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Abstract. Recommender systems, tool for predicting users’ potential prefer-
ences by computing history data and users’ interests, show an increasing importance
in various Internet applications such as online shopping. As a well-known recom-
mendation method, neighbourhood-based collaborative filtering has attracted con-
siderable attentions recently. The risk of revealing users’ private information during
the process of filtering has attracted noticeable research interests. Among the current
solutions, the probabilistic techniques have shown a powerful privacy preserving ef-
fect. The existing methods deploying probabilistic methods are in three categories,
one [18] adds differential privacy noises in the covariance matrix; one [1] intro-
duces the randomisation in the neighbour selection process; the other [28] applies
differential privacy in both the neighbour selection process and covariance matrix.
When facing the k Nearest Neighbour (kNN) attack, all the existing methods pro-
vide no data utility guarantee, for the introduction of global randomness. In this
paper, to overcome the problem of recommendation accuracy loss, we propose a
novel approach, Partitioned Probabilistic Neighbour Selection, to ensure a required
prediction accuracy while maintaining high security against the kNN attack. We
define the sum of k neighbours’ similarity as the accuracy metric α, the number of
user partitions, across which we select the k neighbours, as the security metric β.
We generalise the k Nearest Neighbour attack to the βk Nearest Neighbours attack.
Differing from the existing approach that selects neighbours across the entire can-
didate list randomly, our method selects neighbours from each exclusive partition
of size k with a decreasing probability. Theoretical and experimental analysis show
that to provide an accuracy-assured recommendation, our Partitioned Probabilistic
Neighbour Selection method yields a better trade-off between the recommendation
accuracy and system security.

Keywords: privacy preserving, differential privacy, neighbourhood-based collabo-
rative filtering recommender systems, Internet commerce.

1. Introduction

Recommender systems predict users’ potential preferences by aggregating history data
and users’ interests. Recently, an increasing importance of recommender systems has been
shown in various Internet applications. For example, Amazon has been receiving benefits
for a decade from the recommender systems by providing personal recommendation to
their customers, and Netflix posted a one million U.S. dollars award for improving their
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recommender system to make their business more profitable [10,14,24]. Currently, in rec-
ommender systems, Collaborative Filtering (CF) is a famous technology with three main
popular techniques [16], i.e., neighbourhood-based methods [13], association rules based
prediction [23], and matrix factorisation [15]. Among these techniques, neighbourhood-
based methods are the most widely used in the industry because of its easy implementation
and high prediction accuracy.

One of the most popular neighbourhood-based method is the k Nearest Neighbour
(kNN) method, which provides recommendations by aggregating the opinions of a user’s
k nearest neighbours [2]. Although the kNN recommender systems present very good
performance of recommendation accuracy efficiently, the risk of revealing users’ private
information during the process of filtering is still a growing concern, e.g., the kNN attack
presented by Calandrino et al. [5] exploits the property that the users are more similar
when sharing same rating on corresponding items to reveal user’s private data. Thus pre-
senting an efficient privacy preserving neighbourhood-based CF algorithm against the
kNN attack, which achieves a trade-off between the system security and recommendation
accuracy, has been a natural research interest.

The literature in CF recommender systems has developed several approaches to pre-
serve users’ privacy. Generally, cryptographic, obfuscation, perturbation, probabilistic
methods and differential privacy are applied [28]. Among them, cryptographic meth-
ods [11, 20] provide the most reliable security but the unnecessary computational cost
cannot be ignored. Obfuscation methods [21, 26] and Perturbation methods [3, 4] intro-
duce designed random noise into the original matrix to preserve customers’ sensitive in-
formation; however the magnitude of noise is hard to calibrate in these two types of meth-
ods [9, 28]. The probabilistic methods [1] provided a similarity based weighted neigh-
bour selection of the k nearest neighbours. Similar to perturbation, McSherry et al. [18]
presented a naive differential privacy method which adds calibrated noise into the co-
variance (similarity between users/items) matrix. Similar to the probabilistic neighbour
selection [1], Zhu et al. [28] proposed a Private Neighbour Selection to preserve pri-
vacy against the kNN attack by introducing differential privacy in selecting the k nearest
neighbours randomly (also adding noise into covariance matrix with differential privacy).
Although the methods in [1, 18, 28] successfully preserve users’ privacy against the kNN
attack, the low prediction accuracy due to the global randomness should be noted. Even
worse, [28] failed to maintain differential privacy in the process of neighbour selection.
Therefore, none of the existing privacy preserving CF recommender systems can provide
enough utility while preserving users’ private information.

