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Abstract. Programming languages provide the notation for writing computer pro-
grams capable of granting our devices the desired functionalities. Even though they
may seem intangible, the resulting programs involve an amount of energy consump-
tion, which has an impact on the environment. Some studies on the consumption of
programming languages indicate that while being one of the most widely used lan-
guages, Python is also one of the most demanding in terms of energy consumption.
To provide developers using Python with a set of best practices on how to use it in
the most energy-efficient way, this paper presents a study on whether the different
ways of programming in Python have an impact on the energy consumption of the
resulting programs. We have studied the relationship between Python’s energy con-
sumption and the fact that Python is a very versatile language that allows programs
to be compiled and executed in many different ways. From the results obtained in
our study, there seems to be a clear relationship between software energy consump-
tion at runtime and: (1) the use of interpreted or compiled Python; (2) the use of
dynamically or statically typed variables. Compiling Python code is a good option
if it is done using the py compile module. The use of interpreted code seems to
decrease energy consumption over compiling using Nuitka. The use of dynamically
typed variables seems to decrease considerably the graphics and processor energy
consumption. In addition, we have observed that energy consumption is not always
directly related to execution time. Sometimes, more power in less time increases
consumption, due to the power required.
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1. Introduction

In addition to serve as a means of communication and entertainment, technological de-
vices have also become a great working tool, being almost impossible to imagine life
without them. The functionalities of technological devices are enabled by software appli-
cations, which are often developed using multiple programming languages, although one
language typically predominates.

In general terms, a programming language provides a structured way to express al-
gorithms and instructions to create a software program capable of executing one or more
functionalities. Obviously, it is possible to implement the same functionality using differ-
ent programming languages.

In fact, the big amount of available programming languages means that developers
should choose one of them to implement the software programs. As [46] points out, choos-
ing the appropriate programming language can make or break a project.
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There are several criteria that could be used to do this selection. For example [46]
mentions programmer productivity, maintainability, efficiency, portability, tool support,
and software and hardware interfaces as key factors, but also indicates that, depending
on the type of code to develop, there is little room for choice. In [5] the authors propose
a model to select the best programming language to be learned by novice programmers
for Data Analytics Applications based on eight criteria: popularity, data analytics support,
volume of data it can handle, speed of compiling, expressiveness, dreadfulness, program-
mers’ recommendations and average reasonable financial cost. [32] present the results
of a quantitative study about the language adoption process, identifying the availability
of open-source libraries, existing code, and experience as the most influential factors. In
contrast, intrinsic factors, such as a language’s simplicity or safety, rank low.

These are just some examples but, as can be observed, there is no a standard set of
aspects to be considered as important when choosing a programming language. Because,
as remarked by [34], the nature of languages as a special software tool makes it difficult
to find measures to draw objective conclusions about them.
Besides this lack of consensus on which are the best criteria to choose a programming
language, it can be noted that energy efficiency does not appear as a key aspect to be
considered.

However, nowadays, the energy consumption of IT (Information Technologies), in-
cluding software, is becoming a concern. According to the BEREC report [12], some 2
to 4% of greenhouse gases currently come from the digital industry. Moreover, new pro-
gramming trends, such as big data or Artificial Intelligence, could further increase these
figures.

As remarked by [13] the existing studies that analyze the impact of choice of pro-
gramming language suffer from several deficiencies with respect to methodology and the
applications they consider. In [34] is indicated that most of the claims about program-
ming languages are based on personal affinity, being the empirical comparison a good
approach to provide objective information about languages. Looking into programming
languages from an empirical perspective would provide supportive evidence and valuable
conclusions about them.

The objective of this paper is to conduct an empirical study, which can be considered
a benchmark study according to the Empirical Standard of ACM [42] (hereafter referred
to as a study), to analyse the energy consumption of a programming language. In par-
ticular, the study focuses on Python’s energy consumption. Python is a highly versatile
programming language and is one of the most widely used languages in the current era.
According to the PYPL (Popularity of Programming Language Index), [15], created by
analysing how often language tutorials are searched on Google, the most popular pro-
gramming language in 2023 compared to a year ago is Python, with a 27.27% increase,
followed by Java, with a 16.35% increase (results of May 2023). Moreover, it is indicated
that Python grew the most in the last 5 years (3.5%) [15]. Also the last updates of other
rankings such as the IEEE Spectrum’s Ranking of the Top Programming Languages 2022
[16] (a ranking based on nine metrics to know what languages the public is programming
in) or the Tiobe Index [4] (which takes data from hundreds of different sources, compiles
it, and dumps it into a list), rank Python at the top of the list.

However, according to [36] Python is one of the most energy-demanding program-
ming languages. An analysis of the possible causes of the high consumption of Python
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leads to the conclusion that it could be due to the fact that: (1) as indicated in [45], Python
is a dynamically typed language or (2) the fact that Python code is typically executed
without prior compilation. Therefore, we decided to study the impact of these two aspects
on the energy consumption of Python to offer developers the most efficient way to use
this language.

The remainder of this document is organised as follows: Section 2 presents the re-
lated work and the issues motivating this paper. Section 3 describes the background of
this study, including some relevant aspects about the execution of programs written in
Python language and the applied methodology to carry out the study. Section 4 contains
the analysis and discussion of the results obtained, in which we analyse the difference
in consumption between the different test cases to answer the research questions in Sec-
tion 5. In Section 6, we present the threats to the validity of our study. Finally, Section
7 presents the conclusions of the study and gives some recommendations on the use of
Python.

2. Related work

Programming languages have been studied and analysed from several points of view. For
example, there are many studies that relate programming languages to the improvement
of the developers’ productivity from different points of view.

In [38] an experiment was conducted to compare programmer productivity and defect
rates for Java and C++. They concluded that a typical C++ program had two to three times
more bugs per line of code than a typical Java program. C++ also generated between 15
per cent and 50 per cent more defects per line, and perhaps took six times longer to debug.
When comparing defects against development time, Java and C++ showed no difference,
but C++ had two to three times more bugs per hour.

In [18] authors tried to test the Brooks assumption that annual lines-of-code program-
mer productivity is constant, independent of programming language used. They analysed
10 of the most popular programming languages in use in the open-source community,
concluding that the programming language is a significant factor in determining the rate
at which source code is written.

In an effort to study the effects of programming language fragmentation on productiv-
ity—and ultimately on a developer’s problem-solving abilities—in [25] the authors pre-
sented a metric, namely language entropy, for characterising the distribution of a devel-
oper’s programming efforts across multiple programming languages. They concluded that
changes in language fragmentation affect a programmer working within a single paradigm
less than a programmer working with multiple paradigms.

The objective of [26] is to identify how different programming languages may affect
software development productivity. Each programming language has its own productiv-
ity level. The productivity of new development projects seems to be influenced by the
programming language used, while the productivity of enhancement projects seems to be
much less dependent on their specific programming language.

In [13] the authors propose a novel methodology which controls the development pro-
cess and developer competence and quantifies how the choice of programming language
impacts software quality and developer productivity. After conducting a study and sta-
tistical analysis on a set of long-running open-source projects written mainly in C and
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C++ (Firefox, Blender, VLC, and MySQL), they found that the use of C++ instead of C
improves software quality and reduces maintenance effort.

Finally, [34] presents a study to investigate the impact of high-level, general-purpose,
programming languages on software development productivity and quality. The authors
analyse 11 primary languages: JavaScript, Java, Python, Go, Objective-C, Swift, PHP,
Ruby, C#, C++, and C. The conclusion of the study is that the choice of programming
language can affect the development process.

