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Abstract. Typically, the image features are compared to find the similarity among
the images in a content-based image clustering system. However, images with high
feature similarity may be different from each other in terms of semantics. Hence,
this paper proposes a novel algorithm based on unsupervised neural classifier sys-
tems for in-vivo image clustering to address the semantic gap issue. The visual
features are represented using Wavelet transform and Zernike moments, and a self-
organizing map is utilized for the clustering of images. The algorithm-based proto-
type system is trained for categorizing gastral images in the respective clusters as
per the similarity. The system can be used to segment images with automatic noise
reduction and rotation invariances for given images. Experiments are performed on
the real gastrointestinal images obtained from a known gastroenterologist, and the
results using Daubechies Wavelet Transform + Zernike Moments on LUV color
scheme yield 88.3% accuracy.

Keywords: Machine learning, Self-organizing maps, Zernike moments, Wavelet
transforms, Gastroenterology.

1. Introduction

Automatic image analysis and segmentation is a skilled task carried out by experienced
professionals. Features in an image are used to decompose and analyze the underlying
anatomy by defining a mechanical and systematic procedure. Given the explosive growth
of visual information, partly due to the expansion of the Web and partly due to the intro-
duction of sophisticated and inexpensive image capture systems, there is an urgent need
to develop programs that can learn to segment and annotate. Automatic segmentation
and annotation systems are among the critical areas of research and development for the
next decade and beyond, and machine learning will be a vital technology in developing
such systems [54], [53]. Self-organizing maps (SOM) incorporated with extended fuzzy
c-means clustering have been a popular method for image segmentation as studied in [3].
It has used a discrete wavelet transform for image description for edges and lines involved
in contrast variation.

The objective of the proposed study is to analyze, segment, and cluster the endoscopy
images such that the trained system can be helpful for gastroenterologists in problem di-
agnosis of the gastrointestinal tract. The motivation behind the current problem selection
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is its complexity in terms of image feature distribution. An example of in-vivo gastral
images has been shown in Fig. 1 in which an image has been analyzed using two segmen-
tation algorithms:

1. Region Growing (It has been applied in [7] to segment 2D microscopy digital im-
ages of freshwater green microalgae. In this approach, the image is segmented into
multiple disjoint regions (sub-regions), and then they are merged with their nearest
neighboring seeded region (to grow regions) that satisfies a predefined homogeneity
criterion.);

2. (b) 2D Otsu algorithm [47] (which employs the gray level information of each pixel
and its spatial correlation information within the neighborhood). The algorithm has
failed to capture the region of interest in both the cases, which is bleeding and not the
dark spot.

It can be observed that it is pretty challenging to accurately segment blood due to
the obscure nature of the color distribution and irregular region boundary. The red and
green boundaries have captured the wrong dark region instead of the red spot ROI (region
of interest). Moreover, the underlying images are dynamic, involving continuous move-
ments of the camera in the drifting capsule, body organs, insufficient light conditions to
capture texture at the region of interest, and varying luminance and noise due to food par-
ticles and body fluid. In addition, complementary metal-oxide semiconductor (CMOS)
image sensors involve noise, high compression ratio, and low resolution of 256× 256. If
a segmentation method can enhance the classification accuracy in this confounding case,
then inherently, it would also contribute to other applications of image processing. This
is the reason for the underlying case study about image segmentation for gastral images.
Challenges involved in image retrieval have been discussed in Table 1.

Table 1. Summary of challenges of image representation and learning

Challenge Elaboration

Image invariance Yields same image, when rotated, scaled or moved.

Noise The ’lens’ of the camera is never perfect; surrounding envi-
ronment may contribute to the noise, noise could be Gaus-
sian or distributed differently.

Representation In terms of the optical properties of the (individual) pixels of
an image – mean intensity, x-tilt, y-tilt, focus astigmatism @
0 degree & focus astigmatism @ 45 degrees, coma & x-tilt,
coma & y-tilt, spherical & focus.

Learning For recognizing the contents of a new image having ”see”
similar images before.

We have used wavelet resolution which helps to remove noise and makes images scale
invariant. Zernike moments have been used for image vectorization and self-organizing
maps based on unsupervised learning is used to cluster images for sick and healthy classes.
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Fig. 1. (a) Original gastral image, (b) Region growing segmentation [7], and (c) 2D Otsu
segmentation algorithm [47]. The red and green boundaries have captured the wrong
(dark) spot instead of red region of interest (ROI) showing that problem is complex for
image segmentation

Overview

The overview of the proposed research is as follows:

1. A novel algorithm for medical image clustering has been proposed which is based on
unsupervised neural classifier systems.

2. The characteristic visual features are obtained from the images using Wavelet Trans-
forms (WT), Zernike Moments (ZM), and Kohonen self-organizing feature map al-
gorithm has been applied for clustering.

3. The proposed image clustering approach has been applied to the real capsule en-
doscopy images obtained from a known gastroenterologist and data distribution has
been carefully studied using PCA and LDA plots to motivate the application of ad-
vanced machine learning techniques.

4. Performance analysis of the proof-of-concept model has been compared with both
traditional and contemporary methods to support the belief.

This paper introduces an efficient image segmentation algorithm using Wavelet Trans-
forms, Zernike Moments, and Linear Discriminant Analysis due to their characteris-
tic visual feature extration and then unsupervised clustering algorithm – Kohonen self-
organizing feature maps have been used to categorise the bleeding regions. For the per-
formance comparison, ten different techniques have been executed on the dataset to justify
the choice of the proposed technique.

