CFG such that each
statement of the CFG is assigned a MAIL Pattern.

An annotated MAIL CFG is built for each function in a MAIL program. An
example of an annotated MAIL CFG of a function of an Android malware program
is shown in Table 2. For simplification, in the rest of the paper, an annotated MAIL
CFG is just called aMAIL CFG. We describe in the following sections, how a MAIL
CFG is used at a block level for matching clones to find malicious code in Android
applications.

3.4. Preprocessing and Feature Extraction

This Section describes how a MAIL CFG on a block-level is serialized to a string
for efficient matching. A MAIL CFG (program) consists of functions. The end of a
function is tagged with the symbol EOF. In a MAIL CFG, a block starts with the
tag START and ends with the tag END. All the MAIL statements inside these two
tags become part of the block. Table 2 shows one of the CFG’s for one portion of
a MAIL program (a malware), and contains 1 function and 4 blocks. These blocks
are parsed using MAIL patterns into block strings as follows:

Table 2. An annotated MAIL CFG (control flow graph) of a function of an
Android malware program.

Num Offset MAIL Statement Pattern Block Jump To

0 19018 r12 = sp - #8192; start_function_0 [ ASSIGN_C] START
1 1901c r12 = [r12, #0]; [ ASSIGN_C]
2 19020 [sp=sp+0x1] = r7;[sp=sp+0x1] = lr; [ STACK]
3 19024 sp = sp - #16; [ STACK]
4 19026 r7 = r0; [ ASSIGN]
5 19028 [sp, #0] = r0;sp = sp - 0x1 [ STACK]
6 1902a r5 = r1; [ ASSIGN]
7 1902c r6 = r2; [ ASSIGN]
8 1902e [r5, #8] = r6; [ ASSIGN_C]
9 19030 if (r6 == 0 jmp 0x1903a); [ CONTROL_C] END 1903a

10 19032 r2 = [r9, #120]; [ ASSIGN_C] START
11 19036 r3 = r5 >> #7; [ ASSIGN_C]
12 19038 [r2, r3] = r2; [ ASSIGN] END
13 1903a lr = #12401; [ ASSIGN_C] START
14 1903e lr = #29198; [ ASSIGN_C]
15 19042 r0 = #13152; [ ASSIGN_C]
16 19046 r0 = #28596; [ ASSIGN_C]
17 1904a r1 = r5; [ ASSIGN]
18 1904c jmp lr; [ JUMP] END
19 1904e sp = sp + 20; [ ASSIGN_C] START
20 1904f r6 = [sp=sp-0x1];pc = [sp=sp-0x1]; [ JUMP_S] END EOF
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block 1: ACACSSASAAACCC, block 2: ACACA,
block 3: ACACACACAJ and block 4: ACJS
where: ASSIGN ⇒ A, ASSIGN_C ⇒ AC, JUMP ⇒ J, JUMP_S⇒ JS,
CONTROL_C ⇒ CC, STACK ⇒ S

Each block in a MAIL CFG (program), in addition to the above string, is also
assigned an initial weight, i.e., the number of times (frequency) it appears in the
MAIL CFG. After these initial assignments, we select features and assign the final
weight to each block and then build the database of MAIL block signatures for
malware detection.

With these initial assignments to each block in a MAIL CFG, in the next two
Sections, we describe how features are selected and the final MAIL block signa-
tures are build from a dataset of malware and benign samples, for malware/clone
detection.

3.5. Feature Selection

Term Frequency and Inverse Document Frequency (TF-IDF) [33] is widely used,
and often considered as an empirical method, in data mining to separate/select
relevant features in a set of documents/samples. TF-IDF is used as the amount
of information of a term weighted by its occurrence of probability. This Section
describes how we adapt TF-IDF weighting method to assign the final weight to a
MAIL block, and how this weight is used to select features (MAIL blocks) from a
MAIL program.

