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Abstract. For solving the low CPU and network resource utilization in the task
scheduler process of the Spark and Flink computing frameworks, this paper pro-
poses a Delay-Aware Resource-Efficient Interleaved Task Scheduling Strategy (DRTS).
This algorithm can schedule parallel tasks in a pipelined fashion, effectively im-
proving the system resource utilization and shortening the job completion times.
Firstly, based on historical data of task completion times, we stagger the execu-
tion of tasks within the stage with the longest completion time. This helps optimize
the utilization of system resources and ensures the smooth completion of the en-
tire pipeline job. Secondly, the execution tasks are categorized into CPU-intensive
and non-CPU-intensive phases, which include network I/O and disk I/O operations.
During the non-CPU-intensive phase where tasks involve data fetch, parallel tasks
are scheduled at suitable intervals to mitigate resource contention and minimize
job completion time. Finally, we implemented DRTS on Spark 2.4.0 and conducted
experiments to evaluate its performance. The results show that compared to De-
layStage, DRTS reduces job execution time by 3.18% to 6.48% and improves CPU
and network utilization of the cluster by 6.33% and 7.02%, respectively.

Keywords: Job execution time, delay-aware, Spark, task scheduler.

1. Introduction

With the rapid development of the Internet, the size of data has increased dramatically,
creating a greater demand for real-time data processing. Big data analytics has aroused
the interest of scholars because of its ability to deal with large data sets. Many open-
source parallel processing frameworks, such as MapReduce[26] , Hadoop[8], Storm[3] to
the later Spark[2] and Flink[1], have been developed to handle large data volumes. These
frameworks have evolved through various stages, including the Map-Reduce model, the
DAG model, the streaming model, and the real-time model.

These computing frameworks break a job into multiple tasks and assign them to work
nodes for large-scale data processing. Task scheduling efficiency is a major bottleneck
that affects the framework’s performance[10].
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Fig. 1. From DAG scheduling to task scheduling

Moreover, as data centers continue to expand in scale, their energy consumption issues
have become increasingly prominent. Research indicates that the energy consumption
of cloud data centers accounts for a significant portion of overall operational costs[19].
Adopting efficient task scheduling algorithms can not only enhance computational per-
formance but also significantly reduce energy consumption[21][20]. In this context, op-
timizing Spark’s task scheduling not only improves computational efficiency to meet the
demands of real-time data processing but also reduces data center energy consumption
through more rational resource management.

In Spark, tasks are executed in parallel, but the scheduler on the driver side sends
batches of tasks serially to the target machine based on a priority selection algorithm. The
target machine then performs network I/O to fetch the data and carry out the computation,
as shown in Fig. 1. This process results in severe CPU and network contention due to the
simultaneous submission of parallel tasks. Until these tasks are completed, subsequent
tasks that depend on their results cannot be scheduled. This contention leads to unbalanced
resource utilization, reduces efficiency, and prolongs task completion time.

Although tasks in Spark are executed in parallel, the scheduler on the Driver side cal-
culates task priorities based on a selection algorithm and sends tasks serially in batches to
target machines. The target machines then retrieve data through network I/O and perform
computations, as illustrated in Fig. 1. However, existing studies[22] have pointed out that
this scheduling method may lead to severe CPU and network resource contention. In this
process, concurrently submitted parallel tasks compete for limited computing and network
resources, resulting in decreased resource utilization. For example, experimental results
in[13][7] show that under conditions of high concurrent task submissions, task comple-
tion times are significantly extended. Furthermore, until all tasks in these parallel stages
are completed, subsequent stage tasks that depend on their results will not be scheduled.
This not only leads to unbalanced resource utilization but may also cause system bottle-
necks[4]. Therefore, considering resource contention factors in scheduling strategies is
crucial for improving system performance and resource utilization efficiency.

In Spark’s default scheduling strategy, tasks from different stages are almost all exe-
cuted in parallel. These tasks compete for network resources and process data while keep-
ing CPU resources idle, or they keep bandwidth or disk idle while contending for CPU
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resources. Resource utilization fluctuates drastically between extremes of overutilization
and underutilization, resulting in inefficient use.

We conducted trace sampling of the average CPU utilization and network throughput
across multiple machines, as shown in Fig.2. The results indicate that the CPU and net-
work resources of most machines are not fully utilized; the average CPU utilization and
network bandwidth utilization consistently remain at low levels. Therefore, we infer that
when resource contention occurs, using Spark’s default scheduling strategy leads to low
resource utilization during job execution in the cluster.

