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Abstract. Federated learning (FL) is a machine learning framework that effectively
helps multiple organizations perform data usage and machine learning models while
meeting the requirements of user privacy protection, data security, and government
regulations. However, in practical applications, existing federated learning mecha-
nisms face many challenges, including system inefficiency due to data heterogeneity
and how to achieve fairness to incentivize clients to participate in federated training.
Due to this fact, we propose PFLIC, a novel personalized federated learning based
on an iterative clustering algorithm, to estimate clusters to mitigate data heterogene-
ity and improve the efficiency of FL. It is combined with sparse sharing to facilitate
knowledge sharing within the system for personalized federated learning. To ensure
fairness, a client selection strategy is proposed to choose relatively “good” clients to
achieve fairer federated learning without sacrificing system efficiency. Extensive ex-
periments demonstrate the superior performance and effectiveness of the proposed
PFLIC compared to the baseline.

Keywords: Federated learning, Clustering algorithm, Client Selection, Sparse shar-
ing.

1. Introduction

Contemporary mobile smart technologies have reached an unprecedented level of sophis-
tication. This technological evolution enables ubiquitous smartphone/sensor applications
[17], which collectively produce real-time data streams at an extraordinary scale [32,34].
The question of how to utilize and store these data has become a hot topic across indus-
tries. In traditional deep learning, these data are collected and stored in a central location to
train neural networks. However, in some special cases, the data owner is reluctant to share
these data with a third party due to privacy protection. To solve this problem, a promis-
ing distributed machine learning method, Federated Learning (FL) is proposed [12]. The
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traditional framework of FL is illustrated in Fig. 1, which learns a global model that ag-
gregates information from each client while protecting participants’ privacy.
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Fig. 1. A general FL framework. (a) Cloud server broadcasts the global model. (b) Clients
training model. (c) Clients upload the local model. (d) Cloud server aggregation model.

Although FL can solve a distributed machine learning model without anyone seeing or
touching the raw data of each client, several problems need to be addressed for efficiency,
especially those regarding data heterogeneity and fairness of FL. In real applications,
different clients generate data in various ways, resulting in non-independent and identi-
cally distributed (non-iid) data among clients, also known as data heterogeneity [20, 33].
Several studies have found that data heterogeneity can seriously affect the system’s con-
vergence and the model’s accuracy [19, 20]. On the other hand, it is necessary to ensure
FL’s fairness by not favoring either party while achieving global knowledge sharing. If
fairness cannot be guaranteed, some clients with relatively small contributions, i.e., those
less involved in FL training, will terminate their participation at any time. Therefore, how
to design an efficient federated learning framework that solves data heterogeneity and
protects fairness is of paramount importance.

Data heterogeneity is one of the central issues in the development of FL. To address
this problem, many researchers have devoted themselves to designing a number of FL
schemes [2, 19, 20, 23, 29]. To mitigate the impact of data heterogeneity, some have used
Personalized Federated Learning (PFL) based on clustering algorithm [2,23,29] to cluster
clients with similar data distributions and divide them into the same cluster to train a
model dedicated to each cluster. Others have penalized local models that deviate too much
from the global model to prevent local models from deviating from the global model
[12, 15, 16, 31]. In addition, some have processed client data by dividing the dataset or
data augmenting to synthesize regular datasets that correct for the heterogeneity of private
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data for the client [5, 27]. Nevertheless, the penalty mechanism and data augmentation
cannot solve the data heterogeneity problem. On the contrary, the clustering algorithm
starts from data distribution, clusters clients with the same data distribution, and trains a
cluster model for each cluster instead of a single global model, which solves the problem
caused by data heterogeneity. However, the centralized clustering algorithm will bring the
issue of high communication overhead, the iterative clustering algorithm can effectively
reduce the overhead. The iterative clustering algorithms for PFL in FL systems introduce
a new problem, i.e., the inability of global knowledge sharing among groups with different
data distributions.

How to incentivize active client participation in training and achieve equity is another
central issue in the development of FL. To solve this problem, some pay more attention
to the fairness of the results and expect to achieve the equilibrium fairness [9,10,25], i.e.,
the model performs equilibrium among the clients and does not favor a specific data party.
However, the robust data side is more likely to be selected in this process, and the final
trained global model will also be biased in favor of the firm side, resulting in the data’s
inferior side being ignored. Other researchers focus more on the fairness of the process
and want to achieve contribution fairness [18, 22], i.e., allowing differences in model
performance but pursuing balanced contributions from all parties. Nevertheless, this may
cause dissatisfaction among high-contributing clients, leading to the problem of “free-
riding” [26] and affecting the sustainable development of FL. For the sustainability of FL,
we need to be unbiased towards either party, ensure fairness, and allow for the case where
models perform differently. Hence, it is still challenging to mitigate the impact of data
heterogeneity, following the client’s most primitive features and ensuring the system’s
fairness without increasing the communication overhead.

