Computer Science and Information Systems 22(3):927-944 https://doi.org/10.2298/CSI1S241201033L

Efficient algorithms for collecting the statistics of
large-scale IP address data

Hui Liu®, Yi Cao*, Zehan Cail, Hua Mao?, and Jie Chen?

! College of Electronic and Information, Foshan Polytechnic,
Foshan 528137, P.R. China
Ixyliuhui@163.com
{cycaoyi, Ixyliuhui } @hotmail.com
2 Department of Computer and Information Sciences, Northumbria University,

Newecastle, NE1 8ST, U.K.

hua.mao @northumbria.ac.uk

3 College of Computer Science, Sichuan University,
Chengdu 610065, P.R. China
chenjie2010@scu.edu.cn

Abstract. Compiling the statistics of large-scale IP address data is an essential task
in network traffic measurement. The statistical results are used to evaluate the po-
tential impact of user behaviors on network traffic. This requires algorithms that
are capable of storing and retrieving a high volume of IP addresses within time
and memory constraints. In this paper, we present two efficient algorithms for col-
lecting the statistics of large-scale IP addresses that balance time efficiency and
memory consumption. The proposed solutions take into account the sparse nature
of the statistics of IP addresses while maintaining a dynamic balance among layered
memory blocks. There are two layers in the first proposed method, each of which
contains a limited number of memory blocks. Each memory block contains 256 ele-
ments of size 256 X 8 bytes for a 64-bit system. In contrast to built-in hash mapping
functions, the proposed solution completely avoids expensive hash collisions while
retaining the linear time complexity of hash-based solutions. Moreover, the mecha-
nism dynamically determines the hash index length according to the range of IP ad-
dresses, and can balance the time and memory constraints. In addition, we propose
an efficient parallel scheme to speed up the collection of statistics. The experimen-
tal results on several synthetic datasets show that the proposed method substantially
outperforms the baselines with respect to time and memory space efficiency.

Keywords: large-scale IP addresses, memory blocks, hash table, sorting, network
traffic.

1. Introduction

In recent years, the amount of network traffic has increased significantly because of the
rapid development of emerging network services, such as video streaming, instant mes-
saging, and online payment services. It is crucial to evaluate the potential impact of the
features of user behavior on network traffic management. User behavior features are usu-
ally extracted from IP packets, which contain IP addresses. There is a close correspon-
dence between informative user behavior features and the IP addresses that frequently

* Corresponding author

928 Hui Liu et al.

appear in the packets. Hence, how to effectively obtain the statistics of large-scale IP ad-
dress data in a timely manner, such as every few minutes, is a challenging problem in
network traffic measurement. Obtaining the statistics of large-scale IP address data typ-
ically consists of two tasks: counting the number of occurrences of each IP address and
sorting the results in a specific order.

Each IP address serves as a unique identifier for a device on a network. Analyzing
large-scale IP address data can reveal vulnerabilities in the network traffic measurements;
this enables administrators to discover and resolve weak spots before they are exploited.
As a result, potential cybersecurity risks can be effectively reduced in various network
applications. Moreover, analyzing such data helps in understanding traffic patterns and
behaviors in network traffic measurement process. The collection and analysis of large-
scale IP address data provide valuable insights that can guide more reliable and efficient
network systems; this helps administrators balance loads and improve the overall perfor-
mance of the network. Therefore, collecting statistics from large-scale IP address data is
an essential task for the efficient, secure, and scalable management of networks.

A number of statistical algorithms for solving this problem have been studied in the
last few decades [L1], [15[], [16]], [8], [2]. A classic divide-and-conquer strategy has been
proposed in which IP addresses are first divided into multiple subsets. Then, each subset is
individually computed using a statistics collection method, such as a top k trie algorithm
[12]. Finally, to merge and sort the results of the multiple subsets, sorting algorithms
(e.g., bubble sort, insertion sort, merge sort, selection sort, or quick sort) are used [9], [6].
However, the reduction of computational cost is an intractable problem in the sorting pro-
cedure [21]], [18], [1]. For example, the average complexity and worst-case complexity of
the bubble, insertion, and selection sort algorithms are O (n2) [9], [24]], where n repre-
sents the number of unsorted records. This indicates that the merging and sorting step of
the multiple subsets occupies a large amount of memory and is extremely computation-
ally costly to perform when collecting the statistics of millions or tens of millions of IP
addresses. Therefore, statistics collection algorithms using the divide-and-conquer strat-
egy still face several challenges caused by the rapid increase of the large-scale records,
such as bounded memory and computational cost restrictions.

A hash table is an effective method for collecting the statistics of IP addresses [[19]]. It
uses a hash function to compute a hash codes for an array of buckets with the statistical
results. The hash function assigns each key to a unique bucket for each IP address. Unfor-
tunately, the hash function can generate the same hash code for more than one IP address.
With the increase in the generation of big data, millions or tens of millions of records have
become ubiquitous in network traffic. Therefore, this approach could cause several hash
collisions, especially for a large number of IP addresses. Although many strategies can
be employed to avoid collisions, such as linear probing, quadratic probing, and double
hashing, they require extra storage space and computation.

The statistics collection algorithm should be stable, effective, and efficient for large-
scale records. Recent advancements in sorting techniques have concentrated on improving
the efficiency and scalability of algorithms for processing large-scale data.To overcome
the disadvantages of general statistics collection methods, a number of parallel techniques
have been developed for large-scale records by optimizing the efficiency and complexity.
For example, these algorithms have been extended to the corresponding parallel structures

Efficient algorithms for collecting the statistics... 929

for parallel hardware architectures, such as many-core and multi-core platforms [3], [27],
[231L,[26].

An IP address consists of a series of numbers separated by periods. However, the
sorting techniques ignore the importance of the original characteristics of the unsorted IP
records. Additionally, parallel statistics collection algorithms are simply parallel comput-
ing implementations of the original algorithms. The uniqueness of the IP addresses is vital
for distinguishing between the different devices. An IPv4 address is typically represented
in four parts. Consequently, collecting statistics from large-scale IP address data still face
two significant challenges. First, the unique structure of unsorted IP records is ignored
when large-scale IP address data are collected. Second, the extension of the collection
task to the corresponding parallel computation paradigm deserves a further investigation
into parallel hardware architectures.

