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Abstract. Fire detection is critical in applications such as fire management and
building safety, but dispersion and blurring of flame and smoke boundaries can
present challenges. Multiple upsampling and downsampling operations can blur the
localisation signals, thus reducing accuracy and efficiency. To address this problem,
we propose the AMMF(Attention Mechanisms and Multiscale Features) detection
model, which integrates an attention mechanism and multi-scale feature fusion to
improve accuracy and real-time performance. The model incorporates a dynamic
sparse attention mechanism in the backbone network to enhance feature capture
and restructures the neck network using CepBlock and MPFusion modules for bet-
ter feature fusion. MDPIoU loss and Slideloss are then utilised to reduce the bound-
ing box regression error and address the sample imbalance problem respectively. In
addition, parameters are shared by merging 3×3 convolutional branches, which op-
timises the detection head and improves computational efficiency. The experimental
results show that AMMF-Detection can significantly improve the detection speed
and accuracy on the public dataset.

Keywords: Fire detection,YOLO,Feature fusion,ynamic sparse attention,Multi-scale
features

1. Introduction

Detecting objects is essential for analyzing and understanding flame and smoke images,
with its main objective being to precisely identify and pinpoint components like the smoke
and fire source.The complexity and diversity of fire scenes, the irregular shapes of target
objects, and the presence of numerous interfering elements in the images lead to low
detection accuracy. Additionally, when processing the original image, up-sampling in-
troduces additional pixels, increasing the sparsity of the original features, while down-
sampling causes a loss of localization information. This results in the gradual blurring or
disappearance of small flame and smoke details, which negatively impacts detection ac-
curacy. Moreover, the current computational efficiency remains a significant challenge, as
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fire detection must meet real-time requirements. Consequently, fire detection models must
possess strong abstraction and generalization capabilities to handle the complex and dy-
namic nature of fire scenarios. These demands further complicate target detection, making
fire detection a highly challenging task.

Fire detection algorithms are generally divided into three main types: methods
based on classifiers, model compression techniques, and deep learning approaches
[1,2].Traditional classifier-based techniques rely on manually designed feature extrac-
tors to derive image features [3], and then use algorithms like SVM, ID3, or BP neural
networks to identify fire and smoke. While model compression methods enhance detec-
tion speed, they often face challenges in achieving a balance between accuracy and effi-
ciency. Conversely, fire detection models based on deep learning possess the ability to au-
tonomously extract image features, enabling them to recognize intricate patterns and finer
details with greater precision, which leads to enhanced detection accuracy. Mainstream
deep learning-based object detection algorithms include SSD [4], YOLO [5,6,7,8], and
Transformer-based RT-DETR [9]. Despite advancements in object detection, these meth-
ods still face several challenges. First, target features in the image are often scattered
with fuzzy boundaries, causing the original features to become more dispersed and sparse
during feature fusion, which increases the model’s complexity in processing up-sampled
features and degrades its performance on certain features. Second, reducing image resolu-
tion through down-sampling operations causes the loss of fine details in flame and smoke
images. This loss adversely affects the model’s capacity to detect small objects or identify
localized features. Moreover, increasing model complexity presents a challenge for real-
time inference, particularly in resource-constrained environments. Finally, issues such as
sample imbalance, poor data quality, and insufficient training data further affect model
performance, potentially leading to misdetection or detection failures.

Taking the above considerations into account, this paper introduces the AMMF-
Detection model, designed to achieve a balance between detection accuracy, processing
speed, and computational efficiency. As illustrated in Figure 1, the model’s overall struc-
ture comprises three key components: the backbone network, the neck network, and the
detection head.The MPfusion module, designed for feature fusion, combines feature maps
from three different scales. The CepBlock, a feature extraction module, employs distinct
structures during training and inference, ensuring high accuracy during training and fast
inference speed. The detection part introduces a novel detection head that integrates seam-
lessly with the original convolutional block without compromising model performance.
This paper aims to enhance the accuracy of fire detection and the speed of inference, all
while minimizing the complexity of the model. This goal is accomplished by comprehen-
sively extracting edge characteristics, including color, shape, and texture, from images
of flames and smoke to improve the accuracy of fire detection. The model aims to bet-
ter serve applications in fire safety and emergency response, including fire management,
warehousing and logistics, building safety, and other monitoring and detection scenarios.

Our contributions are summarized in the following three aspects.
(1)We propose a method to optimize the backbone network using dynamic sparse

attention. This approach aims to enhance the model’s feature memory and recognition
capabilities, enabling it to focus more effectively on feature selection. By addressing the
challenges posed by complex backgrounds, this method effectively mitigates issues of
target misdetection and omission.
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Fig. 1. Overall framework of proposed AMMF

(2)We propose a method that integrates the parameter reconfiguration of the CepBlock
module with the MPFusion module to redesign the neck network. This redesign enables
the fusion of feature maps across multiple receptive fields, facilitating deeper exploration
of features at different levels and improving the overall feature representation.

(3)We propose a novel lightweight detection head design that simplifies the model
structure by merging the 3×3 convolutions in the original branches, achieving parame-
ter sharing. This design enhances computational efficiency and makes the model more
suitable for deployment on resource-constrained devices.

The structure of the paper is outlined as follows: Section 2 reviews related research on
fire detection. Section 3 details the proposed improved methodology. Section 4 explains
the experimental setup, training approach, and results. and Section 5 summarizes the key
findings and conclusions.

2. Related work

Current fire detection techniques can be categorized into three main approaches: tradi-
tional methods relying on image features, target detection algorithms utilizing model.

