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Abstract. Federated Learning (FL) has gained attention for its promising privacy
protection. In FL, clients train local gradients on their data without sharing raw data
to update the global model. However, security issues persist. Attackers can infer
original data from local gradients, compromising privacy, while a malicious cloud
server may tamper with uploaded parameters, leading to incorrect aggregation. Con-
sidering this, we focus on the above issues in FL: (1) privacy protection of the pa-
rameters uploaded by clients and (2) verification of the correctness of the aggregated
result from a cloud server. In response to these issues, this article proposes VSAF,
a verifiable and secure aggregation scheme for federated learning in edge comput-
ing. Using a linear homomorphic hash function, we design a lightweight verifica-
tion algorithm for aggregated gradients. To protect gradient privacy, we combine
the Bloom filter and Shamir’s secret sharing to design a single masking protocol.
Detailed analyses and experiments demonstrate the security and efficiency of the
proposed scheme.

Keywords: Federated Learning, Privacy-preserving, Correctness Verification, Edge
Computing.

1. Introduction

As the Internet of Things (IoT), along with mobile devices, becomes more widespread,
more and more computing tasks can be processed on the edge devices [6,33,37]. In recent
years, edge devices have become increasingly intelligent and more powerful, enabling the
use of edge computing [26]. This allows for transferring computing tasks and stored data
from central servers to devices at the network’s edge [34, 35]. As a result, both comput-
ing efficiency and data privacy protection are improved. Therefore, how to effectively use
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these large numbers of IoT devices and the data they generate has become a hot research
topic in academia and industry [26, 36]. Many institutions and enterprises are conducting
machine learning on edge nodes [5, 7, 11]. For example, the Google team has used its
users’ smartphones for training to predict the next word on the virtual keyboard and per-
form a music recognition search [11]. However, a critical and sensitive issue is that users
would not like Google to access their private data for these services.

To address such an issue, Federated Learning (FL) has received widespread atten-
tion since it has performed well in privacy protection and ensured data security. FL is
a technology that can achieve distributed machine learning whilst protecting data pri-
vacy [25, 27, 31]. In edge computing scenarios like vehicular networking, healthcare,
and finance, FL has been widely used to achieve cross-device, cross-platform, and cross-
institutional machine learning cooperation. Nonetheless, FL still has two issues that need
to be addressed.

The first is how to prevent privacy leakage [12, 18, 24, 41]. Attackers or servers can
infer information about the dataset used for training by the client from the gradients up-
loaded by the client, resulting in privacy leakage of the client. Some works depict this
attack. For instance, Melis et al. [18] proved that the uploaded gradients may expose
the privacy of clients’ local data. Zhu et al. [41] trained on an image dataset and proved
that the client’s gradients would leak information about the images in its private dataset.
Again, the second issue effectively verifies the aggregated result’s correctness [29, 38].
It is possible for a malicious central server to modify the aggregated result of gradients
and return incorrect results, leading to a failure of convergence of the training model. In
addition to this, a lazy server may deliberately omit some users’ gradients to save com-
putational overhead and only aggregate the gradients of some other users, resulting in an
inaccurate global model and affecting the model’s convergence and efficiency [16, 29].
Hence, verifying the correctness of aggregated results while simultaneously protecting
users’ data privacy in an edge computing environment is challenging.

To solve the privacy protection problem, some researchers have contributed their
mechanisms [1, 2, 4, 20] on privacy-protected FL. Phong et al. [20] used additive homo-
morphic encryption to protect model parameters and achieve secure aggregation. How-
ever, homomorphic encryption generates higher communication and computational over-
heads. M. Abadi et al. [1] designed a deep learning framework that integrates differential
privacy and a gradient descent algorithm to protect users’ data privacy. Nevertheless, dif-
ferential privacy can cause an accuracy loss problem. Another more direct method is to
blind the gradient directly. Keith Bonawitz et al. [4] introduced a double masking scheme,
based on the (t, n) threshold secret sharing, to protect users’ gradients. However, this
scheme has a considerable restriction on the threshold t; that is, if the threshold t is less
than or equal to ⌊n2 ⌋, the cloud server may divide all users into two sets: A and B on
average, deceive users in set A (or B) to obtain the secret shares of users in set B (or A);
thereby infringing on the privacy of users in set B (or A). Of course, if the value of t is
too small, the cloud server can divide more sets and then resist such a privacy attack. In
addition, the double masking scheme masks the user’s local gradient twice to protect user
privacy, and two masks will generate more computational overhead and communication
overhead to a certain extent.

To verify the aggregated result’s correctness in FL, existing schemes [16, 29] use ho-
momorphic hash functions HH to verify the aggregated result. Each user uses HH to
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generate proof for local gradients and uploads the hash values to the cloud server. The
users receive the aggregated result of proofs from the server and verify the correctness
of the gradients’ aggregated result by determining if the aggregated result of proofs is
consistent with the proof of the gradients’ aggregated result. However, researches [16,29]
allows the cloud server to collude with some users, and then the cloud server can obtain
the homomorphic hash function owned by the users. Thus, after maliciously modifying
the gradients’ aggregated result, the server can change the aggregated result of hash values
to prevent users from detecting this malicious behavior [9].

To avoid this problem, researchers [8,13,40] delegate the authority to aggregate proofs
to each user, as each user sends gradient’s proof to the cloud server, and the cloud server
broadcasts them to the other users. Next, each user verifies the other users’ proofs. Af-
ter verification passes, all proofs are aggregated and used to verify the correctness of the
aggregated result. These approaches increase the users’ computational and communica-
tion overhead and cannot resist lazy servers’ deletion attacks (Deletion attack refers to the
sluggish behavior of lazy servers to save computing resources and communication over-
head by only summarizing or broadcasting some users’ data. From the user’s perspective,
it is as if the server has ‘deleted’ some users’ data). Therefore, these approaches may
cause inaccurate aggregated results and affect model convergence efficiency.

To address the above issues, we propose a verifiable and secure aggregation scheme
for federated learning in edge computing called VSAF. To protect the privacy of user
gradients, we design a single masking protocol based on the (t, n) threshold secret shar-
ing mechanism and the Bloom technique. This protocol supports the dropout of some
users while also protecting their privacy. To verify the correctness of the aggregated result
while also discovering lazy servers, we developed a lightweight verification algorithm.
This algorithm combines a homomorphic hash function with dual servers, reducing the
computation and communication overheads of the user for verification. The users send
the proofs for verification to the Trusted Authority (TA) and local gradients to the aggre-
gation server, preventing the lazy and tampering behavior of the server by leveraging the
mutual distrust between these two servers. To optimize verification efficiency, we plan to
outsource the verification operation to the TA to reduce the user’s computation overhead.
In addition, since we use the homomorphic hash function for verification, the overhead
for verification is independent of the gradient dimension, which can reduce the user’s
computation and communication loads.

The key contributions of this work are as follows:

(1) Design a single masking scheme to protect the privacy of user gradient and also tol-
erate the dropout of some users. Compared with the double masking scheme, we lift
the restriction on the threshold t and simultaneously reduce some communication and
computation overheads.

(2) Put forward a lightweight verification algorithm that leverages linear homomorphic
hash function to realize the verification for the correctness of aggregated results. This
method gives the aggregation authority of hash values to a trusted authority, which
reduces the computation overhead of user verification, and it can also detect the lazy
aggregation server in time.

(3) Achieve that the communication overhead for verification is independent of the gra-
dient dimension, the dropout rate, and the number of users; thereby diminishing the
communication overhead for verification.
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(4) Implementation and evaluation VSAF. The comprehensive theoretical analysis and
experimental results of the proposed scheme demonstrate its security and efficiency.