Focusing on the energy consumption of programming languages, [6], studied quantita-
tively the impact of languages (C/C++/Java/Python), compiler optimization (GNU C/C++
compiler with O1, O2, and O3 flags) and implementation choices (e.g. using malloc in-
stead of new to create dynamic arrays and using vector vs. array for Quicksort) on the
energy-efficiency of three well-known programs: Fast Fourier Transform, Linked List
Insertion/Deletion and Quicksort. Experiments showed that by carefully selecting an ap-
propriate language, optimisation flag and data structure, a significant amount of energy
can be conserved to solve the same problem with identical input size.

In [7] three metrics are proposed to categorize software implementation and opti-
mization efficiency: Greenup, Powerup, and Speedup metrics (GPS-UP). GPS-UP metrics
transform the performance, power, and energy of a program into a point on the GPS-UP
software energy efficiency quadrant graph. In addition, eight categories of possible soft-
ware optimisation scenarios (four energy-saving and four energy-wasting) are presented
with examples on how to obtain them and the new metrics are compared with existing
metrics such as the Energy Delay Product (EDP).

Connolly Bree and Ó Cinnéide [17] conducted an assessment on the impact of two
popular design-level refactoring on energy consumption in the Java programming lan-
guage. Specifically, they focused on the refactoring techniques of replacing Inheritance
with Delegation and vice versa. The researchers assessed the energy consumption by run-
ning code snippets for both refactoring and measuring average power consumption and
energy consumption. The study revealed that Inheritance proved to be more efficient than
Delegation. It exhibited a 77% reduction in runtime and a 4% decrease in average power
consumption when compared to Delegation. However, a significant limitation of the study
was the experiments were conducted in an Interpreted mode, which does not accurately
reflect real-life scenarios where Just-in-Time (JIT) enabled compilers are commonly uti-
lized.

Pinto et al. [39] explore the energy efficiency of several Java Collection implemen-
tations, beyond their well-established characteristics in terms of performance, scalabil-
ity, and thread-safety. The study involves 16 collection implementations (13 thread-safe,
3 non-thread-safe) categorized into lists, sets, and mappings. The research reveals that
design decisions significantly influence energy consumption. Notably, adopting a newer
hashtable version can result in a 2.19x energy savings in micro-benchmarks and up to
17% in real-world benchmarks compared to older associative implementations.

Also Pereira et al. [37] study the energy efficiency of Java Collections. They propose
an approach to energy-aware development that combines application-independent energy
profiling of Java Collections and static analysis to estimate the system’s utilization of
these collections and its intensity. The results indicate that some widely used collections,
e.g. ArrayList, HashMap and Hashtable, are not energy efficient and should sometimes
be avoided when energy consumption is a major concern.
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Calero et al. [14] focus their efforts on investigating the suitability in the development
of software applications in terms of energy consumption of Spring (a framework for the
development of Java applications), and its conclusions point out that code developed using
Spring require much more energy than those developed without Spring.

Finally, Lima et al. [27] investigated the energy behavior of programs written in
Haskell. They conducted two in-depth and complementary studies to analyze the energy
efficiency of programs from two different perspectives: strictness and concurrency. They
found that making small changes can make a big difference. In one benchmark, under
a specific configuration, choosing the use of the MVar (Mutable Variable) data sharing
primitive instead of the TMVar (Transactional Mutable Variable), can result in up to 60%
energy savings. In another benchmark, using TMVar instead of MVar can yield up to 30%
energy savings.

To provide information about the differences in energy consumption of several pro-
gramming languages Pereira et al. [36] conducted an investigation in which they analysed
the energy behavior of twenty-seven programming languages, estimating and comparing
the consumption required for the execution of ten different programs written in all of
the selected programming languages. The 27 programming languages included compiled,
interpreted, and virtual machine languages. As a result of the study, it was found that com-
piled languages tend to be, as expected, the fastest and most energy efficient. On average,
virtual machine languages required almost five times more energy to execute the solu-
tions than compiled languages. On the other hand, interpreted languages required almost
20 times more energy than compiled languages.

Some works specifically address the energy efficiency of the Python programming
language. However, the existing literature mostly focuses on aspects such as performance,
complexity, and optimisations, largely neglecting the crucial aspect of energy consump-
tion. For example, in the work conducted by Redondo and Ortin [43] a meticulous eval-
uation of seven implementations of Python versions 2 and 3 is presented. Their aim is
to assist in the selection of a suitable implementation by running 523 programs to each
version. The evaluation encompasses runtime performance, memory consumption, and an
exploration of significant qualitative characteristics inherent in each implementation. One
of their main conclusions is that interpreter-based implementations (such as CPython) are
the most energy-efficient, followed by statically compiled implementations of Python. In
contrast, JIT-compiled approaches are found to be the least energy-efficient.

So far, work in the Python domain has focused predominantly on aspects such as per-
formance, complexity, and optimisation, while energy efficiency has been neglected. The
study developed by Reya [44] explores the energy efficiency of some coding patterns and
techniques in Python, with the goal of guiding programmers towards more informed and
energy-conscious coding practices. The research analyzes the energy consumption of a
wide range of topics, such as data initialization, access patterns, structures, string format-
ting, sorting algorithms, dynamic programming, and performance comparisons between
NumPy and Pandas, and personal computers versus cloud computing. The comparisons
they present are very interesting and can offer programmers good practice in the use of
Python.

Table 1 summarises the related work together with the method used to perform the
energy consumption measurements.
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Table 1. Summary of related works

Reference Research goal and scope Measurement method
[6] Energy impact of the languages

C, C++, Java, and Python based
on the different implementa-
tions and compiler optimiza-
tions.

Software estimation. Intel Power Governor
library (based on RAPL, Intel’s Runtime
Average Power Limit) estimates the energy
consumption of CPU and DRAM power
when implementing a few algorithms.

[14] Execution time and energy con-
sumption required by three ap-
plications, developed with and
without Spring.

Hardware measurement. FEETINGS
(Framework for Energy Efficiency Testing
to Improvement eNviromental Goals of
the Software), a specific framework for
measuring software energy consumption,
is used together with the EET (Energy
Efficiency Tester) hardware measuring
instrument.

[17] How redundancy in an object-
oriented design can contribute
to unnecessary energy con-
sumption and determine how
software refactoring can elimi-
nate this redundancy.

Hardware measurement. A Watts Up Pro
power meter was used to record power con-
sumption every second.

[27] Energy behavior of programs
written in Haskell. To do so,
they make changes to bench-
marks such as MVar and TM-
Var.

Software estimation. RAPL is used to
collect processor energy information and
extend two existing Haskell performance
analysis tools (Criterion and GHC Pro-
filer).

[36] Power consumption of several
programming languages of dif-
ferent types (interpreted, VM...)
by using a set of benchmarks of
different functionalities belong-
ing to CBLG.

Software estimation. Intel’s RAPL is used,
which collects and analyzes and analyzes
the resulting data on execution time execu-
tion time and memory usage.

[37] Energy consumption of dif-
ferent Java Collection Frame-
work (JFC) implementations.
With the data obtained, they
present an energy optimiza-
tion approach for Java programs
based on the calls to JFC meth-
ods in the source code of a pro-
gram.

Software Estimation. To record CPU
power consumption measurements, jRAPL
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[39] Energy efficiency of 16 imple-
mentations of Java collections
grouped into 3 types (lists, sets,
and allocations) to demonstrate
that design decisions can greatly
affect energy consumption.

Hardware measurement. The first type of
architecture is measured using current me-
ters across power supply lines to the CPU
module. Software estimation. The second
type of architecture energy values were es-
timated with jRAPL (framework for profil-
ing Java programs using RAPL).

[43] Runtime performance and
memory consumption of seven
language implementations of
Python versions 2 and 3 to
facilitate the selection of one of
them.