Fig. 2. The utilization of CPU and Network Throughputs

Nowadays, many scholars are focused on job scheduling [27] [11], stage scheduling
[5][16], and task scheduling [17][18] to minimize job completion time and improve clus-
ter performance. However, most of these scheduling strategies are coarse-grained and only
optimize the overall execution of tasks. They do not consider that all tasks in the task set
will be submitted serially to different target machines and start executing simultaneously,
leading to peak resource contention.

To address this gap and further enhance cluster resource utilization while reducing job
completion time, this paper approaches the problem from the perspective of task schedul-
ing. By incorporating the scheduling priorities among parallel tasks, we analyze the vari-
ous factors that affect resource utilization. By greedily selecting the tasks with the longest
execution times within nodes, we determine when tasks should be scheduled.

We can illustrate this situation with a typical parallel computing task. When a task
includes multiple sets of parallel parent tasks and one set of child tasks, Spark’s default
scheduling will relay and send parallel tasks serially. This can lead to severe network
and CPU contention within the cluster during certain periods. However, the application’s
completion time is only related to the completion time of the longest stage. The simulta-
neous execution of other parallel parent task sets actually competes for resources with the
longest stage, thereby affecting the final completion time.
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To address this, this paper designs a Delay-Aware Resource-Efficient Interleaved Task
Scheduling Strategy (DRTS). DRTS is applicable to most parallel distributed computing
frameworks. Without affecting the completion of the next stage in the pipeline, DRTS
delays the execution of different task sets according to the characteristics of the cluster
machines they are sent to, minimizing peak resource contention and achieving resource-
efficient interleaved. Integrated into the distributed framework Spark, DRTS divides the
execution state of tasks into two stages: non-CPU-intensive and CPU-intensive stages.Based
on the above analysis, our scheduling strategy aims to schedule tasks on different nodes at
optimal times. When an execution task utilizes network resources for data fetching in the
non-CPU-intensive phase, we schedule parallel tasks to execute alongside it, staggering
the utilization of the cluster’s resources and reducing resource competition. Therefore, the
contributions of this paper can be summarized as follows:

(1) On the basis of fully considering whether there is resource contention in the clus-
ter, this paper proposes a Delay-Aware Resource-Efficient Interleaved Task Scheduling
Strategy (DRTS). This algorithm prioritizes the scheduling of jobs with long execution
times according to the obtained relationship between task execution time, execution ma-
chine, and stage. Additionally, it performs interleaved execution of long and short tasks
for the tasks in the stage with the longest execution time.

(2)For other parallel stages, the task execution time is calculated (including CPU-
intensive and non-CPU-intensive stage times), and they are scheduled at the appropriate
times. Continuous negative feedback is applied based on the task completion effective-
ness, resulting in significant improvements in practical applications.

(3)Implemented a prototype model of DRTS on Spark 2.4.0 and conducted several
experiments to evaluate its performance. The experiments show that DRTS enhances re-
source utilization and reduces job completion time.

2. Related Work

In big data processing frameworks, task scheduling is a critical step to ensure efficient
resource utilization and rapid job completion. Spark’s task scheduling module primarily
consists of the DAGScheduler and TaskScheduler. These two components are responsible
for partitioning user-submitted computational tasks into different stages according to a
Directed Acyclic Graph (DAG) and assigning the computational tasks within these stages
to different nodes in the cluster for parallel computation. Moreover, based on the various
transformations and actions of RDDs, Spark enables users to implement strategies using
complex topologies without significantly increasing the learning cost. However, because
tasks are executed in parallel, this can lead to frequent usage of system resources during
certain periods while they remain relatively idle at other times, thereby causing resource
contention issues.

In addition to traditional scheduling strategies such as First-In-First-Out (FIFO) or
Fair Scheduling (FAIR), which employ techniques like delay scheduling [24] to improve
cluster performance, many studies have focused on addressing resource contention issues.
For example, Xu et al. [23] proposed and developed the middleware Dagon, which, by
considering and analyzing the dependency structure of jobs and heterogeneous resources,
enables reasonable task allocation. They designed a sensitivity-aware task scheduling
mechanism to prevent Executors from waiting for location-insensitive tasks for long pe-
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riods and implemented cache eviction and prefetch strategies based on the priority of
stages. Pan [15]proposed a task scheduling strategy for heterogeneous storage clusters
that classifies tasks based on data locality and storage type. This approach redefines the
priorities of different types of tasks according to storage device speeds and data locality to
reduce task execution time. Lu et al. [14] argued that different stages have varying perfor-
mance and resource requirements for different tasks, which could lead to longer overall
task completion times. As a result, they proposed a task scheduling algorithm based on a
greedy strategy, which balances job distribution across nodes to efficiently complete job
scheduling tasks in heterogeneous clusters.