The remainder of this article is organized as follows: we first review the related work
in Section 2 and introduce the preliminaries in Section 3. Then, we depict the problem
statement in Section 4, followed by the description of our scheme VSAF in Section 5.
After that, we analyze the security of VSAF in Section 6, and evaluate the performance
in Section 7, and finally, concluding remarks and future directions are given in Section 8.

2. Related Work

2.1. Privacy Protection Schemes in Federated Learning

To address the privacy leakage problem caused by intermediate parameters in federated
learning, many privacy protection schemes [1,4,15,20,23] have been proposed. To prevent
attackers from recovering the training set from intermediate parameters through numer-
ical methods, Phong et al. [20] use additive homomorphic encryption to protect model
parameters and achieve secure aggregation. However, all participants employed the same
key for the encryption and decryption of the model parameters. If any participant leaks the
key pair to the attackers, the privacy of all participants will be at risk of being revealed. In
addition, homomorphic encryption has a high computational overhead. Li et al. [15] use
homomorphic encryption to encrypt the training data and directly train on the ciphertext,
so thus, the data privacy is protected, but the computational overhead is still significant.

Bonawitz et al. [4] propose a double masking scheme, implemented based on secure
multi-party computation and pseudo-random generator. This scheme can achieve privacy
protection for the parameters uploaded by participants while also achieving robustness for
users who are dropping out. However, it incurs high communication and computational
overheads. Shokri et al. [23] propose a joint deep learning framework that prevents the
server from directly accessing the training dataset and uses differential privacy to perturb
some of the gradients. Abadi et al. [1] introduce a deep learning scheme that integrates
differential privacy with a gradient descent algorithm, adding appropriate Laplace noise
during gradient descent so that the local gradient satisfies differential privacy. However,
the differential privacy can lead to the model’s accuracy loss. Although these works [1,23]
achieve privacy protection with smaller computational and communication overheads, it
is necessary to balance privacy and accuracy.

2.2. Verifiable Aggregation Schemes in Federated Learning

Several researches on verifiable federated learning have been done in recent years, such
as [10, 16, 19, 30, 32, 39, 40], and many of them are verifiable federated learning schemes
focused on verifying the correctness of aggregated results [10, 16, 19, 30, 40]. Specifi-
cally, these schemes detect malicious or lazy dishonest behavior of aggregation servers
by verifying the correctness of aggregated results. Other schemes [32, 39] focus on vari-
ous aspects of verification, which are mainly related to detecting server failure issues and
verifying the integrity of the gradients.

In [10,19,30], the server returns the aggregated result and its proof to the users, so they
can utilize the proofs to verify the correctness of aggregated results and justify whether
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the server is trusted or malicious. Zhou et al. [40] utilized homomorphic hashing com-
bined with signature techniques to verify the aggregated result, in which all clients must
take part in the verification process to verify the correctness of the parameters of other
clients. However, with the increase in the number of participants, the time cost of the
verification process increases. Li Lin et al. [16] proposed a discrete logarithm-based ver-
ification scheme that verifies the correctness of the aggregated result and discovers inert
cloud servers simultaneously. However, in the above schemes, each user must validate
other users’ data before verifying the accuracy of the aggregated result. Furthermore, the
increase in the number of users will lead to an increase in verification operations. There-
fore, the larger the number of users, the higher the verification costs. At the same time,
the communication overhead of the verification operation is also increased linearly with
the dimension of the gradient.

To detect the server failure issues and verify the integrity of the gradients, Zhao et
al. [39] and Zhang et al. [32] have proposed different schemes. Zhao et al. [39] intro-
duced the PVD-FL framework that employs a cryptographic-based matrix multiplication
(EVCM) algorithm for the encryption and verification of parameters. However, it can only
verify the incorrect aggregated result caused by problems such as insufficient computing
power and device failure of honest users and does not support detection and verification of
malicious behavior by the dishonest cloud server. Zhang et al. [32] designed a verifiable
federated learning scheme based on an online/offline signature method that realizes the
integrity verification of gradients during the transmission process. However, this scheme
cannot verify the incorrect aggregated result or detect the malicious behavior of the cloud
server.

Unlike previous works, we propose a verifiable and secure aggregation scheme for
federated learning in edge computing (VSAF). The proposed scheme can protect users’
privacy, detect the aggregation server’s tampering and lazy behavior, and effectively re-
duce verification communication and computational overheads.

3. Preliminaries

3.1. Federated Learning

The general federated learning framework is shown in Fig. 1, existing one cloud server
and N clients. Each client is a user, denoted as ui:1≤i≤N , who trains a local gradient
xi:1≤i≤N based on the local dataset Di:1≤i≤N and sends xi to server.

During this training process, the user ui’s gradient is typically computed using the
Stochastic Gradient Descent (SGD) algorithm. Specifically, ui first uses the global model
W and the local dataset Di to compute the gradient, xi

xi = ∇L(W,Di) (1)

Here, xi represents the direction of the steepest descent. The loss function is denoted by
L(•), and its derivative is represented by∇L(•). The inputs to this function are the global
model W and the dataset Di.
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Fig. 1. The general federated learning framework

After receiving enough gradients, the cloud server acts as an aggregation server to ag-
gregate the gradients and send users the aggregated result, which is computed as follows:

z =

N∑

i=1

xi (2)

in which z is the aggregated result.
The users update the global model W based on z and use W to carry out the next

round of training. The global model update is computed as follows:

W = W − η
z

N
(3)

in which, η is the learning rate.
Finally, repeat the above steps until the model converges or reaches the desired train-

ing accuracy.

3.2. Secret Sharing

This scheme employs Shamir’s (t,N)-threshold secret sharing protocol [22]. The secret is
divided into N shares, where N represents the number of users. A pre-set threshold, t, is
established. The secret can only be reconstructed by gathering at least t shares. Precisely,
the (t,N) threshold secret sharing protocol consists of the following steps:

(1) {(ui, si)}ui∈U ← S.share(s, t, U): This sharing algorithm divides the secret s into
N shares. The inputs include the secret s, the threshold t (satisfying t ≤ ∥U∥), and
the user set U (∥U∥ = N represents the number of users in the user set). The output
is the share si for each user ui.

(2) s ← S.recon({(ui, si)}ui∈U ′ , t): This is a reconstruction algorithm. The inputs in-
clude the secret share si from users in the set U ′ and the threshold t, where ui ∈
U ′ ⊆ U and t ≤ u′. The output of the algorithm is the secret s.
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3.3. Homomorphic Hash

We use homomorphic hash functions to construct our verification scheme to achieve ver-
ification for the correctness of the aggregated result from the server and to defend against
forgery attacks and deletion attacks from the server. Here, forgery attacks refer to when
the Cloud Server (CS) forges aggregated results and sends them to the users.

If a file is divided into several file blocks, the homomorphic hash function can inde-
pendently compute the hash value for each block. By aggregating these hash values, we
can derive the hash value for the entire file. This scheme’s homomorphic hash algorithm
comprises three main components:

(1) hi ← HH.hash(x): the Hash algorithm, input, and output are a d-dimensional vector
x and a hash of x. In this scheme, the d-dimensional vector x refers to the user ui local
gradient, and hi is the gradient’s hash value of the user ui. The specific calculation
process of the hash value hi can be expressed as follows:

hi =

d∏

j=1

g
xj

j mod p (4)

Here, we randomly select d distinct elements from the cyclic group G of prime order
q, where gj is the jth element. xj denotes the jth dimensional element of vector x and
p is a large prime number.

(2) HH proof ← HH.agregate(hi): This is the aggregation algorithm for hash val-
ues. The input is the hash value of each user, and the output is the aggregated value
of all the user hashes, called HH proof in this scheme, which is used to achieve
verification for the accuracy of aggregated results from the server.

