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Abstract. We analyse the effectiveness of differential evolution hyperparameters in
large-scale search problems, i.e. those with very many variables or vector elements,
using a novel objective function that is easily calculated from the vector/string itself.
The objective function is simply the sum of the differences between adjacent ele-
ments. For both binary and real-valued elements whose smallest and largest values
are min and max in a vector of length N, the value of the objective function ranges
between 0 and (N-1) × (max-min) and can thus easily be normalised if desired.
String length, population size and generations for computational iterations have
been studied. Finally, a neural network is trained by systematically varying three
hyper-parameters, viz population (NP), mutation factor (F) and crossover rate (CR),
and two output target variables are collected (a) median (b) maximum cost function
values from 10-trial experiments and compared with SMAC3 and OPTUNA against
grid and random search.
Keywords: Rugged landscape, differential evolution, neural networks, machine
learning, optimization

1. Introduction

The tunably rugged fitness landscape reflects the intuition that combinatorial search prob-
lems can be seen in terms of a ‘landscape’ containing valleys and hills [26]. The NK
model invented by Stuart Kauffman [27] can be adjusted by changing N (string length)
and K to define the ruggedness level of the flexible landscape as shown in Figure 1 .
To explain the search of most rugged string in the NK-landscape, a random three letter
string has been considered (JIE) in Fig. 1(A). In the consecutive iterations, various sin-
gle letter alterations have been considered in each iteration and cumulative distance of
consecutive letters has been used for the cost function (Fig. 1(B)). Furthermore, the con-
nected graph shows potential search paths in pursuit of extreme points (highest peak and
deepest valley) within the combinatorial search space of string sequences. Darkness in
colours in Fig. 1(C) signifies higher cost functions and finally in Fig. 1(D) this graph is
one of the various tracks in complex NK-landscape showing the challenge of the opti-
mization algorithm. Combinatorial search problems are common in both theoretical and
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Fig. 1. (A) Combination space of various example string sequences of length 3. The digits
represent the cumulative inter-letter distances of the string; the sequences along the ar-
rows show the alterations of letters within consecutive strings to signify perturbations (B)
Graphical rendering of potential paths to search for the global extrema (peak or valley)
in the combinatorial string space (C) Relative colouring for visual comparison, darker
means bigger cost function value i.e. higher cost function value (D) The graphs is one of
the search possibility in the high NK-landscape showing the complexity of the search of
extreme points through an algorithm

applied sciences such as optimisations, biology and complex evolutionary systems. As an
example, in a business organisation, an agent may be searching a landscape of business
opportunities. The valleys and hills represent the losses and profits. The journey through
the landscape associates the decisions of the organisation whilst altering the structure of
the organisation and modifying the products and services. All of the underlying processes
interact in a complex evolutionary fashion and affect the cash flow and thus profit [29].
Most scientific problems can in fact be cast as combinatorial search or optimisation prob-
lems [28]. The kinds of optimisation in which we are here interested thus consist of a
‘search space’ or landscape in which a variety of inputs can be combined in potentially
complex and nonlinear ways to lead to an output or objective function. Because the num-
ber of combinations always scales exponentially with the number of variables, the search
spaces can easily be made to be far beyond any kind of exhaustive search (other than for
small numbers of variables [41]), whether the search is computational or experimental.
Heuristic methods, in which we seek to understand, simulate and navigate the landscape
intelligently, are therefore appropriate. Among these, evolutionary algorithms of various
kinds are pre-eminent [5]. Equally, because of the vastness of the search spaces, a vari-
ety of attempts have been made to create them in silico, using a more-or-less complex
function of the inputs to calculate the output at that position in the search space. The idea
of such strategies is that (notwithstanding that there is ‘no free lunch’ [11], [13], [40],
[49], [48] an algorithm of interest may be assessed in competition with others [42], or its
hyperparameters tuned to effect the most rapid searches. In evolutionary computing, three
of these hyperparameters are the population size, the mutation rate, and the crossover
rate [21]. In some cases, these hyperparameters can have very considerable effects on the
efficiency of a search e.g. [12].