In contrast to the aforementioned works, DRTS performs task-level scheduling with
finer granularity of control. DRTS assigns different priorities to tasks allocated to each
node, ensuring that they are scheduled at the appropriate times, thus minimizing task
completion times. Recently, Shao et al. [16] designed DelayStage, which arranges the
execution of stages in a pipelined manner to minimize the completion time of parallel
stages and maximize the performance of resource interleaving. However, this scheduling
algorithm is coarse-grained, and simply delaying the submission time of stages still re-
sults in contention for CPU and network resources, affecting cluster execution efficiency.
Duan et al. [5] argued that adding more computational resources may not significantly
improve data processing speed and proposed a resource pipeline scheme aimed at mini-
mizing job completion time. They also investigated an online scheduling algorithm based
on reinforcement learning, which can adaptively adjust to resource contention. However,
the reinforcement learning-based scheduler is currently only applicable to the Spark pro-
cessing framework, and its compatibility with other data processing frameworks has not
yet been determined.

In addition, many studies focus on stage-level scheduling strategies, while DRTS op-
erates at the task level. DRTS addresses resource contention issues that arise from subtle
time gaps in stage scheduling by performing fine-grained task execution analysis and
using appropriate algorithms to schedule tasks at the optimal time, thereby interleaving
system resource usage. For example, in [17], it was proposed to invoke new network-
intensive tasks during non-network stages, executing two tasks in a pipelined manner by
sharing the same CPU core. In [12], the design of Symbiosis, an online scheduler, allows
for predicting resource utilization before task initiation and refilling compute-intensive
tasks when launching network-intensive ones. In contrast, DRTS breaks tasks into CPU-
intensive and network-intensive phases and achieves interleaved resource utilization by
appropriately delaying task execution.

Hu et al. [10] pointed out that traditional scheduling strategies do not consider job
size and designed a Shortest Job First (SJF) scheduling algorithm to avoid large jobs
from blocking smaller ones. Zhang et al. [23] proposed a task scheduling method in het-
erogeneous server environments, based on data affinity, to minimize the maximum task
completion time. He et al. [9] introduced a network-aware scheduling method, SDN, to
eliminate communication barriers between the cluster computing platform and the under-
lying network. Zhang et al. [25] optimized scheduling using hierarchical algorithms and
node scheduling algorithms, incorporating dynamic factors such as task runtime and CPU
utilization on work nodes. Fu [6] utilized a bipartite graph model to propose an optimal
location-aware task scheduling algorithm to reduce execution time delays and network
congestion caused by cross-node data transfers.
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Although a significant amount of research has been devoted to optimizing Spark’s
task scheduling strategies, most of the work has focused on the stage level, and some lim-
itations remain: the details at the stage level are not fully utilized, leading to continued
resource contention; dynamic resource adjustment is not performed, resulting in imbal-
anced resource utilization during high-concurrency task submissions; and some schedul-
ing algorithms based on specific technologies (such as reinforcement learning) are only
applicable to certain frameworks, lacking broad applicability.

To address these limitations, this paper proposes a resource-interleaved task schedul-
ing algorithm (DRTS). DRTS overcomes the shortcomings of existing stage-level schedul-
ing strategies by employing fine-grained task-level scheduling and dynamic resource man-
agement. It provides more efficient resource utilization and shorter job completion times,
significantly improving the overall performance of Spark clusters.

3. Dual-phase Task Scheduling Strategy for the Spark Platform

When task scheduling is not properly managed, CPU and network resources are not fully
utilized, leading to longer task execution times. To improve the resource utilization and
job execution efficiency of the Spark platform, it is essential to address the resource con-
tention issue.

This paper designs and implements a resource-interleaved task scheduling strategy
(DRTS). The approach first greedily selects stages with the longest execution times for
scheduling, in order to avoid delays in job completion. Then, by analyzing the logs gen-
erated during the job execution, detailed information for each task corresponding to the
nodes is extracted. For the stage with the longest execution time, tasks are executed al-
ternately in a way that switches between long and short tasks within the node. For the
remaining stages, appropriate algorithms are used to ensure that tasks are executed at
the optimal time, with continuous feedback to adjust the scheduling timing. This aims to
interleave node resource usage and minimize job completion time.

3.1. Task Scheduling Optimization Strategy based on Resource Interleaving

Each task submitted by the user forms an RDD in a DAG. If an RDD requires a shuffle
during the transformation process, the DAG is divided into different stages. Due to the
shuffle, these stages cannot be computed in parallel, as the subsequent stages depend on
the results of the preceding stages. Therefore, we divide the DAG at the boundaries of
parallel stages and represent this with the symbol φm.

As shown in Fig. 3, the downstream shuffle stages in this splitting path are not always
connected to the stages in the next splitting path. To avoid resource contention, it is nec-
essary to appropriately delay the start time of such tasks, which will be explained in detail
in Alg. 2.