Let P = {p1, p2, p3, ..., pN} denote the N MAIL programs (preprocessed, as
described in the above Section) in a dataset of either malware or binary samples,
and p = {b1, b2, b3, ..., bn}, where n is the total number of MAIL blocks in program
(sample) p. We define the TF and IDF of a MAIL block bi ∈ p as follows:

TFi = fi

n
and IDFi = log

(
N

Mi

)
where, fi is the number of times (frequency) bi appears in a MAIL program p; and
Mi is the number of all the MAIL programs with bi in it.

Based on these definitions, we formulate our weight assigning approach to the
MAIL block bi as follows:

Wi = TFi × IDFi (1)

We only keep bi, if Si ≥ 3 and Wi ≥ 0.5, where Si is the number of statements
in bi. These minimum values of Si and Wi are computed empirically.

3.6. Signatures of MAIL blocks

We define signature of a MAIL block bi ∈ p, in the vector space, as si = {Sigi, Wi},
where Sigi represents the MAIL statements in the block as a string of MAIL
patterns, as described in Section 3.4.
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As an example, for the MAIL CFG shown in Table 2, the following vector is
generated: {ACACSSASAAACCC:1.58, ACACA:6.28, ACACACACAJ:4.04 and
ACJS:15.35}. There are 4 blocks in this MAIL program and are also found in
other portions of the same program (not shown here). 1.58, 6.28, 4.04 and 15.35
are the weights assigned, as defined in equation (1), to each block with respect
to the block frequency in the whole MAIL program. Only blocks with 3 or more
statements are used for generating the signature. The last block in this MAIL
program is discarded because it contains only 2 statements. As we can see, this
last block contains a typical epilogue of an assembly program, which is not essential
for malware analysis and detection.

After building the signature of a MAIL block, the final signature of a MAIL
program p is build as: Mp = {s1, s2, s3, ..., sn}. We take the common block signa-
tures among MAIL programs out, and build our database of signatures as follows:

V =
N⋃

p=0
Mp (2)

We build signatures’ database of both malware (Vm) and benign (Vb) MAIL
programs separately using equation (2). To further improve feature selection, we
take malware block signatures (Vm) that are common in benign (Vb) out, and build
the final database of malware block signatures (MBS) as follows:

MBS = {x | x ∈ Vm ∧ x 6∈ Vb} (3)

3.7. Malware/Clone Detection
Figure 2 gives an overview of how malware/clone detection is carried out in Droid-
Clone. For malware/clone detection we process a new sample as described in Sec-
tion 3.4. At this time signature of the new sample contains all its block strings
and there respective initial frequencies. After this, a similarity score is computed
for the new sample as follows:

SimScore = (

n∑
i=0

xi

N
× 100)× (

n∑
i=0

yi

n
× 100) (4)

where, n is the total number of blocks in the new sample; N is the total number
of blocks in MBS; xi is the similarity value of the ith block (bi) in the new sample;
and xi and yi are computed as follows:

xi =
{

fi ×Wi bi ∈MBS

0 otherwise
and yi =

{
1 bi ∈MBS

0 otherwise

where fi is the initial frequency (Section 3.4) and Wi is the final weight (Equa-
tion (1)) of bi.

A SimScore is assigned to each sample in the dataset using equation (4). The
samples with there SimScore values are used for training a classifier for malware
detection/classification. A new sample is tagged as malware if SimScore of the
sample is ≥ a certain threshold.
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Fig. 2. Overview of malware/clone detection in DroidClone.

4. Experimental Evaluation

We carried out an empirical study to analyse the correctness and efficiency of
our approach. We carried out two experiments, each using a different validation
technique. In the first experiment, we used the holdout cross-validation and in the
second experiment, we used n-fold cross-validation. We present in this section the
dataset, evaluation metrics, the empirical study (the two experiments), obtained
results and analysis. We also present the results of DroidClone resistance test
against various obfuscations.