In this paper, we present two efficient algorithms for collecting the statistics of large-
scale IP address data. We can obtain the frequently occurring IP addresses from the statis-
tics, which can be regarded as a pre-processing step of user behavior analysis in network
traffic management. Because of the increasing volume and speed of network traffic, it has
become expensive and impractical to handle all IP addresses contained the IP packets.
By taking full advantage of the successive characteristics of memory addresses and the
fixed range of each individual part of an IP address, we design two relationship mapping
mechanisms between memory blocks and IP addresses for a four-dimensional sparse ma-
trix. The sparse matrix stores the number of occurrences of the individual IP addresses,
in which the positions of the rows and columns are employed to represent the mapping
relationship between the memory blocks and IP addresses. Specifically, we construct a
two-layer memory block (TLMB) to implement the first mapping mechanism for the IP
addresses. In addition, we employ a single shared memory block (SSMB) for all TP ad-
dresses to implement the other mapping mechanism of the IP addresses. The mechanisms
of the mapping relationship effectively remove the information about trivial user behav-
iors that are irrelevant for statistical analysis. The proposed methods can be extended to
the corresponding parallel versions for specific hardware architectures. Extensive experi-
ments on several synthetic datasets show the effectiveness of the proposed method.

Our contributions are summarized as follows.

1. We present two efficient methods for collecting the statistics of large-scale IP address
data that use two different relationship mapping mechanisms, TLMB and SSMB,
between memory blocks and IP addresses for a four-dimensional sparse matrix.

2. The computational cost of TLMB is linearly proportional to the number of IP ad-
dresses with a limited memory resource, and the memory use of SSMB remains al-
most unchanged with a reasonable computational cost, regardless of the number of
IP addresses.

3. A parallel computation optimization scheme for multiple computers is proposed to
effectively improve the computational efficiency and dramatically reduce memory
use.

4. Our extensive experimental results using synthetic datasets demonstrate that our pro-
posed method shows clear superior performance in comparison with the baselines,
striking a balance between computational cost and memory use.

The remainder of this paper is organized as follows. We briefly describe some of the
original sorting techniques as well as various parallel sorting algorithms in Section[2} In

930 Hui Liu et al.

Table 1. Time complexity of various sorting algorithms [6], [L7], [7]].

Algorithm Best (n) Average (n) Worst (n)

Bubble sort O (n) O (n%) O (n?
Insertion sort O (n) O (n?) O (
Selection sort O (nQ) (0] (nQ) 0] (

Merge Sort O (nlogn) O (nlogn) O

Quick Sort O (nlogn) O (nlogn) O (n?)

Heap Sort O (nlogn) O (nlogn) O

Section [3} we introduce the proposed method. The experimental results are presented in
Section 4] Finally, we draw the conclusions of the study in Section 5]

2. Related Work

2.1. Classical Sort Techniques

Bubble sort is a classical sorting algorithm in which each element in a list is compared
with its neighboring elements and swapped until they are in the desired order [25]]. Bubble
sort leads to (n — 1) number of passes and @ number of iterations if n elements are
given. Insertion sort is a simple and efficient sorting algorithm that iteratively takes one
element and finds its appropriate position in the sorted list by comparing it with neighbor-
ing elements. It becomes less efficient as the number of records increases. Selection sort
determined the smallest number in an unsorted list and swaps it with the first number in
the sorted list. Then, it finds the next smallest element from the remaining list and swaps
with the second element in the sorted list. Consequently, the number of sorted elements
at the top of the list increases while the rest remain unsorted. Merge sort, which is based
on the divide-and-conquer principle, repeatedly divides the array into two halves and then
combines them in a sorted manner For more details of classical sort algorithms, such as
quick sort and heap sort, we refer the reader to the comments in [10], [6]]. It is well known
that computational cost and required memory are the primary concerns in sorting algo-
rithms [22], [[14]]. Table E] shows the time complexity of the best case, average case, and
worst case of several classical sorting algorithms [6]], [[L7], [7]]. These sorting algorithms
can be used to find the first k£ IP addresses of the most frequent occurrences from the
statistical results obtained for IP address data.

2.2. Accelerating Large-scale Sorting Techniques

Sorting is an essential part of modern computing. Significant efforts have recently been
dedicated to accelerating large-scale sorting techniques [3]], [13]], [27]. For example, Al-
habboub er al. improve the computation efficiency of the classical QuickSort algorithm by
combining with parallel implementations [3]]. The improved QuickSort algorithm can be
applied on the sorting large-scale data, and exhibits slightly superior computational effi-
ciency compared to classical sequential QuickSort. Jugé et al. proposed an adaptive Shiv-
ersSort algorithm for efficiently sorting partially sorted data, which is considered as a vari-
ant of the well-known algorithm TimSort [13]]. Yang et al. proposed a high-performance

Efficient algorithms for collecting the statistics... 931

parallel sorting algorithm on a CPU-DSP heterogeneous processor [27]. These methods
typically take into account different sorting settings, such as parallel sorting environments,
data criterions, or specific CPU architectures. These large-scale sorting algorithms pro-
vide an efficient post-processing step for collecting the statistics of large-scale IP address
data.

2.3. Parallel Hardware Architectures

The hardware architecture of modern processors usually consists of more than two in-
dependent central processing units (CPUs) or graphics processing units (GPUs). Parallel
software platforms can be implemented using high-level programming frameworks for
specific hardware architectures [5]. The Compute Unified Device Architecture (CUDA)
is a parallel computing platform for general computing on GPUs. Most parallel sorting
algorithms are variants of standard, well-known sorting algorithms adapted to GPU hard-
ware architecture. For example, Cederman designed a quick sort for the GPU platform [4]],
and Peters proposed an adaptive bitonic sorting algorithm with a bitonic tree for GPUs
[20]. The parallel computation of sorting algorithms is considered to be the most efficient
way of sorting elements on parallel hardware architectures [26]].

8 bytes

Fig. 1. Example of a memory block of size 256 x 8 bytes containing 256 elements

3. Proposed Method

3.1. Problem Formulation

IP flow data F'D is a sequence of IP records, that is, FD = {(x1,p1), ..., (€n,pn)} and
n > 1e5, where each pair of elements (;,p;) (i € [1,n]) consists of an IP address x; and
a set of corresponding user behavior attributes p;. Given a finite set of IP addresses X =
{z1,29,...,2,} € R™*™, the purpose of the IP address statistics task is to efficiently
determine the first £ IP addresses of the most frequent occurrences in X, where m the
dimensionality of an individual IP address and k& < n.