2.1. Conventional fire detection methods based on image features

Traditional fire detection methods predominantly relied on handcrafted feature extractors,
emphasizing characteristics like color, luminance, texture, and edges in images. For in-
stance, Chen et al. [10] proposed an approach based on RGB chromaticity to detect flame
and smoke pixels without the need for physical measurements. Similarly, Binti Zaidi et
al. [11] leveraged RGB and YCbCr color components, analyzing their specific values to
identify fire. Vipin et al. [12] introduced a rule-based model that classified flame pixels
by separating luminance and chrominance within the RGB and YCbCr color spaces.

To further enhance detection accuracy, researchers have also investigated texture fea-
ture extraction. Dimitropoulos et al. [13] employed background subtraction and color
analysis to identify potential ignition regions, followed by modeling fire behavior using
spatiotemporal features and dynamic texture analysis. Ye et al. [14] developed a dynamic
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texture descriptor based on surface waveform transformations combined with a Hidden
Markov Tree model, which was employed for smoke detection in video sequences.

Other approaches have combined color and motion features. For example, Chunyu et
al. [15] applied an optical flow algorithm to calculate flame motion features, which were
then integrated with color features for video-based fire detection. Li et al. [16] introduced
a framework that integrates flame color, dynamic motion patterns, and flicker properties.
Although these approaches have enhanced the reliability and precision of fire detection,
the complexity inherent in fire scenarios frequently constrains their effectiveness. Hand-
crafted feature extractors struggle to comprehensively represent object features in such
scenarios, leading to a decline in feature extraction precision.

2.2. Fire detection models based on model compression

The primary approaches for model compression and acceleration include network prun-
ing and sparsification [17], lightweight model design [18,19,20], knowledge distillation
[21], and compact network architecture development. Techniques such as pruning and
sparsification simplify the model by detecting and eliminating redundant parameters or
connections, which effectively reduces the computational load and parameter count in
neural networks. These methods are often applied to pre-trained models. Alternatively, a
compact network architecture can be selected during the initial model design phase.

For instance, C. Szegedy et al. [22] introduced a model architecture grounded in the
Hebbian principle and multiscale processing for target detection tasks. Similarly, N. Ma et
al. [23] developed ShuffleNetv2, which leverages the ChannelShuffle operation and point-
wise grouped convolution to enable efficient feature extraction and information exchange.
This design achieves remarkable performance and computational efficiency across mul-
tiple computer vision tasks. Furthermore, A. Howard et al. [24] proposed MobileNetv3,
which optimizes feature extraction and model compression by employing techniques such
as candidate network structure search and network tilting.

These lightweight architectures primarily address the challenges of reducing compu-
tational requirements and parameter counts. However, they often come with a trade-off in
accuracy, particularly when compared to models like YOLO. While these models excel
in specific scenarios, they may struggle to achieve YOLO’s level of precision in more
complex environments.

2.3. Deep learning based fire detection methods

In recent years, fire detection techniques based on deep learning have primarily employed
either single-stage or two-stage strategies. Among these, single-stage methods—such as
SSD [4], SPPNet [25], YOLOv3 [26], and YOLOv4 [27] are widely favored due to their
ability to quickly and directly predict target categories and locations from input images.In
contrast, two-stage methods, including R-CNN [28], Fast R-CNN [29], Faster R-CNN
[30], and Mask R-CNN [31], offer higher accuracy but are generally slower, making them
widely adopted in target detection tasks. Despite significant progress, these methods face
challenges related to high storage and computational resource requirements. To address
these limitations, the YOLO series has demonstrated superior performance through con-
tinuous iterations and enhancements, particularly in fire detection tasks.



Fire Detection Models Based on Attention Mechanisms and Multiscale Features 1513

J. Miao et al. [32] introduced an enhanced real-time fire detection algorithm built upon
YOLOv5s. This approach incorporates sensory field enhancement along with channel at-
tention mechanisms, aiming to improve both the efficiency and precision of recognizing
flames and smoke. Similarly, M. Luo et al. [33] improved YOLOv5s for fire detection
by replacing the SPP module with the WASP module and introducing attention mech-
anisms along with a small-target detection layer, effectively enhancing the detection of
small-scale forest fires. Additionally, Li, Pu, and Li, Songbin et al. [34,35] developed
fire detection algorithms leveraging target detection CNNs and implicit depth supervi-
sion mechanisms, respectively, which addressed the trade-offs between accuracy, model
size, and processing speed.Majid et al. [36] Combining EfficientNetB0 with an attention
mechanism to propose a fire detection model, real-world fire image dataset achieved good
results.Pincott et al. [37] developed a computer vision-based indoor fire and smoke detec-
tion system using the Faster R-CNN Inception V2 and SSD MobileNet V2 models, which
was initially evaluated with a small training dataset and achieved some results. These ap-
proaches addressed prevalent challenges in fire detection algorithms, such as insufficient
accuracy and significant latency.

These advancements highlight the potential of deep learning in enhancing fire de-
tection accuracy and reducing false-negative rates. However, existing models still exhibit
deficiencies, such as inadequate key feature extraction, limited feature map representation
capabilities, suboptimal target loss calculations, and high model complexity. To address
these shortcomings, this study adopts YOLOv8n as the benchmark model and aims to
improve its capability in detecting flame and smoke boundaries. Key improvements in-
clude refining the loss function, incorporating attention mechanisms, optimizing feature
fusion, and enhancing feature selection. Simultaneously, efforts are directed toward reduc-
ing computational complexity and storage requirements to enable practical deployment
and application.

3. Improved methodologies

3.1. Backbone network improve

The backbone network of YOLOv8 uses convolutional and inverse convolutional layers to
extract features, using residual connectivity and bottleneck structure to optimise network
size and performance. The C2f (Convolution to Fuly Connecied) module is used as the
basic building block, but feature redundancy exists after SPPF (Spatial Pyramid Pooling
- Fast).