4.1. Dataset

Our dataset for the experiments consists of 4180 Android applications. Of these,
2050 are real Android malware programs collected from three different resources
[8, 36, 47], and the other 2130 are benign programs containing applications down-
loaded from Google Play, Android 5.0 system programs, and shared libraries. Ta-
bles 3 and 4 shows distribution of the 2130 benign and 2050 malware samples
respectively. The dataset also includes 284 Android malware variants. We picked
32 samples from the Miscellaneous class of malware families to generate 9 different
classes of malware variants using the obfuscation techniques listed in Table 8. The
purpose of generating these variants were to test DroidClone against various ob-
fuscation techniques. These variants were also included in the other two validation
tests (Sections 4.5 and 4.6).
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Table 3. Distribution (native code or byte-code) of the 2130 Android benign
samples

Code type Number of samples
Byte code 1830
Native code 300

Partitioning of the dataset for different experiments, including threshold com-
putation, holdout cross-validation, and n-fold cross-validation is shown in Table
5.

The benign dataset includes both native code (executables and libraries) and
byte code. Some of the benign native code applications are: atrace – captures
kernel events; bugreport – reports stack traces and diagnostic information etc; and
bmgr – backup manager.

The malware dataset shows a variety of samples from different families and
includes both native and byte code. The 15 native code malware are standalone
applications and the other 4 are libraries. Some of the malware native code appli-
cations are: asroot – A root exploit and an ELF32 ARM executable file detected
by 31 anti-malware programs on virustotal.com, such as Kaspersky, McAfee, and
Sophos, etc. droidpak – A PE32 Intel x86 executable file detected by 50 anti-
malware programs on virustotal.com. It spreads to Windows PC from an infected
Android phone. Some of its malicious features of the Android version include send-
ing, uploading and deleting SMS messages, and uploading contacts and location,
etc. Most of the Android byte code malware classes are piggybacked applications
(ADRD, all of the DroidKungFu families, DroidDream, DroidDreamLight, Gein-
imi, JSMSHider, and Pjapps). GoldDream, YZHC and most of the malware in the
Miscellaneous class are standalone malware applications. DREBIN also contains
both piggybacked and standalone malware applications, such as GingerMaster and
FakeInstaller families of malware.

4.2. Test Platform

All experiments were run on an Intel® Core(TM) i-7-4510U CPU @ 2.00 GHz with
8 GB of RAM, running Windows 8.1. The ART compiler [7], cross built on the
above machine, was used to compile Android applications (malware and benign)
to native code.

4.3. Metrics

Before performing the evaluation, we first define our metrics. DR (Detection
Rate), also called the true positive rate, corresponds to the percentage of samples
correctly recognized as malware out of the total malware dataset. FPR (False
Positive Rate) corresponds to the percentage of samples incorrectly recognized as
malware out of the total benign dataset. Accuracy is the fraction of samples,
including malware and benign, that are correctly detected as either malware or
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Table 4. Class distribution of the 2050 Android malware samples. The first 19
(upto DroidPak in the left column) are Android native code (ARM and Intel
x86) malware. The rest of the 2031 are Android byte code malware.
Class/family Number of samples Class/family Number of samples
Asroot 3 DroidDream 16
CarrierIQ 8 DroidDreamLight 46
ChathookPtrace 2 DroidKungFu1 35
Cuttherope 1 DroidKungFu2 30
DroidPak 5 DroidKungFu3 310
ADRD 21 DroidKungFu4 95
Airpush 11 Geinimi 68
Appinventor 17 GoldDream 45
AnserverBot 186 JSMSHider 15
BaseBridge 120 KMin 50
Coinkrypt 3 Pjapps 75
DREBIN 494 YZHC 22
DroidChameleonVariants 284 Miscellaneous1 88

1 Includes Android malware samples, AntiObamaScan, DeathRing, FakeDefender,
FakeJobOffer, FakeNotify, FakeTimer, FBIRansomLocker, RansomCollection,
VoiceChange, and WindSeeker, etc.

benign. ROC (Receiver Operating Characteristic) curve is a graphical plot used
to depict the performance of a binary classifier. AUC (Area Under the ROC
Curve) [21] is equal to the probability that a detector/classifier will correctly clas-
sify a sample.