3.2. 1P Address Statistics Task

A standard IP address is composed of four decimal numbers ranging from 0 to 255 which
are separated by dot symbols. An individual IP address is logically divided into four parts
by splitting it with respect to each dot symbol, and each part of an IP address has an inte-
ger value. We create a four-dimensional array for the statistics of IP addresses, where the
length of each dimension in the array is 256. Each element of the array can be employed

932 Hui Liu et al.

to store the number of occurrences of the IP address according to the relationship mapping
between the index of each dimension of the array and the integer value of the correspond-
ing part of the IP address. For example, consider the individual IP address 1.2.3.4 and the
four-dimensional array fd_array. The number of occurrences of this IP address is stored
in fd_array[1][2][3][4]. However, individual IP addresses in the host logs often make up
a small proportion of all IP addresses. The array can be considered to be sparse because
most of its elements are zeros. Consequently, we can carefully design a four-dimensional
sparse matrix to store the number of an individual IP address by taking full advantage of
the successive characteristics of array addresses and the fixed range of an individual part
of an IP address.

Algorithm 1 TLMB
Input:
A finite set of IP addresses X = [x1, 2, ...,] € R™*", number k > 1.
1: Construct 256 x 256 memory blocks of size 128 MB for the first layer;
2: for i=1:n do
3: Assume that a, b, c and d each represent one of the integer values of the four parts of IP
address ;.
: Calculate the index of the memory block in the first layer: p = a x 255 X 255 + b x 255.
5: if the value of the j-th element is null in the p-th memory block then

6: Create a memory block in the second layer, set all elements of the memory block to zero,
and store the starting address of the memory block in the j-th element.
. else
8: Obtain the starting address of the memory block m in the second layer by finding the j-th
element of the p-th memory block.
9: endif
10: Add 1 to the d-th element of memory block m in the second layer.
11: end for

12: Construct a minimum heap of size k using each non-zero element of the memory blocks in the
second layer.

Output:

13: Traverse the nodes of the heap to obtain the & IP addresses and their number of occurrences.

3.3. IP Usage Storage and Retrieval Strategies for the Four-dimensional Sparse
Matrix

Assume that each memory address of a 64-bit system can be stored in an element 8 bytes
in size, and the number of occurrences of an individual IP address is no more than 264,
There is an array of size 256 elements that consists of 256 x 8 bytes of memory. The
array is regarded as a memory block that contains a contiguous address space, as shown
in Fig. [[] In other words, the addresses of all bytes of the array are sequential in the
memory block. Therefore, the position of the array can be indexed by the integer value of
a particular part of the IP address. We present two efficient methods to collect the statistics
of large-scale IP address data, each of which contains a relationship mapping mechanism
between memory blocks and IP addresses for the four-dimensional sparse matrix.

Efficient algorithms for collecting the statistics... 933
C The memory | bocks of the irst layer |
Mapping 1 : e memory blocks of the first layer |
— 0 1 2 e 255 |
I| 256 memory | 256 memory | 256 memory | 256 memory :
| blocks blocks blocks blocks |
0001.0001.0001.000] |+ === —"~—"—"=—"—"—"—"—"—"—"—"—"—"—"—"—"—"—"—— — —
e
Mapping 2 ‘ ‘ ‘ ‘

|

|

- |
I~ ASTigle memoty block | |

|

|

|

Fig.2. An example of the mapping relationships between memory blocks and an IP ad-
dress

First method: TLMB The first proposed mapping mechanism of IP addresses is TLMB.
The four parts of the IP address are represented in four layers, where each layer is made up
of one or more memory blocks. The first layer only contains one memory block, whereas
the second layer contains 256 memory blocks. Each memory block contains 256 elements.
Each element of the memory block in the first layer is employed to store the starting
addresses of the corresponding 256 memory blocks in the second layer. Similarly, the
third layer contains 256 x 256 memory blocks, the size of which is 128 MB in memory.
Then, the element of each memory block in the third layer stores the starting address
of the corresponding memory block in the fourth layer. This would be 32 GB in size if
we adopted a pre-allocation strategy for all memory blocks in the four layers. Hence, we
present an alternative pre-allocation strategy for the memory blocks. A memory block
will be allocated only when the first three parts of an initial IP address have been given.
In particular, pre-allocating a big memory block of size 128 MB containing 256 x 256
contiguous memory blocks is feasible in a modern computer. Consequently, the first two
layers can be removed from this architecture if the third layer has contiguous memory
blocks of 128 MB.

We formally present a storage strategy for IP addresses that consists of two layers that
consist of a limited number of memory blocks. The first layer contains 256 x 256 mem-
ory blocks. The first three parts of the IP address can be mapped into the corresponding
position of the element in a particular memory block of the first layer according to the
individual values of the three parts. We allocate a memory block in the other layer for the
IP address when its first three parts are initially given. Each element of a memory block
in this layer stores the number of occurrences of the corresponding IP address. Figure [2]
shows an example of the relationship mapping between the memory blocks of two layers
and an IP addresses.

Consider the individual IP address 1.2.3.4, we have 1 x 255 x 255+ 2 x 255 = 65535,
which represents the index of the memory block in the first layer. The positions of the first
two dimensions of the sparse matrix can be mapped to the elements of the memory blocks
included in the first layer. The third part of the IP address denotes the index of the memory
block in the second layer. The positions of the final dimensionality of the sparse matrix

934 Hui Liu et al.

can be indexed by combining the starting address of the memory block in the second layer
with the integer value of the four parts of the IP address.

Algorithm 2 SSMB
Input:
A finite set of IP addresses X = [z1, T2, ...,] € R™*", number k > 1.
1: Construct a memory block of size 128 MB saved by all IP addresses;
2: All IP addresses are logically partitioned into ¢ subsets according to the first part of each IP
address.
3:for i=1:n do
4: Assume that a, b, ¢ and d each represent one of the integer values of the four parts of IP

address x;.