To boost detection accuracy on the fire dataset and refine feature extraction, the dy-
namic sparse attention mechanism from dynamic sparse attention [38] is applied. Inte-
grated into layer 11 of the backbone network, this mechanism efficiently calculates at-
tention by isolating irrelevant key-value pairs and focusing on the most relevant ones.
Leveraging the query-adapted input feature map, the model focuses more on essential
key information, reduces the impact of background noise, lowers computational and stor-
age demands, enhances its understanding of the input, and ultimately improves detection
accuracy. dynamic sparse attention employs an attention mechanism to capture global
feature relationships, offering a superior global perception capability compared to tradi-
tional local CNN models. This mechanism functions by encoding the input data sequence,
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computing and normalizing the dot product between queries and keys, and then applying
weighted summation. The attention formula is presented in Equation (1):where

√
dk̇ is

the scaling factor to prevent concentration of weights and gradient vanishing.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

The attention mechanism proves useful for conducting a global analysis of images,
enabling the extraction of features related to small-scale flames and smoke.However, this
approach also increases computational complexity and consequently raises computational
costs. The CBAM introduced by Woo et al., employs a dual attention mechanism focusing
on spatial and channel dimensions. While it demonstrates strong performance, it suffers
from significant computational overhead, making it less efficient and not lightweight. In
contrast, the ECA (Efficient Channel Attention) module introduced by Wang et al. min-
imizes model complexity. However, it demonstrates lower effectiveness in fire detection
tasks because of its restricted ability to facilitate channel interactions.To address the chal-
lenges of high computational complexity and memory usage associated with conventional
attention modules, fire detection platforms constrained by resource limitations cannot af-
ford to integrate these modules. To mitigate these issues, sparse queries are proposed as a
resource-efficient alternative to global queries. This concept has inspired research into dy-
namic sparse attention mechanisms, such as Bi-Level Routing Attention. This approach
partitions the input feature map into distinct, non-overlapping regions and uses linear
mapping to produce the query, key, and value. An adjacency matrix representing region-
to-region affinities is computed by multiplying the region-level query with the transposed
region-level key through matrix operations. The routing index matrix, which preserves
the top-k connections for each region, is utilized to achieve fine-grained token-to-token
attention. The dynamic sparse attention module is ultimately integrated into the backbone
network at its 11th layer. This integration includes combining two feature vectors, ap-
plying depthwise separable convolution, performing layer normalization, and conducting
multilayer perceptron computations. In this context, Q , K,and V refer to the query, key,
and value, respectively.W q,W k,W v ∈ R(C×C) The projection weights for the query,
key, and value are represented accordingly. The corresponding calculation is provided in
Equation (2):

Q = XrW q,K = XrW k, V = XrW ν (2)

Constructing a directed graph to determine the regions that should be concerned with
each given region, we first derive the region-level queries Qr and Kr by applying Q and
the K to the mean value of each region ,which have dimension R(S2×S2) . Then, by com-
puting the matrix multiplication between Qr and the transposed Kr , we obtain the ad-
jacency matrix Ar of the region-to-region affinity graph with dimension R(S2×S2).The
computation of the adjacency matrix for inter-region correlation can be expressed as
shown in Equation (3):

Ar = Qr(Kr)T (3)

In the neighbourhood matrix, the entry Ar is used to measure how semantically related
two regions are. The indexes of the top-k connections are retained row by row using the
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routing index matrix Ir ∈ NS2×k Using the region-to-region routing index matrix Ir,
fine-grained token-to-token attention can be computed. The ith row of matrix Ir contains
the indexes of the first k most relevant regions of the ith region, which is calculated as
shown in Equation (4):

Ir = topkindex(Ar) (4)

Using the region-to-region routing index matrix Ir, fine-grained token-to-token at-
tention can be computed. For each query token in region i, the key-value pairs in the
concatenation of all k routing regions located in the index set Ir(i,1), I

r
(i,2), . . . , I

r
(i,k) are

processed Since these routing regions are scattered over the entire feature graph, in order
to implement this step efficiently, the tensor of the keys and values needs to be collected
first and computed as shown in Equations (5) and (6):

Kg = gather(K, IT ) (5)

V g = gather(V, IT ) (6)

The above formulation uses an attention operation on the collected (gather) key-value
pairs and introduces a local context augmentation term LCE(V), where LCE(V) is pa-
rameterised using a depth-separable convolution with a convolution kernel size of 5. The
computation is shown in Equation (7):

O = Attention(Q,Kg, V g) + LCE(V ) (7)

The module employs a two-level routing attention mechanism that is incorporated
into Layer 11 of the backbone network to enhance the model’s attention to critical target
details, thereby improving detection accuracy.