(3) HH va← HH.verify(HH proof, z): This is a verification algorithm designed to
check the correctness of the aggregated result from the cloud server. The inputs are
the aggregated result HH Proof of all the user hashes and the aggregated result z of
all the user local gradients. The output is HH va, representing the evaluation of the
aggregated result, and its value is either 0 or 1: the result is correct, and verification
passes with value 1, and 0 if otherwise. The above process is specifically formulated
as follows:

HH proof
?
= HH.hash(z) (5)

3.4. Bloom Filter

This work employs the Bloom filter [3] to efficiently determine whether a query element
belongs to a given set S of n elements. Using k independent hash functions BFH1, BFH2,
. . . , BFHk, each element in S is mapped to k positions in an m-bit vector BF , initially
set to 0. Adding an element involves setting the k mapped positions to 1. To check mem-
bership of an element w, BFHi(w) (1 ≤ i ≤ k) is used to verify if all k positions are 1.
If any position is 0, w /∈ S; otherwise, w is assumed to be in S. While Bloom filters opti-
mize query efficiency and memory usage, they are prone to false positives, where w /∈ S
but is falsely identified as a member. The false positive rate is (1 − e

nk
m )k, minimized to

2−k when k = (ln 2) · mn .
In this scheme, we use the Bloom filter to defend the server against deceiving attacks

by verifying that the user requested by the server is dropped. The process unfolds as
follows:
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(1) BFi ← BFH(ui): This is a hash algorithm, where the input is the identity number
ui of the online user and is mapped onto the vector BFi through k independent hash
functions BFHi:1≤i≤k. BFi represents the online status of the user ui and is the
proof that the user is online.

(2) BF ← BF.aggregate(BFi): This aggregation algorithm will map all online users
to a vector BF . The input is the mapping vector for each user, and the output vector
represents the online status of all users. The calculation process of vector BF is:

BF =
⋃

ui∈µ

BFi (6)

where µ denotes the set of online users.
(3) BF va← BF.verify(BF, S): This is a verification algorithm. The input is the set S

of some users and the vector BF that reflects the user’s online status. This algorithm
is used to verify whether the users in set S belong to online users. The output value
is 0 or 1. If BF va = 0, it indicates that users in set S are not online. If BF va = 1,
it indicates that the users in set S are online users.

3.5. Key Agreement

This scheme uses the Diffie-Hellman (DH) key agreement protocol to create a secure
channel between any two users, and this channel is used to negotiate the generation of
shared random numbers. Specifically, we acknowledge that a group G has a prime order
q, and g is the generator of G. Subsequently, the DH protocol in this scheme is composed
of these two algorithms:

(1) (ski, g
ski) ← DH.gen(G, p, q): This algorithm is a key pair generation algorithm.

The output key pair (ski, gski) is the public and private keys of the user ui respec-
tively.

(2) ski,j ← DH.agree(ski, g
skj ): The algorithm is a shared key generation algorithm.

The inputs are the private key ski and the public key gskj , which belong to user ui

and user uj , respectively. The output is the shared key si,j , enabling secure commu-
nication between users ui and uj .

4. Problem Statement

In this section, we initially present the system model, followed by an introduction to the
threat model, our design goals, and an overview of our VSAF.

4.1. System Model

The proposed system contains three types of entities: N users provide data at the edge, a
cloud server (CS), and a trusted authority (TA), as depicted in Fig.2 the system model of
the proposed VSAF.

Users: The participants who join federated learning are typically computing nodes at
the network edge, such as smartphones, computers, and other IoT devices. Each user has
a local dataset and is trained based on the local dataset.
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4. Return the aggregated proofs

Fig. 2. System model of VSAF

Cloud Server (CS): In this system, the cloud server collects the local gradients that
the users upload and aggregates the gradients. Then, the server sends the aggregated result
to the users. Using this result, users update the global model and proceed to the next round
of training.

Trusted Authority (TA): TA mainly generates and distributes initialization parame-
ters in this system. Specifically, TA generates some initialization parameters for the user,
such as the initial global model and the key pairs for encryption. In addition, it is respon-
sible for generating the users’ online proofs, which can help the users resist the deceiving
attack of the server. TA also generates the aggregation verification proof, assisting the
users to verify the correctness of the aggregated result from the server.

4.2. Threat Model

We assume the following threat model:

(1) Malicious and lazy CS: We consider that CS may tamper with users’ data or omit
some users’ data to save computational load during the aggregation process. There-
fore the CS in this scheme is not honest but a curious server.

(2) Semi-honest Users: In this system, the users perform the protocol honestly despite
interested in other users’ data, and attempting to get access to other users’ data.

(3) TA: TA is trustworthy, and will strictly adhere to the protocol, and will strive to
maintain the privacy of users.

In this scheme, we have the following assumptions for the threat model: the CS cannot
collude with the TA but may collude with fewer than t users and tamper with or delete
user-uploaded data during aggregation. The CS can also launch deception and deletion
attacks during parameter aggregation and verification to extract users’ local gradients or
compromise the aggregated result.

Deceiving attacks: While resolving the dropout problem, since the CS is not trust-
worthy, it may deceive the online users by falsely claiming that certain users have dropped
out to obtain their secret shares. Then, CS reconstructs the masks of these users, enabling
it to compute their local gradients and thus violate their privacy.

Deletion attacks: In typical verification schemes, users send their local gradients and
corresponding proofs to the CS, which then aggregates and distributes the results along
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with the proofs to the users for verification. However, to reduce computational and com-
munication overhead, the lazy CS may aggregate only the gradients from a subset of users
and send the aggregated result along with their proofs. It appears the server has ”deleted”
the data from specific users, and users cannot detect this deletion through the verification
algorithm.

4.3. Design Goals

Specifically, this work should meet the following design goals:

• Privacy. Our proposed VSAF aims to protect users’ gradients’ privacy, preventing
adversaries from recovering users’ sensitive data from the gradients and defending
against deceiving attacks.

• Verification. VSAF should be able to detect deletion attacks to ensure the correctness
of the aggregated results.

• Efficiency. VSAF aims to achieve efficient communication and computation for ver-
ification, saving on communication and computational overheads.

4.4. Overview of VSAF

The processes of VSAF are divided into four rounds: negotiation and distribution of keys,
generation and distribution of shares, generation and uploading of ciphertexts and proofs,
and aggregation and verification of parameters. We will explain these four rounds in detail
in the next section.

(1) Negotiation and Distribution of Keys (Round 1): TA generates key pairs for each
user and public parameters HHpp and BFpp for the homomorphic hash function and
bloom filter algorithm. Then, TA distributes key pairs and public parameters to the
corresponding users.

(2) Generation and Distribution of Shares (Round 2): All users share their one private
key through Shamir’s secret sharing technique. Then, the users encrypt the shares and
distribute the ciphertext of the shares to the corresponding users with the help of the
server.

(3) Generation and Uploading of Ciphertexts and Proofs (Round 3): According to
the DH protocol, any two users negotiate a shared key and then use this key as a
seed to generate a mask for encrypting the local gradient. Each user uses the bloom
filter and homomorphic hash function to generate online proof and verification proof.
Finally, the ciphertexts and proofs are sent to CS and TA.

(4) Aggregation and Verification of Parameters (Round 4): The users verify the CS’s
request based on the online proof and upload the secret shares of the dropped users.
CS recovers the masks using the secret shares, then derives the unbiased aggregated
result based on these masks, and finally sends this result to online users. The users
verify the correctness of the aggregated result based on the proof of verification.
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Implementation of VSAF

Round 1 (Negotiation and Distribution of Keys)
TA :
• Generate two key pairs (Npk

i , Nsk
i )← DH.gen(G, p, q) and (Mpk

i ,Msk
i )← DH.gen(G, p, q) for each user ui.

• Generate public parameter HHpp of the linear homomorphic hash algorithm.
• Generate public parameter BFpp of the bloom filter algorithm.