4.4. Threshold Computation

If the SimScore of a sample is ≥ a certain threshold the sample is detected as
malware. That threshold must be determined experimentally. In order to compute
the threshold, we separated out 3344 samples, including 1640 malware and 1704
benign. To optimize the results and pick the best threshold automatically we used
a RandomTree classifier. During this testing, we perform 10 iterations, each time
with a different 334 samples in the testing set and the remaining 3010 samples
in the training set. RandomTree built a Decision Tree of size 825 nodes for this
dataset, every time, i.e., at each decision node, picking a different SimScore ranging
from ∼0 to ∼200, same as the range of the SimScore of the 1704 benign samples.
Our priority is the DR, therefore at the end of this experiment, a threshold of
15 was picked based on the best DR results. This threshold was then used in the
holdout cross-validation of DroidClone in Section 4.5.
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Table 5. Partitioning of the dataset (total 4180 samples ⇒ 2130 benign and
2050 malware ) for different experiments.

Experiment Total number of samples
(benign/malware) Training samples Testing samples

Threshold computation 33441 (1704/1640) 3010 334

Holdout cross validation 4180 (2130/2050) 33441 836

N-fold cross validation 4050 (2025/2025) 36452 4052

1 Only the training data was used for computing the threshold.
2 In this experiment we perform 10 (N = 10) iterations, each time with a different 405
samples in the testing set and the remaining 3645 samples in the training set.

Distribution of the 2025 benign and 2025 malware samples (used in n-fold
cross-validation) based on their SimScore along with the computed threshold is
shown in Figure 3. This distribution of 4050 samples contains 836 samples that
were not used to compute the threshold.
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Fig. 3. Distribution of the 2025 malware and 2025 benign samples based on
there SimScore as defined in equation (4). The threshold of 15 plotted here is
computed by RandomTree algorithm (classifier) as explained in Section 4.4.
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4.5. Holdout Cross Validation

After selecting the threshold, we carried out the holdout validation using our
dataset of 4180 samples. In this method, we randomly divided the data into two
parts. The larger part was used for training and the smaller part was used for test-
ing. To keep the training set separate from the testing set, for the larger part we
used the same dataset, i.e., the 3344 samples (1704 benign and 1640 malware sam-
ples), as used in Section 4.4 to compute the threshold. The smaller part consisted
of a total of 836 samples, out of which 426 were benign and 410 malware.

Using the threshold of 15, we carried out the holdout validation experiment as
follows.

First, we built the MBS database of the 3344 training samples (already labeled
as malware or benign) using equation (3). Then we computed SimScore for each
of the 836 testing samples (not yet labeled, i.e., unknown) using equation (4).
Computing SimScore for each of the testing samples depends on theMBS database
as explained in Section 3.7. If the SimScore of a testing sample was ≥ 15, it was
tagged/labeled as malware otherwise benign.

The results of this experiment, in the form of a confusion matrix, are shown in
Table 6. Based on these results we compute DR, FPR and Accuracy of DroidClone
as follows:

DR = 386
410 × 100 = 94.2%

FPR = 24
426 × 100 = 5.6%

Accuracy = 386 + 402
836 × 100 = 94.3%

Table 6. Results (Confusion Matrix) of DroidClone using the holdout validation
method.

Malware Benign

Malware 386 24

Benign 24 402

From the confusion matrix shown in Table 6, 24 samples were falsely detected
as benign and also 24 were falsely detected as malware, and hence DroidClone was
able to achieve a DR of 94.2% and an FPR of 5.6% with an accuracy of 94.3%.
Almost the same results are achieved by the majority of the classifiers during
10-fold cross-validation, as shown in Table 7.
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4.6. N-fold Cross Validation

We also use n-fold cross-validation to evaluate the performance of our technique. In
n-fold cross-validation, the dataset is divided randomly into n equal size subsets.
n – 1 sets are used for training, and the remaining set is used for testing. The
cross-validation process is then repeated n times, with each of the n subsets used
exactly once for validation. The purpose of this cross-validation is to produce
very systematic and accurate testing results, to limit problems such as overfitting,
and to give an insight on how the technique will generalize to an independent
(unknown) dataset.