Unlike previous studies, we design PFLIC, a novel personalized federated learning
based on an iterative clustering algorithm in this work, to effectively address the issue
of data heterogeneity and achieve the fairness of FL. We leverage the similarity among
clients to implement iterative clustering and thus improve the convergence speed of such
a system to address data heterogeneity. Besides, we integrate weight sharing in multi-task
learning to enable PFL and facilitate inter-cluster collaboration to minimize communi-
cation overhead. To maintain the fairness of FL, we design a client selection strategy to
select the clients to participate in the training process to guarantee the participation rate of
clients in the training process. This work mitigates the data heterogeneity problem while
maintaining FL’s fairness without sacrificing accuracy. The contributions of this work are
listed as follows:

– To solve the problem of data heterogeneity and system unfairness, minimizing sys-
tem overhead, and enabling personalized federated learning, we propose and design
PFLIC.

– To alleviate the heterogeneous data problem, we design an iterative clustering al-
gorithm to cluster customers with high similarity by continuously determining their
identities before training. To achieve PFL, we combined the weight sharing to drop to
achieve knowledge learning between clusters and reduce the system’s communication
overhead.

– To ensure the fairness of federated learning, we design a client selection strategy to
actively select “good” clients according to the established metrics. This means that
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the weak clients are no longer feeble. And the model not only equalizes performance
between clients but also allows for variance.

– To demonstrate the performance of PFLIC in terms of accuracy and efficiency, we
conduct extensive experiments on real-world datasets. Compared to the baseline, ex-
perimental results show that the proposed method achieves promising results.

The remainder of this article is organized as follows. The related work is introduced in
Section II, the system model and problem formulation are described in Section III, the
construction and workflow of PFLIC are presented in Section IV. Experimental results
and analysis are provided to show the superiority of PFLIC over the baseline methods in
Section V. Finally, the concluding remarks and future directions are given in Section VI.

2. Related work

2.1. Data Heterogeneity in Federated Learning

A central issue in developing FL systems in recent years is heterogeneity, categorized into
data heterogeneity and structural heterogeneity. To solve the problem of poor model per-
formance due to data heterogeneity, several works [2,7,19,23] consider using clustering to
address data heterogeneity. Clustering Federated Learning (CFL) is a promising approach
to solving the data heterogeneity problem. Sattler et al. [19] proposed a methodological
framework for federated client grouping learning, an algorithm in which the parameter
server dynamically divides the participants based on their gradient or update information.
However, the server has a high computational cost. Tu et al. [23] dynamically learned
personalized models for different users by learning the similarity between user model
weights to form a shared structure. Briggs et al. [2] combined hierarchical clustering with
FL to separate client clusters by calculating the similarity of the client’s local updates to
the global model. After separation, the clusters are trained independently and in parallel
on specialized models. Tu et al. [23] and Briggs et al. [2] divided the clients into clusters
by calculating the distance of the local model weights, which improves the accuracy but
brings about slower convergence. Ghosh et al. [7] divided similar client data distributions
into a cluster, but their clustering results are unstable and have some impact on the model
accuracy. Unlike the single clustering algorithm mentioned above, we use an iterative
clustering algorithm, which reduces the high communication overhead associated with
centralized clustering algorithms.

2.2. Fairness in Federated Learning

Client selection has become an emerging topic that addresses fairness in FL. It chooses
which clients will participate in each round of training. If all clients are involved in each
round of training, the communication cost will be high. Thus, using a client selection
strategy is also an excellent way to reduce the cost of communication. A good selec-
tion strategy can improve the model accuracy, reduce the training cost, and enhance the
fairness of the system [1, 11, 13, 14, 21, 28]. Tang et al. [13], Lai et al. [21] and Cho et
al. [11] improved the convergence speed of the model by implementing the client se-
lection function. Tang et al. [13] argued that the clients do not contribute equally and do
not contribute independently, so they use the loss correlation of clients for client selection.
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Lai et al. [21] designed the Oort framework that allows developers to specify on their own
what kind of federated learning clients can be added, combining fairness and statistical
usage. Cho et al. [11] made a trade-off between convergence speed and solution bias and
found that biasing client selection toward clients with higher local loss of clients achieves
faster error convergence. Xu et al. [28] argued that optimizing the learning performance
depends critically on how the clients are selected, but it only considers the data hetero-
geneity. Li et al. [14] selected clients to achieve fairer network performance. Li et al. [14]
and AbdulRahman et al. [1] selected clients based on different strategies to improve the
global accuracy of the model and the speed of convergence. However, they may destroy
the clustering structure.

2.3. Personalized Federated Learning

The strategies for implementing personalized federated learning can be divided into global
model personalization and learning customized models. The former intends to enhance
the performance of a global model federally trained on heterogeneous data. Wu et al. [27]
augmented local datasets using a self-encoder, which enhances the usability of the local
dataset to represent the overall data distribution, but with the possibility of privacy leak-
age. Wang et al. [24] used deep learning for training to select the participating clients
to mitigate the effect of non-iid data. This approach samples from a more homogeneous
data distribution, improving model generalization performance even though it may incur
higher computational costs. The latter is intended to provide personalized solutions by
modifying the FL model aggregation process to build customized models. Bui et al. [3]
considered personalized feature representations for each client by using users as private
model parameters but are limited in supporting a high degree of model design person-
alization. Annavaram et al. [8] proposed population knowledge transfer through a bidi-
rectional distillation approach using alternating minimization to train local and global
models to support personalized model architectures for each client, but this can lead to
inferior training of student models if there are too many differences between the teacher
model and the student model. With the help of sparse sharing techniques, we allow knowl-
edge learning between different clusters to achieve personalized federated learning while
guaranteeing the accuracy of models within this cluster.