Not specified. The methodology “Statisti-
cally Rigorous Java Performance Evalua-
tion” is used to statistically analyze start-
up and steady-state performance data. The
work does not specify how the times are
obtained.

[44] Energy efficiency of various
coding patterns and techniques
in Python, with the objective of
guiding programmers to a more
informed and energy-conscious
coding practices.

Software estimation. Intel’s Power Gadget
is used, which is a software-based tool for
tracking power usage that is compatible
with Intel Core i5 processors.

Two thirds of the studies use software estimation methods and therefore relatively
few studies obtain more realistic measures of consumption using hardware devices. In
this study we also try to contribute in this direction by providing real consumption mea-
surements.

3. Background

This section provides an overview of the methods for executing Python programs and the
methodology used in this study.

3.1. Python Execution Methods

Python generally uses dynamically typed variables, meaning that a variable can change
its type during the lifetime of a program [33]. Previous studies have highlighted that this
dynamic typing can impact performance, as the lack of compile-time type information
reduces opportunities for compiler optimizations, and additional type checking at runtime
can incur performance costs [43].

In addition to this inherent characteristic of Python, there are several methods for
executing Python programs, each with its own characteristics and advantages in terms of
performance and energy efficiency. These methods are described below.

3.1.1 Interpreted code Programs written in Python are generally interpreted by a spe-
cific implementation of the language, such as CPython, Jython, or IronPython [3]. In the
case of CPython, the Python source code is first compiled to an intermediate format called
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bytecode, which is closer to machine language but still independent of the processor ar-
chitecture. This bytecode is then interpreted by the Python virtual machine.

The py compile module [2] in CPython is used to precompile Python source files (.py)
into bytecode files (.pyc). This precompilation process converts the source code into an
intermediate bytecode form before execution, which helps reduce the time required to
start the program. However, even though the bytecode is precompiled, its execution is
still carried out by the CPython virtual machine, which interprets the bytecode at runtime.
This distinction highlights that the precompilation occurs before the program’s execution
(at compile time), unlike Just-In-Time (JIT) compilation, which compiles code during
program execution.

3.1.2 Just-In-Time (JIT) Compilation Just-In-Time (JIT) compilation [11] is a tech-
nique used to improve performance during the execution of interpreted programs. Instead
of interpreting the bytecode every time it runs, JIT compiles parts of the bytecode into
native machine code at runtime, which can result in faster execution.

GraalPy [9] is an implementation of Python on the GraalVM platform, which provides
high-performance execution through JIT compilation. GraalPy utilizes the advanced JIT
capabilities of GraalVM to dynamically compile Python code to native machine code
during execution, resulting in significant performance improvements. GraalVM applies
aggressive optimizations during JIT compilation, making GraalPy a powerful tool for ex-
ecuting Python code efficiently. Therefore, GraalPy combines features of an interpreter
and a JIT compiler. It interprets and executes Python code in a manner similar to a tra-
ditional interpreter, but also performs JIT compilation to improve performance during
program execution.

3.1.3 Ahead-Of-Time (AOT) Compilation Ahead-Of-Time (AOT) [10] compilation
is a method where the source code is compiled directly into native machine code before
execution. This process is completed during the build time, resulting in an executable that
does not require further compilation or interpretation at runtime.

Nuitka [1] is a tool that compiles Python programs to C and then uses a C compiler to
generate native machine code. This process is a form of Ahead-Of-Time (AOT) compila-
tion, as it converts Python source code into an executable that can be run directly by the
operating system without requiring Python to be installed. Nuitka eliminates the need to
interpret bytecode at runtime and can offer significant advantages in terms of execution
speed and energy efficiency. While the generated executables may still depend on certain
Python libraries at runtime, Nuitka’s approach aligns closely with the principles of AOT
compilation, producing efficient and standalone executables.

GraalPy [9], is primarily considered a Just-In-Time (JIT) compiler but also supports
AOT compilation. This feature allows GraalPy to compile Python scripts into native bina-
ries, leveraging the performance optimizations provided by GraalVM. GraalPy’s ability
to perform AOT compilation can be utilized through the creation of native images [8],
which are standalone executables generated by the native-image tool.

Fig. 1 also represents the cycle of a program written in Python, from source to machine
code.
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Fig. 1. Python code cycle

Although GraalPy presents potential benefits, during our study, we encountered mul-
tiple errors while executing several codes using the GraalPy compiler, likely due to the
fact that GraalPy is still under development. As a result, it was not feasible to include it
in our evaluation.

3.2. Green Software Measurement Process (GSMP)

As indicated by [50] Software Engineering requires a specific process for conducting ex-
periments, as other sciences and engineering disciplines. For this reason, we have applied
FEETINGS in this study, which has a methodological component, named GSMP (Green
Software Measurement Process) [30] including all the activities and roles necessary to
perform the measurement and analysis of the energy consumption of software, ensuring
the reliability and consistency of the measurements. GSMP [29] is composed of seven
phases (see Fig. 2). In a nutshell, the initial phase focuses primarily on the definition of
the requirements and the software system to be evaluated. The next two phases focus on
the configuration and preparation of the measurement environment. In phase four, energy
consumption measurement activities are carried out. Finally, the last phases are the anal-
ysis and reporting of the data obtained. GSMP is intended to be performed in an iterative
way, so the phases are interrelated to each other.

In addition to the methodological component, FEETINGS [30] has two other compo-
nents: a conceptual component (GSMO-Green Software Measurement Ontology, with the
terminology related to the measurement of software energy consumption) and a techno-
logical component composed by EET (Energy Efficiency Tester) [28] and ELLIOT [19].
EET is a hardware device built to capture the energy consumption of the hard disk, graphic
card, and processor, as well as the overall energy consumption of the computer (namely
DUT-Device Under Test) when running software. The data captured by EET are analysed
by the ELLIOT tool.
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Fig. 2. GSMP phases for evaluating the energy efficiency of a software

4. Python energy consumption study

With the above considerations in mind, our research aims to quantify the energy savings
achieved by statically declaring variable types. In addition, we extend our research to
different Python execution methods to study the impact on consumption as well. With the
results obtained, we intend to offer a set of recommendations to Python programmers on
how to make better use of this programming language from an energy efficiency point of
view.
Table 2 shows the research questions together with their motivation.

Table 2. Research Questions and Their Motivation
Research question Motivation
RQ1. Is there any relationship between
the energy consumption (by a software
application at runtime) and the way it is
executed?

With this research question, we want to check the differ-
ence in energy consumption between the different ways
of executing programs written in Python (interpreted or
compiled), in order to offer programmers some recom-
mendations on the most efficient way to use this lan-
guage.

RQ2. Is there any relationship between
the energy consumption and time re-
quired (by a software application at run-
time) and the way the variables are
typed in the language used?

The most common use of the Python language involves
the use of dynamic variables. Therefore, with this ques-
tion, we want to determine whether statically declaring
variables could improve the energy consumption of the
language.

4.1. Application of GSMP to this study

Table 3 summarises the application of the GSMP phases and activities to our study.
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Table 3. GSMP phases summary

Phase Application
I. Scope Definition

– Software Entity Class:
Python programming language

– Software Entities (SE):
Interpreted & Dinamically Typed Variables (DTV), Interpreted & Statically Typed
Variables (STV), Py compile & DTV, Py compile & STV, Nuitka & DTV and Nu-
itka & STV.

– Test cases:
Ten algorithms of the Computer Language Benchmarks Game (CLBG):
Binary trees, Fannkuch-redux, Fasta, Mandelbrot, K-nucleotide, N-body, Pi-digits,
Reverse-complement, Regex-redux and Spectral-norm.