• Send (Npk
i , Nsk

i ), (Mpk
i ,Msk

i ), HHpp and BFpp to the corresponding users.
User ui :
• Receive {(Npk

i , Nsk
i ), (Mpk

i ,Msk
i ), uid

i , HHpp, BFpp} from TA.

• Send two public keys (Npk
i ,Mpk

i ) to CS, and use the CS to broadcast the public keys (Npk
i ,Mpk

i ) to other users.
CS :
• Receive (Npk

i , Nsk
i ) from users. Set µ1 as the set of users whose messages are received by CS, in which µ1 ⊆ µ and µ1 is the set of all users.

Moreover, ensure that |µ| ≥ t.
• Generate the id number ui for user ui ∈ µ1, so that CS can number the users who sent the messages, where all the ui are different from

each other and used to generate users’ online proofs.
• Send {ui, N

pk
i ,Mpk

i }ui∈µ1
to each user ∈ µ1.

Round 2 (Generation and Distribution of Shares)
User ui :
• Receive {ui, N

pk
i ,Mpk

i }ui∈µ1
from CS.

• Generate the shares of Nsk
i as {(ui, si,j)}uj∈µ1

← S.share(Nsk
i , t, | µ1 |), where si,j is the share of user ui to user uj .

• Compute Ci,j ← DH.Enc(DH.agree(Msk
i ,Mpk

j ), ui || uj || si,j), where Ci,j is the ciphertext of user ui to user uj .
• Send the ciphertext {Ci,j}uj∈µ1 to CS.

CS :
• Receive the ciphertext {Ci,j}uj∈µ1

from user ui ∈ µ2, in which µ2 ⊆ µ1 and µ2 is the set of users whose messages are received by CS. In
addition, ensure that | µ2 |≥ t.

• Broadcast the ciphertext {Ci,j}uj∈µ1 to user uj ∈ µ2.
Round 3 (Generation and Uploading of Ciphertexts and Proofs)
User ui :
• Receive the ciphertext {Cj,i}ui∈µ2,uj∈µ1

and ensure that µ2 ⊆ µ1 and | µ2 |≥ t.

• Negotiate the shared key Si,j ← DH.agree(Nsk
i , Npk

j ) with user uj ∈ µ2 according to the DH protocol, where Si,j is the shared key between
user ui and user uj .

• Compute the masks mski,j ← PRG(Si,j), where PRG() is a pseudorandom generator.
• Get a local gradient xi, after training on local dataset.
• Mask the gradient xi as x̂i ← xi +

∑
uj∈µ2:i<j mski,j −

∑
uj∈µ2:i>j mski,j .

• Compute the verification proof of the local gradient hi ← HH(xi).
• Compute the online proof BFi ← BFH(uid

i ), where uid
i is the identity number for user ui.

• Send the encrypted gradient {x̂i} , and proofs {hi, BFi} to CS and TA, respectively.
CS :
• Receive {x̂i} from user ui ∈ µ3, where µ3 is the set of users who send messages to CS and TA. Besides, ensure that µ3 ⊆ µ2, | µ3 |≥ t.
• Send a list of µ2\µ3 to each user in µ3.

TA :
• Receive {hi, BFi} from user ui ∈ µ3, where µ3 is the set of users who send messages to CS and TA. Furthermore, ensure that µ3 ⊆ µ2,
| µ3 |≥ t.

• Compute the verification proof of the aggregated result as HH proof ← HH.aggregate(hi).
• Compute the online proof of all the users in the set µ3 as BF ← BFH.aggregate(BFi).
• Send the proofs {HH proof,BF} to each user ui ∈ µ3.

Round 4 (Aggregation and V erification of Parameters)
User ui :
• Receive a list of µ2\µ3 form CS and the proofs {HH proof,BF} from TA.
• Compute BF va ← BF.verify(BL, µ2\µ3), where BF va is used to determine whether the users in µ2\µ3 are online or dropout. If the

verification passes, then continue. Otherwise, abort and start over.
• Decrypt Ci,j from dropped users as {ui || uj || si,j} ← DH.Dec(DH.agree(Msk

i ,Mpk
j ), Ci,j).

• Send {ui || uj || si,j}uj∈µ2\µ3
to CS.

CS :
• Receive {si,j}uj∈µ2\µ3

form users ui ∈ µ4, where µ4 ⊆ µ3 and | µ4 |≥ t, otherwise, abort and start over.

• Reconstruct private keys Nsk
i ← S.recon({ui, si,j}uj∈µ4

, t) for users ui ∈ µ2\µ3.

• Compute the shared key Si,j ← DH.agree(Nsk
i , Npk

j ) and the masks mski,j ← PRG(Si,j), where ui ∈ µ2\µ3 and uj ∈ µ3.
• Compute the aggregated result as ∑

ui∈µ3

xi ←
∑

ui∈µ3

x̂i −
∑

ui ∈ µ3,
uj ∈ µ2\µ3 : i < j

mski,j +
∑

ui ∈ µ3,
uj ∈ µ2\µ3 : i > j

mski,j

• Broadcast the aggregated result z =
∑

ui∈µ3
xi to the user ui ∈ µ4.

User ui :
• Receive the aggregated result z form CS and verify the correctness of the aggregated result z as HH va← HH.verify(HH proof, z).
• Accept z and move to Round 1, if the HH va = 1. Otherwise, abort and start over.

Fig. 3. The detailed description of VSAF

5. The Proposed VSAF

The proposed scheme VSAF includes three types of entities: N users at the edge, a cloud
server (CS), and a trusted authority (TA). In addition, it also includes four rounds: Nego-
tiation and Distribution of Keys (Round 1), Generation and Distribution of Shares
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(Round 2), Generation and Uploading of Ciphertexts and Proofs (Round 3), Aggre-
gation and Verification of Parameters (Round 4). The interaction details of each entity
in different rounds are shown in Fig. 3.

5.1. Negotiation and Distribution of Keys (Round 1)

TA mainly generates key pairs (Npk
i , Nsk

i ) and (Mpk
i ,Msk

i ) for users, as well as the
necessary public parameters HHpp and BFpp for the homomorphic hash function and
the bloom filter algorithm. Then, the TA assigns an identifier to each user. After that, it
sends the key pairs and the public parameters to the corresponding users. Specifically, the
key pairs generated by TA for user ui are as follows:

(Npk
i , Nsk

i )← DH.gen(G, p, q) (7)

Similarly, (Mpk
i ,Msk

i ) is also generated in this way. Npk
i and Mpk

i are public keys,
and Nsk

i and Msk
i are private keys.

After receiving messages from TA, all users will use the CS to broadcast the public
keys Npk

i and Mpk
i to other users. Set µ1 as the users who send messages to the CS.

After receiving the messages, the CS generates the identifier ui to number the users who
sent these messages and then sends {ui, N

pk
i ,Mpk

i }ui∈µ1
to each user. Note that all users

have only two states: online or dropped.

5.2. Generation and Distribution of Shares (Round 2)

Let µ2 be the set of users who perform secret sharing in Round 2. After completing the
Round 1, the user ui(ui ∈ µ2) secretly shares private key Nsk

i to other users. The purpose
of secret sharing is to allow the CS to request the secret shares of the dropped users from
the online users, thereby recovering the dropped users’ private keys. Subsequently, the CS
calculates the masks to correct its aggregated result. The secret share procedure is shown
below:

{(ui, si,j)}uj∈µ1
← S.share(Nsk

i , t, | µ1 |) (8)

where S.share(•) is the Shamir’s (t,N) threshold secret sharing algorithm. In the input,
Nsk

i is the private key of user ui, |µ1| is the number of shares into which Nsk
i needs to

be divided, and t represents the minimum number of shares required to reconstruct Nsk
i .