Well-known fitness functions used for creating landscapes of this type, often tuned
to be ‘deceptive’ to evolutionary algorithms [22], [17], include NK [27],[21], [22] (and
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variants such as NKp [6], OneMax/max-ones [45], [47], and the royal road [7], [43],
[35]. Max-ones is especially easy to understand, since each variable is cast as an element
of a (binary) string or vector of length N, and the fitness is simply the total number of
elements containing a 1, with the maximum possible fitness obviously being N. That
said, max-ones yields reasonably easily to evolutionary algorithms [23] as the crossover
operator allows such algorithms more-or-less easily to combine building blocks (schemata
[21]) successfully, not least because the ‘fitness’ of any element of a string is not context-
sensitive.

We here develop and exploit a simple, related objective function in which the objec-
tive is not to maximise each element but to maximise the sum of the differences between
adjacent elements. This is very easily calculated, allowing rapid assessment of different
search algorithms. It provides for a landscape that is locally smooth but globally very
rugged. Here the contribution to the overall fitness of any element of the string is abso-
lutely context-sensitive. Thus, the problem is to find the most rugged string of length n
using differential evolution which has three tuning parameters, viz. NP (population size of
search particles), F (mutation factor), CR (crossover rate). The objective function for the
hyperparameter optimisation for summed local difference strings has been defined with
the following examples.

Example 1: String = “AAAA” has summed differences |A−A|+|A−A|+|A−A| =
0. String “ABCD” has summed differences |A − B| + |B − C| + |C − D| = 3. String
“AZAZ” or “ZAZA” has |A− Z|+ |A− Z|+ |A− Z| = 75.

Example 2: The maximum ruggedness value of a string of length n is (n−1)×(U−L)
where U and L are the maximum and minimum values of the alphabet values. In example
1 U = Z = 26 and L = A = 1 and n=4, thus (4− 1)× (26− 1) = 75.

Even for binary strings this makes the problem much harder than max-ones. In addi-
tion, two very different (in fact maximally different) strings of length N have the same,
maximum fitness, viz 101010. . . 1010101 and 010101. . . 0101010 of (N-1). We later also
consider real-valued (integer) strings, such that the problem difficulty can be varied not
only by varying the string length but by varying the number of allowable values in each
position. Of the many variants of evolutionary algorithm, we focus on differential evolu-
tion, as originated by Storn and Price [38], [44] and reviewed e.g. in [9], [18], [36], [1],
[16], [15], [46], as it seems to be highly effective in solving a wide range of problems.

Objective function and machine learning models need to be optimised according to the
data distribution in order to find the best representative generalisation. Hyper-parameter
tuning determines the best combination of free variables so that validation set yields the
best performance. Hyperparameters have been tuned either by manual hit-and-trial, or
through grid search, which involves systematically trying all possible combinations with
a specified linear spacing. But both of these methods are limited to the human imagination
or time duration to attempt grid search on a given level of granularity. Thus, an automatic
machine learning based hyperparameter value optimisation has been proposed such as
[30], [24], [10].

The paper is organised as follows: the first section is about the introduction of the
rugged fitness landscape and local difference strings, Section 2 is a literature review, Sec-
tion 3 covers the differential evolution and machine learning techniques used, Section 4
is about the results and discussion, Section 5 is the conclusion and future scope.
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2. Literature Review

2.1. Differential Evolution Variants

In [31], a variant of DE using asymptotic termination based on the average differential
of the cost function values has been proposed. The second modification is a new search
for a critical parameter which helps to explore the search space. In [32], an ensemble of
control parameters and mutation methods for DE has been proposed while considering the
dynamic mutation strategies and set of values for control parameters. In [32], monkey king
differential evolution using a multi-trial vector has been studied. The relation between
exploitation and exploration depends upon control parameter and evolution strategy. To
enhance the performance, multiple evolution strategies have been considered to generate
multi-trial vectors. In [50], an ensemble of DE using multi-population approach and three
distinct mutation methods, “rand/1”, “current-to-rand/1”, “current-to-pbest/1”. CEC 2005
benchmark functions have been used for performance evaluation.