5: for j=1:q do

6: if j == ¢ then

7: Calculate the position of the memory block in the first layer: p = b x 255 x 255 + ¢ X

255 +d.
8: Add 1 to the p-th element of the memory block.
: end if

10: end for
11: Construct a minimum heap of size k using the each non-zero elements of the memory block.
12: end for
Output:

13: Traverse of the nodes of the heap to obtain the k IP addresses and their number of occurrences.

We traverse all elements of the memory blocks of the second layer to obtain the max-
imum number of occurrences of elements if k& = 1. Otherwise, we construct a minimum
heap of size k. The statistical results of the first £ IP addresses are saved in the heap,
which is a special binary tree and implemented by an array of size k. The construction of
the heap is completed by traversing all elements of the memory blocks of the second layer.
The tree node in the leap contains two important attributes: an IP address and its number
of occurrences. The final IP addresses and numbers of occurrences can be obtained by a
traversal of the nodes of the heap. The complete procedure for determining the first &£ of
the most frequent IP addresses from host logs is outlined in Algorithm I}

Second method: SSMB We also designed an SSMB that stores all IP addresses and their
statistics. IP addresses are logically divided into at most 256 subsets according to the
value of the first part of each individual IP address. We construct a single memory block
of 256 x 256 x 256 elements that is 256 x 256 x 256 x 8 bytes in size, that is, 128 MB.
The memory block is shared by all subsets. For each subset, the last three parts of the IP
address can be mapped into the corresponding position of the element in the shared single
memory block, which is always initialized at the beginning of the relationship mapping.
Then, the element of this memory block stores the statistics of the IP addresses in this
subset.

We further perform a round traversal of the memory block to initialize a minimum
heap of size k after the relationship mapping has been completed in the first subset. Then,
we continue to perform a round traversal of the memory block to adjust the heap after the

Efficient algorithms for collecting the statistics... 935

relationship mapping has been completed for the subsequent subsets. Finally, we obtain
the first £ most frequently occurring IP addresses in the heap. The complete procedure
for finding the first k& of the most frequency IP addresses from host logs is outlined in
Algorithm 2}

3.4. Memory Use and Complexity Analysis

We first evaluate the memory use and computational complexity of the first proposed
method, TLMB. The size of each memory block is 256 x 8 bytes, and there are 256 x 256
memory blocks in the first layer. Hence, the size of the memory blocks in the first layer is
128 MB. Assume that the number of the distinct first three parts of the IP addresses is s.
The number of memory blocks in the second layer is linearly proportional to s. Moreover,
the memory size of the minimum heap is (k + 8) bytes, where each tree node contains
two attributes, that is, an IP address and the number of occurrences. The total size of
the memory of the proposed method is approximately the sum of the three parts, that is,
128 MB, s KB, and (k + 8) bytes. The computational complexity of the two layers for
calculating the IP address statistics is O (n) in Algorithm [} where n is the number of IP
addresses. In addition, the computational complexity of constructing a minimum heap of
size k is O (klog k), where k is the number of tree nodes in the heap. Consequently, the
overall computational complexity of the proposed algorithm is O (klog k + n).

We next evaluate the memory use and computational complexity of the second pro-
posed method, SSMB. The memory size of SSMB is 128 MB. Assume that the number of
the distinct first parts of the IP addresses is q. The computational complexity of the map-
ping mechanism of the IP addresses in Algorithm|l|is O (¢n), where n is the number of
IP addresses. Similarly, the computational complexity of constructing a minimum heap of
size k is O (k log k) for each subset. Consequently, the overall computational complexity
of the proposed algorithm is O (¢ (klog k + n)).

3.5. Parallel Computation Optimization Techniques

Parallel computation mechanism of TLMB In the worst case, the distinct first three
parts of the IP addresses cover all the binary combinations. Hence, the size of the memory
blocks in the second layer is 32 GB. We present a parallel computation scheme on mul-
tiple computers for improving the computational efficiency and reducing memory use.
Assume that there are 2" computers available for parallel computation, where 7 repre-
sents a positive integer. The task of collecting IP address statistics is then divided into
multiple subtasks, which are performed by 2" computers, respectively, according to the
first r bits of the first part of the IP addresses. The number of memory blocks reduces to
(256 x 256) /2" for 2" computers. Simultaneously, the number of memory blocks will
decrease to 32/2" GB in the second layer. For example, the number of memory blocks in
the first layer is 256 x 64 for each computer when r = 2, and the size of memory blocks
in the second layer is 8 GB in the worst case. In addition, if four computers perform the
task of computing IP address statistics by partitioning the first two bits of the first part of
the IP addresses, then the second layers of multiple computers are merged into a complete
second layer, where is employed to construct a minimum heap of size k. Finally, the par-
allel computation results can be obtained in a manner similar to the last step of Algorithm

M

936 Hui Liu et al.

Table 2. Statistics of the datasets
Data sets IP Records Individual IP Addresses Size Type

1 5, 000, 000 50, 000 77.5 MB Synthetic
2 10, 000, 000 100, 000 155 MB Synthetic
3 50, 000, 000 500, 000 775 MB Synthetic
4 1,114, 633 107, 988 144MB Real
5 1,430, 258 133, 116 185MB Real

Parallel Computation Mechanism of SSMB Assume that all IP addresses are logically
divided into ¢ subsets according to the value of the first part of an individual IP address.
Further assume are ¢ computers for parallel computation, where the statistics collection
task of each subset can be performed by an individual computer. A minimum heap of
size k is shared among these computers. Hence, this greatly increases the computational
efficiency of the task by ¢ times.

4. Experiments

4.1. Experimental Settings

In this section, we evaluate the performance of the proposed methods E] on two differ-
ent types of datasets, i.e., three synthetic datasets and two real-world datasets. The three
synthetic datasets contain 5 million, 10 million, and 50 million randomly generated IP
records. Each individual IP address contains one or more of IP records. The average num-
ber of IP records is 100 for each individual IP address. In particular, the IPv4 addresses
were specifically divided into four segments in the experiments. These experimental set-
tings ensure a comprehensive evaluation of the capacity of TLMB and SSMB to efficiently
collect statistics for large-scale IP address data. Parameter k represents the number of
frequently occurring IP addresses. Additionally, two real-world network traffic datasets,
provided by the Center for Applied Internet Data Analysis (CAIDA)[| are collected from
various parts of the internet. These two datasets are widely used in networking and traffic
analysis research. The statistics of these datasets are summarized in Table 2]
We compared the proposed method with the following baselines:

e Hash Mapping. Each IP record is mapped into an entry with a statistical result using a
hash table [?| Next, the statistical results are used to construct a minimum heap of size
k.

o IP Mapping. All IP records are partitioned into ¢ subsets according to the first part of
each IP address. The statistics of the IP records in each subset are mapped into an array,
whose memory is pre-allocated on a computer according to the last three parts of each
IP address. The first £ most frequent IP addresses are chosen from each subset. Next, a
minimum heap of size k is constructed using the g x k IP addresses.