3. Overview of PFLIC

This section presents the system model, the problem formulation, and the description
of the design goal, while Table 1 summarizes notations commonly used throughout this
work.

3.1. System Model

PFLIC is a novel personalized federated learning scheme that can solve the problem of
non-iid data, improve the model’s accuracy and convergence speed of the system, and re-
duce communication costs. Specifically, we propose clustering before training to solve the
excessive difference in data distribution of each user in the FL system. The process is iter-
ated during training to prevent incorrect identity estimation at the first clustering. On this
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Table 1. Summary of Notations

Notation Explanation

θ̂jt Model of client j in round t
θit Cluster model i in round t
N Number of clients
k Number of clusters
ci One cluster i in the set of all clusters
Pt Clients selects for training at round t
D Total quantity of data
Dj Data of client j
idj The identity of client j
Lj Loss function of client j
Cj The utility value of client j
Sj The total number of training rounds for a client
aj Accuracy of client j
η Learning rate
T Training rounds
TS Threshold for client participation in training
V Model accuracy distribution variance
A Global model mean test accuracy

basis, we propose to combine sparse sharing to reduce communication costs and improve
convergence. Finally, we design a client selection strategy to actively select clients par-
ticipating in training to achieve fairer federated learning. Fig. 2 shows the overall system
model of PFLIC, which can be categorized into two cases:

The first case is when the clustering results are not stable. Firstly, the cloud server
broadcasts k cluster models to the client; then the client uses the received models and
local data to estimate the cluster identity, uses the local data to update the models, and
uploads the trained models to the cloud server; secondly, the server determines whether
the clustering results are stable or not, and aggregates the received models within each
cluster.

The second scenario is that the clustering results are already stable. Firstly, the cloud
server broadcasts the weight subsets and shared layers of the models of the clusters of the
class to the clients; then the clients use local data to update the models and upload the
trained models to the cloud server; finally, the cloud server performs client selection, as
well as aggregation of the received models within each cluster respectively.

More precisely, the whole process of the program involves two interactions between
the server and the client. The first iteration is used for clustering and the second iteration
is used for active client selection and model updating.

3.2. Problem Formulation

One center cloud server and N clients exist in personalized federated learning settings.
The cloud server and clients can communicate using a predefined communication proto-
col. Clients have different data, denoted as {D1, D2,...,DN }. In this work, we assume
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Fig. 2. System model of PFLIC

that there are potential clustering relationships between clients’ data, which can be di-
vided into k clusters, denoted as { c1, c2,...,ck }, whereas the goal is to learn k good
cluster models θi∗:

θi
∗
= argminj∈[k]Lj(θi), i ∈ [k] . (1)

For each cluster by combining information from all cluster classes without data exchange,
where L() is a loss function.

3.3. Design Goal

The scheme not only effectively solves the data heterogeneity problem and achieves per-
sonalized federated learning but also ensures the fairness of FL. Specifically, the FL
scheme we designed needs to satisfy the following design goals:

Accuracy: In the absence of other contingencies, the scheme cannot sacrifice the
accuracy of the global model. Compared with the baseline, the accuracy of our proposed
scheme should be consistent or better.

Efficiency: Due to the limited computational resources of the edge devices, it cannot
generate too much extra computational overhead and communication overhead. Com-
pared with the baseline, we propose that the scheme should not add too much workload
to the participants.
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Fairness: Since the clients participating in the training are self-interested and differ
from each other in terms of computational communication resources, data, and others. The
sustainability of federated learning needs to maximize client incentives, distribute rewards
appropriately, and promote motivation among federated participants. In other words, we
need to ensure a certain level of fairness in the system.

4. Design of PFLIC

4.1. Workflow of PFLIC

When the clustering results are not stabilised, the first stage in Fig. 3 is performed. The
cloud server distributes k cluster models (line 4). After receiving the cluster model, the
server estimates the identity. After the server estimates the cluster identity, it trains using
that cluster model and local private data (lines 7 − 9). After training, the client uploads
the cluster identity and the updated model to the cloud server (line 10). The cloud server
aggregates the cluster model separately (lines 26− 28).

When the clustering results are stable, the second phase in Fig. 3 is performed. The
cloud server distributes to each participating client the weight subset of the cluster model
to which the client belongs and the shared layer (line 18). The client is trained using
this model and local data (line 21). After training, the client uploads the trained model
parameters to the cloud server (line 16). The cloud server calculates and ranks the utility
values of the client and uses the ranked values for client selection(Line 17). The cloud
server aggregates the clustered models respectively and uses these aggregated models to
generate the shared layer (Lines 27− 28).

4.2. Client Side

FL system is trained jointly on clients having different datasets, where each client dataset
has different samples and different kinds of features. Direct model aggregation for mod-
els trained with non-iid user datasets affects the model’s overall performance, slowing
convergence. Thus, we adopt an essential assumption that there are potential clustering
relationships between the data of individual clients involved in training. Our goal is to
utilize the similarity (gradient) between the client data samples to cluster the clients with
higher similarity for training to improve the model’s convergence speed and model accu-
racy for this system.