2.2. Hyper-parameter Tuning

In [2] an advanced hyper-parameter tuning technique ‘Optuna’ has been proposed. It al-
lows API for dynamic user interaction, efficient search and pruning options, and easy to
implement features. An automatic parameter tuner for sparse Bayesian learning has been
proposed in [25]. The empirical auto-tuner has been used to address the neural network-
based learning for performance comparison. In [20], a combination of stochastic differ-
ential equations and neural networks has been studied to extract the best combination of
free parameters for the application of the economics dataset from Greater London us-
ing a Harris-Wilson model for a non-convex problem. In [25], a multi-label classification
and complex regression problem has been addressed for auto-parameter tuning in deep
learning models. In [8], ANNs have been used to predict the parameters for DE using 24
test problems from a Black-Box Optimisation Benchmarking dataset. In [34], parameter
independent DE for analytic continuation has been studied using imaginary correlation
functions of time. The parameters are embedded into the vectors which need to be op-
timised through the evolution. A study in [39] has proposed parameter optimisation for
DE for the CED05 contest dataset that includes 25 complex mathematical functions with
dimensions as high as 30.

3. Background

This section discusses the background techniques of differential evolution and artificial
neural networks used in this research.

3.1. Differential Evolution (DE)

It is an efficient metaheuristic algorithm for numerical optimisation in which the out-
put cannot be precisely defined from the input variables. For a given dimension of the
data vector (string for example) it takes few input parameters such as number of points
searching for the solution (population NP), mutation factor (F) and crossover rate (CR).
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The algorithm has 4 phases of execution: initialisation of population particles, mutation,
crossover and then selection [48] as shown in Fig. 2. This whole computation is repeated
for a specified number of iterations (also known as generations) or a constrained time
frame. Initialisation is usually done randomly from the normal distribution in the search
domain followed by mutation which means finding the best parents to yield the child
particle. Afterwards, crossover yields the child particle by varying proportions of parent
particle attributes. The final step is selection, which means to update the current particle,
how to use the new child along with other randomly selected particles with tuneable pro-
portions. The idea is to maximise the randomness to avoid getting locked in local extrema.
In our study, the simplest mutation formula (DE/rand/1) is used which is defined in (1)
below:

Yi = X1i + F(X2i – X3i) (1)

where i is the ith point computed in an iteration from X1, X2 and X3 random points out
of the population. Next, to increase the diversity of muted vectors, the crossover operation
is performed which is defined in (2). It mixes the target vector with another random vector
in the population in an adjustable proportion using random probability function which can
be defined using CR value. CR rate thus defines the ratio in which the new trial vector Ui
inherits the values from mutation vector.

Ui = { Yi rand(0, 1) ≤ CR
Xi otherwise

(2)

For the selection phase, the cost function of this new trial vector is calculated after
the crossover phase to compare with the fitness of the target vector Xi. The better among
the two is selected to update the army of points in the population. Let f(.) be the fitness
function then, selection is defined as in (3) below:

X(i+ 1) = { Yi f(Yi) < f(Xi)
Xi otherwise

(3)

3.2. Artificial Neural Networks (ANN)

Artificial neural networks in data analysis got their origin from the behaviour of biological
neurons on human brains. ANN consists of artificial nodes (neurons) which are intercon-
nected through layers of other neurons to compute and refine the data using non-linear
activation functions in the successive layers. Connection strengths among neurons is con-
trolled by weight parameters (W). The simplest ANN in which we are interested is the
multilayer perceptron (MLP), a three-layer structure is defined which contains the input
layer, the hidden layer and the output. The standard structure of ANN is illustrated in
Figure 3 and details can be found in [3].