Motivation. The current privacy preserving neighbourhood-based CF methods did
not guarantee the data utility against the kNN attack. Therefore, in this paper, we aim
to present a privacy preserving neighbourhood-based CF recommendation scheme which
satisfies the following properties:

(1) Easy implementation.
(2) Absolutely keep differential privacy.
(3) Significantly decrease the magnitude of noise in differential privacy.
(4) Quantify the level of recommendation accuracy and system security.

Actually, it is clear that the probabilistic methods (including naive probabilistic meth-
ods and differential privacy methods) are efficient methods against the kNN attack; how-
ever, because of the global noises, the neighbour quality, namely the prediction accuracy,
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is impacted significantly. Thus, to decrease the magnitude of differential privacy noise, we
may propose the following approach: we can simply add Laplace noise to the final rating
prediction after the normal kNN CF recommendation. But Sarathy et al. has shown in [22]
that the above method will release users’ privacy because Laplace mechanism does not
work well in numeric data. So, to control the neighbour quality and to decrease the mag-
nitude of noise, it is natural to avoid the global randomness and repeatedly adding noise.
Therefore, we present a partitioned probabilistic neighbour selection method without any
perturbations in the process of rating prediction.

Contributions. In this paper, to overcome the problems of low recommendation ac-
curacy, we propose a novel method, Partitioned Probabilistic Neighbour Selection. The
main contributions of this paper are:

(1) We expand the classic kNN attack to a more general case, the β-kNN attack,
which flexibly adjusts the size of fake user’s set to improve the attack effectiveness. β is
essentially regarded as a security measure denoting the degree of difficulty for an attacker
to break the neighbourhood-based CF recommender systems. We are the first to consider
the case when β > 1.

(2) To protect users’ data privacy against the β-kNN attack, we propose a novel dif-
ferential privacy preserving neighbourhood-based CF method, which ensures a required
prediction accuracy while achieving a better trade-off between the system security and
recommendation accuracy against the kNN attack.

(3) To the best of our knowledge, we are the first to propose a theoretical analy-
sis of the recommendation accuracy and system security on the recommendation results
from any randomised neighbour selection methods in the neighbourhood-based CF rec-
ommender systems. Previous related work only gave the experimental analysis on the
same issues.

Organisation. The rest of this paper is organised as follows: In Section 2, we sum-
marise both the advantages and disadvantages in the existing privacy preserving methods
on CF recommender systems. In Section 3, we introduce the relevant background knowl-
edge in this paper. In Section 4, we introduce an existing attack to neighbourhood-based
CF recommender systems, then expand it to a general case, the β-kNN attack. Next, We
proposed a novel differential privacy recommendation approach, Partitioned Probabilistic
Neighbour Selection, in Section 5. Afterwards, the theoretical analysis of our approach
on the performance of both recommendation accuracy and system security are provided
in Section 6. Then, in Section 7, we show the experimental evaluation results. Finally, in
Section 8, we conclude this paper.