The paper is organized as follows: Section 2 is about related works, Section 3 dis-
cusses Wavelet Transforms and Zernike moments for image vectorization, Section 4 ex-
plains single SOM, Section 5 presents the proposed method, Section 6 shows the experi-
mental analysis, and Section 7 concludes this research study and talks about future work.
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2. Literature review

This section summarizes the miscellaneous works by various researchers related to the
proposed work. In [34], a comprehensive survey of computer vision techniques for wire-
less capsule endoscopy (WCE) has been studied. Information regarding various publicly
available datasets of WCE has also been provided along with challenges and future scope.
A survey has been presented in [45] for including deep learning to automate the pro-
cess of WCE examination. Deep learning applications for WCE such as detecting polyps,
bleeding, ulcers, hookworm, and celiac disease are discussed. A computer-aided diagnosis
technique has been proposed in [10] for identifying and categorizing the abnormalities in
vision-centered endoscopy detection. A novel deep sparse SVM feature selection model
with group sparsity has also been incorporated, which assigns an appropriate weight to
the feature dimensions and also removes the inadequate features from the feature pool. In
[40], authors have utilized Zernike moments (ZM) to authenticate online signatures, and
ZM represents the shape of the acceleration plot.

A novel recurrent framework has been proposed in [49] for joint unsupervised learn-
ing of deep representations and image clusters. The sequential tasks in the clustering
algorithm are expressed as steps in the recurrent process, stacked on top of convolutional
neural network (CNN) representations output. The research is inspired by the fact that
good representation benefits image clustering, and clustering output gives supervisory in-
dications to representation learning. Authors in [55] have proposed a Nonlinear Subspace
Clustering (NSC) technique for image clustering that exposes the multi-cluster nonlinear
structure of data instances using a nonlinear neural network. The technique introduced in
[50] quantifies the clusterability of a dataset and is based on the probability density of a
measure (S) of clusterability (in 1D) of projection of data onto a random line. After com-
paring the clusterability of image datasets with synthetically created clusters, it has been
inferred that the structures we discover in image datasets do not fit the notion of clusters
in the traditional sense. Moreover, the authors introduced a fast approach to hierarchically
clustering high-dimensional data. In [8], the Deep Adaptive Clustering (DAC) approach
has been proposed to represent the clustering problem as a binary pairwise classification
framework for identifying whether pairs of images belong to the same cluster. The cosine
distance metric has been utilized for calculating the similarities between label features of
images produced by a deep convolutional network.

A novel technique, Robust learning for Unsupervised Clustering (RUC), has been in-
troduced in [38] that is motivated by robust learning and overcomes the issues of faulty
predictions and overconfident results in the case of unsupervised image clustering. This
approach utilizes the pseudo-labels of existing image clustering models as noisy data that
may comprise misclassified instances. In [41], the authors have proposed a two-stage deep
density-based image clustering (DDC) framework to address the issue of selecting an ap-
propriate number of clusters in advance. A pseudo-supervised joint approach has been
proposed in [19] for image clustering, named Discriminative Pseudo Supervision Cluster-
ing (DPSC). Authors have resolved two significant issues in image clustering problems:
appropriate image representation and lack of supervision. The main idea is to determine
and use the pseudo supervision information for providing supervisory guidance for dis-
criminative representation learning.

An improved version of ZM has been introduced in [21], which has been utilized for
face recognition. In addition to the basic orthogonal and intrinsic characteristics, this ver-
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sion is also invariant to noise, illumination, translation, in-plane rotation, and scaling. A
hybrid similarity measure has also been proposed in this by integrating Jaccard similarity
with L1 distance. Fractional-order Zernike moments, an improved version of ZM, have
been presented in [23] for analyzing the grape leaf images. Multi support vector machine
classifier is utilized to classify grape leaf diseases. In [25], Daubechies complex wavelet
transform (DCxWT) and ZM have been used in combination for image representation.
The multi-class support vector machine is used for object classification. To denoise im-
age sequences using nonlocal means extended by ZMs, is proposed by [44]. It is found
to be faster due to a reduction in weight computations, and block matching has been dis-
counted. Similarity distance is found using photometric distance in consecutive images. A
local ZM based spatio-temporal feature is proposed in [14] in the spatial domain exploit-
ing motion change frequency for recognizing facial expressions. In [48], a study of mod-
ified principal component analysis has been performed to extract image features from the
ORL face database and has been named image projection PCA (IMPCA). Sparse coded
features are introduced for identifying bleeding in wireless capsule endoscopy images
in [39]. These features are obtained after computing Scale-Invariant Feature Transform
(SIFT) and uniform Local Binary Pattern features for WCE images. SVM is utilized for
classifying the images. In [18], authors have proposed an automated system for detect-
ing focal electroencephalogram (EEG) signals by using differencing and flexible analytic
wavelet transform (FAWT) techniques. K-nearest neighbor and least squares support vec-
tor machine are applied as classifiers for automatic diagnosis.