4 https://github.com/chenjie20/IPStatistics
3 https://www.caida.org/catalog/datasets/ipv4_prefix_probing_dataset
6 https://github.com/activesys/libcst]

Efficient algorithms for collecting the statistics...

Table 3. Computational cost (s) of different methods on the three synthetic datasets

Data k& Hash Mapping IP Mapping Ours (TLMB) Ours (SSMB)
| 10 1,458.14(2.32) 15.18(0.07) 2.51(0.01) 18.43(0.05)
100 1,458.56 (2.76) 15.21(0.04) 2.52(0.01) 18.43 (0.06)

10 2,927.23 (11.64) 17.41(0.11) 4.92(0.01) 27.59 (0.05)

100 2,934.65 (28.93) 17.45(0.05) 4.95(0.01) 27.65 (0.06)

3 10 14,547.09 (13.95) 35.33(0.09) 24.22(0.07) 101.01(0.17)
100 14,566.36 (26.78) 35.39 (0.05) 24.24 (0.04) 101.20 (0.2)

Table 4. Memory use (MB) of different methods on the three synthetic datasets

Data k Hash Mapping IP Mapping Ours (TLMB) Ours (SSMB)
| 10 43.63(0.12) 16,332.81 (0.07) 189.61 (0.16) 139.77 (0.13)
100 43.73 (0.06) 16,332.77 (0.05) 189.64 (0.07) 139.79 (0.07)

’ 10 74.8(0.12) 16,332.75(0.12) 239.11(0.1) 139.74 (0.13)
100 74.83 (0.05) 16,332.77 (0.07) 239.06 (0.15) 139.7 (0.12)

3 10 324.45(0.99) 16,332.59 (0.06) 628.33 (0.07) 139.6 (0.15)

937

100 324.4(1.02) 16,332.6(0.16) 628.27 (0.01) 139.71 (0.16)

Memory blocks were pre-allocated for TLMB and SSMB, with sizes ranging from
small-scale (e.g., 5 million) to large-scale (e.g., 50 million) to test scalability. Two met-
rics were employed to evaluate the sorting performance, that is, computational cost and
memory use. All experiments were implemented using the C language on a Windows
platform with an Intel i7-9700k CPU and 32 GB RAM.

4.2. Experiment Results

Experimental Evaluation on Synthesized Data Parameter k& was set to 10 or 100, and
we repeated each experiment 10 times. The average computational costs and standard de-
viations are reported in Table 3] and the mean memory use and standard deviations are
given in Table @ The results show that TLMB consistently outperformed all the other
methods in terms of computational cost. For example, TLMB achieves computational
costs of 2.51 s and 2.52 s when k¥ = 10 and k£ = 100, respectively. When the number
of IP addresses increases from 5 million to 50 million with £ = 10, the gap in compu-
tational costs of TLMB and IP Mapping are 12.6 s and 11.11 s, respectively. We also
observed the same advantages when & = 100. In addition, SSMB shows competitive re-
sults when compared with the comparison methods in terms of memory use. The memory
use of SSMB is always approximately 139 MB, even when the number of IP addresses
changes. In contrast, the computational cost of SSMB substantially outperforms that of
Hash Mapping under different numbers of IP addresses. IP Mapping obtained the low-
est computation cost for all numbers of IP addresses. However, the highest memory use
results of IP Mapping are consistent with expectations.

Experimental Evaluation on Real-World Data We evaluate the proposed and compet-
ing methods on two real-world datasets. Tables[5]and [] show the computational costs and
memory usages levels of different methods, respectively. TLMB consistently incurs lower

938 Hui Liu et al.

Table 5. Computational cost (s) of different methods on the two real-world datasets

Data k Hash Mapping IP Mapping Ours (TLMB) Ours (SSMB)

4 10 1675.3 6.73 0.61 7.00
100 1673.9 6.90 0.62 7.09
5 10 1996.8 7.33 0.78 6.88
100 1989.9 7.47 0.80 7.02

Table 6. Memory use (MB) of different methods on the two real-world datasets
Data k Hash Mapping IP Mapping Ours (TLMB) Ours (SSMB)

4 10 238.9 16,392.1 249.8 183.3
100 238.8 16,392.1 249.8 183.4
5 10 266.7 16,391.9 281.4 183.4
100 266.7 16,392.3 281.4 183.4

computational costs than do the other methods. SSMB and IP mapping demonstrate com-
parable computational costs. However, SSMB significantly reduces the memory require-
ments relative to IP mapping. Furthermore, Hash mapping incurs a higher computational
cost than the competing methods do because of its use of hash computations, making it
prohibitively time-consuming in practice. As the number of IP addresses increases across
the two real-world datasets, SSMB maintains relatively stable memory usage. These find-
ings highlight the effectiveness of both TLMB and SSMB.

4.3. Ablation study

To investigate the impact of the memory blocks in the proposed TLMB and SSMB meth-
ods, we performed ablation studies on the three synthetic datasets. Specially, we examined
two particular cases in the experiments. The hash table was employed to replace the sec-
ond part of TLMB and SSMB, respectively. The primary goal of the ablation study is to
demonstrate the importance of the memory blocks on collecting the statistics of large-
scale IP address data. The invariants of TLMB and SSMB corresponding to these two
cases are referred to as TLMBy, 45, and SSMBy, 1, respectively.