3.2. Optimisation of neck network

Drawing on the EfficientCepBiPAN idea of YOLOV6 [39], a new neck network is de-
signed, which includes two key components: the MPFusion module and the CepBlock
module.The MPFusion module is optimised for the up- and down-sampling part of the
original model, which incorporates an attention mechanism before the up- and down-
sampling, and the three adjacent layers in a cascade operation to fuse the low-level fea-
tures in the trunk to the high-level features in the neck, so that more accurate position
signals are retained in the process of feature fusion, and efficient fusion of multi-scale
feature maps and large and small target information is achieved. This process not only
strengthens the model’s capacity to detect targets but also improves its comprehension of
image content.The design of the MPFusion module helps to cope with the scale differ-
ences of diverse targets in the real scene, so as to capture the target’s features in a more
comprehensive way. Inspired by RepBlock, the CepBlock module is designed, which is
mainly optimised for the large perceptual field of the model. During the training phase, a
5×5 convolutional kernel is introduced to expand the perceptual field while maintaining
the network’s depth. The four branches in this phase are employed separately for feature
extraction, with each branch undergoing a distinct reparameterization process. Specifi-
cally, the 1×1 convolution is reconfigured using padding with 3×3 and 5×5 convolutional
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kernels, with multiple instances of the 5×5 kernel applied. convolution kernel, 5 × 5 con-
volution kernel through the weighted average of neighbouring weights compressed into
a 3 × 3 convolution, there is no convolution kernel of the residual channel to construct
a class of convolutional input and output, that is, multiply a unit matrix can be, after
the convolution layer and the BN layer fusion of the addition operation and then the out-
put.CepConv is a 3 × 3 convolutional and the LeakyReLU activation function of the stack,
Leaky ReLU can effectively solve the 0-gradient problem in the case of negative input,
compared to the ordinary convolution block, less BN layer, the core idea is the fusion of
Conv2d and depth-separable convolution, and finally directly add the parameters of these
three convolutional layers to fuse them into an equivalent 3×3. Since 3×3 convolution has
a high degree of optimisation on mainstream GPUs and CPUs, and has a high compu-
tational density, this design can greatly accelerate the inference speed. In the inference
stage, the CepVGG block is transformed into CepConv, which can effectively accelerate
the inference process using single branching. The MPFusion and CepBlock modules col-
laborate effectively, complementing each other to enhance the accuracy of information
localization during the neck network’s feature fusion process. The feature representation
capability is enhanced by strengthening feature interactions and filtering out irrelevant
information, allowing the model to better capture and understand target features. This
improvement boosts the model’s target discrimination ability. Additionally, the inference
speed is increased without compromising accuracy, offering a practical approach for real-
time target detection tasks. The designs of the two modules are illustrated in Figure 2,
parts (a) and (b).

Fig. 2. The structure of MPFusion and CepBlock

3.3. Lightweight detection head reconfiguration

In the redesigned YOLOv8, the detection head has been optimized with a focus on
lightweighting, aiming to overcome challenges related to model storage and execution.
The original YOLOv8’s detection head adopts a decoupled head structure and has been
changed from Anchor-Based to Anchor-Free by removing the objectness branch and
adopting two parallel branches, which are responsible for the extraction of category fea-
tures and positional features respectively. However, this results in an increased parameter
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count, which significantly raises the demand for storage and computational resources. Our
new detection head design maintains high accuracy while keeping lightweight. Specifi-
cally, we have designed the original 3×3 convolution of the two branches to merge and
share parameters, while employing a layer of 1x1 convolution for both classification and
localisation tasks. This design helps decrease the model’s parameter count, which in turn
lowers storage demands, making the model more efficient to deploy and operate. By em-
ploying parameter sharing and applying optimization techniques, we effectively improve
the overall performance of the model. The new detection head structure is shown in Fig-
ure 3, with two parallel branches performing classification and localisation tasks through
a layer of 1x1 convolution, which is designed to remain lightweight while still being able
to quickly process edge feature information and extract classification features. Compared
to the original detection head of YOLOv8, our design reduces the storage footprint while
still ensuring high detection accuracy. This improvement not only makes the model more
suitable for resource-limited environments, but also accelerates the training and inference
speed and improves the overall performance.

Fig. 3. The structure of the lightweight detection head

3.4. Optimisation of loss function

YOLOv8 adopts an anchorless design with a significant change in the loss function com-
pared to the YOLOv5 series. The optimization goal is divided into two primary aspects:
regression and classification. The classification component utilizes the sample weighting
function (Slide Loss), whereas the regression process relies on the Distributional Key-
point Loss (DFL) along with the bounding box regression loss (MDPIoU). The complete
loss function calculation is shown in Equation (8):

Floss = α1FSlideloss + α2FDFL + α3FMPDIoU (8)

To tackle the problem of sample imbalance in target detection tasks, Slide Loss has
been introduced. Slide Loss primarily aims to balance samples with different difficulty
levels by dynamically modifying their weights. The difficulty for each sample is evaluated
based on the IoU values calculated between the predicted bounding boxes and the ground
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truth. To minimize the inclusion of additional hyperparameters, the average IoU value
across all bounding boxes is used as the threshold, denoted as µ with IoU values below µ
are classified as negative, while those with IoU values above µ are categorized as positive.
The calculation process is detailed in Equation (9):

F(x) =


1, x ≤ µ− 0.1

e1−µ, µ < x < µ− 0.1←
e1−x, x ≥ µ

(9)

To fully utilize samples with ambiguous classifications and those located near deci-
sion boundaries, Slide Loss is introduced. This method addresses challenging samples by
categorizing them as positive or negative based on the parameter µ. Additionally, the Slide
weighting function assigns greater importance to boundary samples by giving them higher
weights, thereby enhancing the model’s attention to classification-challenging cases.

Fig. 4. Slide weighting function image

Slideloss [40], illustrated in Figure 4, represents a sliding loss function that adaptively
determines the threshold parameters: µ for positive samples and µ for negative samples.By
setting higher weights around µ the loss of difficult, incorrectly categorised examples
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can be increased,which approach significantly enhances the model’s classification perfor-
mance, particularly for boundary cases and challenging samples.