In [4], automatic quality assessment of sperm quality (damaged or intact) has been
predicted using ANN and KNN. Co-occurrence matrix and discrete wavelet transforms
have been calculated from the underlying images for texture features and have been
found to outperform moment-based descriptors in the study. A probability density func-
tion (PDF) based approach has been proposed in [29] for automatic detection of bleeding
in WCE images. After determining the pixels of interest, local spatial features are ex-
tracted from the images by employing a linear separation scheme. In [30], an image re-
trieval system based upon semantic features has been studied. It uses ontological terms to
define the image using multi-scale Reisz wavelets to analyze their annotation similarity.
Liver lesions in CT images have been experimented with to validate the proof-of-concept.
Normalized discounted cumulative gain (NDCG) score and AUC have been calculated
and compared for the real-time decision-making capabilities of the model. For the robust
representation of WCE images, the study given in [51] provides the assistance and dis-
criminated definition for polyp images using a deep learning technique utilizing sparse
auto-encoder. It uses a nearest neighbor graph to define inherent image manifold charac-
teristics. A summary of the motivational literature review has been given in Table 2. In
[32] a survey of large language models (LLM) have been studied for gastroentrology and
semi-supervised variational models in [13].
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Table 2. Summary of literature survey: pre-processing and noise removal, image
representation, and learning

Sr Method Purpose Outcome Study

Pre-processing and noise removal

1 DCxWT, ZM and multi-
class SVM

Object classification Better precision and accuracy values Khare 2021
[25]

2 Nonlocal means extended
by ZMs

Faster computation Denoising and faster computation Singh 2017
[44]

3 Differencing and FAWT Automatic detection of focal
EEG signals

94.41% accuracy Gupta 2017
[18]

4 Riesz wavelets image retrieval for a heman-
gioma, liver lesions

NDCG score = 0.92, AUC = 0.77 Kurtz 2014
[30]

Image representation

5 Zernike moments Online signature authentication 4% of False Rejection Rate, 2% of
False Acceptance Rate

Radhika 2011
[40]

6 Local modified Zernike
moment per unit mass

Face recognition Higher recognition accuracies on
two datasets

Kar 2020 [21]

7 Deep sparse SVM Computer aided endoscopy diag-
nosis

New endoscopy dataset, Computa-
tion reduction and improved robust-
ness

Cong 2015
[10]

8 Image principal compo-
nent analysis

To analyse IMPCA is better than
PCA, FDA

Better accuracy and reduced time Yang 2002 [48]

Learning

9 Local ZM, SVM Facial expression recognition Improved recognition rate Fan 2017 [14]

10 Survey of computer vi-
sion methods for WCE

Determining major challenges of
WCE and future scope

Comparative analysis Muhammad
2020 [34]

11 Survey of deep learning
for WCE

Systematic review and meta-
analysis of deep learning methods
for WCE

Comparative analysis Soffer 2020
[45]

12 Sparse coded features,
SVM

Detect bleeding in WCE accuracy = 98.18% Patel 2021 [39]

13 DWT, Invariant moments,
ANN, KNN

veterinary field, spermatozoa
healthy or sick

accuracy = 95% Alegre 2012
[4]

14 Local spatial features,
Rayleigh PDF model

Automatic bleeding detection in
WCE images

Improved performance with less
complexity

Kundu 2019
[29]

15 Stacked sparse autoen-
coder with image mani-
fold constraint

polyp recognition Overall accuracy = 98% Yuan 2017 [51]

3. Image feature vectors

Image features involve color, texture, and shape metrics based upon the contrast-related
discontinuities in the image. For this study, Wavelet Transforms [52] and Zernike mo-
ments [12] have been used due to their efficiency and power to capture the inherent char-
acteristics.

3.1. Wavelet Transforms (WT)
These mathematical functions divide a signal (image) into different frequency compo-
nents. The goal is to study each component with a resolution with a matching scale. WT
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is better than Fourier Transforms (FT) or Short-Time Fourier Transform (STFT), which
cannot analyze both frequency and time components [22]. Wavelet transform is composed
of wavelet function w(.), defined in finite time and normalized. The formula for WT is:

Wf(µ,σ) =

∫ ∞

−∞
f(x)

1√
σ
w

(
x− µ

σ

)
dx (1)

where (µ, σ) are translation and scaling parameters, respectively. To see lower fre-
quency components of the signal, increase the value of σ for instance. Some prominent
mother wavelets have been shown in Fig. 2. In our study, Daubechies 4 wavelet has been
used (details in [11]). Spatial information comprises the image pixel positions (x, y) that
act as the time axis and changes in pixel intensity f(x, y) that serve as the frequency
axis. Thus, edges have a higher frequency as compared to smooth areas. For Discrete WT
(DWT), an image is decomposed into four components: approximation, horizontal, verti-
cal, and diagonal. As shown in Fig. 3, the image is decomposed into one level using DWT
(3a) with an example of a face image.

In our study, the image has been decomposed on three levels using WT, as shown
in Fig. 4. It explains about horizontal, vertical and diagonal edges being detected in the
original image. Ten components have been calculated as {(Hi, Vi, Di, Ai) | i = 1, 2, 3 for
H,V,D and i = 4 for A}. In expanded form, we get H1, V1, D1, H2, V2, D2, H3, V3, D3,
and A3. Then for these 10 components, 12 Zernike moments have been calculated for
n = m = 5 which are listed as Z00, Z11, Z20, Z22, Z31, Z33, Z40, Z42, Z44, Z51, Z53,
and Z55 or in the set notation {Zij | i ≥ j and i − |j| is even}. After compiling all that
information from LUV channels, the image feature vector has 12 × 3 = 36 dimensions.
For example, Fig. 5 shows the results from a sample picture’s approximation, horizontal,
vertical, and diagonal edge detection decompositions.