Since one-shot clustering is prone to chance errors, and once a wrong clustering esti-
mate is generated, it cannot be corrected in any subsequent training phase, it will impact
the whole FL system training. Therefore, iterative clustering is used in this paper. Be-
fore the clustering results are stabilized, the cloud server performs a clustering analysis
before aggregating the models. While training during training, the clustering results are
dynamically adjusted according to the model parameters θ̃t. Fig. 4 compares primary and
iterative clustering.

Algorithm 2 gives pseudo-code for iterative clustering. The global model obtained
in this step depends on the clustering and client selection results. In the t-th training
round where the clustering results are not stabilized, all clients receive models θit(i ∈ [k])
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Algorithm 1 PFLIC
Input: initialize parameters θi0(i ∈ [k]), number of all clients N , learning rate η, number of clusters

K
1: for all t = 0, 1, ..., T do
2: SERVER SIDE:
3: if the clustering results are not stabilized then
4: Broadcast k models θit(i ∈ [k])
5: CLIENT SIDE:
6: for all each client i ∈ [k] do
7: Compute î = argmini∈[k]Lj(θ

i
t, Dj)

8: Estimated idj = {idi,j}ki=1, idi,j = 1{i = î}
9: Compute θ̂jt = θit − η∇Lj(θ

i
t, Dj)

10: Send θ̂jt ,idj to server
11: end for
12: SERVER SIDE:
13: Cluster {θ̂jt}Ni=1 into c1, c2, ...ck
14: else
15: SERVER SIDE:
16: Clients selection using Algorithm 3
17: Pt = participatingclients
18: Broadcast one shared layer and k subsets of different versions of weights
19: CLIENT SIDE:
20: for all each client i ∈ [k] do
21: Compute θ̂jt = θit − η∇Lj(θ

i
t, Dj)

22: Send θ̂jt to server
23: end for
24: end if
25: SERVER SIDE:
26: for all each cluster(c1, c2, ...ck) in parallel do
27: θit+1 = θit +

∑N
j=1

Dj

D
θ̂jt ,i ∈ [k]

28: Cloud server generates shared layers using cluster model
29: end for
30: end for

Algorithm 2
Input: number of clients N , loss function L, number of clusters k, clients Pt participating in

training at round t
1: Server broadcast θit, i ∈ [k]
2: Clients(j ∈ Pt) for identity estimation and training

3: Clients(j ∈ Pt) send model θ̂jt and idj to the CS
4: for all each each cluster(c1, c2, ..., ck) in parallel do do
5: θit+1 = θit +

∑N
j=1

Dj

D
θ̂jt ,i ∈ [k]

6: end for
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Fig. 3. Workflow of PFLIC

broadcast from the cloud server and use these models and its local empirical loss function
Lj() to find the model parameter that minimizes loss by î:

î = argmini∈[k]Lj(θ
i
t, Dj), j ∈ [N ] . (2)

The identity idj :
idj = {idi,j}ki=1 . (3)

idi,j = 1{i = î} of this client is determined by using î to estimate which cluster this
client is in after clustering. Then use θît to perform stochastic gradient descent training

by using local data to compute the model parameter ˆ
θjt of Lj . Therefore, the client sends

the model parameter result ˆ
θjt and the clustering identity idj to the cloud server. When

the clustering results are stabilized, all clients involved in the training receive the model
θît broadcast from a cloud server, train it by local stochastic gradient descent, and update
the model. When a predetermined number of local training sessions is reached, the client
uploads the parameters to a cloud server.
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Fig. 4. One-shot clustering vs. Iterative clustering. Left: When one-shot clustering is per-
formed, the client’s participation in the training does not represent the client’s overall data
distribution, resulting in an incompletely accurate estimate of the client’s identity. Right:
When iterative clustering is performed, it is trained several times before clustering is per-
formed.

4.3. Server Side: Broadcast

Compared to centralized machine learning, where computational costs dominate and com-
munication costs are negligible, communication costs in FL are much higher than compu-
tational costs. Based on previous experience, the communication cost is directly related
to the parameters transmitted among participants. To solve the problem of high commu-
nication costs in FL, we draw on the sparse sharing in sparse sharing proposed by SUN
et al. [30] to allow the sharing of some parameters among different clusters to achieve
PF and reduce the communication cost. Fig. 5 utilizes two representations of the sparse
sharing mechanism to illustrate the concept of sparse sharing.

To reduce the communication cost, we combine sparse sharing by replacing k models
broadcast by the cloud server with one shared layer and k subsets of different versions of
weights, which reduces the transmitted model parameters and lowers the communication
cost. Specifically, At the first FL system training round, the cloud server initializes k
models θi0(i ∈ [k]). After that, these models are sent to all clients j(j ∈ [N ]). In the t-th
round of FL training where the clustering results are not stabilized, the cloud server sends
k subsets of the models θit(i ∈ [k]) and a shared layer to all clients. When the clustering
results are stabilized, the cloud server sends a weighted subset of the model θit(i ∈ [k])
with corresponding clusters and a shared layer to all clients selected to participate in the
training.
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Fig. 5. Two representations of the same layered sharing mechanism case (Three models
share a single layer). Left: Expressed using a convolutional neural network graph struc-
ture. Right: Expressed using a function called ’building block’ form

We use sparse sharing, which not only reduces the number of transmitted parameters
and lowers the communication cost; it also allows the sharing of task parameters between
different clusters, breaks down the barriers between different clusters, facilitates the shar-
ing of knowledge between clusters, and improves the convergence speed and accuracy of
the system.