In a Spark job, the Spark framework prioritizes nodes with high data locality to exe-
cute tasks, aiming to minimize data transfer overhead and enhance overall performance.
While the specific scheduling of tasks is not fully determined before job execution, the
Spark scheduler dynamically assigns and schedules tasks based on real-time cluster state
and task demands. By analyzing log information generated during job execution, detailed
task information is extracted from each node, including execution time, data volume, etc.,
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Fig. 3. Illustration of the separation of parallel phases in DAG style. Based on
topological ordering, we separate the parallel stages, denoted by φm. The first set of
parallel phases contains Stage 1, Stage 2, and Stage 5, so they can be placed in one path,
i.e.,φ1.. Stage 3 is used as the second execution path, i.e., φ2. Stage 4’s execution path is
φ3, and Stage 6’s execution path is φ4

and the scheduling node is recorded to ensure subsequent tasks are scheduled to the same
node. In the case of φ1, tasks within it are scheduled at optimal times, thereby staggering
resource usage. The completion time of the longest stage in φ1 determines the start time
of φ2. However, if stages within φ1 are executed simultaneously, it can lead to significant
resource contention, affecting execution efficiency. As shown in Fig. 4. (left), when tasks
assigned to nodes execute simultaneously, it may result in severe resource contention.

We constructed an analytical model to simulate the scheduling of parallel tasks in
a DAG job, determining the optimal timing for submitting parallel tasks within the job.
The primary objective is to develop a scheduler that facilitates the scheduling of parallel
tasks at optimal times to interleave various types of resources, thereby enhancing resource
utilization and minimizing job completion time.

3.2. Task Time Statistics Strategy Based on Data Fetching and Processing

To address task resource contention, scheduling tasks at optimal times can minimize com-
pletion time by efficiently managing CPU resource requirements across different phases
of the cluster. A group of Spark jobs comprises parallel computation stages, represented
as S = {S1, S1, ...Sn}. The parallel computation phases are submitted first when there
are sufficient computational resources, and each parallel phase must wait until all parallel
phases have completed their computations before submitting the next phase. specifically, a
stage is divided into individual tasks based on parallelism. Subsequently, the DAGSched-
uler submits these tasks to the TaskScheduler. We use TStageId#TaskId to denote the
tasks within each stage, indicating the stage number and the task number within that
stage. For each task, the execution process involves several stages: initially, it requires
significant network resources to fetch data; subsequently, the fetched data is processed,
requiring high CPU usage; ffnally, the processed result data is written to disk. We classify
the execution of a task into a non-CPU-intensive phase, denoted as Fi#j , and a CPU-
intensive phase, denoted as Pi#j . To elucidate the execution time of tasks on the worker
node W during the non-CPU-intensive phase, this paper delves into the detailed process
of segmenting each task. Specifically, the non-CPU-intensive phase primarily involves
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Fig. 4. Three-stage scheduling optimization strategy

data transfer, encompassing data reading and writing. Hence, the execution time of a task
during the non-CPU-intensive phase on worker node W can be expressed as follows:

FT ′
i#j = T i#j

sr + T i#j
sw (1)

The first term of Eq.(1) T i#j
sr , occurs when a task needs to get data from other nodes or

file systems. The second term, T i#j
sw ,occurs when a task stores the resulting data to disk

after completing the computation.
Further, T i#j

sr is calculated as:

T i#j
sr =

Di#j
r

BW i#j
r

(2)

The process of writing data to disk involves some computation and I/O operations.
However, if the data is stored only in memory, it doesn’t impose a significant demand on
CPU usage. Therefore, disk I/O is categorized as a non-CPU-intensive stage.

Therefore, there is a formula for T i#j
sw :

T i#j
sw =

N i#j
w ∗Bi#j

w

BW i#j
w

+ Tdw (3)

FTi#j =
Di#j

r

BW i#j
r

+
N i#j

w ∗Bi#j
w

BW i#j
w

+ Tdw (4)
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Generally, the duration of writing intermediate data to disk is not extensive. For sim-
plicity, we omit the disk I/O time when calculating the non-CPU-intensive time. Thus, we
have:

FTi#j =
Di#j

r

BW i#j
r

+
N i#j

w ∗Bi#j
w

BW i#j
w

(5)

In a task, the computation time of a non-CPU intensive phase can be used to estimate
the computation time of a CPU intensive phase. Given Spark’s log messages provide
records for the entire task completion time, noted as T i#j

t , once we compute the non-
CPU-intensive time for the jth task in the ith stage, we can subtract this from the total task
execution time to obtain the CPU-intensive time:

PTi#j = T i#j
t − FTi#j (6)

We calculated the time consumption of tasks in both CPU-intensive and non-CPU-
intensive phases by combining the online and offline methods described above.

