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Abstract. Convexity is one of the most important geometric properties of sets and
a useful concept in many fields of mathematics, like optimization. As there are
also important applications making use of fuzzy optimization, it is obvious that the
studies of convexity are also frequent. In this paper we have extended the notion
of convexity for hesitant fuzzy sets in order to fulfill some necessary properties.
Namely, we have found an appropriate definition of convexity for hesitant fuzzy sets
on any ordered universe based on aggregation functions such that it is compatible
with the intersection, that is, the intersection of two convex hesitant fuzzy sets is a
convex hesitant fuzzy set and it fulfills the cutworthy property.
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1. Introduction

Convexity is a basic mathematical notion that has been used to analyse many different
problems. Its practical applications in several areas are very important, like optimization
[20], image processing [32], robotics [19] or geometry [15], among many others.

Since most of practical problems include approximate information, fuzzy convexity
has been studied in deep in the literature. Thus, several types of convexity of fuzzy sets
were studied by different authors (see, for instance, Ammar and Metz [2], Diaz et al. [10],
Ramik and Vlach [25], Sarkar [29], Syau and Lee [31] and Yang [38]).

The necessity of dealing with imprecision in real world problems has been a long-term
research challenge that has originated different extensions of fuzzy sets. A special case
of type-2 fuzzy sets are the hesitant fuzzy sets. They can be considered as an extension
of fuzzy sets different from Atanassov’s intuitionistic fuzzy sets ([3]) or interval-valued
fuzzy sets (introduced independently by Zadeh [40], Grattan-Guiness [11], Jahn [12],
Sambuc [28] in the seventies). Hesitant fuzzy sets can be useful to deal with situations
where the previous tools are not so efficient as, for instance, the modeling of an evalua-
tion by a group of experts, when it is not possible or easy to obtain a consensus to unify
the different opinions. Hesitant fuzzy sets were formally introduced by Torra [33], but
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the idea behind this concept was already considered previously, as we can see in Grattan-
Guinness [11]. Although their definition is relatively new, it has attracted very quickly
the attention of many researchers, since they could see the high potential of them for
applications, especially in decision making, as we can see in [34,35,37,41]. Perhaps by
this reason, several concepts, tools and trends related to this extension have to be studied.
Taking into account the previous comments, we are specially interested in the concept of
convex hesitant fuzzy sets. As far as we know, the first attempt to define convexity for
hesitant fuzzy sets has been done by Rashid and Beg in 2016 [26]. That definition had
some problems, which were solved by Janiš et al. in 2018 [14]. These two definitions
seem to be quite different. However, we can notice that they are really related, since both
of them are based on aggregation functions. Thus, Rashid and Beg considered the arith-
metic mean and Janiš et al. considered the classical t-conorm of the maximum. Then, both
definitions can be considered as particular cases of a general convexity based on aggrega-
tion functions. The main aim of this paper is to introduce a general definition and study
its properties. In particular, we are going to study in depth the preservation of convexity
for alpha-cuts (the cutworthy property) and under intersections, since the first one is a
very important property in fuzzy set theory and the second one is a necessary property
in many applications, as optimization. Thus, we will try to characterize the behavior of
aggregation functions with respect to both properties.

The remainder of this paper is organized as follows. In Section 2, some basic concepts
about convexity for fuzzy sets and hesitant fuzzy sets are recalled and the notation is
fixed. Section 3 is devoted to the new definition of convexity for hesitant fuzzy sets based
on an aggregation function with a detailed study of the preservation of convexity under
intersections. In Section 4 we present an example from the area of optimization. Finally,
some conclusions and open problems are formulated in Section 5.

2. Basic concepts

It is well-known that for any nonempty set X , usually called the universe, Zadeh defined
a fuzzy set A in X by means of the map µA : X → [0, 1], which is said to be the
membership function of A (see [39]). Thus, a way to describe the fuzzy set could be
A = {〈x, µA(x)〉 : x ∈ X}.

For any α ∈ (0, 1], a crisp subset of X is associated to A as follows: Aα = {x ∈
X : µA(x) ≥ α}. This set is called the α-cut of A and the collection of all the alpha-cuts
totally characterizes the fuzzy set.