– Run test cases:
Each algorithm in the different ways of executing Python language.

II. Measurement
Environment Setting

– Hardware measuring instrument:
EET (Energy Efficiency Tester)

– Device Under Test (DUT):
Monitor: Philips 170s6fs LCD
Motherboard: ASUS Prime B460-Plus
Processor: Intel i7 10700 2900MHz
RAM: 2 modules of 16GB Kingston Hiperx Fury DDR4
Graphics card: Sapphire ATI Radeon X1950 GT, 256mb RAM DDR3
Hard disk: Western Digital Blue 500GB SSD
Power supply: 360 PS5805 – 580W
O.S.: Gnu/Linux Ubuntu 20.4 LTS.

– Measures: Execution time.
DUT Energy Consumption.
Processor Energy Consumption.
Graphics Card Energy Consumption.

III. Measurement
Environment
Preparation – Before starting the measurements:

Install the Nuitka compiler for Python 3.11.
– For each Python execution way under study:

Clean the DUT, Check that there is not any software running in the background.
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IV. Performing
the measurement

– For Python interpreted:
Execute algorithms using CPython interpreter.

– For py compile:
Compile with py compile.
Execute the compiled algorithms using CPython interpreter.
Delete pycache folder between measurements.

– For Nuitka:
Compile with Nuitka and execute the algorithms.

Phases III and IV are repeated for each algorithm.
V. Test Case Data
Analysis

Analyse the energy consumption data for each test case.
Check that the measurements are correct (outliers, wrong executions and so on) and
eliminate the wrong measures if it is necessary.

VI. Software
Entity Data
Analysis – For each SE:

Calculate the mean of the energy consumption for each algorithm and for each com-
ponent (DUT, processor, and graphic card).
Calculate the mean of the energy consumption for each SE considering the mean of
energy consumption of all the algorithms.
State conclusions (see “Results” section).

VII. Reporting the
result

This paper.

In the first phase of GSMP the scope of the study must be defined (see Fig. 2). As
we mentioned previously, the purpose of this study was to examine programs written
in Python to determine whether different execution forms and programming approaches
(dynamically typed variables (DTV) or statically typed variables (STV)) have an impact
on the energy consumption required to run the resulting application.

As modes of execution, we have selected CPython, the py compile module and the
Nuitka compiler for several reasons that contribute to the richness and representativeness
of our study, which are described below:
• CPython, the reference implementation of Python [23], was chosen because of its

wide adoption and widespread use in the Python development community. As the
standard implementation, CPython provides a representative perspective of how Python
programs run in most production environments.

• The py compile module is also an essential tool in the Python development environ-
ment, as it is used to speed up the execution of programs. The inclusion of py compile
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in our measurement allows us to explore the energy impact associated with the com-
pilation phase.

• The inclusion of the Nuitka compiler adds an interesting dimension to our research
as it directly converts Python code to machine code through Ahead-Of-Time (AOT)
compilation, thus avoiding the use of CPython for execution. This enables us to eval-
uate the energy efficiency and performance benefits of generating native executables.
As mentioned in the previous section, it was impossible to include the GraalPy com-

piler in our study. However, measurements have been performed with GraalPy and the
results are available in the study repository at [22].

By comparing the energy consumption between CPython, py compile and Nuitka, we
can assess how choices in execution tools and technologies impact power consumption,
thus providing valuable information for developers looking to optimise their processes.
The aspects under study according to the research questions, result on eight different
combinations (SEs), shown in Table 4

Table 4. Combinations to be studied and compared respect to their energy consumption
DTV STV

Interpreted (CPython) SE1 SE4
Pre-compiled (Py-compile) SE2 SE5

Compiled (Nuitka) SE3 SE6

SE1 is the ‘usual’ way to use Python. The CPython interpreter compiles Python
code to bytecode before executing it, but it does not use Just-In-Time (JIT) compilation.
CPython follows a traditional rendering approach, so it did not require any additional ac-
tion beyond executing the code. Similarly, SE5 did not require any additional action to
execute, but it was necessary to adapt the algorithms to declare variables statically.

Similarly, SE4 did not require any additional action for its execution, but it was nec-
essary to adapt the algorithms to declare the variables statically. For SE2 and SE5, each
algorithm was pre-compiled using the py compile command and then the resulting file
was executed using the CPython interpreter. The bytecode code is stored in a folder called
‘pycache’, which was deleted between measurements so as not to affect the results of the
experiment.

For SE3 and SE6, each of the algorithms was compiled using Nuitka [1] and then run
without using CPython.

Ten algorithms written in Python (Binary-trees, Fannkuch, Fasta, Mandelbrot, K-
nucleotide, N-body, Pidigits, Reverse-complement, Regex-redux and Spectral-norm) se-
lected from ”The Computer Language Benchmarks Game” [20] were used to measure
energy consumption. The CLBG Initiative has developed a framework for testing and
comparison of multiple programming languages using a collection of general program-
ming problems. Although there is a specific tool for performing experiments in Python
called “The Python Performance Benchmark Suite” [47], we have considered performing
our experiments using CLBG because it was the one used by [36] where Python resulted
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as the most energy consumer.

Table 5 shows the selected algorithms together with their description and the size of
the input used for their execution.

Table 5. Algorithm for test cases
Algorithm Description Data size
Binary-trees Allocate and deallocate many binary trees. 21

Fannkuch-redux Indexed-access to tiny integer-sequence. 12
Fasta Generate and write random DNA sequences. 25000000

K-nucleotide Hashtable update and k-nucleotide strings. 25000000
Mandelbrot Generates a Mandelbrot set 16000

N-body Double-precision N-body simulation. 50000000
Pi-digits Calculates all digits in pi till the nth position. 10000

Regex-redux Match DNA 8-mers and substitute magic patterns. 5000000
Reverse-complement Converts a DNA sequence into its reverse-complement. 25000000

Spectral norm Eigenvalue using the power method. 5500

The 10 algorithms chosen will be implemented with dynamically (as usual in Python)
or statically typed variables. Moreover, these implementations will be executed in an inter-
preted (CPython), precompiled (Py compile) and compile way (Nuitka). The experiment
will be performed on the most updated CPython version to date, 3.11 and the compilation
with Nuitka will be done using the –standalone option [40]

The software entity class was defined as the Python programming language, the soft-
ware entities are the already described forms of execution, the test cases were the ten
algorithms selected and the run test cases is defined as the combination of each way of
executing and programming Python for each algorithm.

To answer the research questions, we will measure the energy consumption for each
one of the combinations (see Table 4), what means a total of 80 data sets of energy con-
sumption (10 algorithms vs. 8 SEs).

As a result of the second phase of the GSMP process, we selected EET [28] as the
measuring instrument (the technological component of FEETINGS) and defined the spec-
ification of the Device Under Test (DUT) where the test cases were executed.

From the measurements provided by EET, we would analyse the ones of the DUT (i.e.
the energy consumption of the entire PC), the graphics card and the processor. The data
samples obtained by EET will be analysed with ELLIOT.

In the third phase of the process, the measurement environment was prepared. The
versions of Python, and Nuitka needed to carry out our study were installed, and between
measurements, other specific actions were applied.

In the fourth phase, measurements are carried out in EET. Each run test case cor-
responds to the execution of an algorithm on a SE given. And each test case run was
repeated 30 times, our decision regarding the number of measurements is based on the
recommendation of authors such as [24] for evaluations of software power consumption
in a controlled environment. Generally, a sample of 30 measurements is sufficient for the
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analysis of each intended test case, as it tends to produce a near-normal sampling distri-
bution.