Wavelet Transformation (WT) is quite useful for noise removal, image compression
[52], and zooming capabilities for local characteristics of an image. It is also an efficient
technique for texture characterization while preserving local and global spatial/spectral
information. For instance, the noise removal feature of WT is shown in Fig. 5 with four
decompositions levels, and image denoising has been illustrated in Fig. 6 for an image
with a considerable amount of Gaussian noise.

3.2. Zernike moments (ZM)

Image moments are the weighted average of the intensity values of the image pixel (or a
similar image function) to get the scalar quantities for image interpretation. Moments of
different order yield varying information about the image, such as area, center of mass,
and orientation. Zernike Moments (ZM) [16] of an image are similar to Discrete Co-
sine Transform (DCT) coefficients in their derivation and properties. ZM are projections
of an image function along the real and imaginary axes (x-axis and y-axis), which are
convolved by an orthogonal function. They represent an image in various frequency com-
ponents which are referred to as the orders (along the radial) and repetitions (along the
angular direction). Thus, Z00 represents the average intensity, Z11 represents the first-
order moment, Z20 is similar to variance, and so on. Zernike polynomials are orthogonal
functions that generate an orthogonal set over the unit circle in a complex plane. The cen-
ter of the image stays the same as the center of the circle. Hence, a square image can be
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Fig. 2. A few popular mother wavelet functions [15] w(.). Daubechies 4 wavelet have
been utilized in the experimentation

mapped inside or outside an image [1]. In the case of inner mapping, the pixels which fall
outside the unit disc must be discarded. So, to avoid the information loss from the edges,
we have utilized outer mapping for our experimentation which is shown in Fig. 7.

Formula for Zernike polynomials is Vnm(x, y) = Rnm(ρ)ejmθ. Here n,m are whole
numbers such that n − |m| = even, n ≥ 0, 0 ≤| m |≤ n, θ = arctan(y/x) and
j =

√
−1. (ρ, θ) are radius and angle of the pixel from origin which simply means the

polar coordinate of a pixel at (x, y). Formula for radial polynomial Rnm(ρ) is given as
follows:

Rnm(ρ) =

(n−|m|)/2∑
k=0

(−1)k × (n− k)!

k!(n+|m|
2 − k)!(n−|m|

2 − k)!
ρn−2k (2)
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Fig. 3. Image decomposition using DWT with an example of face image [20]

Fig. 4. Daubechies wavelet transformations are used in the experiments. a, v, h, d stands
for approximation, vertical, horizontal, and diagonal details. Diagonal (low/low),
horizontal (high/low), vertical (low/high), approximation (high/high)

Znm =
n+ 1

π

N−1∑
x=1

N−1∑
y=1

f(x, y)Rnm(ρ)ejmθ (3)

Znmx and Znmy are cosine and sine values of Znm (Zernike moments). The corre-

sponding value if ZM can be calculated as Znm =
√
Z2
nmx + Z2

nmy . Rotational and scale
invariance can be obtained in ZM by normalizing the image using Cartesian moments be-
fore the ZM calculation [26]. Moreover, if the center of mass of image is moved to origin
then translation invariance can also be achieved.

4. Single SOM

Our method involves definitions for creating a set that associates the most active neuron
for the set of the output layer of SOM, with a set of input vectors presented to the input
layer of SOM as defined in Equations 6 and 7. It applies to a single SOM or can be
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Fig. 5. The four decompositions explained with example: approximation, horizontal,
vertical, and diagonal details to detect the corresponding edges. Fig. (a) is original
image, (b) is the view of four decompositions, and (c) is denoised image

Fig. 6. (a) Noisy image and (b) denoised image with Daubechies wavelets (DB-4)

Fig. 7. Outer mapping which maps a given image inside the unit disc

extended as the collateral SOM for hybrid SOMs. Follow Algorithm 1 for creating single
modal information systems for image clustering.
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Algorithm 1 Algorithm for retrieving information from a single SOM
1: Identify the best match node w⃗k.
2: Form a totally ordered set of the n nodes in the SOM, such that:

(W,≤) =

 w⃗k, k = 1..n | w⃗i ≤ w⃗j ⇔

∥x⃗k − w⃗i∥ ≤ ∥x⃗k − w⃗j∥

 (4)

where w⃗i, w⃗j ∈ W, 1 ≤ i, j ≤ n and i ̸= j
3: Retrieve a totally ordered set R, of all p pre-stored items used in training, in response to the

input vector x⃗

Rsingle = {x⃗l, l = 1..p | ∃ w⃗k ∈ W : (x⃗l, w⃗k) ∈ Psingle} (5)

A Self-organizing Map (SOM) [28], also called a Kohonen Map, associates a multidi-
mensional input space, comprising a set of feature vectors, onto a 2-dimensional surface
(output map). The end of training leads to an association between an input vector x⃗ and
a specific output node that ’wins’ the input, known as the Best Matching Unit (BMU) for
that input vector. If w⃗ represents the weight vector of an output node, then BMU for input
vector x⃗ can be calculated as:

∥x⃗− w⃗m∥ = min{∥x⃗− w⃗m∥} (6)

where m depicts the index of SOM output node which is a BMU. One node may ’win’
over more than one input forming a set. Let Psingle be the pair set of q input vectors and
the corresponding winning node is w⃗m, then Psingle is defined as:

Psingle =

 (x⃗k, w⃗m), k = 1..q

∥x⃗k − w⃗m∥ =
n

min
i=1

{∥x⃗k − w⃗i∥}

 (7)

Information retrieval from a SOM involves the presentation to the trained SOM of
a set W . The mapping of the input vector from higher dimensional nodes in the output
layer forming a space to the winning node in 2-D neuron space has shown in Fig. 8. The
length of input vector Xi and neuron weight vector Wi must be the same. The retrieving
information from a SOM has been depicted in the Algorithm 1. The following section
explains image vector creation using Zernike Moments and Wavelet transformation for
denoising.