A particular case of fuzzy sets are the convex fuzzy sets. A crisp subset A of a linear
space X is convex if and only if λx + (1 − λ)y ∈ A for any x, y ∈ A and for any
λ ∈ [0, 1] (for a detalied study on convex set see e.g. [18]). From this definition, a natural
extension for fuzzy sets could be to require that the fuzzy set A fulfills the property:
µA(λx + (1 − λ)y) ≥ λµA(x) + (1 − λ)µA(y), for all x, y ∈ X and for all λ ∈ [0, 1].
However, this definition was not considered from the beginning, since as already Zadeh
noticed in [39], there is not an equivalence between the convexity of the alpha-cuts and
the convexity of the fuzzy set.

In order to solve this problem, the first definition of convex fuzzy set considered in
that paper was that

µA(λx+ (1− λ)y) ≥ min{µA(x), µA(y)}
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for any x, y ∈ X and any λ ∈ [0, 1] (see [39]). It is known that A is a convex fuzzy set if
and only if Aα is a convex crisp set, for any α ∈ (0, 1], that is, the cutworthy property is
fulfilled. Apart from that, this concept is preserved by the intersection, that is, if A and B
are two convex fuzzy sets, thenA∩B is a convex fuzzy set, with the classical definition of
intersection introduced by Zadeh. Another advantage of this definition is that the addition
that appears on the right side of the inequality could make no sense when working in
a more general environment (e.g. lattice-valued fuzzy sets), where such operation is not
defined in general.

As we commented at the introduction, several generalizations of fuzzy sets have been
considered in the literature. In this paper we are interested in the class of hesitant fuzzy
sets. Now, instead of a single number, the membership function returns a set of member-
ship values for each element in the domain. More precisely:

Definition 1 [33,36] Let X be a universe. A hesitant fuzzy set on X is defined by means
of a function hA : X → P([0, 1]), where P([0, 1]) denotes the power set of the interval
[0, 1], such that for any element ofX it returns a subset of the unit interval [0, 1]. This can
be represented by

A = {〈x, hA(x)〉 : x ∈ X},
where hA(x) is a set of values in [0, 1], denoting the possible membership degrees of the
element x ∈ X to the set A.

In this definition, any subset of the interval [0, 1] could be the membership degree
for an element in X . However, some particular cases of specific subsets are the most
important in the literature. Thus, for instance, the case of interval-valued hesitant fuzzy
sets has been studied lately (see, for instance, [7]). However, it was already noted in [4]
that in practical situations we deal frequently with only finite subsets. Thus, in most of
the cases, the assumption that the membership degrees are finite and nonempty subsets
is considered. Then we are able to work with a particular type of hesitant fuzzy sets, the
typical hesitant fuzzy sets, defined as follows:

Definition 2 [4] LetH ⊂ P([0, 1]) be the set of all finite nonempty subsets of the interval
[0, 1] and let X be a nonempty universe. A typical hesitant fuzzy set A over X is given by

A = {〈x, hA(x)〉 : x ∈ X},

where hA : X → H.

Throughout this work we will deal only with typical hesitant fuzzy sets and, by sim-
plicity, we will call them just hesitant fuzzy sets.

Several authors have studied different operations on hesitant fuzzy sets (see, e.g.,
[24,33,36]). In particular, a very important concept in this work is the intersection of
two hesitant fuzzy sets proposed by Torra ([33]), that extends the classical definition of
intersection of two fuzzy sets given by Zadeh ([39]).

Definition 3 [33] Let A, B be hesitant fuzzy sets on a universe X . The intersection of A
and B is a hesitant fuzzy set, denoted by A ∩B defined by:

hA∩B(x) = {γ ∈ {hA(x) ∪ hB(x)} | γ ≤ min{max{hA(x)},max{hB(x)}}}

for any x ∈ X .
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Thus, the membership function of the intersection is obtained as the set of all values
in any of the two sets which are lower than or equal to the smaller of the two maximums
at a particular point. In order to clarify this definition, we will show an easy example.

Example 1 If we consider an ordered space X = {x1, x2, x3} with x1 < x2 < x3 and
the hesitant fuzzy sets A and B defined by

X x1 x2 x3

A {0.2, 0.6} {0} {0.2, 0.4, 0.6, 0.8}
B {0.4} {0.6} {1}

their intersection is defined as

X x1 x2 x3

A ∩B {0.2, 0.4} {0} {0.2, 0.4, 0.6, 0.8}

The graphical representation of A, B and A ∩B is in Figure 1.
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Fig. 1. Example of intersection of hesitant fuzzy sets.

The hesitant fuzzy logic associated to this operation and the corresponding union
can be encompassed in the logic systems proposed in [8] by considering the appropriate
lattices and set of functions. As a consequence of the concepts introduced in [9], we could
consider some different approach to the idea of intersection of two hesitant fuzzy sets, but
we have prefered to consider the usual definition of intersection, in order to be able to link
our research with the related recent papers in the literature [1,5,14,24,26,27].