It is worth emphasizing that EET obtains 100 samples (instantaneous power values)
per second, resulting in many values per test case that must be managed and analysed
by ELLIOT. As an example, and to facilitate the reader’s understanding, for this study,
between 6800 and 1,435,535 samples (depending on the runtime of each algorithm) of
instantaneous processor power have been obtained for the run test cases. Therefore, for
each measurement, the average value of the 30 runs of the algorithm is obtained and
the resulting data sets are analysed using ELLIOT being then possible to interpret them
according to the test cases defined, to, at the end, answer the research questions (Phases
V and VI). As a final remark, the consumption data analysed are the ones obtained after
subtracting the baseline, i.e., the consumption of the operating system and the hardware
devices in the background. All the information and data about the study can be found at
[22].

5. Results and Discussion

Table 6 shows the time (s) and energy consumption (J) results for each one of the ten
algorithms for Software Entities SE1, SE2 and SE3. Table 7 shows the corresponding to
SE4, SE5 and SE6 (see Table 4 for details of the SEs).

Table 6. SE1-3 time and consumption results

SE 1 SE 2 SE 3
Algorithm Time (s) DUT (J) Time (s) DUT (J) Time (s) DUT (J)
Binary-trees 13.3242 2985.7902 12.9068 2860.2744 15.8172 3357.8365
Fannkuch-redux 99.5651 19140,0541 99.1313 19806.2811 107.9207 21544.9500
Fasta 29.1941 2480.1973 29.2924 2456.5435 35.9573 3312.2393
K-nucleotide 14.0083 3230.7826 13.7028 3370.1803 17.5856 3973.8959
Mandelbrot 57.0628 11576.6236 57.0012 11201.6928 53.0170 10462.8838
N-body 182.1192 17957.4216 180.9061 17493.4335 278.6027 29050.4140
Pi-digits 310.0411 30235.2839 312.7975 27114.8860 312.6554 28845.3751
Regex-redux 4.7917 549.2286 4.7883 554.7591 4.7883 563.2351
Reverse-complement 2.0077 101.4849 2.1446 90.8980 2.1456 107.6565
Spectral-norm 48.2717 9627.9359 47.9484 9084.3719 61.8417 11750.8619

To answer the research questions proposed, the results of the possible combinations
of the SE will be compared. The idea is to analyse the influence of each factor separately.
Therefore, nine different comparisons will be presented, as shown in Fig. 3

To help to better interpret the comparisons, for each case, we will use the SEn with
the best average results in terms of energy consumption for most of the 10 algorithms as
basis and then we will calculate the percentage of increase on the energy consumption
required by the other SEn of the comparison.
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Fig. 3. Comparisons analysed

Table 7. SE4-6 time and consumption results

SE 4 SE 5 SE 6
Algorithm Time (s) DUT (J) Time (s) DUT (J) Time (s) DUT (J)
Binary-trees 13.3137 28549624 13.1434 2854.9970 15.6363 3293,1061
Fannkuch-redux 99.5693 1979.4,1939 99.7754 20306.4685 108.3222 21417,3473
Fasta 28.7633 2858.1650 29.3463 2522.0431 36.5822 3202,7499
K-nucleotide 13.8507 3309.3222 13.7778 3283.5624 17.5838 4049,7263
Mandelbrot 56.9158 11374.2202 56.9270 11493.3948 51.1548 10419,3156
N-body 182.1336 16834.5039 180.7359 15494.6057 283.2040 30017,9264
Pi-digts 310.1995 28704.6007 311.6585 27360.2596 312.8101 28983,7958
Regex-redux 4.7935 535.7790 4.7930 536.2314 4.7899 569,0573
Reverse-complement 2.1445 108.2303 2.1445 89.5619 2.1428 94,4505
Spectral-norm 50.8669 9316.0233 51.0056 9977.2440 58.9530 11701,2531

5.1. SE1, SE2 and SE3: Python Interpreted, compiled (py compile) and Compiled
(Nuitka) with DTV

This comparison aims to study the influence on consumption of the way in which the
code to be executed is obtained when the variables are dynamically typed. In relation
to the power consumption of the DUT, the best SE is SE2 (compiled (py compile) and
DTV), therefore, Table 8 shows the relative percentage increase in power consumption of
SE1 (interpreted and DTV) and SE3 (compiled (Nuitka) and DTV) with respect to SE2.

Table 8. Time and energy consumption comparison: interpreted/compiled (Nuitka) vs.
compiled (py compile); with DTV

SE1 vs. SE2 SE3 vs. SE2
Algorithms Time (%) Energy consumption Time (%) Energy consumption

of DUT (%) of DUT (%)
Binary-trees 3.2338 4.3882 22.5497 17.3956
Fannkuch-redux 0.4376 -3.3637 8.8665 8.7784
Fasta -0.3357 0.9629 22.7529 34.8333
K-nucleotide 2.2295 -4.1362 28.3359 17.9135
Mandelbrot 0.1082 3.3471 -6.9897 -6.5955
N-body 0.6705 2.6524 54.0040 66.0647
Pi-digits -0.8812 11.5081 -0.0454 6.3821
Regex-redux 0.0714 -0.9969 0.0281 1.5279
Reverse-complement -6.3830 11.6470 0.0461 18.4365
Spectral-norm 0.6742 5.9835 28.9755 29.3525

As observed in Table 8 (left part), interpreting code with dynamically typed variables
generally increases both time and energy consumption compared to compiling with the
py compile module.

From the above results, we can deduce that compiling Python using the py compile
module, with dynamically typed variables, seem to lead to a noteworthy improvement, pri-
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marily in terms of energy consumption. However, compiling the code with Nuitka entails
a significant increase in both runtime and energy consumption, making it an unfavourable
choice.

Fig. 4 shows the average consumption of the graphics card and the processor for SE1,
SE2 and SE3.

Fig. 4. Graphics and Processor analysis in DTV SEs

The consumption of the graphics card is minimal as it is hardly used in the algorithms
analysed. However, both the graphics card and the processor show a slight decrease in
consumption in SE2. The data for the graphics card and the processor can be found in the
repository. Based on the obtained results, we can conclude that:

When employing dynamically typed variables (DTV), the optimal choice is to
compile the code using the pycompile module.

5.2. SE4, SE5 and SE6: Python Interpreted, compiled (py compile) and Compiled
(Nuitka) with STV

As in the previous section, we are going to compare again the consumption of the three
possible options to obtain running software (interpreted, compiled (py compile) and com-
piled (Nuitka)) but this time when variables are statically typed.

The best SE for the DUT consumption is SE5 (compiled, py compile). Therefore,
Table 9 shows the percentage of relative increase in consumption of SE4 (interpreted) and
SE6 (complied, Nuitka) against SE5 consumption. In the comparison of SE4 (interpreted)
and SE5 (compiled, py compile) it can be observed that half of the algorithms obtain
better results in the former and the other half in the latter.

So, it seems than in four of the algorithms, the use of compiling the code with py compile
is much more energy efficient, whereas in three of them there is not a big difference be-
tween interpreting or using py compile. The other three algorithms have better energy
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Table 9. Time and energy consumption comparison: interpreted and compiled (Nuitka)
vs. compiled (py compile); with STV

SE4 vs. SE5 SE6 vs. SE5
Algorithms Time (%) Energy consumption (%) Time (%) Energy consumption (%)
Binary-trees 1.2953 -0.0012 18.9672 15.3453

Fannkuch-redux -0.2066 -2.5227 8.5661 5.4706
Fasta -1.9867 13.3274 24.6566 26.9903

K-nucleotide 0.5296 0.7845 27.6245 23.3333
Mandelbrot -0.0196 -1.0369 -10.1396 -9.3452

N-body 0.7733 8.6475 56.6949 93.7315
Pi-digits -0.4681 4.9135 0.3695 5.9339

Regex-redux 0.0097 -0.0844 -0.0643 6.1216
Reverse-complement 0.0001 20.8442 -0.0786 5.4584

Spectral-norm -0.2719 -6.6273 15.5815 17.2794

behaviour when are interpreted, but with scarce difference respect to compiling with
py compile.