4.4. Server Side: Client Select

After receiving the model θit(i ∈ k), the client estimates its clustering identity through
training using its experience loss function L(). After receiving the uploaded identity esti-
mation, the cloud server first determines whether the clustering result is stable or not. If it
is not stable, the clustering continues. If it has been stable, no further clustering operation
is performed for subsequent training, and client selection begins.

The previous client selection scheme is generally random [20], which leads to some
clients with unique data distributions being challenging to select; there is little variability
in the clients selected by extraction; some clients are extracted frequently, etc., which
reduces the representativeness of the client population and makes the convergence of the
global model more unstable. This limitation may affect the clustering results. To solve this
problem, this paper proposes a client selection strategy, which selects relatively “good”
clients to achieve fairer federated learning. Algorithm 3 outlines pseudo-code for this part.

To solve the problem raised above and improve the fairness of FL, this strategy se-
lects clients with higher losses and considers their participation rounds simultaneously.
Specifically, after the client uploads the parameters to a cloud server, the server calculates
the value C of the client based on the received loss. Then, the server prioritizes all clients
based on this value C. Assuming that the total number of training rounds for a client in
round t is Sj , we define this value C:

C =

∑Sj

t Ljt

Sj
. (4)



PFLIC: A Novel Personalized Federated... 957

Algorithm 3 Client Select
Input: number of clients N , loss function L, number of clusters k, clients Pt participating in

training at round t, participation rounds tj for the t-th client, value of utility measures Cj
t ,

threshold TS for client participation in training
1: while tj < TS do
2: Add 1 to the number of rounds tj for client j participating in the training
3: Clients Pt involved in training utilize local data for training
4: Compute the value of utility measures of the client j: Cj =

∑Sj
t Ljt

5: Sorting the client’s value of utility measures
6: Select the top n clients with the largest value C in each cluster for the next round of training
7: end while

After sorting, clients with larger value C will be selected to participate in training. Ac-
cording to the above equation, it can be concluded that clients with larger loss values have
a greater chance to participate in training. This aspect makes the model accuracy distri-
bution variance smaller, the client model accuracy distribution more balanced, and the FL
system more fair. V is defined as

V =

∑N
j=1(aj −A)2

N
. (5)

Where A =
∑N

j=1 aj

N is the global model average test accuracy, aj is the accuracy of
each participant, and N is the total number of clients. To ensure training efficiency, a par-
ticipation threshold mechanism is implemented, limiting the maximum number of client
engagements per training round. When a client’s training rounds exceed this threshold,
the client will no longer participate in training, and it would increase the participation rate
of other clients.

The client selection strategy proposed in this section actively selects clients that par-
ticipate in training, which reduces the variance of the model accuracy distribution and
improves the accuracy of both the client and the global model; setting a threshold pre-
vents clients from endlessly participating in training and enhances the participation rate
of other clients.

4.5. Efficiency Analysis

The convergence of iterative clustering in FL has been demonstrated in previous studies
[7]. Furthermore, Cho et al. [4] showed that a biased client selection strategy does not
affect the convergence properties of FL. Therefore, a biased client selection framework
also does not change the convergence property of CFL. Thus, we focus on evaluating
the efficiency of our proposed PFLIC and baseline algorithms (FedAvg and CFL). The
definitions used for our analysis are provided next.

Definition 1: Efficiency(E) is defined as the sum of the computational efficiency(ECal)
and the communication efficiency(ECom). Therefore, the efficiency can be written as fol-
lows: E = ECal + ECom.

Definition 2: Computational efficiency(ECal) is defined as the total computational
cost required to train the model to achieve the desired test accuracy threshold. Assuming
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that the expected test accuracy threshold is Acc, the corresponding number of training
rounds spent by the algorithm is denoted round. Additionally, the computational cost of
one iteration of the algorithm is Cal. Therefore, the computational efficiency ECal can
be written as follows: ECal = Cal ∗ round.

Definition 3: Communication efficiency(ECom) is defined as the total communication
cost required to train the model to achieve the expected test accuracy threshold. Assuming
that the expected test accuracy threshold is Acc, the corresponding number of training
rounds spent by the algorithm is denoted as round. Furthermore, the communication cost
of one iteration of the algorithm is Com. Therefore, the communication efficiency ECom

can be written as follows: ECal = Cal ∗ round.
Based on the number of clients N , the number of clusters k, the participation rate ρ,

the number of model parameters per participant P , and the number of training rounds
round, we present the results of the computational efficiency for different algorithms in
Table 2.