The output includes |µ1| secret shares si,j that user ui sends to user uj .
User ui sends shares to the CS, which forwards them to the corresponding users. The

message sent is shown below:

Ci,j ← DH.Enc(DH.agree(Msk
i ,Mpk

j ), ui || uj || si,j) (9)

where DH.Enc(•) is an encryption algorithm based on the DH protocol that encrypts
the user identity numbers ui, uj , and the secret share si,j using DH.agree(Msk

i ,Mpk
j )

as the encryption key. Ci,j denotes the ciphertext sent from user ui to user uj .
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5.3. Generation and Uploading of Ciphertexts and Proofs (Round 3)

After Round 2, the users receive Ci,j from CS and will decrypt them in Round 4.
After that, any two users negotiate the shared key Si,j between them according to the

DH protocol. The negotiation procedure is as follows:

Si,j ← DH.agree(Nsk
i , Npk

j ) (10)

Here, DH.agree(•) is the shared key negotiation algorithm, which takes as input the
private key Nsk

i of user ui and the public key Npk
j of user uj . The output is the shared

key Si,j between user ui and user uj . The shared key Si,j serves as the seed for a pseudo-
random generator responsible for producing masks. The generation formula is as follows:

mski,j ← PRG(Si,j) (11)

where PRG(•) is a pseudo-random generator. It takes as input a shared key, which is
negotiated between users ui and uj following the DH protocol. The output is the mask
mski,j , which is used by user ui and user uj for masking the local gradient; moreover,
the mask is equal in length with the gradient.

Every user performs training on their local dataset and obtains their local gradient,
denoted as xi.

After local training, user ui encrypts the local gradient xi as follows:

x̂i ← xi +
∑

uj∈µ2:i<j

mski,j −
∑

uj∈µ2:i>j

mski,j (12)

In the abovementioned formula, mski,j is the mask shared by users ui and uj , where
both ui and uj belong to µ2. ui uses mski,j to mask the local gradient xi, and then
obtains the encrypted gradient xi by adding mski,j to the local gradient xi (where i<j),
subtracting mski,j (where i>j).

Next, the user ui calculates both the local gradient’s verification proof and the online
proof:

hi ← HH(xi) (13)

BFi ← BFH(ui) (14)

Finally, ui sends the encrypted gradient {x̂i} to the CS, the verification proof, and the
online proof {hi, BFi} to the TA.

Let µ3 be the set of users who send messages to CS and TA. The CS sends a list of
µ2\µ3 to each user in µ3, requesting the offline users’ shares for unmasking the aggre-
gated result. Here, µ2\µ3 represents the users in set µ3 but not in set µ2.

TA aggregates the verification proofs hi and online proofs BFi of all users and broad-
casts the two aggregated proofs to users. The aggregation mechanism is as follows:

HH proof ← HH.aggregate(hi) (15)

BF ← BFH.aggregate(BFi) (16)

where HH proof denotes the verification proof of the aggregated result, which is used to
verify the correctness of the gradient aggregated by CS. BF denotes the online proof of
all users in the set µ3, and any user can verify whether a particular user is online through
BF .
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5.4. Aggregation and Verification of Parameters (Round 4)

After receiving the list µ2\µ3 from the CS, to defend against the CS’s deceiving attack, the
users will verify whether the users in µ2\µ3 are dropped users. The verification procedure
is as follows:

BF va← BF.verify(BL, µ2\µ3) (17)

The BL.verify(•) algorithm is a verification algorithm, used to verify whether the users
in µ2\µ3 are dropped out. The inputs are the set of dropped users µ2\µ3 sent by CS and
the users’ online proof BL sent by TA. If the output is 1, it indicates that all users in the
set µ2\µ3 are offline, and the verification is successful. If not, the verification fails, and
users decline to send the shares of users in the set µ2\µ3 to the CS.

In Round 3, each online user receives the ciphertext Ci,j of the secret shares from
other users. Therefore, after the verification is passed, users will only decrypt the Ci,j of
those who have been dropped, specifically those who have shared their secret shares but
have not uploaded the ciphertext of their gradients. The decryption algorithm is expressed
as follows:

{ui || uj || si,j} ← DH.Dec(DH.agree(Msk
i ,Mpk

j ), Ci,j) (18)

where DH.Dec(•) is a decryption algorithm based on the DH protocol that decrypts the
ciphertext Ci,j using DH.agree(Msk

i ,Mpk
j ) as the decryption key.

Next, users send the shares of the dropped users to CS. Let µ4 represent the set of
users who send information to the CS. CS receives shares from at least t users; otherwise,
it stops. After receiving enough shares, CS reconstructs the private key Nsk

i of the dropped
user ui, where ui ∈ µ2\µ3. The reconstruction algorithm is as follows:

Nsk
i ← S.recon({ui, si,j}uj∈µ4

, t) (19)

CS calculates the masks of the dropped users based on Nsk
i , and calculated as follows:

mski,j ← PRG(DH.agree(Nsk
i , Npk

j )) (20)

For the subscripts i and j, where ui ∈ µ2\µ3, and uj ∈ µ3

Afterwards, CS uses mski,j to correct the aggregated result:
∑

ui∈µ3

xi ←
∑

ui∈µ3

x̂i −
∑

ui ∈ µ3,
uj ∈ µ2\µ3 : i < j

mski,j +
∑

ui ∈ µ3,
uj ∈ µ2\µ3 : i > j

mski,j (21)

Lastly, CS sends the aggregated result z =
∑

ui∈µ3
xi to each user. After receiving z, the

users will verify it. The verification process is as follows:

HH va← HH.verify(HH proof, z) (22)

where HH.verify(•) represents the aggregated result verification algorithm, and the in-
puts are the verification proof HH proof and the aggregated result z. If the output is 1, it
indicates the aggregated result is accurate, the verification is successful, and users accept
the aggregated result z, moving on to the next training round. If not, the verification fails,
leading to a halt in training and a restart.
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6. Security Analysis

This section will analyze and prove the security of our scheme. Firstly, we will demon-
strate that our scheme will protect user local gradients’ privacy (Input Privacy). Secondly,
we will conduct a security analysis on server forgery and deletion attacks. Finally, we will
demonstrate that our verification scheme is correct.

6.1. Privacy Protection of the Gradients

Firstly, as can be inferred from the previous text, we employ a single masking scheme to
ensure the privacy and security of the user’s local gradient. Every user masks the local
gradient as:

x̂i = xi +
∑

uj∈µ2,i<j

mski,j −
∑

uj∈µ2,i>j

mski,j (23)

There is a lemma that, if we have some uniformly random numbers added to the inputs
of users, the result will appear uniformly random.

In our threat model, the server is honest but curious. Moreover, it may collude with
fewer than t − 1 users to infer a specific user’s input privacy. In addition, if the server is
malicious, the subsequent sections on correction of the aggregated result and correction
of verification will ensure that our scheme is secure. Next, before proving our scheme’s
input privacy, we must introduce some useful notation. We denote Cloud Server by the
set S, the n users participating in federated learning by the set U , and introduce a security
parameter k for the cryptographic primitives, using t to denote the threshold in Shamir’s
secret sharing. Because of the user dropout problem, we denote by Ui the set of users
whose local parameters are received by the CS in round i − 1. The number of users may
change each round as users can drop out of training anytime. Hence, we have U3 ⊆ U2 ⊆
U1 ⊆ U . We denote by Ui\Ui+1 the users whose messages were received by the server
in round i− 1, but not received in round i.

Let W ⊆ U ∪ S be a set of corrupt parties. The combined perspective of all parties
within W is characterized by a random variable REALU,t,k

W (xU , U1, U2, U3), where k
stands for a security parameter and t is the threshold in our protocol. This view includes
the parties’ input in W , randomness, and all communications received from parties out-
side of W . Additionally, the party will remain receiving messages until it drops out and
stops receiving messages. Then, we will postulate two theorems to discuss the security
of the input privacy in our protocol. In these theorems, one considers the collusion of ac-
tive adversarial users, and the other is based on the collusion between Cloud Servers and
users. Ultimately, they can show that any collusion between these parties cannot infringe
on the privacy of others.