2. Related Work

A noticeable number of literature has been published to preserve customers’ private data
in recommender systems. However, Calandrino et al. [5] proposed a neighbourhood-based
CF attack, the kNN attack, which is a serious privacy threat to the neighbourhood-based
CF recommender systems in e-commerce, e.g., Amazon. In this section, we briefly dis-
cuss some of the research literature in privacy preserving neighbourhood-based CF rec-
ommender systems.
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2.1. Traditional Privacy Preserving Recommender Systems

Amount of traditional privacy preserving methods have been developed in CF recom-
mender systems [28], including cryptographic [11, 20], obfuscation [21, 26], perturba-
tion [3,4] and probabilistic methods [1]. Erkin et al. [11] applied homomorphic encryption
and secure multi-party computation in privacy preserving recommender systems, which
allows users to jointly compute their data to receive recommendation without sharing the
true data with other parties. Nikolaenko et al. [20] combined a famous recommendation
technique, matrix factorization, and a cryptographic method, garbled circuits, to provide
recommendations without learning the real user ratings in database. The Cryptographic
methods provide the highest guarantee for both prediction security ans system security
by introducing encryption rather than adding noise to the original record. Unfortunately,
unnecessary computational cost impacts its application in industry [28]. Obfuscation and
perturbation are two similar data processing methods. In particular, obfuscation meth-
ods aggregate a number of random noises with real users rating to preserve user’s sen-
sitive information. Parameswaran et al. [21] proposed an obfuscation framework which
exchanges the sets of similar items before submitting the user data to CF server. Weins-
berg et al. [26] introduced extra reasonable ratings into user’s profile against inferring
user’s sensitive information. Perturbation methods modify the user’s original ratings by
a selected probability distribution before using these ratings. Particularly, Bilge et al. [4]
added uniform distribution noise to the real ratings before the utilisation of user’s rating in
prediction process. While, Basu et al. [3] regarded the deviation between two items as the
adding noise. Both perturbation and obfuscation obtain good trade-off between predic-
tion accuracy and system security due to the tiny data perturbation, but the magnitude of
noise or the percentage of replaced ratings are not easy to be calibrated [9,28]. The prob-
abilistic method [1] applied weighted sampling in neighbour selection which preserves
users’ privacy against the kNN successfully; however, it cannot provide enough accuracy
due to its global randomness. Because the performance of the neighbourhood-based CF
methods largely depends on the quality of neighbours. We suppose the top k neighbour as
the highest quality neighbour set, the randomised weighted selection process will return
neighbours with lower similarity with a high probability. Then the prediction accuracy
will be impacted significantly [28]. Therefore, achieving a trade-off between privacy and
utility, while calibrating the adding noise are difficult tasks for these techniques.

2.2. Differential Privacy Recommender Systems

As a well-known privacy definition, the differential privacy technology [7] has been ap-
plied in the research of privacy preserving recommender systems. For example, McSherry
et al. [18] provided the first differential privacy neighbourhood-based CF recommenda-
tion algorithm. In fact, their naive differential privacy protects the neighbourhood-based
CF recommender systems against the kNN attack successfully, as they added Laplace
noise into the covariance (similarity between users/items) matrix globally, so that the out-
put the k nearest neighbours set is no longer the original top k neighbours. However, the
global noise decreases the accuracy of their recommendation algorithms significantly.

Another differential privacy neighbourhood-based CF recommender systems algo-
rithm is proposed by Zhu et al. [28] which inspired this study. It aims to provide better
prediction accuracy than McSherry et al. [18] while aiming to keep differential privacy
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at both neighbour selection stage and rating prediction stage. They proposed a Private
Neighbour Collaborative Filtering (PNCF) by introducing exponential differential pri-
vacy [19] to the process of neighbour selection to guarantee the system security against
the kNN attack. After selecting the k neighbours, same with McSherry et al. [18], they
also added Laplace noise into the similarity matrix to make the final prediction.

Unlike the k nearest neighbour method which selects the k most similar candidates,
the PNCF method [28] randomly selects the k neighbours with each candidate ui’s weight
ωi. According to exponential mechanism of differential privacy, the selection weight is
measured by a score function and its corresponding sensitivity as follow,

ωi = exp(
ϵ

4k ×RS
qa(U(ua), ui)), (1)

where q is the score function, RS is the Recommendation-Aware Sensitivity of score
function q for any user pairs ui and uj , ϵ is differential privacy parameter, and U(ua) is the
set of user ua’s candidate list. For a user ua, the score function q and its Recommendation-
Aware Sensitivity are defined as follows:

qa(U(ua), ui) = simai, (2)

RS = max

{
max
s∈Sij

(
ris·rjs

∥r′i∥∥r′j∥

)
, max

s∈Sij

(
ris·rjs(∥ri∥∥rj∥−∥r′i∥∥r′j∥)

∥ri∥∥rj∥∥r′i∥∥r′j∥

)}
, (3)

where ris is user ui’s rating on item ts, simai is the similarity between user ua and ui, ri
is user ui’s average rating on every item, Sij is the set of all items co-rated by both users
i and j, i.e., Sij = {s ∈ S|ris ̸= ∅ & rjs ̸= ∅}.