Table 2. Results on computational efficiency between different algorithms

Scheme ECal

FL EFL
Cal = N ∗ Cal ∗ round

CFL ECFL
Cal = N ∗ Cal ∗ round+N ∗ k ∗ log(N)

PFLIC EPFLIC
Cal = N ∗ (Cal + k) ∗ t+N ∗ ρ ∗ Cal ∗ (round− t)

Computational efficiency: Each participant in FL performs local training, so the
computational complexity of each round is the number of participants N multiplied by
the training cost Cal of each participant. Therefore, the computational efficiency ECom

of FL can be written as follows:

EFL
Cal = N ∗ Cal . (6)

Clustering federated learning requires clustering operations in addition to the complexity
of local training. Assuming that the algorithm complexity used for clustering is O(N ∗
log(N)), then the computational efficiency ECal of CFL can be written as follows:

ECFL
Cal = N ∗ Cal +N ∗ k ∗ log(N) . (7)

The computational overhead of PFLIC is divided into pre-stabilization and post-stabilization
computational overheads. Before stabilization, each participant in PFLIC performs local
training and identity estimation, then the computational complexity is EPFLIC

Cal pre =

N ∗ (Cal + k). After stabilization, PFLIC performs client selection, and the selected
participant performs local training, then the computational complexity is EPFLIC

Cal post =
N ∗ ρ ∗ Cal.

Communication efficiency: Federation learning requires each participant to send
model parameters to the central server after each iteration round, so the communication
complexity of FL can be written as follows:

EFL
Com = N ∗ P . (8)
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Clustering federation learning after clustering, only the clustering center communicates
with the central server, so the communication complexity of CFL can be written as fol-
lows:

ECFL
Com = K ∗ P . (9)

The communication overhead of PFLIC is divided into pre-stabilization and post-stabilization
communication overhead. Before stabilization, each participant needs to send model pa-
rameters to the central server, so the communication complexity is EPFLIC

Cal pre = N ∗P .
After stabilization, only the selected participants need to send model parameters to the
central server, so the communication complexity is EPFLIC

Com post = N ∗ρ ∗P , we present
the results of the communication efficiency for different algorithms in Table 3.

Table 3. Results on communication efficiency between different algorithms

Scheme ECom

FL EFL
Com = N ∗ P ∗ round

CFL ECFL
Com = K ∗ P ∗ round

PFLIC EPFLIC
Cal = N ∗ P ∗ t+N ∗ ρ ∗ P ∗ (round− t)

5. Experimental Results

5.1. Experiment Settings

Models and Datasets: We conducted experiments on two real datasets, MNIST and
CIFAR-10). To adhere to the assumption of a potential clustering relationship among
cross-client data, we refer to Ghosh et al. [7] for rotating data on the MNSIT dataset.
In MNIST and CIFAR-10 experiments, We used two Fully Connected Neural Networks
(FCNN) and one Convolutional Neural Network (CNN) model that includes two convolu-
tional layers followed by two fully connected layers. In the first FCNN model, we created
two fully connected layers and chose to share the last fully connected layer. In the second
FCNN model, we created three fully connected layers and chose to share the last fully
connected layer. In the CNN model, we share one convolutional layer and utilize it to
demonstrate the general applicability of our proposed algorithm.

Benchmarks: We compare the performance evaluation of our proposed algorithm
with three well-known federated learning algorithms. The first comparison scheme is the
Fedavg algorithm [20] with improved communication overhead, which reduces the com-
munication overhead of the system by reducing the number of communication rounds in
the federated learning process compared to the previous algorithms. We also compared it
with a one-shot clustering algorithm [6]. [6] provides two different clustering algorithms
based on sample size(one-shot-1) and model similarity(one-shot-2), which do not require
any additional operations on the client side and can be seamlessly integrated into standard
FL implementations. The fourth benchmark [7] is an iterative federated clustering algo-
rithm that alternately estimates the clustering identities of users and optimizes the model
parameters for user clustering via gradient descent.
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Performance Metrics: We will focus on the loss value, the accuracy, the convergence
rate, and the number of communication rounds. The effectiveness of the scheme is verified
by the first three metrics, and the overhead of the scheme is illustrated by the last metric.

Experiment Parameters: In all experiments, we default the learning rate θ is 0.01.
We default the number of local updates per epoch to H = 10. In the MNIST and CIFAR-
10 datasets, we randomly distributed the data evenly across all clients. To avoid accidents,
we used the average results of multiple independent experiments in all experiments.

5.2. Effects of the proposed scheme

Effect of Clients Number: To determine the impact of the amount of data owned by the
user on our scheme, after fixing the number of clusters, we use the same dataset and set a
different number of clients, then the data samples assigned to each client is also changed.
The number of clients varies, and the amount of data the clients have also varies; thus, we
determine whether we can affect the whole system’s performance.

We cannot arbitrarily set the number of clients due to the effect of the sample size
of the dataset itself. Thus, in the MNIST dataset, we set the number of clients m in the
training set to 48, 96, and 192 and the corresponding number of clients in the test set to
8, 16, and 32. In the Cifar-10 dataset, we set the number of clients m in the training set to
50, 100, and 200 and the corresponding number of clients in the test set to 10, 20, and 40.
In Fig. 6 (a), (b) and (e), (f), we compare the accuracy and loss values of our scheme for
three different numbers of users. In Fig. 6 (c), (d) and (g), (h), we compare the standard
deviation of the accuracy and the standard deviation of the loss values of our scheme for
three different numbers of users. As shown in Fig. 6, the performance of m = 48, 96, and
192 is very close. By the time the run reaches 40 rounds, it has roughly stabilized with an
accuracy of 97% and a loss below 0.1.

Intuitively, the size of the data volume owned by the client slightly affects the perfor-
mance of our scheme, which was demonstrated experimentally when the proposed scheme
converges and stabilizes to a sure accuracy after a certain number of training rounds.