4. Algorithm Implementation of Delay-Aware Resource-Efficient
Interleaved Task Scheduling Strategy

In this section, we present a Delay-Aware Resource-Efficient Interleaved Task Scheduling
Strategy (DRTS). The aim of DRTS is to stagger the utilization of CPU and non-CPU
resources on the worker node, thereby reducing resource contention and minimizing task
completion time. Initially, we compute the time set during which a task performs data
fetching and processing. Subsequently, we greedily determine the optimal scheduling time
for the task using the resource polling task scheduling algorithm.

4.1. Dual-stage Task Time Estimation Based Algorithm

To facilitate finer task scheduling, DRTS splits a task’s execution phase into two stages:
the CPU-intensive phase and the non-CPU-intensive phase. During the non-CPU-intensive
phase, tasks undertake data fetching operations, which consume significant network re-
sources and disk I/O. Conversely, the CPU-intensive phase involves extensive compu-
tation. The time intervals during which the task resides in the non-CPU-intensive and
CPU-intensive phases during execution are determined by Alg. 1. The primary execution
steps are divided into the following segments:

(1) We initialize two empty maps, each with NodeId as the key. The value associated
with each NodeId is a map with StageId as the key and task fetch or process time as
the value. These maps represent the data fetching phase (X_fetch) and data processing
phase (X_process) of tasks corresponding to different stages assigned to different nodes.

(2) The execution times of the data fetching phase and data processing phase during
task execution, obtained from Eq. (5) and Eq. (6), are added to the result set.

(3) By traversing the collection of tasks in stage and considering the execution or-
der and branching, the data fetching time and data processing time of different tasks are
calculated and recorded in the collections X_fetch and X_process.
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Algorithm 1 Phase-based Task Time Estimation

Input: The total amount of data for the i#jth task Di#j
r network bandwidth BWw , the time taken

to execute the completed task T i#j
t , the collection of execution information for various stages

obtained from historical data, denoted as set S.
Output: Time maps X_fetch,X_process

1: Initialize: X_fetch = {∅} , X_process = {∅}
2: for all Si in S do
3: for all Ti#j in Si do
4: Calculate the task data fetching time FTi#j ← eq.(4)andeq.(9)
5: X_fetch.add (FTi#j)
6: Calculate the task data processing time PTi#j ← eq.(10)
7: X_process.add (PTi#j)
8: end for
9: end for

10: return FTi#j , PTi#j

In Spark’s default task scheduling mechanism, when the number of partitions exceeds
the number of tasks running concurrently, the vCPU tasks are executed simultaneously.
Only when the current task completes execution and there are available CPU cores, can
the next task commence. Task execution demands various resources including CPU and
network, and this demand is dynamic. Hence, task execution is divided into data fetching
and data processing phases. Running other tasks at suitable times during task execution
can mitigate resource contention and enhance resource utilization.

4.2. Task Scheduling Algorithm Based on Maximizing Resource Interleaving

According to the detailed information of the corresponding tasks in each node, the tasks
in each node are first grouped according to different stages and sorted according to the ex-
ecution time; then, since the stage with the longest execution time affects the completion
time of the whole pipeline, it is prioritized and staggered according to the length of the
completion time of the tasks in the historical data; finally, for other parallel stages, due
to the existence of deadline, it is only necessary to ensure the completion of its execution
before the completion of the longest stage, so its tasks can be scheduled at the right time
to stagger the utilization of cluster resources.

The data fetching time FTi#j , data processing time PTi#j of Taski#j is obtained
from Algorithm 1. During task execution, a large amount of network resources are needed
in the data fetching phase, while a large amount of memory is needed for computation in
the data processing phase. The goal of DRTS is to mitigate resource contention when
executing tasks in the CPU-intensive phase, during which the cluster requires substantial
network resources and disk I/O. In accordance with Spark’s default task scheduling strat-
egy, multiple tasks will be executed in parallel, and multiple tasks simultaneously multiple
tasks compete for resources at the same time. At this point, Algorithm 2 schedules paral-
lel tasks at optimal times, leveraging staggered time intervals to utilize cluster resources
efficiently and reduce resource contention.

To achieve the objective of minimizing the job execution time, the following algorithm
is designed. The algorithm can be divided into the following steps:
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Algorithm 2 Delay-Aware Resource-Efficient Interleaved Task Scheduling Strategy
Input: Time maps Xfetch, Xprocess and the initial set of parallel stages S, the downstream shuffle Si

of Sk.
Output: Path and delay time set X .