There are many targets in the dataset with the same aspect ratio but inconsistent scal-
ing. To solve this problem, this paper introduces MDPIoU [41] as an optimisation method
for bounding box regression loss. For any convex shapes A and B, the widths and heights
are denoted as w and h . The coordinates represent the upper-left and lower-right cor-
ner points of shapes A and B, respectively. (xA

1 , y
A
1 ), (x

A
2 , y

A
2 ) and (xB

1 , y
B
1 ), (xB

2 , y
B
2 )

respectively,The derivation process of MDPIoU is shown in Equations (10) to (12):

d21 = (xB
1 − xA

1 )
2 + (yB1 − yA1 )

2 (10)

d22 = (xB
2 − xA

2 )
2 + (yB2 − yA2 )

2 (11)

MDPIoU =
A ∩B

A ∪B
− d21

w2 + h2
− d22

w2 + h2
(12)

In the training phase, the set of predicted values for each bounding box predicted by
the model is forced to approximate the set of true bounding boxes by minimising the loss
function, hence for MPDIoU based loss function is defined as shown in Equation (13):

LMDPIoU = 1−MDPIoU (13)

The coordinates of the four points can be used to derive all components of the current
bounding box regression loss function. The transformation steps are outlined in Equa-
tions (14) to (18):

Cx = max(xgt
2 , xprd

2 )−min(xgt
1 , xprd

1 )

Cy = max(ygt2 , yprd2 )−min(ygt1 , yprd1 )

|C| = Cx · Cy (14)

xgt
c =

xgt
1 + xgt

2

2
, ygtc =

ygt1 + ygt2
2

(15)

xprd
c =

xprd
1 + xprd

2

2
, yprdc =

yprd1 + yprd2

2
(16)

wgt = xgt
2 − xgt

1 , hgt = ygt2 − ygt1 (17)

wprd = xprd
2 − xprd

1 , hprd = yprd2 − yprd1 (18)

Here, |C| denotes the area of the smallest rectangle that encloses both Bgt and
Prd ,

(
xgt
c , ygtc

)
and (xprd

c , yprdc ) represent the coordinates of the centre points of the
groundtruth bounding box and the prediction bounding box, respectively, wgt and hgt
represent the width and height of the groundtruth bounding box, W prd and hprd rep-
resent the width and height of the prediction bounding box.According to From the co-
ordinates of the upper-left and lower-right points, all factors present in existing loss
functions—such as non-overlapping areas, distances between centroids, and variations in
width and height—can be derived, as shown in Equations (16) to (18).This demonstrates
that the MDPIoU utilized in our approach is both thoughtfully designed and computation-
ally efficient. Figure 5 illustrates the loudness factor.
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Fig. 5. Factors affecting MDPIoU

4. Experiments

4.1. Experimental environment

The environment and hardware platform parameters for the training phase of the experi-
ment are shown in Table 1:

Table 1. Experimental environment configuration
parameter configure

CPU Intel Xeon Silver 4214R
GPU NVIDIA GeForce RTX 3080 Ti
operating system Ubuntu 18.04.5
Architecture torch-1.9.0+cu111

During the training process, we set the key parameters according to Table 2.

4.2. Introduction to datasets

To comprehensively assess the performance of our enhanced algorithm, we chose two
publicly accessible datasets: one from the Roboflow platform and the D-Fire fire detec-
tion dataset. Both datasets offer extensive annotations for flames and smoke across vari-
ous scenarios, enabling a robust assessment of our algorithm’s performance in complex
environments.

The D-Fire dataset consists of 21,527 images featuring flames and smoke, averaging
2.52 bounding boxes per image. Conversely, in the categories labeled as ”Smoke” and
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Table 2. Experimental parameter configuration
parameter settings

Epochs 150
Momentum 0.937
Initial learning rate 0.01
Final learning rate 0.01
Weight decay 0.005
Input image size 640 × 640
Optimizer SGD
Data enhancement Mosaic
Box Loss decay 7.5
Cls Loss decay 0.5
Batch size 32

”Fire and Smoke,” the average number of smoke-labeled frames is 1.13 bounding boxes
per image. Altogether, the dataset comprises 26,557 bounding boxes, with 11,865 anno-
tated as smoke and 14,692 identified as fire.

Fig. 6. Label distribution of the dataset

The dataset from the Roboflow platform features images of fire smoke captured in di-
verse environments, including both indoor and outdoor scenarios. The dataset is split ran-
domly into three subsets: training, validation, and testing, following a 7:2:1 ratio. Specif-
ically, the training set consists of 4,620 images, the test set includes 1,320 images, and
the validation set comprises 660 images. There are three distinct types of annotations, as
illustrated in Figure 6. The first subfigure highlights the quantity of various fire-related
objects. The second subfigure presents the bounding box sizes, with all their center points
aligned at a single location, suggesting a prevalence of small object regions within the
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dataset. The third subfigure depicts the distribution of bounding box center coordinates,
revealing that the majority of center points are clustered around the central region of the
image.Finally, the fourth subfigure presents a scatter plot showing the widths and heights
of bounding boxes. The darkest area in the lower-left corner highlights that the dataset
primarily consists of small objects.

From the analysis of the dataset, it can be concluded that it predominantly consists
of numerous small objects with a dense yet uneven distribution. Compared to traditional
datasets used in computer vision tasks, this dataset is significantly larger and includes a
variety of scales, scenes, and angles, making it more challenging than standard computer
vision datasets. To enhance the model’s performance and refine its development, this pa-
per employs data augmentation techniques such as cropping, scaling, and color perturba-
tion to improve data quality and increase diversity. The YOLOv8n model served as the
baseline, with several ablation experiments performed to assess how each improvement
strategy affected its performance, leading to the identification of the best configuration.
Moreover, mosaic data augmentation was utilized in the last 10 training epochs to enhance
the speed of model convergence.

4.3. Evaluation indicators

This experiment uses both the model itself metrics and TIDE metrics to measure the
performance of the model in this paper at the same time, calculated as shown in Equa-
tions (19) to (21):

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

AP =

∫ 1

0

Precision(Recall)d(Recall) (21)

The mean Average Precision (mAP) across all categories is derived by calculating
the weighted average of the AP values for each sample category. This metric evaluates
the model’s detection performance across all categories and is computed as illustrated in
Equation (22):

mAP =
1

K

K∑
i=1

APi (22)

APi in Equation (22) denotes the relationship between the value and the value of the
category index.K denotes the number of categories of the samples in the trained dataset,
and the value in this paper is 3.