4. Results

Classical differential evolution uses three hyperparameters: the population size NP, a mu-
tation factor F controlling the mutation rate, and a parameter CR that determines the extent
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Fig. 2. Flow of differential evolution metaheuristic algorithm

Fig. 3. An example artificial neural network with three inputs, one hidden layer with five
neurons and the output layer . The inside structure of each neuron has been shown in the
dotted box. A node or neurons is the weighted average of the input signals added with a
constant (bias) value and travels through a function which is usually non-linear in nature
such as a tanh, sigmoid or ReLU (Rectified Linear Unit) function
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of the uniform crossover [45], [38] operator used. We start with standard and fixed (non-
adaptive) values of NP = 50, F = 0.4, CR = 0.1 as recommended by Storn and Price. NP is
usually scaled to the length of the vector (number of input variables) to be optimised, but
not much is known for problems that have a great many input variables [37], for instance
directed protein evolution [4],[14]; others are reviewed e.g. in [8].

4.1. Understanding the landscape ruggedness

To understand the nature of the landscape, it is convenient to create a random landscape
in which, initially each element of the vector of length N=50 is set randomly to A to Z
(Table 1). The random letters in each of the 10 vectors are the population candidates to
search for the best rugged string of length 50.

Table 1. Table 1 Random landscape of 10 vectors (population size) with dimensions = 50
(string length) and initial cost function value (summed consecutive differences)

SR Vector of length 50 Cost
1 GLPFFCVOBVANQGUQKHRRWBIDKURNCNYOCDBCQLQIUXHONOJGRK 384
2 UNQBHPJUCEZOADILXMBZVOVGFIKQTCZZVRCGSDXRTGZSBPRWSG 454
3 OOSKURLLTNYAORMWLJYLRQSRWNBKOYNAXRRNQJJJXSEIYXHNQQ 358
4 EJGFPREJIIHODQEXKTTNPBOEJGCNDRUFPDYVEOKXMWPWFTORLM 406
5 OBBMAREGDIBWCYMBEEBSPTIHNXOPSOMMXCPHJJFGDHRJEUNFGC 372
6 CPICSKHOLMUSGVJWJFMLUTMTRUZXQCBNZYCDVRFNWKDVGAXEJN 417
7 CYKGXKQWNTYTVYLPOCHLHOOPYPYUVZTEHKBRPCLADTIIOVJBGP 363
8 UYHYLMSVWLTLKWNKRKFBOUENTVSVCKJTJBMDYTAIIQLDDVBONY 408
9 AUMHUZPEHTEDLFCSBMMPFUZGGYSOJNUEMWAFCLSNZKMRJZDOIB 449
10 YIIBQZDVPNOABPVXDCALDDGXVTVPTUEKQVMIVBKWUCFESABITC 404

After 10 iterations of the DE algorithm, the best particle and cost are as follows.
Particle = APGZ TTTA PZIZ HZAZ ZDAZ BAEA ZAAZ AVWZ ABAZ AZAZ AZZZ
AZAZ AZ, Cost function = 773, Benchmark = (26 − 1) × (50 − 1) = 1, 225. Elapsed
time is 0.1955 seconds. The values of Dimensions = 50, Np = 10, Population Crossover
Rate (CR) = 0.8 and Mutation Factor (F) = 0.85 for this example. Figure 4 shows the
consistent improvement in the cost function.

4.2. Varying the hyperparameters in standard differential evolution

All simulations are performed in MATLAB 2018b software with a system configuration
of MAC Air (2017), 1.8 GHz Intel Core i5 processor, 8GB 1600 MHz DDR3 memory, HD
Graphics 6000 1536 MB and macOS version 10.13.6. The experiment was repeated for
500-dimensional string, 10-trials and 50 generations with NP in [50,500], CR in [0.1,1],
F in [0.4,0.9]. The stats were recorded for the median and maximum function values for
10-k trials listed in Table 2. A total of 600 values were collected for various combinations
of NP, F and CR values suggested in [8]. Out of those 600 values, the best 5 were selected
and they were calculated for extended iterations/generations as shown in Table 3. It infers
that the cost function value generally tends to increase with iterations but not always. This
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Fig. 4. Cost function values for 10 iterations for string length = 50. The values of Dimen-
sions = 50, Np = 10, Population Crossover Rate (PCr) = 0.8 and Mutation Factor (F) =
0.85

is because at higher dimensions the problem is highly difficult to solve and not always
yields the best solution during the metaheuristic search.