Alcantud [1] and Zhu et al. [42] used this definition of intersection on their works in
order to define new intersections between dual hesitant fuzzy elements and dual extended
hesitant fuzzy elements, respectively. Similarly, Pei and Yi [24] also used this definition
to investigate about semilattices of hesitant fuzzy sets. Rodriguez et al. [27] presented an
overview of hesitant fuzzy sets to provide a clear perspective on the different concepts,
tools, and trends related to this extension of fuzzy sets. On [26], Rashid and Beg provided
a definition of convexity based on the convexity of the score function that does not guar-
antee the preservation of convexity under intersections, but Janis et al. [14] presented a
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concept of convexity for hesitant fuzzy sets, based on the maximum operator, without this
drawback.

Until now we were considering hesitant fuzzy sets in general, but we are particularly
interested in convex (typical) hesitant fuzzy sets. The first definition given at the literature
was based on the score function, which was introduced by Xia and Xu [36].

Definition 4 LetA be a hesitant fuzzy set on a finite universeX . The map sA : X → [0, 1]
defined by

sA(x) =
1

|hA(x)|
∑

γ∈hA(x)

γ

is called the score function of A.

It is clear the the score function is just the arithmetic mean of the membership function
hA of A at any point x in X . Based on this concept, Rashid and Beg introduced in 2016
the concept of convexity for hesitant fuzzy sets.

Definition 5 [26] Let X be a finite linear space. A hesitant fuzzy set A on the universe
X is said to be convex, if for all x, y ∈ X, and λ ∈ [0, 1] it holds that

sA(λx+ (1− λ)y) ≥ min{sA(x), sA(y)}.

The authors in fact call this property quasiconvexity instead of convexity, but we will
use the previous name for simplicity. They also considered that for any hesitant fuzzy set,
its alpha-cut is defined by:

Aα = {x ∈ X : sA(x) ≥ α}

for any α ∈ (0, 1] and with this definition they prove the following result.

Proposition 1 [26] LetX be a finite linear space and letA be a hesitant fuzzy set defined
on X . The followings statements are equivalent:

1. A is a quasi-convex hesitant fuzzy set.
2. Any α-cut of A is convex crisp set.

Apart from the cutworthy approach, one of the principal properties of convexity for
fuzzy sets was its preservation under arbitrary intersections. This is a very important re-
quirement, since it makes the collection of convex sets very important for applications
as, for instance, optimization (see [2] or [30]). As it was shown in [14], the concept of
convexity introduced by Rashid and Beg does not preserve this property. In that paper,
a definition of convexity for hesitant fuzzy sets was given such that it fulfills the natural
conditions: it extends the concept of convexity for fuzzy sets, it preserves convexity under
intersections and equivalence of the convexity for cuts. Taking into account these proper-
ties, they arrived to a natural definition of convexity for hesitant fuzzy sets based on the
maximum of the membership values at any point. More precisely,

Definition 6 [14] Let X be a finite linear space and let A be a hesitant fuzzy set on X .
Then A is convex, if

max{hA(λx+ (1− λ)y)} ≥ min{max{hA(x)},max{hA(z)}}

for each x, z ∈ X and for each λ ∈ [0, 1].
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Although the definitions 5 and 6 are not so similar at a first sight, they have a common
idea behind. We define convexity based on the arithmetic mean or the maximum. Thus,
in both cases, we use two particular examples of aggregation functions. Let us recall this
concept.

Definition 7 [21] Let A : ∪ni=1[0, 1]
i → [0, 1] such that

– A(0, 0, . . . , 0) = 0,A(1, 1, . . . , 1) = 1

– A(x) = x for all x ∈ [0, 1]

– A is monotone at each variable

then A is called an aggregation function.

This will be the starting point for our general definition of convexity for hesitant fuzzy
sets.

3. General convexity for hesitant fuzzy sets

Once we have defined an aggregation function, we are able to formulate convexity for
any hesitant fuzzy set defined on a finite universe. In order to consider the most general
possible definition, we will also consider any ordered space as the universe, instead of
a linear space. This is not a real generalization, but it could be more appropriate at the
environment we use to work.

Definition 8 Let X be an ordered space, let A be a hesitant fuzzy set on X , let A be an
aggregation function. Then A is A-convex, if for each x < y < z there is

A(hA(y)) ≥ min{A(hA(x)),A(hA(z))}.