To evaluate the performance of our proposed technique, we trained multiple
classifiers using the following machine learning algorithms: BayesNetwork: Based
on the Bayesian theorem; BFTree: Best first decision tree; NBTree: Hybrid of
decision tree and NaiveBayes classifiers; RandomForest: Forest of random trees;
RandomTree: A decision tree built on a random subset of columns; and REPTree:
Regression tree representative.

The results of 10-fold cross-validation with these classifiers are shown in Table
7.

Table 7. Results of DroidClone using 10-fold cross validation with six different
classifiers.

Classifier DR FPR Accuracy AUC

BayesNetwork 94.2% 0.11 91.3% 0.975

RandomForest 93.1% 0.07 92.8% 0.969

RandomTree 93.1% 0.07 92.8% 0.917

NBTree 93.1% 0.10 91.2% 0.973

REPTree 90.6% 0.04 92.8% 0.969

BFTree 90.3% 0.04 92.9% 0.943

DroidClone successfully achieved DR ≥ 90.3% with all the classifiers. Highest
DR reached by DroidClone is 94.2% with BayesNetwork. The highest AUC 97.5%
reached is also with BayesNetwork. The range of FPR attained by DroidClone
with the six classifiers is from 4% – 11%. The lowest FPR reached by DroidClone
is with NBTree.

DroidClone reached similar results during n-fold cross-validation with four of
the classifiers, as was attained with the holdout validation method in Section 4.5.

4.7. Resistance against Obfuscation

We also tested the resistance of DroidClone against various obfuscations. For
this purpose, we used the 284 Android malware variants generated by Droid-
Chameleon [37] as part of our dataset. The purpose of this experiment is to only
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check the resistance of DroidClone against various obfuscations and to make this
a fair experiment, we took out those malware variants whose original sample was
not detected as malware by DroidClone. Therefore, out of 284, we selected 273
malware variants for this experiment.

We trained DroidClone with the original 28 Android malware and 28 benign
samples, and tested with the 273 Android malware variants. Out of the 273 mal-
ware variants DroidClone was able to successfully classify 247. The description of
different Android bytecode obfuscations implemented to test the DroidClone and
the results obtained are shown in Table 8.

Table 8. Description of different Android bytecode obfuscations implemented to
test the resistance of DroidClone against various obfuscations.
Obfuscation Description Type of clone DR

ICI Manipulating call graph of the application. Type 4 31/31 = 100%
IFI Hiding function calls through indirection. Type 4 30/30 = 100%

JNK
Inserting non-trivial junk code, including
sophisticated sequences and branches that
change the control flow of a program.

Type 3 & 4 15/28 = 53.6%

NOP Inserting No operation instruction. Type 1 & 3 32/32 = 100%

RDI
Removing debug information, such as
source file names, local and parameter vari-
able names, etc.

Type 2 31/31 = 100%

REO

Reordering the instructions and inserts
non-trivial goto statements to preserve the
execution sequence of the program. Insert-
ing goto statements changes the control
flow of a program.

Type 3 & 4 17/29 = 58.6%

REV

Reverse ordering the instructions and in-
serting trivial goto statements to preserve
the execution sequence of the program.
Hence changing the control flow of a pro-
gram.

Type 3 & 4 29/30 = 96.7%

RNF Renaming fields, such as packages, vari-
ables and parameters, etc. Type 2 31/31 = 100%

RNM Renaming methods. Type 2 31/31 = 100%

The results shown in Table 8 demonstrate that DroidClone successfully pro-
vides resistance to all the trivial (Type 1, 2 & 3 clones) and some non-trivial
obfuscations (Type 3 & 4 clones). Type 3 clones can be created by using trivial
and non-trivial obfuscations. For example, it depends on the complexity of the
reordering of the statements carried out while creating the clone.

This experiment also highlights the limitations of DroidClone. Whenever there
is a significant change in the control flow of a program it becomes difficult for
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DroidClone to generate a matching signature, and hence it fails to detect the
similarity. The obfuscation technique JNK, for example, not only adds trivial but
also some non-trivial junk code, such as sophisticated sequences and jumps. This
makes a significant change in the control flow of a program and making it difficult
to detect the malware program based on control flow patterns. To improve this
shortcoming, in the future we will add other patterns, such as call flow, etc., to
DroidClone.