To compare model runtime, this paper adopts Frames Per Second (FPS) as the perfor-
mance metric. FPS, which indicates the number of image or video frames the model can
process each second, is used to evaluate runtime efficiency. In order to further capture the
more valuable error distributions in mAP, all FPs and FNs are grouped into six types, and
FPs and FNs can be paired in some cases, and IoUmax is used to denote the overlap of
the maximum IoU of an FP with the ground truth of a given category, with the foreground
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IoU threshold denoted as tf and the background threshold denoted as tb. The following
are the definitions of the six types of errors and the rules of determining them .

Classification error (Cls), i.e., for misclassification, IoUmax ≥ tf (i.e., localisation is
correct but misclassified).

Localisation error (Loc), i.e., for correct classification, tb ≤ IoUmax ≤ tf (i.e., classi-
fication is correct but localisation is incorrect).

Both classification and localisation error (Cls+Loc), i.e., for misclassification, tb ≤
IoUmax ≤ tf (i.e., classification is incorrect and incorrectly localised).

Duplicate Detection Error (Duplicate), i.e., correctly classified and GTIoUmax ≥ tf ,
but another higher-scoring test has already matched the GT (i.e., would have been correct
if not for the higher-scoring test).

Background Error (Bkgd), i.e., IoUmax ≤ tb for all GTs (detecting the background as
the foreground).

Undetected GT errors (Missed), i.e., all undetected ground truth (FN) not covered by
classification or localisation errors.

Smaller values of the above six metrics represent smaller errors and superior model
performance.

4.4. Experiment 1:experimental results and analysis

Optimal improved position experiments with dynamic sparse attention The first few
layers of the backbone network usually have smaller feature map size and depth, and it
may be relatively faster to apply the attention mechanism at these layers to reduce the
impact on the overall inference speed. To achieve optimal performance and support sub-
sequent ablation experiments, comparative experiments were carried out in this study.
Specifically, by enhancing the neck network, the dynamic sparse attention module was
integrated into different layers of the backbone network, with the resulting experimental
data summarized in Table 3. Specifically, dynamic sparse attention modules were applied
individually to layers 3, 5, 7, 9, and 11 of the backbone network. The data in Table 3
demonstrate that the dynamic sparse attention11 model achieves superior detection per-
formance, exhibiting a notable accuracy improvement and the lowest scores across all six
error type indices when compared to other models. As a result, dynamic sparse atten-
tion11 was chosen as part of this paper’s proposed improvement strategy. The experimen-
tal results demonstrate that incorporating the dynamic sparse attention module allows the
network to more effectively identify and highlight important features within the image.

Table 3. Comparison of YOLOv8 with different dynamic sparse attention configurations
Model AP AR mAP50 mAP50-95 FPS/bs32 Size/MB GFlops Cls Loc Both Dupe [c]Bkg [c]Miss

YOLOv8+dynamic sparse attention3 0.951 0.912 0.961 0.879 419 2.86 3.01 0.11 1.38 0.02 0.09 0.76 0.55
YOLOv8+dynamic sparse attention5 0.948 0.921 0.959 0.881 412 2.86 3.01 0.12 1.45 0.06 0.08 0.73 0.61
YOLOv8+dynamic sparse attention7 0.957 0.915 0.948 0.880 409 2.86 3.01 0.09 1.31 0.03 0.06 0.88 0.58
YOLOv8+dynamic sparse attention9 0.946 0.935 0.964 0.882 406 2.86 3.01 0.11 1.35 0.04 0.06 0.86 0.71
YOLOv8+dynamic sparse attention11 0.971 0.919 0.967 0.888 400 2.86 3.01 0.09 1.29 0.02 0.06 0.67 0.49

Analysing Table 3 shows that the performance of adding dynamic sparse attention to
the backbone network is superior, with most of the metrics improved, the recall has de-
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creased probably because the features extracted at layer 11 are not discriminative enough,
and despite the decrease in recall, the overall increase in performance shows the posi-
tive impact of the addition of dynamic sparse attention to the 11th layer of the backbone
network. The improvement in other metrics suggests that it has advantages in improving
detection precision and accuracy.

Experiment 2: ablation experiment This paper further explores the impact of differ-
ent improvement strategies to evaluate the enhancement of the improvement model by
gradually adding each module. The specific programmes are as follows.

(1) YOLOv8n: original model for target detection.
(2) YOLOv8n+A: Replace the original BCElosss with Slideloss.
(3) YOLOv8n+B: Use MPDIoU to replace the original CIoU.
(4) YOLOv8n+D: Improve the neck network.
(5) YOLOv8n+C+D: Improve the backbone network by adding dynamic sparse atten-

tion to (4).
(6) YOLOv8n+C+D+E: using optimised lightweight detection head on top of (5).
(7) YOLOv8n+C+E: removing improvements to the neck network from (6).
(8) YOLOv8n+A+B+C+D+E: combining (2),(3),and (6).
The detection performance and model parameters of each model are listed in the Ta-