Theorem 1: (Safeguarding against collaborative assaults from multiple users) For
all k, t, xU and U3 ⊆ U2 ⊆ U1 ⊆ U , a PPT simulator SIM exists with an output
indistinguishable from REALU,t,k

W :

REALU,t,k
W (xU , U1, U2, U3) ≡ SIMU,t,k

W (xU , U1, U2, U3) (24)

Proof: As we only consider the collusion between multiple users excluding the Cloud
Server, the joint view of the parties in set W is independent of the inputs from users not
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in W . A perfect simulation can be achieved by having the simulator operate all honest
users on false inputs while running the honest but curious users on their actual inputs. As
the messages received by users from Cloud Server only include the set of the online users
and final aggregation but do not (contain) the true value of x̂n, the simulator can utilize
random numbers to mask all honest users’ inputs, instead of using true values. Hence,
the parties in W will be unable to determine if the input from honest users is true or
dummy. Ultimately, the simulated perspective of parties in set W is identical to the actual
perspective REALU,t,k

W .
Theorem 2: (Guarding against collaborative assaults from users and the Cloud Server)

For all k, t, U, xU ,W ⊆ U ∪ S, nW = |W\S|, nW < t, and U3 ⊆ U2 ⊆ U1 ⊆ U , a
PPT simulator SIM exists, generating an output that, computationally, cannot be differ-
entiated from the output of REALU,t,k

W :

REALU,t,k
W (xU , U1, U2, U3) ≡ SIMU,t,k

W (xU , U1, U2, U3) (25)

Proof: We will employ a conventional hybrid argument to provide proof for the above
theorem. The approach is gradually executing an array of secure alterations on the actual
view, which eventually results in the output of the simulated view being computationally
identical to the output of the real view.

Hyb1: In this hybrid, regarding the interaction among users in Round 1, we em-
ploy a random numeral to substitute the shared key among any interacting entities for
the message’s encryption/decryption. Specifically, assuming that we fix any two users
ui, uj ∈ U2\W,ui ̸= uj , ui and uj are honest users, so then the simulator modifies the
conduct of all upright participants by employing a uniformly random numeral ri,j as a
replacement for the shared key DH.agree(Nsk

i , Npk
j ) between ui and uj . Subsequently,

ui and uj will use a random number ri,j to encrypt and decrypt the messages based on the
symmetric encryption system. Eventually, the DDH assumption will ensure this hybrid
is computationally identical to the real protocol.

Hyb2: In this hybrid, the simulator will use a random number (this random number is
the same length as the data that honest users need to encrypt) to replace the data that all
honest users ui(ui ∈ U2\W ) want to encrypt. In the subsequent Rounds, when the CS
requires users to upload the offline users’ shares to unmask the ciphertexts of the offline
users, all honest users will upload the real shares (i.e., the shares of random numbers used
by this hybrid). By altering the data to be encrypted, we ensure, through the properties
of symmetric authenticated encryption, that this hybrid is distinguishable from the actual
protocol.

Hyb3: Here, the simulator will use shares of random numbers with appropriate length
instead of NSK

i ’s shares from all honest users ui who are in the set U2 but not in W .
Hence, the security of Shamir’s secret sharing ensures the indistinguishability of this hy-
brid from the actual protocol.

Hyb4: In this hybrid, we first select any two users ui and uj′ , who are from the set
U2\W and ui ̸= uj′ . Then, for the shared key Si,j′ = DH.agree(Nsk

i , Npk
j′ ) between ui

and uj′ , the simulator selects a random number S
′

i,j′ uniformly for replacement. Specifi-
cally, for the user ui, instead of sending
x̂i = xi +

∑
uj∈U2:i<j PRG(Si,j) − ∑

uj∈U2:i>j PRG(Si,j),
SIM submits
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ŵi = wi+
∑

uj∈U2\{uj′}:i<j PRG(Si,j)−
∑

uj∈U2\{uj′}:i>j PRG(Si,j)+△i,j′PRG(S
′

i,j),

where△i,j′ =

{
1, i < j′

−1, i > j′

For uj′ , there exists x̂j′ = xj′ +
∑

ui∈U2
△i,j′PRG(S

′

i,j)
Subsequently, the DDH assumption certifies this hybrid as indistinguishable from

the authentic protocol.
Hyb5: Based on the previous hybrid, the simulator, in this hybrid, replaces the output

of PRG(s
′

i,j′) with a random number that is uniformly selected. The simulator merely
replaces the output of PRG, thus the security of the pseudo-random generator makes this
hybrid indistinguishable from the actual protocol.

As can be seen from the previous hybrids, the distribution of these hybrids cannot be
differentiated from the actual protocol, so thus, this completes and finalizes the proof.

6.2. Correctness of the Aggregated Result

By following our scheme honestly, the server can ensure that an accurate aggregated result
z is ultimately obtained by the users. If the users and Cloud Server (CS) follow our scheme
honestly, users can ultimately get a correct aggregated result z.

In Round 4, the CS requests the shares of dropout users after receiving parameters
uploaded by the online users. After the request from the CS, is verified by the users, the
CS receives the secret shares from the users who have dropped out. The CS retrieves the
dropout users’ private key Nisk and calculates its mask mski,j . Finally, the CS calculates
the aggregated result:

z =
∑

ui∈U3

xi =
∑

ui∈U3

x̂i −
∑

ui∈U3,uj∈U2\U3

△i,jmski,j (26)

where△i,j =

{
1, i > j

−1, i < j

Therefore, according to the above formula, CS can ultimately obtain the correct ag-
gregated result for online users.

6.3. Correctness of Verification

Up to t− 1 users are allowed to collude with the server in our scheme, which means that
the CS can obtain the homomorphic hash function HH and users’ verification scheme.
Therefore, if we make the CS aggregate the hash values of the users’ gradients or make
the CS broadcast the hash values to each user to aggregate the hash values, a malicious CS
may tamper with the aggregated result of the users’ gradients and modify the aggregated
result of the hash values at the same time, or a lazy CS may ”delete” the local gradients
and the hash values of some users in order to save computational resources, which may
result in inaccurate aggregated result.

Under our assumptions above, neither of these two malicious behaviors of the CS will
be detected by users, which will violate the original intention of verifiable federated learn-
ing. Therefore, our scheme delegates the operation of merging the hash values of the local
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gradient updates from the users to the TA. In this scenario, the CS may tamper with the
users’ gradients or omit some users’ gradients during aggregation to save computational
overhead. Alternatively, the CS may add noise to affect the aggregated result’s accuracy.
However, since the TA and CS are not colluding, these actions will cause the hash value
of the aggregated result to differ from the aggregated result of hash values. By comparing
these two values, each user can detect these malicious behaviors by the server. Therefore,
this scheme can resist malicious attacks such as forgery and deletion from CS.

7. Performance Analysis and Evaluation

7.1. Performance Analysis

In this subsection, we choose five MPC (Multi-Party Computation) based schemes, which
are VerifyNet [29], VerSA [9], PFLM [13], VERIFL [8] and PVFL [40] as well as a
HE (Homomorphic Encryption) based scheme (VPFL [32]) to analyze and compare the
communication and computation overheads. In Table 1, n is used to represent the total
number of users, d stands for the gradient dimension, and ϕ signifies the count of users
who have dropped out.