4.8. Comparison with Other Researches

Table 9 shows a comparison of DroidClone with other malware detection tech-
niques discussed in Section 2. The reasons for including these works are: (1) all of
them are using the similarity/cloning of Android applications to detect malware;
(2) have used machine learning to improve the performance and reported at least
the DR obtained; (3) have used almost similar kind of Android applications for
training and testing as used in this paper.

Table 9. Comparison of DroidClone with other malware detection techniques
discussed in Section 2

Technique DR FPR Dataset size

Benign / malware

DroidClone 1 94.2% 5.6% 2130 / 2050

SCSdroid [31] 97.9% 2% 100 / 49

DroidSim [41] 2 96.6% NA 3 0 / 706

DomTree [5] 94.3% 4% 150 / 200

NiCad [13] 2 94.5% 81% 4 473 / 1170

DroidLegacy [17] 92.7% 21% 48 / 1052

AndroSimilar [20] 76.5% 2% 21,132 / 3309
1 The results of DroidClone reported here are obtained with Naive-
Bayes classifier.

2 No n-fold cross validation was used to evaluate the technique.
3 The technique was only evaluated with malware samples (no benign
samples). Therefore, there is no FPR to report.

4 For an equitable comparison, FPR of the Type-3 clone detector is
reported here.

Out of the six techniques compared, DroidClone obtained a DR ∼≥ to four of
them. Only SCSdroid and DroidSim have a better DR. SCSdroid is tested with only
49 malware and 100 benign samples, whereas DroidClone is tested with a much
greater number of samples. DroidSim is not tested with benign samples. SCSdroid,
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DomTree, and AndroSimilar achieved a lower FPR than DroidClone. Like SCS-
droid, the number of samples used by DomTree is much lower than DroidClone.
Although the FPR of AndroSimilar is low because of the SDHash technique [38]
used, whose main criteria is to detect closely similar data objects, the ability to
detect malware clones is much lower than DroidClone.

Like DroidClone, DomTree [5] also adapts TF-IDF [33] to improve feature se-
lection. DomTree is the closest technique to DroidClone. Therefore, here we present
some of the major differences between the two techniques: (1) DomTree does not
provide native code malware analysis, and is not independent of the program-
ming language of the code clone. (2) The similarity of two Android applications
in DroidClone is based on the initial frequency and final weight of a MAIL block,
whereas in DomTree it is only based on the presence of a dominant API module.
(3) DomTree works at the dominant API level and is more suitable for finding
coarse level clones. Whereas, DroidClone works at MAIL CFG block (statement)
level and is more refined, and can detect clones of smaller size ≥ 3 statements.

Unlike the six works compared here DroidClone: uses an intermediate language
MAIL to find Android malware clones; it is cross-platform, i.e., independent of the
programming language of the Android code clone; can detect clones at a much-
refined level; and achieves a DR better or comparable to others.

4.9. Malware Family Classification

The main purpose of the technique proposed in this paper is for binary classifica-
tion, i.e., only two classes, malware and benign, and has been successfully used for
this purpose. Because of the ability of DroidClone to detect clones we wanted to
test if it can classify families of malware, i.e., grouping the samples into there re-
spective families. DroidClone malware detection is based only on the SimScore of
an Android application. It is difficult to find patterns specific to each family/class
of malware just based on their SimScore values.

We carried out another experiment, with only selected malware families from
the dataset, to test the potential of our proposed technique for predicting the
family of a malware sample-based only on its SimScore. For this purpose, during
training, we separated these classes into their respective SimScore groups. For
example, KMin was in the 288 – 298 and JSMSHider in the 41 – 47 SimScore
group. We have successfully used DroidClone for binary (two classes ⇒ benign
and malware) classification in Sections 4.5 and 4.6. Therefore, we used a variation
of one-versus-all technique [11], which helps build a multiclass classifier from a
binary classifier. A binary classifier was built for each class, that predicted the
current class based on its SimScore group, i.e., if SimScore of a sample is in the
current class group then it is predicted as positive and all the other samples are
predicted as negative. This process was repeated for each class.