Tables [7] and [§] show the results of the ablation study regarding the computational
cost and memory use. TLMBy,,; exhibits similar computational cost and memory use
compared to SSMBy,,sp, on the first two synthetic datasets. Additionally, the computa-
tional cost of TLMBy,,sp, is slightly higher than that of SSMBy,,s,, While its memory
usage is marginally lower. TLMB,s, and SSMBy,, s, achieve an acceptable computa-
tional cost. However, TLMB and SSMB achieves superior performance in computational
cost and memory use compared with those of TLMBy,,s;, and SSMBy,,41,. These re-
sults further emphasize that integrating a hash table scheme into TLMB and SSMB is
both time-consuming and memory-intensive. Therefore, the results of the ablation study
demonstrate the effectiveness of the memory blocks in the proposed TLMB and SSMB
methods.

Efficient algorithms for collecting the statistics... 939

Table 7. Ablation study concerning the computational costs (s) incurred on the three
synthetic datasets

Data k TLMBpasy, SSMBpesn Ours (TLMB) Ours (SSMB)

| 103795 37.16 2.51 18.43
100 379 37.34 2.52 18.43
, 10 7568 74.51 4.92 27.59
100 75.19 74.05 4.95 27.65
, 10 3847 374.49 24.22 101.01
100 384.23 375.9 24.24 101.20

Table 8. Ablation study concerning the memory use (MB) required for the three synthetic
datasets

Data k TLMBpasn, SSMBpesn Ours (TLMB) Ours (SSMB)

1 10 3,397.3 3397.2 189.61 139.77
100 3,397.5 3,397.2 189.64 139.79
2 10 6,654.4 6,654.3 239.11 139.74
100 6,654.4 6,654.4 239.06 139.7
3 10 25,665.6 27,367.6 628.33 139.6
100 26,008.6 26,517.5 628.27 139.71

4.4. Empirical Investigation

We empirically examined the effect induced by varying the k considered in the proposed
TLMB and SSMB methods. Here k was selected from the set {10, 20, 50, 100, 200, 500}.
The computational cost and memory use were employed to evaluate TLMB and SSMB
with different k values.

Fig. [3|shows the computational costs of TLMB and SSMB with different &k values. As
expected, the computational cost gradually increases as the number of IP records increases
from 5 million to 50 million. Moreover, the computational costs of TLMB and SSMB
remain relatively stable when k varies from 10 to 500 on each synthetic dataset. This
finding demonstrates the stability of TLMB and SSMB for computational efficiency when
collecting the statistics of large-scale IP address data. Fig. 4] shows the memory uses of
TLMB and SSMB with different & values. We observe that TLMB requires more memory
use as the number of IP records grows. In contrast, SSMB maintains relatively stable
memory across varying numbers of IP records. This finding indicates that SSMB can
satisfy certain memory requirements when handling varying numbers of IP records.

4.5. Discussion

The gap in computational cost between TLMB and Hash Mapping dramatically increases
when the number of IP records increases from 5 million to 50 million. This is because
TLMB avoids hash collisions when an IP address is mapped to the corresponding memory
block. The computational cost of TLMB is linearly proportional to the number of IP
addresses. Moreover, the memory use of SSMB remains almost unchanged regardless
of the number of IP addresses. This is consistent with the theory underlying the second
proposed mapping mechanism. There is a negligible effect on the computational costs of

940 Hui Liu et al.

10 20 50 100 200 500
k

Fig. 3. The computational costs of the proposed TLMB and SSMB methods with different
k values. (a) TLMB and (b) SSMB

10 20 50 100 200 500
k

(@) (b)

Fig. 4. The memory uses of the proposed TLMB and SSMB methods with different &
values. (a) TLMB and (b) SSMB

TLMB and SSMB when £ increases from 10 to 100. Moreover, the changes in the memory
use of TLMB and computational cost of SSMB are tolerable in practical applications as
the number of IP addresses increases. Consequently, TLMB and SSMB reach a reasonable
balance between computational cost and memory use when compared with Hash Mapping
and IP Mapping. This reveals that the two relationship mapping mechanisms for memory
blocks and IP addresses are effective approaches for the design of the four-dimensional
sparse matrix.

The memory blocks designed in TLMB and SSMB exhibit superior relationship map-
ping capabilities compared to those of hash mapping. The memory block takes fully ad-
vantages of the inherent property of the memory address, which is employed to corre-
sponding to each part of an IP address. This indicates that integrating the memory block
into TLMB and SSMB is both time-stable and memory-stable. In contrast, hash map-
ping uses a pair of key and value to store the statistics of IP address data. Unfortunately,
IP addresses are often sparse in practical applications. Hash mapping requires additional
memory to store the remaining two or three parts of the IP address as keys corresponding
to TLMB and SSMB, respectively. This has a significant negative impact on the memory
use of hash mapping. Therefore, the proposed memory block significantly enhances the
capacity of TLMB and SSMB in collecting the statistics of large-scale IP address data.

Efficient algorithms for collecting the statistics... 941

5. Conclusion

The collection of the statistics of large-scale IP address data is one of the most funda-
mental problems in network traffic measurement. In this paper, we addressed this prob-
lem. Specifically, the two proposed methods present two different relationship mapping
mechanisms between memory blocks and IP addresses to strike a balance between com-
putational cost and memory use. They can be employed to search for frequently occurring
IP addresses in practical applications. The extensive experimental results demonstrate the
effectiveness of the proposed methods.

Acknowledgments. This work was supported in part by the Guangdong Province Science and Tech-
nology Innovation Strategy Special Fund under Grant PDJH2024B648, in part by the Guangdong
Province Characteristic Innovation Project for Normal Universities under Grant 2023KTSCX338,
and in part by the Province Ordinary Higher Education Engineering Technology Research (Devel-
opment) Center under Grant 2024GCZX028.