In this case, there seem that there is no relationship between the energy consumption
and the runtime.
Focusing now on the comparison between SE6 (compiled, nuitka) respect to SE5 (com-
piled, py compile) the results show that the use of Nuitka is less energy efficient than the
use of py compile, arriving up to the 90% of increment in the N-body algorithm.

Fig. 5 shows the average consumption of the graphics card and the processor for SE4,
SE5 and SE6.

Fig. 5. Graphics and Processor analysis in STV SEs

The consumption of the graphics card is minimal, as it is hardly used in the algorithms
analysed, and has no influence on the execution and development methods analysed in
these three SEs. The consumption of the graphics card shows hardly any differences be-
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tween the SEs. However, there is a slight decrease in processor consumption in SE5, with
SE6 consuming the most. The data for the graphics card and the processor can be found
in the repository.

Based on the obtained results, we observe that it is better to compile the code using the
py compile module instead of Nuitka. Although it is more difficult to draw a conclusion
about the election between interpret the code or using py compile, taking into consider-
ation the differences in both cases and the results of the hardware components, SE5 also
seems to be better option. So, we can conclude that:

When employing statically typed variables (STV), the optimal choice is to com-
pile the code using the py compile module.

5.3. DTV vs. STV analysis

One of the reasons why Python might be so inefficient in terms of energy consumption
is its great dynamism in typing variables. In this section we present the comparison that
aims to check if there is any difference in energy consumption and runtime when using
dynamically or statically typed variables, using an interpreted, compiled (py compile) and
compiled (Nuitka) versions of Python.

5.3.1 SE1 and SE4: Python Interpreted DTV and Python Interpreted STV About
DUT consumption, the SE that gave us the best results in the interpreted version of Python
is SE4, considering the averages of the algorithms. Therefore, Table 10 shows the percent-
age of relative increase in runtime and consumption of SE1 with respect to SE4.

Table 10. Time and energy consumption comparison: interpreted DTV and interpreted
STV

SE1 vs. SE4
Algorithms Time (%) Energy consumption (%)
Binary-trees 0.0791 4.5825

Fannkuch-redux -0.0042 -3.3047
Fasta 1.4977 -13.2241

K-nucleotide 1.1377 -2.3733
Mandelbrot 0.2583 1.7795

N-body -0.0079 6.6703
Pi-digits -0.0511 5.3325

Regex-redux -0.0372 2.5103
Reverse-complement -6.3787 -6.2324

Spectral norm -5.1020 3.3481

Regarding energy consumption, most algorithms exhibit an increment in SE1 com-
pared to SE4. However, in some algorithms (Fannkuch-redux, Fasta, K-nucleotide, and
Reverse-complement), energy consumption improves in their STV version.
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Looking at the runtime, there does not seem to be a relationship between run time and
energy consumption.

So, we can conclude that:

When using interpreted Python, the optimal choice is to use statically declared
variables.

5.3.2 SE2 and SE5: py compile DTV vs. py compile STV When running the com-
piled code using the py compile module, we obtained that half of the algorithms had better
energy consumption for one of the SE and the other half for the other. So, to provide a
simple interpretation of the results, Table 11 shows the percentage increase of the worst
average (SE2) over the best average (SE5).

Table 11. Time and energy consumption comparison: compiled (py compile) DTV and
compiled (py compile) STV

SE2 vs. SE5
Algorithms Time (%) Energy consumption (%)
Binary-trees -1.8001 0.1848

Fannkuch-redux -0.6456 -2.4632
Fasta -0.1837 -2.5971

K-nucleotide -0.5440 2.6379
Mandelbrot 0.1304 -2.5380

N-body 0.0942 12.9002
Pi-digits 0.3655 -0.8968

Regex-redux -0.0989 3.4552
Reverse-complement 0.0047 1.4919

Spectral norm -5.9938 -8.9491

As can be observed, there is a notable difference of energy consumption in two of
the algorithms (N-body and Spectral-norm), each showing better performance in different
scenarios. For the rest of the algorithms, there are no significant differences in energy
consumption.

In terms of time, there does not seem to be a clear relationship between execution time
and energy consumption.

So, we can conclude that:

When using compiled code using the py compile module, it does not seem to
matter the choice between statically or dynamically declared variables.

5.3.3 SE3 and SE6: Python Compiled (Nuitka) DTV and Python Compiled (Nu-
itka) STV Finally, when we compile the code using Nuitka, SE3, which is the version
with DTV, has yielded the best results, in contrast to the previous cases. Therefore, Table
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12 presents the percentage increases of SE6 with respect to SE3.

Table 12. Time and energy consumption comparison: compiled (Nuitka) DTV and
compiled (Nuitka) STV

SE6 vs. SE3
Algorithms Time (%) Energy consumption (%)
Binary-trees -1.1437 -1.9656

Fannkuch-redux 0.3721 -0.5958
Fasta 1.7378 -3.4186

K-nucleotide -0.0103 1.8725
Mandelbrot -3.5124 -0.4181

N-body 1.6516 3.2231
Pi-digits 0.0495 0.4776

Regex-redux 0.0065 1.0231
Reverse-complement -0.1293 -13.9819

Spectral-norm -4.6711 -0.4240

In terms of algorithm runtime comparison, we find that only half of the algorithms
(Fankuch-redux, Fasta, N-body, Pi-digits and Regex-redux) experience an increase. The
rest of the algorithms decrease their execution time when running in SE3.

On the other hand, in terms of energy consumption, only four algorithms show an
increase compared to SE3. If we make the opposite comparison (SE3 vs. SE6), most
algorithms consume less in SE6.

In this case, again there does not seem to be a relationship between execution time
and energy consumption.

So, we can conclude that:

When using compiled code using Nuitka, the optimal choice is to use dinamically
declared variables.

5.4. Comparison of opposites SEs

In this section we present the comparison of the most opposite versions of those included
in the study. Concretely we have selected interpreted SEs and compiled by Nuitka SEs,
because to run interpreted code is the opposite to run it as machine code.

5.4.1 SE1 and SE6: Python Interpreted with DTV and Python Compiled (Nuitka)
with STV First, we are going to compare the most usual way of using the Python lan-
guage (SE1-Interpreted and DTV) with the version compiled with Nuitka and STV (SE6).
The version that has given us the best consumption results is Interpreted DTV (SE1), so
Table 13 shows the percentage increase of SE6 with respect to SE1.

Looking at the consumption, 7 out of 10 algorithms increase their consumption when
compiled with Nuitka and using statically declared variables. In fact, four of them (Fasta,
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Table 13. Comparison of opposing SEs: Interpreted DTV and Compiled (Nuitka) STV
SE6 vs. SE1

Algorithms Time (%) Energy consumption (%)
Binary-trees 17.3530 10.2926

Fannkuch-redux 8.7954 11.8980
Fasta 25.3067 29.1329

K-nucleotide 25.5240 25.3482
Mandelbrot -10.3536 -9.9969

N-body 55.5048 67.1617
Pi-digits 0.8931 -4.1392

Regex-redux -0.0368 3.6103
Reverse-complement 6.7293 -6.9315

Spectral-norm 22.1275 21.5344

K-nucleotide, N-body and Sprectral.norm) increase more than a 20% the consumption.
In the counterpart, the three algorithms that decrease their consumption on its version
compiled with Nuitka and using statically declared variables (Mandelbrot, Pi-digits, and
Reverse-complement) show a decrement less than a 10%.