Our dataset for this experiment included a total of 197 malware samples from
11 different classes/families. All these samples have successfully been detected in
Section 4.5 by DroidClone as malware. The results of these classifications into
respective families are shown in Table 10. The results show that DroidClone was
able to successfully separate (classify) most of the malware samples into their
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families based only on their SimScore, however, the results are not as accurate as
general malware classification.

To get good results, in multiclass (in our case 11 classes) classification the
input, e.g., the SimScore of the input sample, should belong to exactly one class
out of the 11 classes and not two (benign and malware). It is just like mapping
the SimScore values from 2 dimensions to 11 dimensions. The accuracy is lower
because it is difficult to find such mapping successfully just based on the SimScore
values. One-versus-all technique may not always work, as some classes were not
predicted accurately by the single binary classifier build for each class.

Table 10. Prediction of some of the selected families of the malware samples.

Malware Family DR

Appinventor 6/6 = 100%

YZHC 6/6 = 100%

DroidDream 3/3 = 100%

AnserverBot 71/72 = 98.6%

KMin 12/13 = 92.3%

DroidKungFu4 19/21 = 90.5%

DroidKungFu3 37/46 = 80.4%

DroidKungFu2 4/5 = 80%

ADRD 4/5 = 80%

DroidKungFu1 9/12 = 75%

JSMSHider 6/8 = 75%

In the future, we would like to improve this classification by taking into account
and combining other features (such as permissions, API and system calls, etc.) with
a strong correlation for predicting the family (specific class) of a malware program.
We would also like to work on selecting and using some of the parameters, that
have been used in this paper to calculate the similarity score (SimScore) of a
program sample, as a set of features to improve family classification.

4.10. Limitations

DroidClone is based on static analysis of a sample, therefore it requires that the
malicious code be available for static analysis. If an Android application contains
compressed or encrypted code or requires to download malicious code upon initial
execution (dynamic code loading), then the sample will not be correctly analysed
by the system. If an Android application dynamically (while executing) link a
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third party library, which is not included in the application, then the library will
not be processed by DroidClone.

DroidClone excels at detecting clone of a malware that has been previously
known, but will only detect an unknown (zero-day) clone of a malware, if its
control structure is similar, up to a threshold, to an existing malware sample in
the training database.

If a clone of a malware is created, by obfuscating a statement in a basic block,
in such a way that changes its MAIL pattern (e.g., control flow patterns) beyond
a certain percentage (threshold), then DroidClone may not be able to detect such
an obfuscated clone.

5. Conclusion

Android mobile platform is facing an attack of clones. In this paper, we propose
DroidClone as a step towards detecting and stopping these clones in Android mal-
ware. DroidClone uses a new language MAIL to expose control flow patterns in
a program, which helps in finding clones that are semantically similar up to a
threshold. DroidClone is independent of the programming language of the code
clones, as it builds cross-platform signatures. When evaluated with real malware
and benign Android applications, DroidClone obtained a detection rate of 94.2%
and false positive rate of 5.6%. DroidClone, when tested against various obfusca-
tions, was able to successfully provide resistance against all the trivial and some
non-trivial obfuscations.

The research carried out in this paper is just one step towards detecting and
stopping Android malware clones. Some of the other works that need to be done
in the future are: combining the static analysis performed in this paper with dy-
namic analysis to detect compressed, encrypted and dynamic loaded code clones;
combining control flow patterns of MAIL with other structural features of Android
applications to improve clone detection.

In the near future we will further improve the performance of DroidClone by
combining the SimScore with other features, such as permissions, API and system
calls, etc. We would also like to adapt the technique proposed in this paper for
multiple (into families) classification by combining it with other such techniques.
Different parameters were used to calculate the similarity score (SimScore) of
a program sample. In the future, we would select some of these parameters as
features to improve the family classification of DroidClone. When a significant
change is made in the control flow of a program, it becomes difficult to detect the
malware program based on control flow patterns. To improve this shortcoming in
DroidClone, in the future we will add other patterns, such as call flow, etc.
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