Table 2. Benchmark value for 500-dimensional string is (26 − 1) × (500 − 1) =
12, 475.NP = {50, 100, . . . , 500}, CR = {0.1, 0.2, . . .1}, F = {0.4, 0.5, . . .0.9} so
total 10× 10× 6 = 600 experiment values. The min and max values refer to the range of
cost function values obtained through the experiments

Range of function values
10-trials Minimum Maximum

Median of cost function
5555.5 8870
44.5% 71.1%

Maximum of cost function 5629 9226
45.1% 73.96%

Table 4 and Figure 5 illustrate the normalised function values for various combina-
tions of population size and generations. For median of cost function values, it has been
found that 9196 value is obtained with the NP=50 and Gen=500. For the maximum cost
function values the value 9373 is found when NP=125 and Gen=200. Thus, it is not easy
to say which of the NP and Generation values are the best ones to yield the best function
cost but generally more generations with bigger population size is a good combination.
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Table 3. Top 5 cases among 600 trials analysed for increased number of iterations from
100 to 1000. The winners are highlighted in bold text

CASE1 NP F CR Iterations 100 200 300 500 1000
500 0.9 1 Median 9632 10300 10375 10300 10375

Maximum 9716 10550 10425 10375 10625

CASE2 NP F CR Median 7935 8970 9269 9280 9295
500 0.8 0.9 Maximum 8222 9106 9322 9592 9538

CASE3 NP F CR Median 8801 9246 9159 9012 9230
500 0.9 1 Maximum 8901 9362 9342 9181 9328

CASE4 NP F CR Median 7002 9037 9218 9536 9242
500 0.8 0.9 Maximum 7862 9152 9529 9677 9651

CASE5 NP F CR Median 6075 8211 8500 8675 8450
500 0.8 0.9 Maximum 6250 8451 8500 8775 8500

Table 4. Normalised comparison (NP*Gen constant) of cost function values (median and
maximum over 10-trials) for F=CR=0.9, string length = 500. The values of VP and gen-
erations have been varied such that the product of NP and Gen is 25000. Figure 5 is the
visual illustration

Sr. NP Generations Median Maximum
1 500 50 8236 8272
2 250 100 9109 9394
3 125 200 9150 9373
4 50 500 9196 9304
5 10 2500 8137 8601
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Fig. 5. Normalised comparison of various values of function cost for median and max-
imum using F=0.9, CR=0.9, string length (dimension)=500, 10-trials. (a) NP=500,
Gen=50 (b) NP=250, Gen = 100 (c) NP=125, Gen=200 (d) NP=50, Gen=500 (e) NP=10,
Gen=2500. The values of NP and Generations have been chosen such that the product
remains constant (=25000) to analyse the effect of reducing population and increasing
generations

Tables 5-7 illustrate time consumption analysis against variations in NP, string length
and iterations of calculations. Figures 6-8 are the graphical representations of these tables
for the ease of visualisation. The time variations are almost linear giving the idea about
the problem complexity in regard to the variable changes.