1: Initialize: X ← {} and the set of execution path P according to the job’s DAG.
2: Sort the parallel S in descending order
3: for all Si in S do
4: Sort Ti#j in Si in descending order, and group by target_node
5: X.put (i, new List())
6: end for
7: for all Si in S do
8: for all different_node_task in Si do
9: for all Ti#j in all different_node do

10: if isLongestStage(node.StageId) then
11: Target machines execute tasks in an interleaved manner of long and short tasks

firstly
12: else
13: Base_Time =

(
SSi − SSi+1

)
/2

14: if Sk /∈ φm then
15: Base_Time = (SSk −max(SparentSk

))/2
16: Si = Si + Base_Time
17: for all x̂k ∈ [0, Ti#j − Ti#(j+1)] do
18: if PTi#j < Ti#(j+1) then
19: x̂k ← Ti#j − Ti#(j+1)

20: x̂k ← x̂k −△x
21: else
22: x̂k ← FTi#j

23: x̂k ← x̂k ±△x
24: end if
25: xk ← x̂k + Base_Time
26: X.get(i).add(Ti#j , xk)
27: end for
28: end if
29: end if
30: end for
31: end for
32: end for

(1) According to the parallelism of stage, it is partitioned according to different paths,
and the partitioned paths are φm. Based on the allocation of parallelizable stage in each
node, traversal is conducted to obtain the set of tasks in the node belonging to different
partitioned paths.

(2) When the downstream shuffle of Si /∈ φm, the scheduling time of Si is adjusted
accordingly. This adjustment involves finding the downstream shuffle of Si, denoted as
Sk, by analyzing the DAG in the log file. Consequently, the delayed scheduling time
interval of Si is determined to be [0, SSk

-max(SparentSk
) ]. where SSk

refers to the start
time of Sk, and max(SparentSk

) refers to the maximal completion time in the parent stage
of Sk as shown in Figure 3,and Stage5 belongs to this situation.
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(3) Since the stage with the longest execution time significantly impacts the comple-
tion time of the entire job, it is prioritized for scheduling. Therefore, it is necessary to first
sort φm in descending order.

(4) Taski#j are grouped according to i in each target node according to the above
results. They are then arranged in both descending and ascending time orders to enable
interleaved execution.

(5) For a stage, if it is the longest among several parallel stages, each node priori-
tizes the execution of tasks assigned to that stage. Tasks of that stage are then executed
according to the alternation of long and short time tasks.

(6) For the other stages that can be parallelized, since their overall execution time
is not long, the start time of the execution of the back-ordered stages has little to do
with the completion time of those stages. The adjusted completion time must not exceed
the completion time of the first stage after sequencing. Therefore, the task execution of
subsequent stages is initially delayed by a certain period of time, with the delay time
initially set as the middle value of Si − Si+1.

(7) The execution of tasks corresponding to each stage on each node is performed
in the order in (3), and the execution of tasks is performed in the order of the results
in (4), and the execution of tasks that are at the back of the ordering is postponed at an
appropriate time. But the delay time of the subsequent task must be within [0, Si −Si+1-
Ti#j]. The reason is that when the Task is delayed for too long, it may lead to a marginal
overall completion time of the task, which is contrary to the DRTS policy of minimizing
the job completion time.

(8) Ensure that after the execution of the task with the longest stage, the data fetching
time FTi#j in the other tasks is used as a cumulative count of the initial value. This
ensures that the delay time of each task is different, and constant feedback is provided to
adjust this value.

(9) Divide the delay time of the task into blocks of time ∆x (e.g., each block has an
interval of 200 ms). When PTi#j < Ti#(j+1), x̂k iterates over its upper and lower ranges
[0, Ti#j − Ti#(j+1)]; When PTi#j >= Ti#(j+1),x̂k iterates over its upper and lower
ranges [FTi#j , Ti#j − Ti#(j+1)]. There is a candidate task scheduling time x̂k in each
iteration . Where Ti#j is the previous task of Ti#j+1 at the same target machine.

(10) After continuous feedback and adjustments based on the results of the last exe-
cution, DRTS finally determines the optimal value of the delayed task execution time xk

to greedily minimize the execution time of parallel tasks.
DRTS schedules parallel tasks in a pipelined manner, which effectively reduces re-

source interleaving during task execution and improves the resource utilization of the
cluster.

5. Experiments

In this section, a comprehensive evaluation of the DRTS strategy is presented. Three work-
loads ConnectedComponents, CosineSimilarity and TriangleCount are used as bench-
marks to evaluate the performance. The evaluation results are as follows:

(1) Accelerated the workload of the benchmark suite, reducing the average job com-
pletion time by 7.51% to 15.64%.
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(2) By utilizing cluster resources in a staggered manner, the CPU utilization and net-
work utilization of the cluster are improved by 5.83% and 10.38%, respectively.