Also, the execution time increases for most of the algorithms, being over the 55% for
one algorithm and over the 25% in other two. In general, there seem to be a relationship
between the energy consumption and the execution time.

So, we can conclude that:

The use of interpreted code with DTV seems to decrease considerably the energy
consumption and the execution time than compiled with STV code using Nuitka.

5.4.2 SE3 and SE4: Python Compiled (Nuitka) with DTV and Python Interpreted
with STV In this case, we undertake a comparative analysis of two divergent config-
urations, with the aim of deriving further insights into the impact of using Python and
the variable typing approach. Specifically, we contrast the effects of employing compiled
Python (Nuitka) with DTV against interpreted Python with STV. Table 14 shows the per-
centage increase of SE3 with respect to SE4.

In terms of energy consumption, most of the algorithms (8 out of 10) consume more
in SE3, being N-body the algorithm with the biggest increase (72%). Exceptions are Man-
delbrot (which decreases an 8% the consumption in SE3) and Reverse-complement (but
although being less consumer in SE3, the percentage of savings is minimal, around half
point).

The execution time is, in general, proportionally related to the energy consumption,
there seem to be a relationship between the energy consumption and the execution time.

Therefore, we can affirm that working with a compiled version with Nuitka that also
has statically typed variables means a considerable increase in energy consumption and
a longer execution time than working with its interpreted version and with dynamically
typed variables.

So, we can conclude that:
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Table 14. Time and energy consumption comparison: compiled (Nuitka) DTV and
interpreted STV.

SE3 vs. SE4
Algorithms Time (%) Energy consumption (%)
Binary-trees 18.8047 17.6140

Fannkuch-redux 8.3875 8.8448
Fasta 25.0110 15.8869

K-nucleotide 26.9653 20.0819
Mandelbrot -6.8502 -8.0123

N-body 52.9661 72.5647
Pi-digits 0.7917 0.4904

Regex-redux -0.0805 5.1245
Reverse-complement 0.0507 -0.5302

Spectral-norm 21.5755 26.1360

The use of interpreted code with STV seems to decrease considerably the energy
consumption and the execution time than compiled with DTV code using Nuitka.

And from analysis of sections 5.4.1 and 5.4.2. we can conclude that:

The use of interpreted code seems to decrease considerably the energy consump-
tion and the execution time than compiled code using Nuitka.

5.5. Comparing the algorithms

Having presented the comparisons of the results of the SEs, in this section we show the
energy consumption results grouped by algorithm. Fig. 6 shows an overall comparison of
the DUT consumption of each algorithm in the different SEs.

As discussed in the previous sections, most algorithms show higher consumption in
SE3 and SE6 (Nuitka). However, the Pi-digits algorithm shows an increase in consump-
tion in SE1.

On the other hand, the Mandelbrot and Reverse-complement algorithms have a higher
consumption in SE1 and SE4 respectively. It is also remarkable the behaviour of the Fasta
algorithm, which shows a similar trend in SE1-SE5, however, in SE6 its consumption
increases a lot.

Obviously, performance and resource consumption can vary depending on the specific
algorithm, code characteristics, compiler optimisations and other factors. Without know-
ing specific details of each algorithm in question, some general reasons why algorithms
perform better on some SEs than on others are as follows:
• Interpreter Optimisations: CPython, is the reference interpreter for Python, so it is

highly optimised and can perform certain run-time optimisations. However, not in all
algorithms, these optimisations result in lower power consumption.
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Fig. 6. Comparison of DUT consumption in the algorithms

• Code Characteristics: Code efficiency can vary between different algorithms. Some
algorithms may benefit more from optimisations made by the CPython interpreter,
while others may show improved performance when compiled.

Fig. 7 and Fig. 8 show the results of processor and graphics card consumption for the
algorithms. Although the processor and the graphics card are two independent compo-
nents, in some algorithms it can be seen how both components have a similar consumption
tendency, as is the case of Fasta, N-body and Spectral-norm.

The energy consumption behavior of the algorithms is mainly due to the nature of
each algorithm. However, the fact that the fasta, n-body and spectral-norm algorithms
have similar resource consumption on both the processor (CPU) and graphics card (GC)
may be due to several reasons related to the way the data is processed on both the CPU
and the GPU of the graphics card, according to some sources as [21] and [31]:

• Nature of the Algorithm: They may have features that do not benefit significantly from
the massive parallelization that a GPU could offer. Some algorithms, especially those
with data dependencies or complex control flow structures, may not be as efficient on
a GPU.

• Data Transfer Overhead: If algorithms involve large amounts of data transfer between
the CPU and GPU, or if the data sets are small, the benefit of using a GPU may be
offset by the data transfer overhead.
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Fig. 7. Graphics and processor energy consumption results for Algorithms 1-6
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Fig. 8. Graphics and processor energy consumption results for Algorithms 7-10

• Implementation and Optimizations: GPU efficiency can depend heavily on how al-
gorithms are implemented, and the specific optimizations made to take advantage of
the GPU architecture. If the implementation has not been optimized to take advan-
tage of GPU-specific features, performance may not differ significantly from CPU
performance.

• GPU characteristics: Not all tasks are suitable for GPU execution. Some tasks, espe-
cially those involving intensive matrix operations or massively parallel computations,
are more suitable for GPU execution.

On the other hand, it is noteworthy that the consumption of the graphics card and the
processor in 8 of the 10 algorithms is higher in the SEn with statically typed variables.
However, the algorithms are not the same in both cases. In the Pi-digits and Fasta algo-
rithms, graphics consumption is higher with STV, but processor consumption is higher
with DTV. In the Fannkuch and K-nucleotide algorithms the opposite is the case.

Regarding the way Python programs are executed, most algorithms (except Binary-
trees and K-nucleotide) have a lower processor consumption in compiled SEs, either with
the py compile module or with Nuitka. Similarly, most algorithms (except for Regex-
redux and Mandelbrot) also have lower graphic card consumption in compiled versions.

So, we can conclude that:

The use of statically typed variables seems to considerably increase the power
consumption of the graphics card and the processor.

And on how to run the Python code:
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The use of compiled code, either with the Python module or with Nuitka, seems
to decrease graphics card and processor energy consumption.

6. Answering the research questions and recommendations

Once the results obtained from the measurement have been analysed according to different
comparison, we can answer the stated research questions, as follows:

RQ1. Is there any relationship between the energy consumption and time re-
quired (by a software application at runtime) and the use of Cpython, py compile
module or Nuitka?
After analysing the results obtained, we can affirm that yes, there is a significant relation-
ship between energy consumption during software runtime and the use of interpreted or
compiled Python.

The most efficient option in terms of energy consumption is to use Python compiled
with the py compile module, while the least efficient option is Python compiled with Nu-
itka, which shows an overwhelming increase in energy consumption. Throughout section
4.1, the increase in time and consumption can be clearly seen when comparing the use
or not of py compile, with an increase in consumption of up to 66%, while in time there
are also differences, albeit smaller. Similarly, in section 4.2, very significant differences
are found in all the algorithms, with the N-body algorithm standing out, whose difference
when compiled with Nuitka represents a 93% increase in energy consumption and a 56%
difference in execution time.

In addition, the use of interpreted code seems to significantly decrease energy con-
sumption compared to code compiled with Nuitka. As for the way variables are declared,
it does not seem to affect the power consumption of the software when compiling code
using the py compile module. However, when using code compiled with Nuitka, the best
option in terms of variable declaration is to use dynamically typed variables.