During the initial stages of the SOM training, the weight vectors are initialized with
random weights and then, together with the input vectors, are normalized. The learning
and neighborhood rates are reduced exponentially during training following established
practice in the SOM literature. Our testing regimen relies on the notion of best matching
unit(s): the node(s) in the output layer that responds with the highest activation value to
a given input vector. Note that if one or more neurons can be activated in response to the
input vector, then the activated neurons are ordered according to their activation levels
(Algorithm 1). If the category of the input vector matches the most activated neuron in
the output layer, then we have a best-matching unit (BMU). If there are multiple activated
nodes for a specific input then we are considering the two highly activated nodes only.
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Fig. 8. Overview of single self-organizing map (SOM) model. Xi are input vectors with
same length as weight vectors Wi. Each Xi is connected to every (winning) neuron

A matching matrix was created to analyze how an input vector may activate neurons
that were trained to respond to one or more categories of keywords or images. If the
winner or BMU in the output layer has the same category as the stimulus, and the stimulus
did not excite any other neurons, then the match will be perfect. However, if a given
stimulus activates neurons of various other categories, the match will be minimal. We
define accuracy as the number of correctly clustered items (based upon the majority of
similar items in the cluster as the test instance) divided by the total number of items in the
category.

5. Proposed Methodology

The proposed research aims to effectively cluster the in-vivo gastrointestinal images based
upon their similarity by carefully considering the image semantics. Let I be the train-
ing set of images that is an input to the proposed algorithm. The expected output is the
trained self-organizing map and the image cluster sets (Ci) constructed as per the image
similarity. The first step is to denoise the images using Daubechies wavelets with four
decomposition levels: approximation, horizontal, vertical, and diagonal. The next step is
the conversion of RGB to LUV channels. Wavelet transforms implementation details are
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given in Section 3.1. Subsequently, 12 Zernike moments are calculated for each of the L,
U, and V channel with n = m = 5, creating a total of 12 × 3 = 36 image vector di-
mensions. The ZM calculation steps and equations are mentioned in detail in Section 3.2.
In the end, 4 × 4 SOM is trained using image vectors and constructs the image clusters.
Algorithm 2 shows the steps for segmentation and clustering of the images using SOM.

Fig. 9. Pipeline diagram for the proposed methodology

As per [37], the total number of multiplications required for computing a radial poly-
nomial (Rnm(ρ)) using Equation 2, is almost (n/2 + 1) × (2n − 3) × (n − 1). So,
computational complexity of calculating a single Rnm(ρ) value of order n and repetition
m is O(n3). If the image dataset size is D, then the total complexity of ZM calculation
becomes O(Dn3). The processing time of SOM is O(D2) [42]. So, the computational
complexity of the proposed algorithm is O(Dn3 +D2).
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Algorithm 2 SOM image clustering
INPUT: Training set of images I
OUTPUT: Image cluster sets (Ci where i = number of SOM clusters and Ci ⊆ I)

1: procedure SOM TRAINING FOR ENDOSCOPY IMAGES

2: Image denoising - Daubechies wavelets (DB − 4) using four decomposition levels
(a, v, h, d)

3: RGB to LUV transformation
4: Calculate ZM for each of L, U, and V channels with n=m=5

(i) Calculate radial polynomial Rnm(ρ) using eq. 2
(ii) Vnm(x, y) = Rnm(ρ)ejmθ

(iii) Znmx and Znmy are real and imaginary values of Znm

(iv) Znm =
√

Z2
nmx + Z2

nmy

(v) Calculate 12 Znm for each L, U, and V channel, so total 36 elements in image vector
5: Train SOM with 4× 4 grid size using the obtained image vectors
6: Required image clusters (Ci) are obtained after SOM training
7: end procedure

Fig. 9 is the pictorial representation of all the steps involved in implementing the
proposed approach. Initially, we have a set of 300 raw endoscopy images. The images
are pre-processed and the region of interest is identified. Afterward, the denoising of the
images is performed using wavelet transforms and the RGB images are converted to LUV
format. Subsequently, ZM features are extracted from the images, which are rotation,
scaling, and translation invariant. The unsupervised self-organizing map is trained using
the extracted image features, and the image clusters are formed based on the similarity.
Now the trained system can be utilized by gastroenterologists for screening and diagnosis
purposes for endoscopy images.

6. Experiments

This section includes the information regarding dataset, its analysis and results obtained
using proposed approach. The configuration of the system used for experiments is: Desk-
top System is Dell Inc. with Model XPS 8930 with Windows 10 ProVersion 10.0.17763,
Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz, 3192 Mhz, 6 Core(s), 12 Logical Proces-
sor(s), with 16GB RAM.