Accuracy and Convergence: We designed two sets of experiments in which the per-
formance metrics compared were accuracy and convergence speed. One set was used to
compare the overall performance of PFLIC with the other three baseline methods, and
one set used empirical loss to compare model robustness. We compare the model perfor-
mance of each scheme for a certain number of communication rounds in Fig. 7 and 8,
respectively.

In the MNIST dataset, it is observed that the iterative clustering idea plays a vital role
in improving the performance of the federated learning system, both for training CNN
models and FCNN models. In terms of accuracy, when training the CNN model, as shown
in (a) in Fig. 7, our scheme and IFCA reach 99.40% after stabilization, while the one-shot
clustering scheme and the traditional federated learning scheme are below 80%. When
training the FCNN model, as shown in Fig. 7 (b) and (c), our scheme PFLIC is also more
accurate than the clustered federated learning and traditional federated learning schemes.
Regarding convergence speed, PFLIC and IFCA schemes with iterative clustering ideas
are far better than the single and traditional federated learning schemes. Our scheme has
converged and stabilized in the fiftieth round, while the conventional federated learning
and one-shot clustering schemes are still fluctuating. Due to the data distribution imbal-
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Fig. 6. Comparison of PFLIC schemes under different number of clients (m = 48, 96,
192). (a), (b), (c), and (d) are compared in the MNIST dataset. (e), (f), (g) and (h) are
compared in the Cifar-10 dataset. Specifically, (a) and (e) compare the accuracy of our
scheme for three different numbers of clients under different datasets, respectively. (b) and
(f) Compare the loss of our scheme for three different numbers of clients under different
datasets, respectively. (c) and (g) Compare the standard deviation of the accuracy of our
scheme for three different numbers of clients under different datasets, respectively. (d) and
(h) Compare the standard deviation of the loss of our scheme for three different numbers
of clients under different datasets, respectively
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(f) MNIST-FCNN-2-loss

Fig. 7. Comparison of our scheme PFLIC with FL, one-shot CFL, and IFCA regarding
scheme performance. (a), (b), (c), (d), (e), and (f) compare the three schemes using CNN
models and FCNN models under the MNIST dataset, respectively. Specifically, (a) illus-
trates the accuracy of training CNN models. (b) Illustrates the accuracy of training the first
class of FCNN models (one layer shared and one layer trained separately). (c) Illustrates
the accuracy of training the second class of FCNN models (one-layer shared and two lay-
ers trained separately). (d) Illustrates the loss of training CNN models. (e) Illustrates the
loss of training the first class of FCNN models (one layer shared and one layer trained
separately). (f) Illustrates the loss of training the second class of FCNN models (one layer
shared and two layers trained separately)
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(d) Cifar-FCNN-loss

Fig. 8. Comparison of our scheme PFLIC with FL, one-time CFL, and IFCA regarding
scheme performance. (a), (b), (c), and (d) compare the three schemes using CNN models
and FCNN models under the Cifar-10 dataset, respectively. Specifically, (a) illustrates the
accuracy of training CNN models. (b) Illustrates the loss of training the CNN models. (c)
Illustrates the accuracy of training FCNN models. (d) Illustrates the loss of training the
FCNN models
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ance in the client, the model briefly fluctuates after it stabilizes. Our scheme PFLIC shows
fluctuation in around 190 rounds, while IFCA shows it in around 280 rounds.

In the Cifar-10 dataset, our scheme is less prominent in accuracy and convergence
performance than before because it does not abide by the assumption that there is a po-
tential cluster relationship between clients to set up the data in advance as the MNIST
dataset does. When training the two models, it can be seen from Fig. 8 that after multiple
rounds of training, our scheme still has some improvement in accuracy over the traditional
federated learning scheme.

When constructing the model, we share some layers to promote knowledge sharing
within clusters. This theoretically abandons the model’s accuracy and the system’s con-
vergence speed to a certain extent, and the model’s performance is slightly inferior to that
of the IFCA scheme in specific implementations. However, in some specifics, our scheme
PFLIC is pretty close to IFCA.

Overhead: We divide the overhead into communication and computation overhead. In
this work, the communication overhead refers to the total amount of data and the number
of communication rounds required to be transmitted for federated learning to reach a
predefined performance metric (e.g., a specific accuracy value).

Regarding the number of communication rounds, we list the comparison results of
the number of communication rounds required for different schemes to train the model to
reach a specific accuracy for the first time under different datasets in Table 4. It can be
seen that the two schemes, PFLIC and IFCA, which possess the idea of iterative cluster-
ing, outperform the other three schemes in the experimental results in the MNIST dataset
that follows the assumptions. In the Cifar-10 dataset, which does not follow the assump-
tions, the clustered federated learning scheme (ont-shot-1 and one-shot-2) slightly outper-
forms the other three schemes. However, our scheme does not lag behind the traditional
federated learning scheme either.