By the second axiom in Definition 7, it is immediate that a convex fuzzy set considered
as a hesitant fuzzy set with singleton values is convex.

Another usual requirement is the cutworthy property. Thus, first of all, we will propose
a reasonable definition of cut for hesitant fuzzy sets.

Definition 9 Let X be an ordered space, let A be a hesitant fuzzy set on X , let A be an
aggregation function. The α-cut of A with respect to A is defined as the crisp set:

AA
α = {x ∈ X : A(hA(x)) ≥ α}

for any α ∈ (0, 1].

With respect to this definition, convexity of a hesitant fuzzy set is equivalent to con-
vexity of its cuts.

Proposition 2 Let X be an ordered space, let A be a hesitant fuzzy set on X , letA be an
aggregation function. A is A-convex if and only if AA

α is convex for any α ∈ (0, 1].
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Proof. Let A be a hesitant fuzzy set and let x, y, z be elements in X with x < y < z.
On one hand, let us consider that A is A-convex. If x, z ∈ AA

α and α ∈ (0, 1], we
know that A(hA(x)),A(hA(z)) ≥ α. Thus, by the A-convexity of A, we know that
A(hA(y)) ≥ min{A(hA(x)),A(hA(z))} ≥ α, that is, AA

α is a convex crisp set.
On the other hand, if the α-cuts of A w.r.t. A are convex for any α ∈ (0, 1], we can

consider in particular the value α0 = min{A(hA(x)),A(hA(z))}. It is clear that x, z ∈
AA
α0

. By the convexity of this set, we have that y ∈ AA
α0

and, therefore, A(hA(y)) ≥ α0.
By taking into account the definition of α0, we have that A is an A-convex hesitant fuzzy
set. ut

Thus, this definition generalizes the idea of convexity for fuzzy sets and it is equivalent
to the convexity of its associated cuts. The remaining natural property is the preservation
of convexity under intersections. Thus, we are going to study whether the intersection of
convex hesitant fuzzy sets is a convex hesitant fuzzy set. As we will see, this property is
not fulfilled in general. Therefore our main aim is to characterize those aggregations, that
lead to a class of convex hesitant fuzzy sets, for which the convexity of their intersections
is preserved. To shorten our formulations, we will use the notion “A preserves convexity”,
if the class of convex hesitant fuzzy sets obtained usingA in Definition 8 (we have called
them A-convex) is closed under intersections.

A similar question of preserving convexity under aggregation for fuzzy sets has been
solved in [13].

We will distinguish several cases for the aggregation functionA, namely the following
ones:

1. A is the maximum or the minimum.
2. A is lower than min at some point.
3. A is greater than max at some point.
4. A is between min and max but it is different from both, maximum and minimum.

3.1. The case of the maximum/minimum

If we choose A(a, b) = max{a, b} for all a, b ∈ [0, 1] as the aggregation function, con-
vexity is preserved and the same happens for A being the minimum.

Proposition 3 Let X be an ordered space. If A(a, b) = max{a, b} for all a, b ∈ [0, 1],
then A preserves convexity.

Proof. Let A and B be two A-convex hesitant fuzzy sets. Let x, y, z ∈ X such that
x ≤ y ≤ z. For any t ∈ X we have

A(hA∩B(t)) = max{hA∩B(t)} = min{max{hA(t)},max{hB(t)}}
= min{A(hA(t)),A(hB(t))}

by taking into account the definition of A and Definition 3. Thus,

A(hA∩B(y)) = min{A(hA(y)),A(hB(y))}

and by the A-convexity of A and B,

A(hA∩B(y)) ≥ min{min{A(hA(x)),A(hA(z))},min{A(hB(x)),A(hB(z))}} =
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min{min{A(hA(x)),A(hB(x))},min{A(hA(z)),A(hB(z))}} =

min{A(hA∩B(z)),A(hA∩B(z))}.

Therefore, A ∩B is also A-convex. ut
This proof is inspired by a similar result in [14]. However, in that case the definition

of convexity was slightly different, and it is here adapted to the new definition.

Proposition 4 Let X be an ordered space. If A(a, b) = min{a, b} for all a, b ∈ [0, 1],
then A preserves convexity.

Proof. Due to the definition of intersection it is clear that:

min{hA∩B(x)} = min{hA(x), hB(x)},∀x ∈ X.

As A is min-convex,

min{hA(y)} ≥ min{min{hA(x)},min{hA(z)}}

and the same happens for B,

min{hB(y)} ≥ min{min{hB(x)},min{hB(z)}}.