ble 4, where YOLOv8n is the baseline model. The tables and images are briefly analysed
below: YOLOv8n:The baseline model, with most of its metrics, is only ranked in the mid-
dle of the pack in the ablation experiments, which suggests that even if a model does not
have a high number of model parameters in it, it still leads to a long inference time due
to the redundant network layers. The final FPS index of the improved model reaches 434,
which can ensure the real-time requirement in real deployment. YOLOv8n+A:Using the
strategy of improvement A on top of the baseline model, the recall and map50 scores of
the model are slightly improved to 0.975 and 0.944 respectively, which demonstrates the
reasonableness of the improvement in solving the problem of imbalance between difficult
and simple samples, while the the decrease in Cls indicates a substantial improvement
in the classification error. YOLOv8n+B: Adopting the B improvement strategy based on
the baseline model, the map50-95 , AR and AP of this model slightly decreased respec-
tively, which may be due to the large differences between targets affecting the overall
performance of recall and accuracy. However, map50 is improved, while its Loc and
Miss metrics are decreased indicating the superiority of the frame loss improvement.
YOLOv8n+D:The D improvement strategy was used on the basis of the baseline model,
which fused feature representations of different layers, reduced the number of channels
and convolutional kernel size of some layers, and increased the convolutional layers, with
the number of parameters and the amount of computation reduced by 10% and 11%,
respectively. All other indexes are improved, which indicates that the model after the im-
proved neck network makes a substantial improvement in the detection performance and
running speed of the model. YOLOv8n+A+B+C+D+E: This model has improved all in-
dexes compared with YOLOv8n, and the error rate is obviously reduced, which indicates
that there is a large improvement in the detection performance, and the overall perfor-
mance is higher, therefore, we identified this model as the optimal improved model, which
shows that the improvement of the baseline model is feasible and effective and reasonable
considering the accuracy and speed of special equipment and detection scenarios.
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Table 4. Comparison of ablation experiment indicators
Models AP AR mAP50 mAP50-95 FPS/bs32 Size/MB GFlops Cls Loc Both Dupe Bkg Miss

YOLOv8n 0.968 0.938 0.970 0.898 400 2.86 8.1 0.18 0.77 0.01 0.03 0.71 0.42
YOLOv8n+A 0.975 0.944 0.977 0.902 400 2.86 8.1 0.03 0.86 0.02 0.04 0.74 0.16
YOLOv8n+B 0.966 0.928 0.971 0.890 384 2.86 8.1 0.08 0.70 0.01 0.07 0.86 0.27
YOLOv8n+D 0.968 0.937 0.972 0.897 434 2.57 7.2 0.10 0.75 0.01 0.05 0.68 0.13
YOLOv8n+C+D 0.971 0.919 0.967 0.888 384 2.82 7.2 0.09 1.29 0.02 0.06 0.67 0.49
YOLOv8n+C+D+E 0.959 0.922 0.961 0.880 416 2.88 6.5 0.20 0.72 0.01 0.11 1.01 0.09
YOLOv8n+C+E 0.966 0.935 0.971 0.893 454 3.91 8.1 0.08 0.78 0.01 0.06 0.72 0.21
YOLOv8n+A+B+C+D+E 0.981 0.940 0.974 0.907 434 2.88 6.5 0.08 0.76 0.01 0.04 0.49 0.08

Experiment 3:comparative experiments n the field of target detection, deep learning
methods are classified into level 1 and level 2 categories, distinguished by their anchor
generation mechanisms. In real engineering scenarios, real-time processing of fire and
smoke images is more in line with practical needs. Therefore, in order to combine both
accuracy and hardware dependency considerations, it is more practical to choose the level
1 target detection method. In this experiment, we selected the YOLO series as the object of
comparison test, including advanced and general models such as YOLOv5-s, YOLOv3,
YOLOv3-tiny and YOLOv6. These models have been widely used in a variety of em-
bedded scenarios and published in several papers. To emphasize the advantages of the
models used in this experiment, we selected the enhanced versions developed in this
study for comparison. Comparison experiments are conducted with YOLOv5-s, YOLOv3,
YOLOv3-tiny and YOLOv6. To ensure fairness, no pre-training weights were used in all
model training processes.The outcomes of the comparative experiments are presented in
detail in Table 5 and Table 6. Review these tables to gain insights into the findings.

(1) YOLOv3 has the highest number of parameters, totaling 103,666,553 bytes. While
its overall performance metrics are impressive, its real-time speed is limited to 66 FPS,
making it unsuitable for the real-time detection tasks required in this study.

(2) The YOLOv5-s model is highly lightweight. however, its precision is low on this
dataset, suggesting a high false detection rate. Despite this, it demonstrates better perfor-
mance in terms of recall. The primary reason for these observations lies in the complexity
of the dataset’s background and the significant variation in target sizes. These factors neg-
atively impact the precision, but the improved version of the model is better suited for the
task at hand.

(3) YOLOv3-tiny is also a lightweight model, most of the indicators are low, compared
to the performance of YOLOv5-s is still insufficient, which is also YOLO after several
versions of iteration much led to make YOLOv5 performance has been greatly improved.

(4) YOLOv6 has the lowest recall rate, indicating that the model has a certain leak-
age rate, fire smoke detection task, not only requires high real-time, in the leakage rate
requirements are also more stringent, the poor performance of this important indicator,
making the model is not suitable for the task in this paper.

(5) Our model comprehensive comparison of other models in the same series, the
overall performance of the best, especially in the FPS this indicator is excellent, while
the model in basically does not change the number of far away model parameters, in the
deployment difficulty and real-time and other convenient to meet the real-life engineering
needs, while the model also has good robustness, accuracy and practicality.
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Table 5. Comparison of experimental indexes of data sets of each model on roboflow
Models AP AR mAP50 mAP50-95 FPS/bs32 Size/MB GFlops Cls Loc Both Dupe Bkg Miss

YOLOv5-s 0.963 0.962 0.972 0.894 270 2.86 7.2 0.11 1.02 0.01 0.03 0.86 0.71
YOLOv3 0.968 0.961 0.981 0.920 66 98.86 282.2 0.44 0.83 0.23 0.19 0.65 0.28
YOLOv3-tiny 0.959 0.935 0.973 0.895 285 4.04 11.8 0.58 1.19 0.19 0.21 0.67 0.25
YOLOv6 0.955 0.917 0.960 0.853 277 11.56 18.9 0.16 1.35 0.10 0.13 0.66 0.32
TOOD 0.972 0.931 0.978 0.901 386 31.8 125.9 0.12 0.86 0.03 0.08 0.59 0.16
Our 0.981 0.938 0.974 0.907 434 2.88 6.5 0.08 0.83 0.01 0.06 0.49 0.08