6.1. Dataset

The dataset comprises 300 real gastrointestinal images obtained from a known gastroen-
terologist with a ratio of 180:120 for healthy and sick cases. All the images are of size
256× 256 and are from both upper (esophagus and stomach) and lower (small bowel and
colon) gastrointestinal tract. The sample images from the dataset are demonstrated in Fig.
10 and Table 3 provides the information regarding the dataset.

6.2. Data distribution analysis

The data distributions of healthy and sick image vectors have been examined from various
aspects (to analyze an appropriate learning model), which are as follows:
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Fig. 10. Sample gastral images for bleeding detection. Total 300 in number with ratio of
180:120 for healthy and sick. Image size is 256×256 pixels

Table 3. Description of images in dataset

Category Healthy Sick

Image ratio 180 120

Size 256× 256 256× 256

Redness Overall Spots or saturation

– Relative red intensity in healthy/sick images.
– Distribution of RGB intensities in all images.
– Thresholding to crop the red color (for example, R > 100, G < 60, B < 50).

In Fig. 11 the average red color in the sick and healthy classes has been sorted and
plotted. Although all gastral images are reddish brown in color, the sick images are more
saturated with redness. The intensity plots of all the images have been illustrated in Fig.
12: (a) shows that the left half has more dispersion, especially in red color and R values
are relatively higher. The other three plots (b-d) show the R versus G, R versus B, and
B versus G plots. There is tremendous overlap, so a simple linear regression may not be
sufficient for the bleeding analysis. Thus, there is a need for a non-linear learning system
(such as SOM). The red color segmentation has been experimented with using MATLAB
to further analyze the problem complexity, which is illustrated in Fig. 13. The threshold
values R > 100, G < 60, B < 50 have been chosen for best human eye subjective red
color cognition through the experiments. Again, it seems quite difficult to distinguish the
healthy red versus the sick red spots for confounding cases. The middle two images are
healthy in these four images, and the left/right extremes are bleeding cases. Therefore,
simple thresholding is also insufficient to spot the bleeding even with various threshold
values.
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Fig. 11. Sorted average red pixel intensities for normal and abnormal images. The upper
line is redness in sick images which is relatively higher as compared to healthy images

6.3. ZM extraction and SOM application

For each L, U, and V component, 12 ZM have been calculated, making a total of 36 ZMs
to extract the luminance and color attributes as shown in Fig. 14. Zernike moments are
rotation and noise invariant as studied in [26], which can be seen in the Figures 15 and 16.
Furthermore, feature transformation techniques such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) are applied to these 300× 36 image vec-
tors as shown in Fig. 17. Both of these transformations are used for dimension reduction,
but PCA focuses on maximizing the variance among mutually orthogonal transformed
dimensions, and LDA focuses on the separability of the data concerning the labels [33].
Linear separability in the case of PCA has been found to be 74% and 84% in case of
LDA. Therefore, linear separability becomes possible after extracting ZM on LUV image
components. Self-Organizing Maps have been involved further to analyze the accuracy
with the hope of improvement.

Fig. 18 shows the results when the model was trained using only healthy (180) points
and tested for 120 sick images. It can be observed that there is some overlap of the tested
sick images with healthy images due to the obscure nature of the images. But still, there
is a complementary saturation between these two images showing that sick images have
different data distribution on a broader scale.

Wavelet transforms applied to all the images before extracting their Zernike moments
(ZM) for noise removal. In Table 4, the results of accuracy for ZM versus WT+ZM
on 300 × 36 image vectors have been compared. Table 5 shows the difference between
WT+ZM and ZM accuracy is positive on the average of 5 trials, confirming the advan-
tage of WT application before ZM extraction. Fig. 19 is the visual illustration of Table 5.
Finally, Table 6 presents the confusion matrix obtained after experiments and the best ac-
curacy obtained using WT+ZM and Kohonen self-organized feature maps has been found
to be approximately 88.3%. In the table, P Healthy, P Sick and A Healthy, A Sick are
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Fig. 12. (a) RGB intensity of 300 images (180 : 120 for healthy:sick cases) (b) Red vs
Green average intensities (c) Red vs Blue avg. intensities (d) Blue vs Green intensities
plotted for all the images. It is clear from (b-d) that none of the color intensities are
easily separable for healthy and sick cases

Table 4. Accuracy given by ZM versus WT+ZM on 300× 36 images. TR = training
data, TS = testing data, VAL = validation data, and AVG = average.

ZM WT+ZM

Trials TR VAL TS All TR VAL TS All

1 82.4 78.3 71.7 78.7 83.8 86.7 75.6 83

2 79.5 84.4 77.2 80 81.4 86.7 77.8 81.7

3 77.6 82.2 77.8 78.3 82.4 81 76.9 81

4 75.2 80.2 77.8 76.7 82.4 80 80 81.7

5 80.5 82.2 80.2 81 83.3 88.9 79.6 83

AVG 79 81.5 76.9 78.9 82.9 84.5 79.8 82.4
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Fig. 13. (a) Red color cropping using subjective threshold RGB values (using MATLAB)
R > 100, G < 60, B < 50. Hence, in order to classify the images, robust features are
required to extract such as ZM. Firstly, RGB values have been converted to LUV color
representation to separate the luminance component from the color composition as
shown in Fig. (b)

Fig. 14. Snapshot of ZM for 9 healthy images. Rows corresponds to the image vectors
and 36 columns are the Zernike moments of image. n means normal/healthy.