5.1. Experiment Setting

Cluster Configurations In this section, to validate the performance of DRTS, we con-
duct extensive experiments on a Spark 2.4.0-based cluster with one master node and six
worker nodes. We evaluated the performance of task scheduling using three representative
DAG-style data analysis workloads as benchmarks. The cluster configuration is shown in
Tab.1. The deployment method is Spark on Standalone, and Spark’s parameters are con-
figured as shown in Tab. 2.

Table 1. Configuration of Cluster
Type Configuration
Number of Nodes 1 master,6 workers
CPU Number 4
RAM 32G
Hard disk 500G
Environment Centos7.0, Spark2.4.0, Hadoop 2.6.0
Digital meter 2500W, 10A
JDK JDK 1.8

Table 2. Configuration of Spark parameters
Type Configuration
Executor cores 2
Executor memory 4G
Executor number 12

Workload Detail Description In the cluster, we chose three representative Spark bench-
mark workloads: ConnectedComponents, CosineSimilarity, and TriangleCount, where
ConnectedComponents and TriangleCount are from Spark GraphX. There are 5 stages
and 11 stages, respectively. CosineSimilarity comes from Spark MLlib and has five stages.
Specifically, the experimental ConnectedComponents application has 11GB of synthetic
data, the CosineSimilarity application uses 34GB of synthetic data, and TriangleCount
uses synthetic data from 1 million users and 20 million followers. The workload specifi-
cations are summarized in Tab. 3.

Base Line The scheduling algorithms we compared in these experiments are as follows:
Spark: the default scheduling strategy FIFO in Spark.
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Table 3. Workload
Wordload Specification
ConnectedComponents 11GB synthetic input data
CosineSimilarity 34GB synthetic input data
TriangleCount 1 million users and 20 million

followers of synthetic input data

DelayStage[16]: it is a stage delay scheduler for big data parallel computing frame-
works (e.g. Spark). It optimizes resource utilization by overlapping cluster resources dur-
ing parallel phases to minimize completion time. Additionally, it schedules phase execu-
tion in a pipelined manner to maximize the performance benefits of resource interleaving.

5.2. Performance Results

In order to validate the performance of DRTS, a series of experiments were conducted on
different datasets using the benchmarks in Tab .3. Each benchmark was tested 15 times
and the final results were averaged over the tests. This experiment compares the DRTS
scheduling strategy with Spark’s default scheduling strategies FIFO and DelayStage schedul-
ing strategies.

Job Execution Time We first compare the job execution time of different schedulers.
As shown in Fig. 5, we can see that DRTS shortens the job execution time by 8.01% to
14.46% compared to Spark’s default scheduling strategy. DRTS is a delayed scheduler
operating at the task level across different nodes. When tasks are executed concurrently,
it can lead to resource contention issues. By scheduling parallel tasks at the right time,
DRTS effectively interleaves the use of cluster resources, thereby enhancing overall re-
source utilization. Moreover, the task execution is divided into two phases, when the data
is being acquired, scheduling a CPU-intensive task at the right time to greedily realize the
resource interleaving between tasks can also reduce the total execution time of parallel
tasks.

Additionally, the performance of DRTS is also enhanced (3.18% - 6.48%) compared
with DelayStage due to the following reasons: DRTS schedules parallel tasks assigned
to each node at optimal times, allowing tasks in the parallel stage to be delayed based
on the state of the target machine. On the other hand, DelayStage only delays the overall
stage without considering that tasks within the stage are assigned to different machines,
resulting in uniform delays across all tasks. DRTS considers more factors and offers finer
granularity compared to DelayStage.

Upon closer examination of the job completion times depicted in Fig. 5, DRTS demon-
strates superior performance compared to Spark’s default FIFO scheduling approach. The
figure illustrates the job completion times for the three benchmarks: ConnectedCompo-
nents, CosineSimilarity, and TriangleCount. Specifically, DRTS improves performance by
8.01% for ConnectedComponents, reduces job completion time by 13.51% for CosineS-
imilarity, and enhances performance by 14.46% for TriangleCount. This improvement can
be attributed to the nature of FIFO scheduling, which prioritizes earlier submitted tasks
for execution, causing subsequent tasks to wait until prior ones are completed. When early
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Fig. 5. Comparison of Spark and DRTS across different workloads, including PageRank,
Sort, and TeraSort

tasks do not utilize resources efficiently, it may result in overall low resource utilization.
By comparing these three benchmarks with DelayStage, DRTS demonstrates performance
improvements of 3.18%, 6.05%, and 6.48%, respectively. This is because DelayStage
only delays the stage without considering granularity such as different target machines or
tasks on different target machines. In contrast, DRTS operates at the task level, sorting
tasks within stages with longer execution times based on target machine execution times.
It prioritizes stages with the longest execution times for scheduling while ensuring that
execution scheduling delays are applied to different target machines for different tasks
based on varied execution conditions. This approach alternately utilizes cluster resources
to avoid resource contention, ultimately achieving the goal of reducing job execution time.