Table 5. For 50 iterations, string length 500 (data vector dimension), F=0.4, CR = 0.1
the time in seconds for various NP values has been calculated ranging from 50 to 500 for
10-trial experiments. Figure 7 is the graphical rendering of this table

NP 50 100 150 200 250 300 350 400 450 500
Time 1.32 2.46 3.73 4.88 6.24 7.43 8.94 10.32 11.71 14.07

4.3. Training Data and ANN Training for Automatic Parameter Tuning

The neural network has been trained for 600 data points which includes three independent
input variables: Population (NP), Mutation Factor (F) and Cross-mutation Rate (CR).
The values range for NP is [50,500], F is [0.4,0.9], CR is [0.1,1] chosen according to
our experiments and suggestion given in [50]. These 600 training data points have been
collected by running 10-fold trials for each entry to find out median and maximum cost
function values and is quite a time consuming task. This is due to finding the right range
of these 3 hyperparameter values and then running the code to compile the data for few
hours. So the differential evolution function is called 600×10 = 6,000 times for various
values of these three hyperparameters. The training sample data and the computed median
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Fig. 6. Graph between NP (x-axis) and Time in seconds (y-axis) for fixed values of string
length = 500, F = 0.4, CR = 0.1 and iterations = 50 for 10-trial experiments. The time
consumption is nearly linear with the population size

Table 6. String length (Dimension) versus time consumption in seconds for fixed values
of NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for experiments to calculate
median and mean function costs. The time consumption varies almost linearly with the
string length. Figure 8 shows the graphical representation

Dim 100 200 300 400 500 600 700 800 900 1000
Time 0.7992 1.1327 1.7634 2.1091 2.5229 2.8815 3.2637 3.5849 3.9694 4.2432

Fig. 7. Graph between string length (x-axis) and Time in seconds (y-axis) for fixed values
o NP=100, F=0.4, CR=0.1, iterations = 50 and 10-trials for experiments to calculate me-
dian and mean. The time consumption varies almost linearly with the string length
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Table 7. Iterations and time in seconds comparison for fixed values of string length =
500, NP=100, F=0.4, CR=0.1 and 10-trial experiments. The relation is almost linear and
is rendered in Figure 9

Gen 50 100 150 200 250 300 350 400 450 500
Time 2.56 4.75 7.19 9.99 11.64 13.99 16.49 20.28 20.99 25.55

Fig. 8. Graph between iterations (x-axis) and time in seconds (y-axis) for fixed values of
string length = 500, NP=100, F=0.4, CR=0.1 and 10-trial experiments. The relation is
almost linear
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and maximum function costs have been rendered in Table 8. Afterwards, Neural Network
Fitting in MATLAB has been used for regression using three input variables and two
target variables respectively. The default values of the model have been used, for example
ratio of training: validation: testing is 70:15:15, number of hidden neurons = 10, Bayesian
Regularization training algorithm for training. Figures 9-10 demonstrate the frequency
histogram of error values in relation to instances. After the training of ANN, the error of
actual versus predicted values were collected for all training and tested values among 600
data points and plotted to see the quality of the trained model. Most of the error values
are 0 which indicates that the model is well generalised and validated.

Table 8. Training data for ANN containing 3 input variables and two target variables. The
NP ∈ {50, 100, . . . , 500}, F ∈ {0.4, 0.5, . . . , 0.9}, CR ∈ {0.1, 0.2, . . . , 1} so a total of
10× 6× 10 = 600

Input variables Target var1 Target var2
SR. NP F CR Median Fun Val. Max Fun Val.
1 50 0.4 0.1 5559.5 5676
2 50 0.4 0.2 5705 5837
. . . . . . . . . . . . . . . . . .
600 500 0.9 1 8870 9226

Tables 9-10 show the function costs on 10-trial average for the mean squared error
(MSE) and regression coefficient (R) values as the number of hidden neurons increase
during the ANN training.

Table 9. For the median cost function values (from 10-trials) the following are the MSE
and R values for increasing number of neurons in ANN training

Median
Function
Cost

Neurons 10 20 30 40 50 60 70 80

Train
MSE 3008.8 2102.2 1264.8 1472.8 1572.3 1108.8 1653 1540.5
R 0.9975 0.9983 0.9987 0.9990 0.9985 0.9988 0.9989 0.9989

Test
MSE 2858 3624 5883.7 5616.6 4622.5 7715.5 3162 5431.8
R 0.9948 0.9959 0.9947 0.9962 0.9974 0.9946 0.9936 0.9957