Table 6. Comparison of the experimental metrics for each model on the D-Fire dataset
Models AP AR mAP50 mAP50-95 FPS/bs32 Size/MB GFlops Cls Loc Both Dupe Bkg Miss

YOLOv5-s 0.761 0.731 0.772 0.458 270 2.86 7.2 0.14 1.16 0.04 0.05 0.92 0.84
YOLOv3 0.777 0.759 0.781 0.481 66 98.86 282.2 0.49 0.95 0.29 0.24 0.74 0.36
YOLOv3-tiny 0.765 0.721 0.773 0.453 285 4.04 11.8 0.68 1.27 0.24 0.24 0.79 0.23
YOLOv6 0.753 0.711 0.762 0.414 277 11.56 18.9 0.19 1.44 0.14 0.17 0.73 0.42
TOOD 0.768 0.727 0.766 0.451 386 31.8 125.9 0.13 0.78 0.05 0.07 0.62 0.19
Our 0.786 0.728 0.789 0.467 434 2.88 6.5 0.12 0.93 0.03 0.09 0.55 0.17

Experiment 4:individual comparison with YOLOv8 To verify the impact of the en-
hanced model on detection performance, we carried out a comparative experiment be-
tween the improved model and the baseline model, YOLOv8n. Figure 7 shows the
trend analysis of precision, recall, mAP50 and mAP50-95 for AMMF-Detection (orange
curve) and YOLOv8n (blue curve) on the validation dataset. The metrics show rapid im-
provement throughout the iterations and gradually approach stable values, and AMMF-
Detection ends up with higher convergence values.

Experiment 5:visualisation and analysis The interpretability of deep learning mod-
els is a key issue limiting their application and development, thus becoming a research
hotspot in artificial intelligence. We evaluated the model performance in terms of con-
fusion matrix, feature map visualisation and inference experiments through comparative
experiments. The confusion matrix intuitively reflects the classification accuracy, the fea-
ture map visualisation demonstrates the distribution of the model’s attention to the target,
and the inference experiment verifies the model’s generalisation ability and robustness
on a new fire image dataset. These methods comprehensively reveal the strengths and
limitations of the model.

As illustrated in Figure 8, the diagonal indicator region within the confusion matrix for
AMMF-Detection is notably higher compared to YOLOv8n. This suggests an improved
capability of our model in accurately classifying target categories. Also, the proportion of
objects whose backgrounds are judged to be flames has been reduced, which means that
the improved model reduces the miss detection rate for this category, but the accuracy
for smoke has been reduced, which is due to the complexity and polygonal shape of the
smoke itself. A comparison of the heat maps reveals that both models exhibit a certain
degree of false detection, with the flame frequently being misclassified as background.
To address this, we selected three representative images to visualize their feature maps.
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Fig. 7. Trend analysis of the indicators of the model training process

This visualization offers a clearer and more intuitive way to observe the model’s focus,
which is highly beneficial for improving the overall detection performance. In the same
image, it is evident that AMMF-Detection focuses on a broader range, including simi-
lar target objects. The original model, however, demonstrates a notable false detection
rate and insufficient confidence levels for the detected targets. In contrast, the improved
model exhibits a more precise focus, reduces the error-prone regions, and achieves higher
confidence scores. A detailed comparison of the feature maps is presented in Figure 9.

To evaluate the generalization ability of the proposed method, a diverse dataset of
images was collected, and inference experiments were performed. These images feature
numerous small objects, posing significant challenges for detection. The inference exper-
iment results, presented in Figure 10, include detection outcomes for indoor and outdoor
targets of varying sizes. As shown in Figure 10, our method achieves high-quality de-
tection performance across diverse and complex environments. The model demonstrates
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Fig. 8. Comparison of confusion matrices

Fig. 9. Comparison of heatmap visualizations

minimal instances of missed detections, effectively showcasing the adaptability and ro-
bustness of the proposed approach across different scenarios.

From the experimental results, it can be concluded that the proposed approach suc-
cessfully identifies target objects in various and challenging environments, encompassing
both indoor and outdoor scenarios. Additionally, it demonstrates the capability to handle
target objects of various sizes. These findings highlight the method’s strong adaptability
and generalization capabilities, making it suitable for application in numerous real-world
scenarios.

5. Conclusion

In this paper, we introduce an effective and streamlined fire detection model, termed
AMMF-Detection, which is an optimization based on YOLOv8. This model addresses
the challenges of bounding box optimization and sample imbalance in fire detection tasks
by incorporating the MPDIoU bounding box distance metric and the SlideLoss classifica-
tion loss function. Moreover, the integration of the dynamic sparse attention mechanism
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Fig. 10. Inference experiment results

improves the model’s ability to capture global contextual information and understand im-
age content. Additionally, the neck network is redesigned by incorporating the CepBlock
module and the MPFusion module, further refining the overall architecture. Finally, the
detection head is restructured to achieve a lightweight design, reducing the model’s com-
putational complexity. Experimental findings reveal that the optimized model attains an
average precision of 97.4% at a 50% recall rate and 90.7% across a recall range of 50%
to 95%.Additionally, the frames per second (FPS) metric improves from 400 to 434. The
fire detection model presented in this paper holds significant practical applications. Fu-
ture studies can further optimize the model’s performance and validate its application in
various other domains and tasks.The reconstruction of the neck network in our improved
model introduces complexity and a relatively high number of feature fusion steps, lead-
ing to variations in model size and inference time. There is still potential to optimize
the model’s computational consumption. Future work will prioritize investigating distil-
lation and pruning techniques to compress the model’s parameters and structure, aiming
to strike a balance between complexity and performance, thereby improving its efficiency
and overall performance.
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