Let us check if A ∩B fulfills our definition:

min{hA∩B(y)} = min{hA(y), hB(y)} ≥ min{min{hA(x)},

min{hA(z)},min{hB(x)},min{hB(z)} = min{min{hA∩B(x)},min{hA∩B(z)}}

and we can see that A ∩B is min-convex. ut

3.2. The case under the minimum at some point

The second case is when there exist two points α1, α2 ∈ [0, 1] such that A(α1, α2) <
min{α1, α2}.

Proposition 5 LetX be an ordered space. IfA is an aggregation function such that there
is at least one pair of mutually distinct elements (α1, α2) ∈ [0, 1]2 for whichA(α1, α2) <
min{α1, α2}, then A does not preserve convexity.

Proof. We are going to find a general counterexample, which can be used for any aggre-
gation function assuming at least one value under the minimum. Let A be an aggregation
function such that there are α1, α2 ∈ [0, 1] with A(α1, α2) < min{α1, α2}.

Let us consider X = {x, y, z} with x < y < z. Then we can define two hesitant
fuzzy sets on X as:

hA(x) = hA(z) = {α1, α2}, hA(y) = {A(α1, α2)},

and
hB(x) = hB(y) = hB(z) = min{α1, α2}.
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It is easy to check that both A and B are A-convex. Their intersection is the hesitant
fuzzy set defined by

hA∩B(x) = hA∩B(z) = min{α1, α2}, hA∩B(y) = {A(α1, α2)}.

Then

A(hA∩B(y)) = A(α1, α2) < min{A(hA∩B(x)),A(hA∩B(z))} =

min{min{α1, α2},min{α1, α2}} = min{α1, α2}.
So, the intersection is not A-convex. ut
This proof is illustrated in Figure 2, where we suppose that α1 < α2.

A(α1, α2)

α1

α2

x1 x2 x3

A is A-convex

α1

x1 x2 x3

B is A-convex

A(α1, α2)

α1

x1 x2 x3

A ∩ B is not A-convex

Fig. 2. Graphical proof of Proposition 5.

It is known that triangular norms (t-norms for short) are aggregation functions that
fulfill T (x, y) ≤ min{x, y} for all (x, y) ∈ [0, 1]2. Thus, any t-norm different from
the minimum fulfills that there exists a point (α1, α2) ∈ [0, 1]2 such that T (α1, α2) <
min{α1, α2}. Therefore, by applying Proposition 5, any t-norm different from the mini-
mum is not an appropriate choice for defining convexity, if we would expect convexity to
be preserved under intersections.

3.3. The case over the maximum at some point

In the third case, we suppose that there exist points α1, α2 ∈ [0, 1] such that the ag-
gregation function fulfills A(α1, α2) > max{α1, α2}. The behavior with respect to the
preservation of convexity under intersections and the way to prove is analogous to the
previous case.

Proposition 6 LetX be an ordered space. IfA is an aggregation function such that there
is at least one pair of mutually distinct elements (α1, α2) ∈ [0, 1]2 for whichA(α1, α2) >
max{α1, α2}, then A does not preserve convexity.

Proof. Now we are going to find a general counterexample, which can be used for any
aggregation function under the conditions of the statement.

Let X = {x, y, z} be the universe with x < y < z and let A and B the hesitant fuzzy
sets whose membership functions are:

hA(x) = hA(z) = {α1, α2}, hA(y) = {A(α1, α2)},
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and
hB(x) = hB(y) = hB(z) = max{α1, α2}.

It is easy to check that both A and B are A-convex. Their intersection is the hesitant
fuzzy set given by

hA∩B(x) = hA∩B(z) = {α1, α2}, hA∩B(y) = max{α1, α2}.

Then
A(hA∩B(y)) = A(max{α1, α2}) = max{α1, α2} <

min{A(hA∩B(x)),A(hA∩B(z))} = min{A(α1, α2),A(α1, α2)} =
A(α1, α2) > max{hA∩B(x), hA∩B(z)}.

So, the intersection is not A-convex. ut
This proof is again graphically illustrated. In this case in Figure 3, where we suppose

that α1 < α2.
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Fig. 3. Graphical proof of Proposition 6.

It is known that triangular conorms are aggregation functions that fulfill S(x, y) ≥
max{x, y} for all (x, y) ∈ [0, 1]2. Thus, any triangular conorm different from the maxi-
mum does not preserve convexity.