In the Spark framework, parallelism refers to the number of data blocks processed
simultaneously during task execution, and it’s a manually configured parameter. Exces-
sive parallelism may over-consume cluster resources or result in frequent task startups, in-
creasing overhead. Conversely, insufficient parallelism may underutilize cluster resources,
prolonging task execution. Configuring parallelism appropriately poses challenges for de-
velopers, as improper configurations can increase job completion time, impacting cluster
performance.

DRTS can mitigate performance degradation resulting from suboptimal parallelism
configurations. To observe the impact of different parallelism levels on DRTS, we con-
ducted a series of experiments. The results, depicted in Fig. 6, demonstrate that DRTS
effectively reduces job completion time across varying degrees of parallelism.

Resource Utilization Effectiveness To assess whether our DRTS policy enhances re-
source utilization, we conducted further observations on CPU utilization and network
throughput of a worker node while executing various workloads. As depicted in Fig.
7. and 8, the DRTS policy optimizes DelayStage by efficiently utilizing idle time dur-
ing stage execution, thereby notably enhancing CPU utilization and network throughput.
Compared to Spark’s default scheduler, DRTS executes tasks in a two-stage resource in-
terleaving manner, effectively improving system resource utilization. On average, CPU
utilization improves by 4.43% to 8.77%, and network throughput utilization improves
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Fig. 6. Comparison of Spark, DelayStage, and DPRS at different levels of parallelism

by 5.19% to 8.84% with DRTS. Additionally, DRTS enhances resource utilization com-
pared to DelayStage, with CPU utilization improving by 8.42% to 14.64% and network
throughput improving by 10.43% to 12.98%. This improvement stems from DRTS’s finer
granularity in scheduling tasks to the same target machine at optimal times, whereas De-
layStage simply delays stage scheduling, potentially resulting in idle resources on some
machines. By scheduling CPU-intensive tasks at opportune moments during data acqui-
sition, DRTS effectively fills resource gaps during CPU idle periods, thereby enhancing
job operational efficiency through optimal resource utilization.

Table 4. Average of network throughput (MB/s)
Spark DelayStage DRTS

ConnectedComponents 18.88 19.86 20.85
CosineSimilarity 136.21 148.25 152.14
TriangleCount 23.66 25.32 26.73

Further, we compute the average values of network throughput and CPU utilization
of a work node while executing these four workloads, as summarized in Tab. 4. and 5.
respectively.



Delay-Aware Resource-Efficient Interleaved Task Scheduling Strategy in Spark 855

Fig. 7. CPU utilization under the three workloads: ConnectedComponents,
CosineSimilarity, and TriangleCount

Clearly, DRTS achieves higher and more stable CPU utilization and network through-
put compared to Spark’s default scheduling strategy. In more detail, DRTS improves
network utilization by 11.42% and network throughput by 11.7% over Spark, and also
improves CPU utilization and network throughput by 6.33% and 7.02%, respectively,
compared to DelayStage.

6. Conclusion

In this paper, we address the task scheduling problem within job execution scenarios.
Underutilized assigned tasks can significantly prolong job execution times, thereby im-
pacting cluster performance. To mitigate this issue, we propose a strategy focusing on

Table 5. Average CPU utilization (%)
Spark DelayStage DRTS

ConnectedComponents 46.22 48.89 50.11
CosineSimilarity 37.51 39.17 41.71
TriangleCount 50.88 55.34 58.33
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Fig. 8. Network throughput under the three workloads: ConnectedComponents,
CosineSimilarity, and TriangleCount

cross-utilization of resources to minimize job completion times. Firstly, we provide a
comprehensive theoretical analysis of the task scheduling problem and devise an algo-
rithm to compute task execution times for both data acquisition and processing phases.
Subsequently, we introduce a task scheduling algorithm based on resource polling, em-
ploying a delayed scheduling approach at the task level across different nodes. For stages
with extended execution times, tasks are scheduled on target machines in an alternating
pattern of long and short task durations. For other stages, appropriate scheduling algo-
rithms are employed to ensure tasks are executed at optimal times, thereby facilitating
cross-resource utilization within the cluster. Finally, we conduct extensive experiments
across three benchmarks using various datasets. Our experimental results demonstrate
that the proposed DRTS approach effectively harnesses cluster resources and reduces job
completion times.
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