Table 4. Comparison of the number of communication rounds required to train a model to
achieve a specific accuracy for the first time under different datasets for different schemes

MNIST Cifar-10

CNN FCNN-1 FCNN-2 CNN FCNN
30% 50% 80% 30% 50% 80% 30% 50% 80% 20% 30% 40% 20% 30% 40%

FL [20] 46 92 279 10 31 176 10 34 176 15 71 245 4 10 123
one-shot-1 [6] 26 92 259 10 18 121 5 26 132 13 41 69 2 3 12
one-shot-2 [6] 24 27 244 5 12 132 10 15 121 16 22 81 4 6 41

IFCA [7] 1 2 8 1 2 13 1 2 13 13 55 143 3 13 58
PFLIC 3 3 10 1 2 119 1 8 157 41 186 233 4 24 130

Regarding the total amount of data transmitted, traditional federated learning only
needs to transmit one global model during each communication. Cluster federated learn-
ing must only transmit one identity-compliant cluster model to the client during each
communication. The IFCA scheme transmits k cluster models during each round of com-
munication. Our scheme PFLIC replaces the k models broadcast by the cloud server with
a shared layer and k subsets of different version weights after the clustering is stabilized.
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(h) Cifar-FCNN-std-loss

Fig. 9. Comparison of our scheme PFLIC with FL and IFCA regarding scheme perfor-
mance. Specifically, (a) and (e) illustrate the standard deviation of the accuracy of training
CNN models under different datasets. (b) and (f) Illustrate the standard deviation of the
loss of training CNN models under different datasets. (c) and (g) Illustrate the standard
deviation of the accuracy of training the first class of FCNN models (one layer shared and
one layer trained separately) under different datasets. (d) and (h) Illustrate the standard
deviation of the loss of training the first class of FCNN models (one layer shared and one
layer trained separately) under different datasets
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After the clustering is stabilized, our scheme only needs to transmit a specific model to
the client. In FL systems, frequent data transmission inevitably brings about a rise in
communication overhead. Compared to the communication overhead, the computational
overhead is relatively small and will not be discussed in this paper.

Facts and theories show that although our scheme adds some overheads for knowl-
edge sharing within the system compared to other schemes, the impact is irrelevant to the
overall overheads.

Fairness: Since the clients involved in training are self-interested and differ from
each other in terms of computational communication resources and data, among others,
how to maximize client incentives, rationally distribute rewards, and promote motivation
among federated participants is essential for sustainable federated learning. We utilize the
standard deviation of accuracy and loss values to illustrate the fairness of our scheme.

Our scheme, PFLIC, selects clients with higher losses and simultaneously considers
their number of participating rounds. Fig. 9 shows the results of the compared schemes
trained with different models and different datasets. We compare the IFCA scheme, which
also has the idea of iterative clustering, with the traditional federated learning scheme.
The MNIST dataset that follows the hypothesis shows that the standard deviation of the
model accuracy distribution of the two schemes with the iterative clustering idea is lower
than the traditional federated learning scheme, indicating a more balanced distribution of
client-side model accuracies. It can be seen on the Cifar-10 dataset that our scheme works
better than the other two schemes that randomly select clients to participate in training.

Our scheme, PFLIC, actively selects clients to participate in training, which reduces
the model accuracy distribution variance and makes the whole system more fair.

5.3. Summary of Experiment Results

From the above experimental results, the iterative clustering idea can significantly ac-
celerate the convergence speed of the system and improve the accuracy of the model to
some extent. It significantly outperforms the baseline scheme in both MNIST and Cifar-
10 datasets, verifying the versatility of its algorithm design. PFLIC improves the perfor-
mance and fairness of both CNN and FCNN structures, but its effect varies depending
on the model characteristics (CNN improvement is more significant). However, it will
increase the overhead of the whole federated learning system when there is no potential
clustering relationship between clients.

The client selection strategy can to some extent can improve the fairness of the system,
motivate the clients to participate in the training, and promote the enthusiasm of the fed-
erated learning participants. The knowledge sharing idea improves the convergence speed
and accuracy of the system to a certain extent while allowing different clusters to share
task parameters, breaking down the barriers between different clusters, and promoting
knowledge sharing between clusters.

Through the synergy of client selection, robust aggregation and communication op-
timisation, the three core problems of data heterogeneity, communication bottleneck and
fairness imbalance in federated learning are solved. All in all, our scheme solves the prob-
lem that a single global model cannot adapt to clients with different data distributions,
and achieves Personalized federated learning, while ensuring the fairness of the federated
learning system.
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6. Concluding Remarks and Future Work

In this work, we design and implement a PFLIC scheme to accomplish a novel personal-
ized federated learning. The proposed scheme designed an iterative clustering algorithm
that utilizes the similarity among clients to solve the problem of data heterogeneity. It
eliminates the chance of single clustering and reduces the computational overhead of
single clustering. Subsequently, we combined sparse sharing to facilitate knowledge shar-
ing among clusters and enable personalized federated learning. Moreover, we designed
a client selection strategy to ensure the fairness of federated learning. By selecting the
clients to participate in the training to ensure the participation rate of all clients in the
training process, we prevent some clients from participating in the training process too
frequently while others do not have the opportunity to receive training. Experimental re-
sults depict that the proposed algorithm performs better than the baseline.

In future directions, we will continue to explore more and better metrics for client
selection and ways to deal with clients who drop out of the network due to unstable
network conditions.

Acknowledgments. This work is supported by the Natural Science Foundation of Fujian Province
under Grant 2022J05106, and the Natural Science Foundation of Hunan Province under Grant
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