References

1. Abdel-Hafeez, S., Gordon-Ross, A.: An efficient o(n) comparison-free sorting algorithm. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25(6), 1930-1942 (Jun 2017)

2. Agapitos, A., Lucas., S.M.: Evolving efficient recursive sorting algorithms. In: 2006 IEEE In-
ternational Conference on Evolutionary Computation. pp. 2677-2684. Vancouver, BC, Canada
(Jul 2016)

3. Alhabboub, Y., Almutairi, F., Sathi, M., Alqahtani, Y., Almeedani, A., Alguwaifli, Y.: Acceler-
ating large-scale sorting through parallel algorithms. Journal of Computer and Communications
12(1), 131-138 (Jan 2024)

4. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors. In: European
Symposium on Algorithms. pp. 246-258 (2008)

5. Chen, S., Qin, J., Xie, Y., Zhao, J., Heng, P.A.: A fast and flexible sorting algorithm with cuda.
In: International Conference on Algorithms and Architectures for Parallel Processing. pp. 281—
290. Taipei, Taiwan, China (Jun 2009)

6. Cormen, T., C.Leiserson, Rivest, R., C.Stein: Introduction to Algorithms. MIT press (2009)

7. Faujdar, N., Ghrera, S.P.: Analysis and testing of sorting algorithms on a standard dataset. In:
2015 Fifth International Conference on Communication Systems and Network Technologies.
pp- 1-10. Gwalior, India (Apr 2015)

8. Fredman, M.L.: An intuitive and simple bounding argument for quicksort. Information Pro-
cessing Letters 3(114), 137-139 (Mar 2014)

9. Hammad, J.: A comparative study between various sorting algorithms. International Journal of
Computer Science and Network Security 15(3), 358-367 (Mar 2015)

10. Idrizi, F., Rustemi, A., Dalipi, F.: A new modified sorting algorithm: A comparison with state
of the art. In: 2017 6th Mediterranean Conference on Embedded Computing. pp. 1-6. Bar,
Montenegro (Jul 2017)

11. Jing, Y.N., Tu, P, Wang, X.P., Zhang, G.D.: Distributed-log-based scheme for ip traceback. In:
The Fifth International Conference on Computer and Information Technology. pp. 711-715.
Shanghai, China (Dec 2005)

12. Jing, Y.N., Tu, P,, Wang, X.P., Zhang, G.D.: Space-efficient data structures for top-k comple-
tion. In: Proceedings of the 22nd international conference on World Wide Web. pp. 583-594.
Rio de Janeiro, Brazil (May 2013)

942 Hui Liu et al.

13. Jugé, V.: Adaptive shivers sort: an alternative sorting algorithm. ACM Transactions on Algo-
rithms 20(4), 1-55 (Aug 2024)

14. Jukna, S., Seiwert, H.: Sorting can exponentially speed up pure dynamic programming. Infor-
mation Processing Letters 159, 451-469 (Apr 2020)

15. Kapur, E., Kumar, P., Gupta, S.: Proposal of a two way sorting algorithm and performance
comparison with existing algorithms. International Journal of Computer Science, Engineering
and Applications 2(3), 61-78 (Jun 2012)

16. Klein, S.T.: On the connection between hamming codes, heapsort and other methods. Informa-
tion Processing Letters 113(17), 617-620 (May 2017)

17. Kocher, G., Agrawal, N.: Analysis and review of sorting algorithms. International Journal of
Scientific Engineering and Research 2(3), 81-84 (Mar 2014)

18. Louza, FA., Gog, S., Telles., G.P.: Optimal suffix sorting and Icp array construction for constant
alphabets. Information Processing Letters 118, 30-34 (Sep 2017)

19. Miiller, L., Sanders, P., Lacurie, A., Lehner, W., Farber, F.: Cache-efficient aggregation: Hashing
is sorting. In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data. p. 1123-1136. Melbourne, Bictoria, Australia (May 2015)

20. Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place, comparison-based sorting
with cuda: a study with bitonic sort. Concurrency and Computation: Practice and Experience
23(7), 681-693 (Jan 2011)

21. Puglisi, S.J., Smyth, W.E,, Turpin, A.: The performance of linear time suffix sorting algorithms.
In: Data Compression Conference. pp. 358-367. Snowbird, UT, USA, USA (Mar 2005)

22. Rusu, L.: Sorting signed permutations by reversals using link-cut trees. Information Processing
Letters 132, 44-48 (Apr 2018)

23. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore gpus.
In: 2009 IEEE International Symposium on Parallel & Distributed Processing. pp. 1-10. Rome,
Italy (May 2009)

24. Shabaz, M., Kumar, A.: Sa sorting: a novel sorting technique for large-scale data. Journal of
Computer Networks and Communications pp. 1-7 (2019)

25. Shutler, PM.E., Sim, S.W., Lim, W.Y.S.: Analysis of linear time sorting algorithms. The Com-
puter Journal 51(4), 451-469 (Jul 2008)

26. Singh, D.P, Joshi, 1., Choudhary, J.: Survey of gpu based sorting algorithms. International
Journal of Parallel Programming 46(6), 1017-1034 (Apr 2018)

27. Yang, M., Zhang, P., Fang, J., Liu, W., Huang, C.: thsort: an efficient parallel sorting algorithm
on multi-core dsps. CCF Transactions on High Performance Computing 20(4), 1-16 (Jan 2024)

References

1. Abdel-Hafeez, S., Gordon-Ross, A.: An efficient o(n) comparison-free sorting algorithm. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 25(6), 1930-1942 (Jun 2017)

2. Agapitos, A., Lucas., S.M.: Evolving efficient recursive sorting algorithms. In: 2006 IEEE In-
ternational Conference on Evolutionary Computation. pp. 2677-2684. Vancouver, BC, Canada
(Jul 2016)

3. Alhabboub, Y., Almutairi, F., Sathi, M., Alqahtani, Y., Almeedani, A., Alguwaifli, Y.: Acceler-
ating large-scale sorting through parallel algorithms. Journal of Computer and Communications
12(1), 131-138 (Jan 2024)

4. Cederman, D., Tsigas, P.: A practical quicksort algorithm for graphics processors. In: European
Symposium on Algorithms. pp. 246-258 (2008)

5. Chen, S., Qin, J., Xie, Y., Zhao, J., Heng, P.A.: A fast and flexible sorting algorithm with cuda.
In: International Conference on Algorithms and Architectures for Parallel Processing. pp. 281—
290. Taipei, Taiwan, China (Jun 2009)

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Efficient algorithms for collecting the statistics... 943

. Cormen, T., C.Leiserson, Rivest, R., C.Stein: Introduction to Algorithms. MIT press (2009)
. Faujdar, N., Ghrera, S.P.: Analysis and testing of sorting algorithms on a standard dataset. In:

2015 Fifth International Conference on Communication Systems and Network Technologies.
pp- 1-10. Gwalior, India (Apr 2015)

. Fredman, M.L.: An intuitive and simple bounding argument for quicksort. Information Pro-

cessing Letters 3(114), 137-139 (Mar 2014)