Table 10. For the maximum cost function values (from 10-trials) the following are the
MSE and R values for increasing number of neurons in ANN training

Max
Fun.
Cost

Neurons 10 20 30 40 50 60 70 80

Train
MSE 8738 6682.7 6021.4 5308.3 5790.4 5791.7 5557.3 5059.4
R 0.9937 0.9954 0.9958 0.9963 0.9958 0.9960 0.9961 0.9964

Test
MSE 1148.3 1192.8 1308.1 1228.3 2106.7 1262.8 1689.5 1252.9
R 0.9934 0.9916 0.9912 0.9914 0.9872 0.9908 0.9877 0.9926
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Fig. 9. Error histograms for training, testing and validation for 600 examples after ANN
training for median cost function values. Ratio of train:validate:test used is 70:15:15. The
target function used is the median cost function value from 10-trial experiments and input
values to ANN were NP, F and CR

Fig. 10. Error histograms for training, testing and validation for 600 examples after ANN
training for max cost function values. Ratio of train:validate:test used is 70:15:15. The
target function used is the maximm cost function value from 10-trial experiments and
input values to ANN were NP, F and CR
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Fig. 11. The demonstration of 3,971 test points (19 × 11 × 19) parameter combinations
of NP ∈ {50, 75, . . . , 500}, F ∈ {0.4, 0.45, ..., 0.9}, CR ∈ {0.1, 0.15, . . . , 1}. The
colour depicts the median of cost function values of 10-trial runs. The yellow shows higher
(better) values and blue shows lower cost function values for those combinations of NP, F
and CR. Left and right graphs are two perspective view of the same 3-d figure

Fig. 12. The demonstration of 3,971 test points (19 × 11 × 19) parameter combinations
of NP ∈ {50, 75, . . . , 500}, F ∈ {0.4, 0.45, . . . , 0.9}, CR ∈ {0.1, 0.15, . . . , 1}. The
colour depicts the maximum value of cost function for 10-trial runs. The yellow shows
higher (better) values and blue shows lower cost function values for those combinations
of NP, F and CR. Left and right graphs are two perspective view of the same 3-d figure
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Figures 11-12 show typical curves of the median and maximum fitness as a function
of the number of evaluations for 10-trials. A 4-d representations of the test results obtained
by ANN with 3,971 points has been shown, for a range of NP ∈ {50, 75, ..., 500}, F ∈
{0.4, 0.45, ..., 0.9}, CR ∈ {0.1, 0.15, ..., 1} values. The colour illustrates the range of
cost function values predicted by ANN. Yellow means higher (better) function value
and blue means lower cost function value for that combination of NP, F and CR hyper-
parameters. It can be observed that the best function values (both maximum and median
values) are obtained from higher NP, CR and F values in general. It can be seen that
the best function costs correspond to maximum values of NP, F and CR values for both
figures.

4.4. Validation

Among the total tested values (3,971) we chose the best 10% values with maximum cost
function values (yellow in Figure 11-12) to calculate the actual cost functions through dif-
ferential evolution on the average of 10-trials. Afterwards, both the continuous variables
(ANN suggested output and actual DE values) for (NP, F, CR) hyper-parameter combi-
nations have been analysed using Pearson’s correlation coefficients (ρ). For both cases of
DE versus ANN test results ρMEDIAN = 0.7 and ρMAXIMUM = 0.68. It indicates a significant
positive relationship among two variables [33]. Thus the hyperparameter optimisation in
differential evolution with summed local difference strings can be performed efficiently
using the neural network simulation.

4.5. Comparison with state-of-art

To analyse the effectiveness of ANN-based parameter tuning of DE, we compared the
following techniques: (i) Grid Search, (ii) Random Search, (iii) Sequential Model-based
Algorithm Configuration (SMAC) [25], (iv) Optuna [41](v) ANN in Table 11 and Figure
13.