Communication Overhead Analysis In Table 1, we analyze the outgoing communica-
tion of the user and the server in these schemes. [29] first proposed a secure and verifiable
federated learning scheme, but it did not achieve the independence of the communica-
tion overhead for verification from the gradient dimension. Analysis of this scheme re-
veals that the communication overheads for each user and the server are O(n + d) and
O(n2 + nd + n + d), respectively. In [9], the main communication overhead lies in the
user uploading the encrypted gradient and n secret shares and the server forwarding the
data uploaded by the user. Thus, the communication overhead for each user is O(n+ d),
while for the server, it is O(n2 + nd). [13] adopts a double masking protocol to protect
privacy, and the user needs to receive n − 1 masked messages from the server to verify
the correctness of the aggregated result. Thus, the communication overheads for each user
and the server are O(nd) and O(n2 + nd), respectively.

Again, in the work [8], all users need to receive the commitments and hash values of
other online users from the server, which leads to some communication overhead, we can
derive that the communication overhead for each user is O(n + d), while for the server
is O(n2 + nd). In [40], the communication overhead is mainly caused by the differential
privacy mechanism, and the user needs to negotiate noise with other users. Therefore, its
communication overhead is O(nd) for each user and is O(n2d) for the server. [32] pro-
poses a distributed encryption of gradients algorithm, which can reduce the computational
overhead of encryption but increases the communication overhead. Therefore, the com-
munication overheads for each user and the server are O(nd) and O(n2d), respectively.

Computation Overhead Analysis. Since VPFL [32] realizes the integrity verification
of gradients during the transmission process, but it cannot verify the incorrect aggregated
result or detect the malicious behavior of the cloud server, we only analyze and compare
the computational overhead of these schemes [8,9,13,29,40]. The comparison of the com-
putation overheads between these schemes is shown in Table 1. The privacy-preserving
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Table 1. computation and outgoing communication overhead
Outgoing Communication Computation Overhead

Schemes Each user Server Each user Server
VerifyNet [29] O(n+ d) O(n2 + nd+ n+ d) O(nd+ n) O(n2 + nd+ d)

VerSA [9] O(n+ d) O(n2 + nd) O(nd+ n) O(n2 + nd)

PFLM [13] O(nd) O(n2 + nd) O(n2 + nd+ n) O(n2d)

VERIFL [8] O(n+ d) O(n2 + nd) O(nd+ n+ d) O(n2 + nd)

PVFL [40] O(nd) O(n2d) O(nd+ n+ d) O(nd)

VPFL [32] O(nd) O(n2d) \ \
Our scheme O(n+ d) O(n2) O(nd) O(n2)

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 3 0 0 0 0 0
- 2 0 0 0

0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0

com
mu

nic
atio

n o
ver

hea
d f

or 
ver

ific
atio

n (
KB

)

t h e  d i m e n s i o n  o f  g r a d i e n t

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(a)

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 3 0 0 0 0 0

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

com
mu

nic
atio

n o
ver

hea
d f

or 
ver

ific
atio

n (
KB

)

t h e  d i m e n s i o n  o f  g r a d i e n t

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(b)

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 3 0 0 0 0 0
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

1 0 0 0 0

1 2 0 0 0

1 4 0 0 0
tot

al c
om

mu
nic

atio
n o

ver
hea

d (
KB

)

t h e  d i m e n s i o n  o f  g r a d i e n t

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(c)

0 5 0 0 0 0 1 0 0 0 0 0 1 5 0 0 0 0 2 0 0 0 0 0 2 5 0 0 0 0 3 0 0 0 0 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

tot
al c

om
mu

nic
atio

n o
ver

hea
d (

MB
)

t h e  d i m e n s i o n  o f  g r a d i e n t

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(d)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

com
mu

nic
atio

n o
ver

hea
d f

or 
ver

ific
atio

n (
KB

)

t h e  n u m b e r  o f  u s e r s

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(e)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

com
mu

nic
atio

n o
ver

hea
d f

or 
ver

ific
atio

n (
KB

)

t h e  n u m b e r  o f  u s e r s

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(f)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

tot
al c

om
mu

nic
atio

n o
ver

hea
d (

KB
)

t h e  n u m b e r  o f  u s e r s

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(g)

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0
tot

al c
om

mu
nic

atio
n o

ver
hea

d (
MB

)

t h e  n u m b e r  o f  u s e r s

 0 %  d r o p o u t - V S A F
 3 0 %  d r o p o u t - V S A F
 0 %  d r o p o u t - P F L M
 3 0 %  d r o p o u t - P F L M
 0 %  d r o p o u t - V e r S A
 3 0 %  d r o p o u t - V e r S A

(h)

Fig. 4. The comparison of our scheme VSAF and PFLM [13] and VerSA [9] with respect
to communication overhead for verification and total communication overhead. (a), (b),
(c), and (d) compare the three schemes under 0% and 30% dropout rates, showing how
the communication overhead varies with gradient dimension. Specifically, (a) illustrates
the communication overhead for verification for each user per iteration, (b) illustrates the
communication overhead for verification of CS per iteration, (c) illustrates the total
communication overhead for each user per iteration, and (d) illustrates the total
communication overhead of CS per iteration. (e), (f), (g), (h) compare the three schemes
under 0% and 30% dropout rates, showing how the communication overhead varies with
the number of users. Specifically, (e) illustrates the communication overhead for
verification for each user per iteration, (f) illustrates the communication overhead for
verification of CS per iteration, (g) illustrates the total communication overhead for each
user per iteration, and (h) illustrates the total communication overhead of CS per iteration
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Fig. 5. Comparison of the time costs for each user and server under different dropout
rates in our scheme. (a), (b), (c) show the time cost variations with gradient dimension
for each user and CS in our scheme under 0%, 10%, 20%, and 30% dropout rates.
Specifically, (a) illustrates the time cost for verification of each user per iteration, (b)
illustrates the total time cost for each user per iteration, and (c) illustrates the total time
cost for CS at each iteration. (d), (e), (f) show the time cost variations with the number of
users for each user and CS in our scheme under 0%, 10%, 20%, and 30% dropout rates.
Specifically, (d) illustrates the time cost for verification of each user per iteration, (e)
illustrates the total time cost for each user per iteration, and (f) illustrates the total time
cost for CS at each iteration
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Fig. 6. The comparison of our scheme VSAF and PFLM [13] and VerSA [9] in terms of
time cost for verification and total time cost. (a), (b), (c) compare the three schemes
under 0% and 30% dropout rates, showing the time cost varies with gradient dimension.
Specifically, (a) illustrates the time cost for verification of each user per iteration, (b)
illustrates the total time cost for each user per iteration, and (c) illustrates the total time
cost for CS at each iteration. (d), (e), (f) compare the three schemes under 0% and 30%
dropout rates, showing the time cost varies with the number of users. Specifically, (d)
illustrates the time cost for verification of each user per iteration, (e) illustrates the total
time cost of each user per iteration, and (f) illustrates the total time cost of CS at each
iteration
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schemes in [8, 9, 13, 29] are mainly based on the double masking protocol, so the com-
putation overhead of these schemes mainly comes from generating secret shares, masks,
and ciphertexts.

[29] designs a verification scheme based on a homomorphic hash function and pseudo-
random technology. The computation overhead for each user and server is O(nd+n) and
O(n2 + nd + d), respectively. In [9], the proposed scheme of the computation overhead
for verification lies in generating secret shares, masks, and proofs. Therefore, the compu-
tation overhead is O(nd+n) for each user and O(n2+nd) for the server. [13] proposes a
verification scheme based on a variant of ElGamal encryption, the computation overhead
amounts to O(n2 + nd + n) for each user and O(n2d) for the server. Using homomor-
phic hash technology and commitment scheme, [8] develops a verification scheme. The
computation overhead of this scheme is O(nd+n+ d) for each user and O(n2 +nd) for
the server. [40] combines a variant of double masking protocol and differential privacy
to design a privacy-preserving scheme, and uses a linear homomorphic hash to design a
verification scheme. Thus, the computation overhead for each user is O(nd + n + d),
while for the server, it is O(nd).