predicted and actual values of healthy and sick classes respectively. Table 7 shows the
comparison of the other approaches with the proposed technique based on obtained accu-
racy. The comparison is performed with both traditional methods such as PCA and LDA
(used for linear separability of data), and contemporary methods such as deep learning
based approaches.
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Fig. 15. (a)-(d) are original image, rotations of 90 and 180 degrees, Gaussian noise
introduced

Fig. 16. ZM for all images in Fig. 15 are nearly same. Only 8 out of 36 ZM have been
shown to simplify the demonstration. Slight differences are due to 3 types of errors
involved in ZM calculation as studied in [1]

6.4. Incorporating Image Captions for Multi-modal Learning

In this subsection, the freely available descriptions with the gastral images are incor-
porated into the system to improve learning accuracy. In real-world medical diagnosis,
image features are just not enough to yield the required information. For example, in Fig.
20, two confounding images have been considered which look identical; however, Fig. (a)
involves bleeding, and Fig. (b) has an air bubble in case of a healthy image. Therefore,
linguistic cues (provided by experts) can be associated with images to handle these kinds
of cases.

Information from multiple modalities, such as images and collateral text, can be uti-
lized simultaneously for different tasks, including classification, clustering, or object de-
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Fig. 17. PCA and LDA draws of (300) image vectors. PCA yields 74% and LDA yields
84% linear separability of 120 bleeding and 180 normal image vectors. Blue for healthy
and Red for sick.

Fig. 18. SOM maps obtained upon training with 180 normal points and testing with 120
bleeding images using MATLAB. It can be observed that the mapping is different and
thus distribution of 180× 36 and 120× 36 image vectors are different.

tection, which is known as multi-modal learning [24]. Sometimes, the clusters constructed
by SOM are pretty small, which acts as the outliers. These clusters can be merged with
similar bigger clusters using related textual information. The endoscopy images are ac-
companied by corresponding labels or small text that provides some description of them.
A SOM is trained with this linguistic information similar to the SOM trained with image
data. The raw text is pre-processed to remove the noise, and then it is represented as Bag-
of-Words (BoW) for vectorization before training SOM. The small image clusters can
now be merged based on the corresponding textual features associated with these images.
The new accuracy obtained with this technique is 90.12% which is better than the previ-
ously achieved accuracy. From the results, it can be inferred that the system performance
has improved with the inclusion of the second modality. The performance of the approach
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Table 5. Difference in the accuracy values of after and before WT while extracting ZM.
Positive values in the last row signifies the benefit of WT application prior to ZM.

Accuracy of WTZM - ZM

Trials TR VAL TS All

1 1.4 8.4 3.9 4.3

2 1.9 2.3 0.6 1.7

3 4.8 -1.2 -0.9 2.7

4 7.2 -0.2 2.2 5

5 2.8 6.7 -0.6 2

AVG 3.8 3 2.9 3.4

Fig. 19. Difference in the accuracy of results by using WT+ZM versus only ZM as in
Table 5.

Table 6. Average test results for 5-trials with the proposed method on 300 image vectors.
P Healthy, P Sick and A Healthy, A Sick are predicted and actual values of healthy and
sick classes respectively.

A Healthy A Sick Total

P Healthy 161 16 177

P Sick 19 104 123

Total 180 120 300

Accuracy 89.4% 86.7% 88.3%

can be further boosted if the quality of image captions is good and they are noise-free,
having no stop words and more meaningful information about the corresponding image.
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Table 7. Comparative analysis of techniques on the underlying dataset.

Sr. Reference Technique Accuracy

1 [48] Principal component analysis 74%

2 [49] Agglomerative clustering and CNN 80.5%

3 [55] Nonlinear subspace clustering 83.3%

4 [33] Linear discriminant analysis 84%

5 [38] Robust learning for unsupervised clustering 85.7%

6 [41] Deep density-based image clustering 86.8%

7 [50] Hierarchical clustering using 1D random projec-
tions

87.1%

8 [8] Deep adaptive image clustering 87.6%

9 [19] Discriminative pseudo supervision clustering 87.9%

10 Proposed WT+ZM on LUV 88.3%

Fig. 20. (a) Active bleeding in small bowel (b) False positive (air bubble), images from
[6]

6.5. Discussion

The primary goal of the proposed research is to present the importance of understanding
and analyzing the data to find the appropriate methods for its processing as per the essence
of the data and the underlying problem. The final values chosen for all the tuning param-
eters for experimentation have been decided based on multiple trials of experiments. We
have also tested the proposed technique by increasing the size of the endoscopy data to
1200 and observed that the performance and accuracy are almost similar to the smaller
data. The proposed approach outperforms the traditional as well as contemporary image
clustering approaches due to following reasons:

1. An appropriate medical image representation is an important task for which the com-
bination of Wavelet transform and Zernike moments have been utilized to retrieve
noise-free, least redundant, and rotation, scaling, and translational invariant features.
ZM captures the global features of an image and also effectively describe the shape
characteristics [2].
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2. Self-organizing map provides the robust medical image clustering as it works similar
to the brain neurons [27]. In addition, SOM has been quite effective in diverse recent
applications such as mental stress detection [46], coronary heart disease diagnosis
[35], speech recognition [31], and in feature extraction as an add-on for better network
intrusion detection [9].

3. SOM provides easy data interpretation, and understanding [27]. It provides potent
data visualization and has the capability of clustering even complex datasets [28].

4. Deep learning requires a colossal dataset to perform well [5], which is unavailable in
the proposed research; this may cause the over-fitting issue [43].