RQ2. Is there any relationship between the energy consumption required (by a
software application at runtime) and the use of variables dynamically or statically
typed (during the development)?
After analysing the results obtained, we can conclude that it depends on the type of exe-
cution:
• When using interpreted Python, the optimal choice is to use statically declared vari-

ables.
• When using compiled code using the py compile module, the choice between stati-

cally or dynamically declared variables does not seem to matter.
• Using code interpreted with DTV seems to considerably decrease energy consump-

tion than compiling with STV code using Nuitka.
• Using code interpreted with STV seems to considerably decrease energy consumption

over code compiled with DTV using Nuitka.
Finally, Fig. 9 ranks the software entities studied in the presented study according

to the energy consumption measurements obtained in our study. Python compiled with
py compile module and declaring variables occupies the top of the list whilst the bottom
is for Python compiled using Nuitka and declaring variables.
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Fig. 9. Python energy-consumption classification

7. Threats to validity

This section tackles the threats to the validity of the study by following the recommenda-
tions in [49] and how we have tried to minimize their effects:

Construct validity. The first point is about the reliability of the measurements. We
have used EET to measure consumption, which enables exact measurements of the en-
ergy consumed by the different hardware components in a very small interval of time
(approximately 100 samples per second). Obviously, the measurements obtained are spe-
cific to EET and may differ if we use other mechanisms as an estimate, or if we employ
other components (where they exist). However, EET has been already validated proving
its reliability [34] and has been used previously in other measurements of this type.

Internal validity. With regards to those uncontrolled factors that may affect the results
of the experiment, the most remarkable ones are related in the conditions in which the
measurements were performed.

Firstly, the algorithms executed were the same in the six SEs (adapting the specific
aspects on the way of using Python). Moreover, several executions were performed to
mitigate the possible atypical values related with consumption. We used the same DUT to
perform the executions and capture the energy consumption and measures have been taken
to ensure that the DUT was always in the same conditions for the running of each differ-
ent execution. To avoid the possible execution of background processes, before starting
each measurement, all programs that could cause interference were closed, and the base
consumption of the DUT was subtracted from the measurements. Regarding the number
of measurements performed, there is no ideal number of measurements. Our decision is
based on the recommendation of authors such as [24] for evaluations of software power
consumption in a controlled environment. Generally, a sample of 30 measurements is suf-
ficient for the analysis of each intended test case, as it tends to produce a near-normal sam-
pling distribution. However, such as reported in the experimental package [22] statistical
significance analysis did not obtain significant difference between most of the compared
scenarios with resulting small effect sizes. New empirical studies will be conducted with
more complex scenarios to confirm if the obtained scenarios differences in this study can
be significant from statistical point of view in more complex settings.
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External validity. Finally, related to the power of generalising the results obtained
in this experiment. The results are based on a specific combination of algorithms and
configuration of Python. Our experiment was performed on CPython interpreter version
3.11 and compilation with Nuitka was performed using the –standalone option.

Therefore, different interpreter versions and other compilation options could differ
in the results. So, the study could be repeated using other interpreter versions, as well
as extending it by considering other compilation options, other algorithms, the use of
libraries, etc. A more exhaustive analysis could also be performed to report the parts
of the code that involve higher consumption in the different components. Nevertheless,
the current study is a good starting point on how to improve the large amount of power
required by Python.

Throughout the document we have mentioned the existence of a new compiler, GraalPy,
which promises to be very efficient. We have made some energy consumption measure-
ments with the aim of including it in our study. However, its current state of development
has prevented us from performing exhaustive measurements of all our algorithms due to
its limitations.

Likewise, we are also aware of the existence of another compiler called Numba [35]
which, due to its limitations with some libraries [41], we have not been able to include in
our study either.

However, for both cases we have made some measurements. In the case of Numba, we
performed the measurements on another version of the Mandelbrot algorithm compatible
with this compiler. The same algorithm has also been measured on Interpreted and on
Nuitka (DTV and STV) and the results obtained have been compared. In the case of
GraalPy, we have measured all the algorithms. The results of the compatible algorithms
together with the errors of the remaining algorithms can be found in the experimental
package in our repository [22].

8. Conclusions

Sustainability has emerged as a paramount concern within contemporary society, prompt-
ing an increasing number of companies to integrate it into their product development
practices. However, within the realm of software development companies, the considera-
tion of sustainability remains an area with significant room for improvement. Despite the
growing body of research addressing the sustainability of software development, substan-
tial gaps persist. Part of the software sustainability is concerned by the obtaining of green
software and the consumption required by software.

Numerous studies have contributed valuable insights into the green software devel-
opment in general and in programming languages (focus of this paper) in particular. For
instance, the work of [36] delves into the energy efficiency of various programming lan-
guages. Notably, the study’s findings highlight Python, a language widely acclaimed by
developers, as one of the most energy-intensive languages. Despite ongoing efforts to op-
timize Python, these endeavours have yet to yield comprehensive insights into the optimal
methods for its development and execution.

Against this backdrop, the present research endeavours to gauge the real energy con-
sumption associated with three distinct methods of executing Python programs, namely
CPython, the Py compile module, and Nuitka. Additionally, two different approaches to
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Python development, involving dynamically typed variables and statically typed variables,
are considered in this study.

Using the FEETINGS framework [30] and the EET [28], we measured the energy
consumption of 10 algorithms written in Python. Each of these algorithms was adapted
in two versions (Dynamically typed variables and statically typed variables) and executed
30 times in three different ways (Interpreted, compiled with the py compile module and
compiled with Nuitka). With the resulting consumption data, different comparisons were
made to answer our research questions.

Based on the findings, a set of recommendations have been developed to make it easier
for Python programmers to apply it in real life. Each of these recommendations is detailed
below:
• R1. If you want to speed up loading and execution, it is better to compile using the

py compile module rather than Nuitka.
• R2. If the code is compiled using py compile, it is better to declare the variables

(STV).
• R3. When using interpreted Python is required, the best option is to use statically

typed variables (STV).
• R4. When using dynamically typed variables (DTV) is required, the best option is to

use compiled Python with py compile module.
• R5. It is preferable to run the interpreted code with DTV, rather than to compile it

with Nuitka.
• R6. A compiled version of Python with dynamically typed variables is better than an

interpreted version with statically typed variables.
• R7. The use of statically typed variables does not always save energy, it depends on

the algorithm executed.
• R8. It is better to use Python on its classical way (interpreted with DTV) than using

STV and compile using Nuitka.
• R9. To reduce GC and processor consumption, it is better to use dynamically typed

variables.
• R10. It is better to compile the code, either with the Python module or with Nuitka,

to reduce the consumption of the graphics card and the processor.
Considering that Python is a very versatile language, several lines of future work are

open. Python offers a multitude of libraries [48] that eliminate the need to write code
from scratch, providing the programmer with various functionalities such as processing
large amounts of data or image processing. It would therefore be interesting to check the
influence of these libraries on energy consumption.

We are also aware of the existence of other types of benchmarks, for example ”The
Python Performance Benchmark Suite” [47], specifically for measuring the performance
of programs written in this language. It would therefore be interesting to replicate our
study using this benchmark to compare the results obtained and offer more specific rec-
ommendations.

Other compilers (Numba and GraalPy) were considered to be included in our study.
Due to their limitations, mainly because they are yet under construction, they were not
included, but they will be considered in future works. Work is also underway to carry
out the study presented in this paper in other programming languages, with the aim of
providing relevant information on the influence that the use of different compilers has



Python energy consumption. 723

on the energy consumption of the software. Finally, we also consider of main interest to
study the energy efficiency of compiler optimisations, being another line of future work.
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