. Hammad, J.: A comparative study between various sorting algorithms. International Journal of

Computer Science and Network Security 15(3), 358-367 (Mar 2015)

. Idrizi, F.,, Rustemi, A., Dalipi, F.: A new modified sorting algorithm: A comparison with state

of the art. In: 2017 6th Mediterranean Conference on Embedded Computing. pp. 1-6. Bar,
Montenegro (Jul 2017)

. Jing, Y.N., Tu, P,, Wang, X.P., Zhang, G.D.: Distributed-log-based scheme for ip traceback. In:

The Fifth International Conference on Computer and Information Technology. pp. 711-715.
Shanghai, China (Dec 2005)

Jing, Y.N., Tu, P,, Wang, X.P., Zhang, G.D.: Space-efficient data structures for top-k comple-
tion. In: Proceedings of the 22nd international conference on World Wide Web. pp. 583-594.
Rio de Janeiro, Brazil (May 2013)

Jugé, V.: Adaptive shivers sort: an alternative sorting algorithm. ACM Transactions on Algo-
rithms 20(4), 1-55 (Aug 2024)

Jukna, S., Seiwert, H.: Sorting can exponentially speed up pure dynamic programming. Infor-
mation Processing Letters 159, 451-469 (Apr 2020)

Kapur, E., Kumar, P., Gupta, S.: Proposal of a two way sorting algorithm and performance
comparison with existing algorithms. International Journal of Computer Science, Engineering
and Applications 2(3), 61-78 (Jun 2012)

Klein, S.T.: On the connection between hamming codes, heapsort and other methods. Informa-
tion Processing Letters 113(17), 617-620 (May 2017)

Kocher, G., Agrawal, N.: Analysis and review of sorting algorithms. International Journal of
Scientific Engineering and Research 2(3), 81-84 (Mar 2014)

. Louza, FA., Gog, S., Telles., G.P.: Optimal suffix sorting and Icp array construction for constant

alphabets. Information Processing Letters 118, 30-34 (Sep 2017)

Muller, I., Sanders, P., Lacurie, A., Lehner, W., Farber, F.: Cache-efficient aggregation: Hashing
is sorting. In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data. p. 1123-1136. Melbourne, Bictoria, Australia (May 2015)

Peters, H., Schulz-Hildebrandt, O., Luttenberger, N.: Fast in-place, comparison-based sorting
with cuda: a study with bitonic sort. Concurrency and Computation: Practice and Experience
23(7), 681-693 (Jan 2011)

Puglisi, S.J., Smyth, W.E,, Turpin, A.: The performance of linear time suffix sorting algorithms.
In: Data Compression Conference. pp. 358-367. Snowbird, UT, USA, USA (Mar 2005)

Rusu, I.: Sorting signed permutations by reversals using link-cut trees. Information Processing
Letters 132, 44-48 (Apr 2018)

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for manycore gpus.
In: 2009 IEEE International Symposium on Parallel & Distributed Processing. pp. 1-10. Rome,
Italy (May 2009)

Shabaz, M., Kumar, A.: Sa sorting: a novel sorting technique for large-scale data. Journal of
Computer Networks and Communications pp. 1-7 (2019)

Shutler, PM.E., Sim, S.W,, Lim, W.Y.S.: Analysis of linear time sorting algorithms. The Com-
puter Journal 51(4), 451-469 (Jul 2008)

Singh, D.P., Joshi, 1., Choudhary, J.: Survey of gpu based sorting algorithms. International
Journal of Parallel Programming 46(6), 1017-1034 (Apr 2018)

Yang, M., Zhang, P., Fang, J., Liu, W., Huang, C.: thsort: an efficient parallel sorting algorithm
on multi-core dsps. CCF Transactions on High Performance Computing 20(4), 1-16 (Jan 2024)

944 Hui Liu et al.

Hui Liu received the PhD degree in Information and Communication Engineering from
Hohai University, Nanjing, China in 2021. From 2003 to 2021, he served as a full-time
faculty member at Jiangxi University of Science and Technology. He is currently an As-
sociate Professor with the School of Electronic Information, Foshan Polytechnic, China.
His current research interests include deep learning, computer image processing, and big
data analysis.

Yi Cao received the MSc degree in Software Engineering from the School of Computer
Science and Information Engineering, Anhui Normal University, in 2022. From 2022 to
date, he has been a full - time teacher, assistant professor, and senior engineer at the
School of Electronics and Information, Foshan Vocational and Technical College. His
current research interests include blockchain technology and big data analytics.

Zehan Cai is a Class of 2022 student at the School of Electronic Information, Foshan
Polytechnic, China. His research focuses on machine learning.

Jie Chen received the BSc degree in Software Engineering, MSc degree and PhD degree
in Computer Science from Sichuan University, Chengdu, China, in 2005, 2008 and 2014,
respectively. From 2008 to 2009, he was with Huawei Technologies Co., Ltd. as a software
engineer. He is currently an Associate Professor with the College of Computer Science,
Sichuan University, China. His current research interests include machine learning, big
data analysis, and deep neural networks.

Hua Mao received the B.S. degree and M.S. degree in Computer Science from University
of Electronic Science and Technology of China (UESTC) in 2006 and 2009, respectively.
She received her Ph.D. degree in Computer Science and Engineering from Aalborg Uni-
versity, Denmark in 2013. She is currently a Senior Lecturer in Department of Computer
and Information Sciences, Northumbria University, U.K. Her current research interests
include Deep Neural Networks and Big Data.

Received: December 01, 2024, Accepted: February 28, 2025.

	Introduction
	Related Work
	Classical Sort Techniques
	Accelerating Large-scale Sorting Techniques
	Parallel Hardware Architectures

	Proposed Method
	Problem Formulation
	IP Address Statistics Task
	IP Usage Storage and Retrieval Strategies for the Four-dimensional Sparse Matrix
	First method: TLMB
	Second method: SSMB

	Memory Use and Complexity Analysis
	Parallel Computation Optimization Techniques
	Parallel computation mechanism of TLMB
	Parallel Computation Mechanism of SSMB

	Experiments
	Experimental Settings
	Experiment Results
	Experimental Evaluation on Synthesized Data
	Experimental Evaluation on Real-World Data

	Ablation study
	Empirical Investigation
	Discussion

	Conclusion