3.4. The case between minimum and maximum

Now we will study the only remaining case, aggregation functions which are between the
minimum and the maximum, but they are not equal to any of them. In this case, we cannot
describe the general behavior of this aggregation functions, since some of them preserve
convexity for the intersection and some of them do not preserve it.

As we commented previously, the arithmetic mean is an aggregation function between
minimum and maximum such that the intersection of two convex hesitant fuzzy sets need
not be convex. This was already commented in [14] for their definition, but it is also true
now for the new one, as we can see from the following example.

Example 2 Let X = {x, y, z} be the universe with x < y < z and let A and B the
hesitant fuzzy sets defined by:

X x y z

A {0.4} {0.2, 0.6} {0.4}
B {0.4} {0.4} {0.4}
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It is clear that if A is the arithmetic mean, A and B are A-convex. However, their inter-
section is defined as

X x y z

A ∩B {0.4} {0.2, 0.4} {0.4}

but A(y) = 0.3 < min{A(x),A(z)} = 0.4. Thus, A ∩B is not A-convex.

However, it is not true that any aggregation function in this family does not preserve
convexity. We will introduce an example of an aggregation function in this family pre-
serving convexity. First of all, we are going to consider a map on [0, 1]2.

This mapping is a function A2 : [0, 1]2 → [0, 1] defined as follows

A2(x, y) =

max{x, y} if x, y ∈ [0, 0.5]
min{x, y} if x, y ∈ (0.5, 1]
0.5 otherwise.

Its graphical representation is given at Figure 4.

0.5

1

0.5 1

max 0.5

0.5 min

Fig. 4. Graphical representation of A2.

This mapping is a nullnorm (see [6]) and it is known that nullnorms are associative.
So, it can be in a natural way extended to a mapping An : ∪n[0, 1]n → [0, 1], which is
also an aggregation function.

By definition it is also trivial that min{x} ≤ An(x) ≤ max{x} for any x ∈
∪n[0, 1]n. Moreover,A2(0.7, 0.2) = 0.5, so it is also clear thatAn is not equal in general
to the minimum or the maximum.

Finally, we will see that An-convexity is preserved by intersections.

Proposition 7 The intersection of any two An-convex hesitant fuzzy sets is a An-convex
hesitant fuzzy set.

Proof. Let us suppose that X is an ordered space. Let A and B be An-convex hesitant
fuzzy sets. Let x, y, z ∈ X such that x < y < z.

We will divide the proof into three cases:



224 Pedro Huidobro et al.

1. The case An(hA∩B(y)) > 0.5.
(a) If An(hA∩B(x)) ≤ 0.5 or An(hA∩B(z)) ≤ 0.5 then

min{An(hA∩B(x)),An(hA∩B(z))} ≤ 0.5 < An(hA∩B(y))

and therefore the condition to be A ∩B An-convex is fulfilled in this case.
(b) If An(hA∩B(x)) > 0.5 and An(hA∩B(z)) > 0.5 then, by the definition of
An, An(hA∩B(x)) = min{hA∩B(x)} and An(hA∩B(z)) = min{hA∩B(z)}
and considering the definition of the intersection (Definition 3), we have that
0.5 < An(hA∩B(x)) = min{hA∩B(x)} = min{hA(x), hB(x)} and that 0.5 <
An(hA∩B(z)) = min{hA∩B(z)} = min{hA(z), hB(z)}.
Then,

min{An(hA∩B(x)),An(hA∩B(z))} = min{hA(x), hB(x), hA(z), hB(z)} =

min{min{min{hA(x)},min{hA(z)}},min{min{hB(x)},min{hB(z)}}}.
As we noticed that 0.5 < min{hA(x), hB(x)} and 0.5 < min{hA(z), hB(z)},
by definition of An, we have that An(hA(x)) = min{hA(x)}, An(hA(z)) =
min{hA(z)}, An(hB(x)) = min{hB(x)} and An(hB(z)) = min{hB(z)}.
Then,

min{An(hA∩B(x)),An(hA∩B(z))} =
min{min{An(hA(x)),An(hA(z))},min{An(hB(x)),An(hB(z))}}.

But, by the An-convexity of A and B we have that

min{An(hA∩B(x)),An(hA∩B(z))} ≤ min{An(hA(y)),An(hB(y))}

On the other hand, An(hA∩B(y)) > 0.5, we also have that An(hA∩B(y)) =
min{hA∩B(y)} = min{hA(y), hB(y)} = min{min{hA(y)},min{hB(y)}} =
min{An(hA(y)),An(hB(y))}.
Thus, we have proven that

min{An(hA∩B(x)),An(hA∩B(z))} ≤ An(hA∩B(y)).