5. Generally, a deep learning approach (such as CNN) cannot directly outperform a
machine learning approach as its performance mostly depends upon the design com-
prising training strategies, layer depth, and size [17].

6. To use transfer learning and retraining the deep learning model on a new dataset
requires understanding various model parameters and the layer modifications, which
is computationally expensive [36].

7. Conclusion

This paper introduced new ways of intelligently segmenting and analyzing image collec-
tions by training neural computing systems with images having obscure color and tex-
ture contrasts. The characteristic visual features of the image collection are derived from
Wavelet Transforms, Zernike Moments, and Linear Discriminant Analysis. The images
are categorized using an unsupervised clustering algorithm – Kohonen self-organizing
feature maps. The proposed system can classify sick and healthy in-vivo images effec-
tively without the labeled data, which is hard to get in reality, specifically medical data. It
is often expensive to manually label the data by an expert in the related field. The system is
beneficial in clustering vague color distribution, asymmetrical region boundary, and noisy
image data. It is rotation, scaling, and translation invariant due to the use of ZM for image
representation. The system efficacy improved by incorporating the second modality, i.e.,
free text with the gastral images in the experiments.

7.1. Limitations

There are three types of errors involved in the calculation of ZM: (a) Geometric error
due to mapping of a digital image into a unit circle with pixels, (b) Discretization error
due to the computer’s digital representation of continuous variables, and (c) Numerical
integration error due to the calculation of double integration through double summations
while the center of a grid is used to calculate the basis function. The size of the data
considered for experimentation in this study is small, which is a drawback.

7.2. Future scope

Grid size for SOM is a parameter for subjective tuning. The overall accuracy of the pro-
posed system is encouraging, although image semantics need to be considered more care-
fully to improve the automatic learning system. Future experimentation can be performed
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on ample data from diverse fields, and miscellaneous noise removal and appropriate fea-
ture extractors can be considered (as per the underlying data), which can further improve
the accuracy. Various ways of integrating multi-modal data can be explored to extend this
work further and improve the clustering process.
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M., Facciorusso, A., Cammà, C.: The application of large language models in gastroenterology:
A review of the literature. Cancers 16(19), 3328 (2024)

33. Martinez, A.M., Kak, A.C.: Pca versus lda. IEEE transactions on pattern analysis and machine
intelligence 23(2), 228–233 (2001)

34. Muhammad, K., Khan, S., Kumar, N., Del Ser, J., Mirjalili, S.: Vision-based personalized wire-
less capsule endoscopy for smart healthcare: Taxonomy, literature review, opportunities and
challenges. Future Generation Computer Systems 113, 266–280 (2020)

35. Nilashi, M., Ahmadi, H., Manaf, A.A., Rashid, T.A., Samad, S., Shahmoradi, L., Aljojo, N.,
Akbari, E.: Coronary heart disease diagnosis through self-organizing map and fuzzy support
vector machine with incremental updates. International Journal of Fuzzy Systems 22(4), 1376–
1388 (2020)



780 Parminder Kaur, Avleen Malhi, and Husanbir Pannu

36. Pannu, H.S., Ahuja, S., Dang, N., Soni, S., Malhi, A.K.: Deep learning based image classifica-
tion for intestinal hemorrhage. Multimedia Tools and Applications 79, 21941–21966 (2020)

37. Papakostas, G., Boutalis, Y., Karras, D., Mertzios, B.: Efficient computation of zernike and
pseudo-zernike moments for pattern classification applications. Pattern Recognition and Image
Analysis 20(1), 56–64 (2010)

38. Park, S., Han, S., Kim, S., Kim, D., Park, S., Hong, S., Cha, M.: Improving unsupervised image
clustering with robust learning. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12278–12287 (2021)

39. Patel, A., Rani, K., Kumar, S., Figueiredo, I.N., Figueiredo, P.N.: Automated bleeding detection
in wireless capsule endoscopy images based on sparse coding. Multimedia Tools and Applica-
tions 80(20), 30353–30366 (2021)

40. Radhika, K., Venkatesha, M., Sekhar, G.: An approach for on-line signature authentication
using zernike moments. Pattern Recognition Letters 32(5), 749–760 (2011)

41. Ren, Y., Wang, N., Li, M., Xu, Z.: Deep density-based image clustering. Knowledge-Based
Systems 197, 105841 (2020)

42. Roussinov, D., Chen, H.: A scalable self-organizing map algorithm for textual classification:
A neural network approach to thesaurus generation. Communication Cognition and Artificial
Intelligence 15(1-2), 81–111 (1998)

43. Siddiqui, S.A., Salman, A., Malik, M.I., Shafait, F., Mian, A., Shortis, M.R., Harvey, E.S.:
Automatic fish species classification in underwater videos: exploiting pre-trained deep neural
network models to compensate for limited labelled data. ICES Journal of Marine Science 75(1),
374–389 (2018)

44. Singh, C., Aggarwal, A.: An efficient approach for image sequence denoising using zernike
moments-based nonlocal means approach. Computers & Electrical Engineering 62, 330–344
(2017)

45. Soffer, S., Klang, E., Shimon, O., Nachmias, N., Eliakim, R., Ben-Horin, S., Kopylov, U.,
Barash, Y.: Deep learning for wireless capsule endoscopy: a systematic review and meta-
analysis. Gastrointestinal endoscopy 92(4), 831–839 (2020)
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