Grid Search suffers from the curse of dimensionality, resulting in an explosion in
the number of possible evaluations, which is improved by Random Search. But random
search is not well sorted and may miss the potential extremas. SMAC uses random forests
(RF) and is a Bayesian optimiser in which RF helps in categorical variables to support
large search space hyperparameter searches and is well scalable for increasing the number
of training samples. It is available online https://github.com/automl/SMAC3. Optuna [2]
is recent software used for hyperparameter optimisation using define-by-run API, prun-
ing and search strategy implementation, versatile utility including distributed computing,
scaling and interactive interface for users to modify the search space parameters dynam-
ically. It is available online https://github.com/optuna/. Hyperparameter auto-tuning has
also been performed for sparse Bayesian learning (SBL) in [19] using neural network-
based learning, and has shown considerable improvement in recovery performance and
convergence rate.

ANN performed better compared to Grid Search, Random Search, SMAC and Optuna
(Table 11 and Fig 13.), but requires a considerable amount of time to generate the training
data to simulate the behavior of the rigged function outcome for given values of NP, F and
CR. Afterwards it is able to predict the new values of hyperparameters to search for the
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Table 11. Hyperparameter optimisation for differential evolution algorithm to search for
{NP,F,CR} by various algorithms. Benchmark value for string of length (=NP) of 500 =
(26-1)×(500-1)=12,475 and 10 trial runs. Generations for DE=100 for all of them con-
sistently and max of 10 trials experiments for the best cost calculations. Accuracy is the
ratio of best cost and the benchmark (=12,475)

Methods Details Hyperpram Values Best Cost Accuracy

Grid Search
NP∈[50,500],
F=CR=[0.40, 0.41,..1.0}

NP=390, F=0.95,
CR=0.90

8616 0.6907

Random Search
NP∈[50,500],
F, CR ∈ [0.4,1]

NP=450, F=0.91,
CR=0.88

8572 0.6871

SMAC
NP ∈[50,500],
F, CR ∈ [0.4,1]

NP=410, F=1,
CR=0.98

8990 0.7206

Optuna
NP∈[50,500],
F, CR ∈ [0.4,1]

NP=430, F=,0.87
CR=0.92

9244 0.7410

ANN
NP∈[50,500],
F=CR=[0.40, 0.41,..1.0}

NP=500, F=0.90,
CR=0.89

9438 0.7566

Fig. 13. Graphical representation of accuracy comparision of Table 11. Our ANN per-
formed better than the other state-of-art hyperparameter techniques studied.

optimal combination of tuning parameters. ANN requires much less time as compared to
DE to calculate the cost function once it is trained on a good sized set. For the sake of
simplicity, only 600 examples have been used to train ANN for this case study, but a few
thousand runs of DE would be better to yield the training data for ANN.

5. Conclusion

In this research, hyperparameter optimisation in differential evolution has been studied
using Summed Local Difference Strings, which is a rugged but easily calculated land-
scape for combinatorial search problems with wide applicability in numerical optimisa-
tion, biological sciences, finance and organisational management. Differential evolution
is a powerful numerical optimisation technique for non-differentiable and complex func-
tions which cannot be nicely defined in mathematics, but it has three hyperparameters
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(NP, F, CR) to be optimised. In this study a machine learning technique has been ex-
ploited to suggest the best possible combinations of hyper-parameters instead of a tedious
grid search. The limitation of the technique is that training data collection is time con-
suming and needs a careful analysis of input variable ranges (NP, F, CR). Two output
variables were recorded (median and maximum value) after 10-trial experiments of each
combination of the hyperparameters. Finally, testing of the machine learning model has
been employed on a bigger data (3,971) and the top 10% test results were compared with
the actual DE results yielding a Pearson correlation coefficient of 0.7. Specifically, it was
found that larger values of NP, F and CR hyper-parameters yield better outcomes.

In future, we plan to explore more bio-inspired algorithms and other ways to search
for hyperparameters such as to embed the hyper-parameters in the very population being
optimised. We will also explore binary strings and real valued strings with an extended
range of values beyond 26 with advanced options of mutation and cross-over equations.
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