2. If An(hA∩B(y)) < 0.5, then An(hA∩B(y)) = max{hA∩B(y)}.
By the definition of the intersection, we have max{hA∩B(y)} = max{hA(y)} or
max{hA∩B(y)} = max{hB(y)}. Suppose we have the first case (the proof for the
second case it totally analogous). Since max{hA(y)} < 0.5, then An(hA(y)) =
max{hA(y)}. By applying thatA is aAn-convex hesitant fuzzy set, we haveAn(hA(x)) ≤
An(hA(y)) or An(hA(z)) ≤ An(hA(y)). Let us consider that we have the first case
(again the second case is analogous). Thus,An(hA(x)) < 0.5 and thenAn(hA(x)) =
max{hA(x)} < 0.5. By considering again the definition of the intersection, we
see that max{hA∩B(x)} ≤ max{hA(x)} < 0.5 and therefore An(hA∩B(x)) =
max{hA∩B(x)}. Now, if we join the above inequalities and equalities, we have:

An(hA∩B(x)) = max{hA∩B(x)} ≤ max{hA(x)} = An(hA(x)) ≤

An(hA(y)) = max{hA∩B(y)} = An(hA∩B(y))

and then
An(hA∩B(y)) ≥ min{An(hA∩B(x)),An(hA∩B(z))}.
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3. The case An(hA∩B(y)) = 0.5.
If An(hA∩B(x)) ≤ 0.5 or An(hA∩B(z)) ≤ 0.5, then the proof is trivial. Thus,
we will consider that An(hA∩B(x)) > 0.5 and An(hA∩B(z)) > 0.5. In that case,
An(hA∩B(x)) = min{hA∩B(x)} = min{hA(x)∪hB(x)} > 0.5 andAn(hA∩B(z)) =
min{hA∩B(z)} = min{hA(z) ∪ hB(z)} > 0.5. Then

min{hA(x)},min{hA(z)},min{hB(x)},min{hB(z)} > 0.5

and therefore An(hA(x)) = min{hA(x)} > 0.5 and similarly we prove that

An(hA(z)),An(hB(x)),An(hB(z)) > 0.5.

As A and B are An-convex, then An(hA(y)) > 0.5 and An(hB(y)) > 0.5. Then,
min{hA(y) ∪ hB(y)} > 0.5 and therefore An(hA∩B(y)) = min{hA∩B(y)} > 0.5
which is a contradiction, so we can assure thatAn(hA∩B(x)) ≤ 0.5 orAn(hA∩B(z)) ≤
0.5 and therefore

An(hA∩B(y)) = 0.5 ≥ min{An(hA∩B(x)),An(hA∩B(z))}.

Thus, we have proven that A ∩B is An-convex. ut
Note that in fact any nullnorm and its extensions could be used in the previous demon-

stration.
As all the four cases are studied, we know the behavior of the different aggregation

functions with respect to the preservation of convexity under intersections. Now we can
say that only minimum, maximum and some specific aggregation functions between them
are appropriate to define convexity for hesitant fuzzy sets.

Nowadays, there are many experiences where more than one attribute is to be com-
bined into one overall value. In lots of cases, the attributes compensate for each other,
to some extent. For teachers, there is a common situation that there are students with
high motivation which compensate for less intelligence or vice versa [44]. Compensatory
operators were introduced by Zimmermann and Zysno [43]. The main idea of these op-
erators is to provide compensation between the small and large degrees of membership
when combining fuzzy sets. Since then, several studies of these operators were presented
[16,22,23]. For instance, Kolesarova and Komornikova gave the following definition in
1999:

Definition 10 [17] An aggregation operator A on the unit interval is called a compen-
satory operator if for each n-tuple (x1, . . . , xn) ∈ [0, 1]n, n ∈ N, such that A (x1, . . . , xn) ∈
]0, 1[ there exist elements y, z ∈ [0, 1] such that A (x1, . . . , xn, y) < A (x1, . . . , xn) <
A (x1, . . . , xn, z)

We can see with these comments that the idea of compensation is just to obtain low values
when the argues are small and vice versa. For instance, the arithmetic mean is a compen-
satory operator which does not preserve convexity.

4. Illustrative example: optimization

As we mentioned in the introduction, the notion of convexity has been applied in many
different contexts. One of the most interesting is in the field of optimization. A simple
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example of a possible application is shown here. We can use it to see the possible appli-
cations of the developed results.