7.2. Experimental Settings

We implemented a prototype of our scheme, VSAF, by Python 3 and Charm-Crypto. Since
our encryption scheme is based on MPC (Multi-Party Computation), the model accuracy
is unaffected. Therefore, we set the gradient data in the same way as PFLM [13], randomly
selecting data from a normal distribution N(50, 20). We implemented the DH protocol
based on the discrete logarithm problem. Then, using this DH protocol and Shamir’s
(t,N)-threshold secret sharing protocol, we implemented the relevant parts of our VSAF.
In our scheme, we also implemented a linear homomorphic hash function for verification
using the charm-crypto library. This function is irreversible and does not leak gradient
information. Every experiment was conducted on a 64-bit Ubuntu OS 20.04.6 version,
equipped with an Intel i3-10105 CPU and 4GB memory.

7.3. Experimental Results

Since VerifyNet is a classic secure and verifiable FL scheme, PFLM [13] and VerSA
[9] are more representative than the other four masking-based schemes. Therefore, we
compare the simulation experimental results of the proposed scheme with the PFLM and
VerSA. We analyzed the performance of these three schemes by continuously adjusting
the number of participating users N , the gradient dimension d, and the users’ dropout
rate.

Communication Overhead. In our scheme, the communication overhead for verifica-
tion of each user mainly consists of the following two aspects: (1) In the Generation and
Uploading of Ciphertexts and Proofs phase (Round 3), the user must upload proof of the
gradient. (2) In the Aggregation and Verification of Parameters phase (Round 4), each
user must receive a cryptographic proof from the TA validating the aggregated result. In
Fig.4(a) (b) (c) (d), these subfigures illustrate the communication overhead varies with
the gradient dimension and we set the number of users N = 20, with a threshold of
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t = ⌊N2 ⌋ + 1, i.e., t = 11. In Fig.4(e) (f) (g) (h), these subfigures illustrate the varia-
tion in communication overhead with the number of users. and we set gradient dimension
d = 10000 and threshold t = ⌊N2 ⌋+ 1.

In Fig.4(a) (b), in both the PFLM [13] and VerSA [9] schemes, we see that, for both
users and CS, the communication overhead for verification linearly varies with the di-
mension of the gradient. However, in the case of the VSAF scheme, the communication
overhead for verification does not vary with the gradient dimension. This is due to our
verification scheme utilizing a linear homomorphic hash function. It should be noted that
the function we designed can compress d-dimensional data into one-dimensional data,
thereby achieving independence of the communication overhead for verification from the
gradient dimension.

As shown in Fig.4(e), in both the PFLM [13] and VerSA [9] schemes, both users and
CS, the communication overhead for verification grows directly with the number of users.
We can see that the communication overhead for verification of our VSAF almost remains
constant regardless of the number of users. The reason is that, in PFLM and VerSA, each
user needs to process the proofs of other users, which will result in the number of users
affecting each user’s communication. However, the users of our scheme only send their
verification proofs and receive the aggregated verification proofs, so the change in the
number of users has no impact on the per-user communication overhead for verification.
Thus, our VSAF realizes that the verification’s communication overhead for users does
not depend on the number of users.

As we can see from Fig.4(a) (e), whether the dropout rate is 0% or 30%, the commu-
nication overhead of users for verification does not significantly change with the variation
of the dropout rate. In VSAF, the users only send their verification proofs and receive
the aggregated verification proofs, so the change in the dropout rate does not affect each
user’s communication overhead for verification. Thus, our proposed VSAF ensures the
independence of users’ communication overhead for verification from the dropout rate.

From Fig.4, we can see that the communication overhead of VSAF is more negligible
than the PFLM [13] and VerSA [13]. Both PFLM [13] and VerSA [9] use a double mask
scheme for privacy protection, while we use a single masking scheme, which reduces the
users’ communication overhead by O(n). In addition, in PFLM [13], each user is required
to receive other users’ proofs, while in our scheme, the users do not need to receive the
proofs of other users. Thus, the users of our scheme have an additional O(n) reduction in
communication overhead compared to PFLM [13].

Computation Overhead In Fig.5 and Fig.6, for sub-figures (a)(b)(c), we set the number
of users N = 20, and the threshold t = ⌊N2 ⌋+1, that is, t = 11. For sub-figures (d)(e)(f),
we set the gradient dimension d = 10000, and the threshold t = ⌊N2 ⌋+1.

As shown in Fig.5(d), each user’s time cost for verification of these schemes does not
significantly vary with a rise in the number of users. In our scheme, users only need to
generate verification proofs of their own gradients through a homomorphic hash function,
without requiring other users’ data. Hence, the user’s computation overhead for verifica-
tion of our scheme should be independent of the number of users. Furthermore, as we
can see from Fig.5(a) (d), the time cost for verification per user does not change with the
variation of the dropout rate. Since the dropout rate reflects the changes in the number of
users, and each user’s computation overhead for verification is independent of the number
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of users, the computation overhead for verification of each user is also independent of the
dropout rate.

In Fig.5(b) (e) (c) (f), it is clear that the total time cost for users and CS increases with
the growth in either the gradient dimension or the number of users. The reason is that, as
the gradient dimension and the number of users increases, the data volume that users and
CS need to process also increases, leading to an increase in total time cost. Furthermore,
in these four sub-figures, the total time cost for users or CS increases as the dropout rate
increases. This is due to the fact that our scheme uses the Shamir secret-sharing technique,
and a rise in dropout users results in more secrets needing recovery, thereby increasing
the total time cost. Additionally, as in sub-figures (b) (e), the changes in user time cost
are not evident with the increases in the dropout rate, because we use a single masking
scheme that is improved from the double mask scheme. In our scheme, online users only
need to decrypt the shares’ ciphertext of the dropout users and send it to CS; unlike the
double mask scheme, where online users need to decrypt the ciphertext of all users.

From Fig.6, compared with the VerSA [9] and PFLM [13] schemes, it is clear that
our VSAF is superior in terms of computation overhead, because our scheme is more
lightweight than VerSA and PFLM concerning privacy protection and verification. In
terms of privacy protection, VerSA [9] and PFLM [13] use a double mask scheme, while
our VSAF uses a lightweight single masking scheme improved from the double mask
scheme. Furthermore, in terms of verification, PFLM [13] uses Identity-Based Aggregate
Signature technology and a variant of ElGamal encryption, which will generate a lot of
time cost. VerSA [9] still designs a verification scheme based on the double mask, while
VSAF uses a linear homomorphic hash function to construct a lightweight verification
scheme and outsources the aggregation process of verification proofs to a third party that
does not collude with CS, thereby reducing the verification cost.

Defending Against Gradient Reconstruction Attacks As shown in Fig.7, both our
VSAF scheme and the FedAvg scheme [17] were trained via federated learning on the
MNIST and CIFAR-10 datasets, respectively. During training, we applied a Gradient Re-
construction Attack to each method. The results indicate that under this attack, the FedAvg
scheme was able to recover image information after approximately 70 rounds on MNIST
and around 210 rounds on CIFAR-10. In contrast, our VSAF scheme did not leak any
image information.

8. Concluding Remarks and Future Work

In this work, we propose VSAF, a verifiable and secure aggregation scheme designed for
federated learning in edge computing. VSAF employs a combination of single masking
with Bloom filtering for lightweight, dropout-tolerant privacy protection of user gradients.
A linear homomorphic hash function is used to design a verification algorithm that ensures
correct aggregation while minimizing verification overhead. Security analysis confirms
the high security and correctness of VSAF, supported by comprehensive theoretical and
experimental results.

In future work, we aim to reduce computational and communication overheads whilst
ensuring robustness to user dropouts. In addition, we seek to develop methods to correct
erroneous aggregated results while verifying their correctness.
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Fig. 7. Defending against gradient reconstruction attacks
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