Let us consider we have to design two new types of paint, which are prepared by
mixing three primary elements: r, b and y. To obtain one bottle of the paint type A we
need 3 units of r and 2 units of b. To obtain one bottle of the paint type B we need 5
units of r and 1 unit of y. The availability of r, b and y are 15 units, 6 units and 2 units,
respectively. If at least one bottle has to be prepared, then the set of possible solutions
about the number of bottles prepared for A and B is represented by dots in Figure 5.

Fig. 5. Feasible region.

Depending on the number of bottles type A and B we are considering, we could
obtain by different procedures, 9 different products, which will be represented by AiBj
with i = 0, 1, 2, 3 and j = 0, 1, 2. If a committee of two experts evaluates the functionality
and design of these products, we obtain two different hesitant fuzzy sets whose referential
is the feasible region. Thus, let us suppose the values assigned to the functionality (F )
and the design (D) for the different products are:

X A0B1 A0B2 A1B0 A1B1 A1B2 A2B0 A2B1 A3B0 A3B1

F {0.2, 0.6} {0.2, 0.3} {0.4, 0.6} {0.5, 0.6} {0.7, 0.6} {0.6, 0.6} {0.4, 0.5} {0.2, 0.3} {0.5, 0.1}
D {0.4, 0.6} {0.6, 0.5} {0.6, 0.7} {0.8, 0.7} {0.9, 1} {1, 1} {0.9, 0.7} {0.6, 0.7} {0.5, 0.4}

If we consider the lexicographical order in R2, that is, (x1, y1) ≤ (x2, y2) iff x1 < x1
or x1 = x2 and y1 ≤ y2, it is clear that F and D are min-convex hesitant fuzzy sets.
Thus, the products fulfilling both properties could be represented as

X A0B1 A0B2 A1B0 A1B1 A1B2 A2B0 A2B1 A3B0 A3B1

F ∩D {0.2, 0.4, 0.6} {0.2, 0.3} {0.4, 0.6} {0.5, 0.6} {0.7, 0.6} {0.6, 0.6} {0.4, 0.5} {0.2, 0.3} {0.5, 0.1, 0.4}

By Proposition 4, the hesitant fuzzy set above, which represents the membership val-
ues to any product about both properties, is again a min-convex hesitant fuzzy sets. By
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Proposition 2, any of its α-cut is a convex set. Thus, for a fixed level, we could optimize
any objective function on this set by using the classical theorem about optimization. Of
course, only in the case the aggregation function preserves the convexity under intersec-
tions, we could work in a similar way.

This easy example can be seen as a way to show the different possible applications of
the obtained results for typical hesitant fuzzy sets. However, for a real application, some
other structures could be considered in two senses. On one hand, the case the member-
ship value is a multiset, to work in a different way if a value is considered just by one
expert or by one hundred. On the other hand, the case of interval instead of discrete sets
as membership values, i.e. interval-valued fuzzy sets, could be also necessary in some
cases. However, typical hesitant fuzzy sets have been revealed as a very useful tool, as we
commented on the introduction.

5. Conclusions

In this paper, we have introduced a new definition of convexity for typical hesitant fuzzy
sets, which are finite hesitant fuzzy sets, based on aggregation functions. This definition
can be considered for any ordered universe. Moreover, it coincides with the classical def-
inition for fuzzy sets. It also has a good behavior with respect to the equivalence for cuts.
About the preservation of the convexity under intersections, we have studied the behav-
ior for various ways of aggregating values of a hesitant fuzzy set. Our results may be
summarized as follows:

– Convexity is preserved for the minimum and the maximum.
– Convexity is not preserved if the aggregation function is under the minimum, respec-

tively over the maximum, at some point.
– For the case between the minimum and the maximum, there are cases when convexity

is preserved as well as those when it is not.

These results can also be visualized as follows:

min max

CONVEXITY PRESERVED

No NoYes YesYes/No

The question of the exact characterization of the aggregation functions between mini-
mum and maximum that preserve convexity remains to be open. So does the study of the
preservation of the convexity for some possible general concepts of the intersection. This
study can be seen as the first step in a general study. Thus, once we finish the theoretical
part, we would like to combine it with some other extension of fuzzy sets, in order to
apply it for some real problems about optimization under uncertainty.
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13. Janiš, V., Král’, P., Renčová, M.: Aggregation operators preserving quasiconvexity. Information

Sciences 228, 37–44 (2013)
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