However, the above naive differential privacy neighbour selection is nearly the same
to the probabilistic neighbour selection [1]. To address the above problem of low predic-
tion accuracy in [1], a truncated parameter λ was introduced in [28]. Simply speaking,
the candidates whose similarity is greater than (sim(a, k) + λ) are selected to the neigh-
bour set, while, whose similarity is less than (sim(a, k)− λ) will not be selected, where
sim(a, k) denotes the similarity of user ua’s kth neighbour. Theorem 3.1 in [28] provided
an equation to calculate the value of λ, i.e. λ = min(sim(a, k), 4k·RS

ϵ ln k(n−k)
ρ ), where

ρ is a constant, 0 < ρ < 1.
We observe that the above idea in [28] has three weaknesses. Firstly, it adds random

noise in the process of neighbour selection twice; however, it is not necessary. Because
we can preserve privacy against the kNN successfully only by introducing randomness
once, the extra randomness will decrease the prediction accuracy significantly. Secondly,
the value of λ may not be achievable. This is because when computing the value of λ
by ρ, it results in a good theoretical recommendation accuracy, but does not yield a good
experimental recommendation accuracy on the given test datasets in [28]. So the PNCF
method [28] will actually be a method of Global Probabilistic Neighbour Selection [1]
and cannot guarantee any recommendation accuracy. Thirdly, the PNCF scheme breaks
differential privacy in the process of neighbour selection. Suppose there is a tiny change
in the dataset, then the value of similarity between target user ua and other users ui in the
candidate list will change. There may exist a user uc whose probability of being selected
may change from 0 to x > 0, then the ratio between the two probabilities will be 0 or
infinite, none of which satisfy Definition 1 in Section 3.2.
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3. Preliminaries

In this section, we introduce the foundational concepts and mathematical model related
with this paper in collaborative filtering, differential privacy, and Wallenius’ non-central
hyper-geometric distribution.

3.1. k Nearest Neighbour Collaborative Filtering

A collaborative filtering based recommender system predicts users’ potential preferences
by aggregating the relevant historical data. Collaborative filtering, a popular technique in
recommender systems, is in three categories: neighbourhood-based methods, association
rules based methods, and matrix factorisation methods [16]. The neighbourhood-based
methods generally provides recommendations by combining the opinions of a user’s k
nearest neighbours [2].

Neighbour Selection and Rating Prediction are two main stages in neighbourhood-
based CF [28]. At the Neighbour Selection stage, a target user ua’s neighbours are se-
lected according to their similarity value in the target user ua’s similarity array Sa, where
similarities between any two users/items are calculated by a measurement metric. Two
of the most popular similarity measurement metrics are the Pearson correlation coeffi-
cient and Cosine-based Similarity [2]. In the kNN method, we select the k most similar
neighbours of a target user/item.

(1) Pearson Correlation Coefficient (user-based):

simij =

∑
s∈Sij

(ris − r̄i)(rjs − r̄j)√∑
s∈Sij

(ris − r̄i)2
∑

s∈Sij
(rjs − r̄j)2

, (4)

(2) Cosin-based Similarity (user-based):

simij = cos(ri, rj) =
ri·rj

∥ri∥×∥rj∥

=

∑
s∈Sij

risrjs√∑
s∈Sij

r2is

√∑
s∈Sij

r2js
,

(5)

where ris is user ui’s rating on item ts, ris ∈ R, R is the user-item rating dataset, simij is
the similarity between user ui and user uj , r̄i is user ui’s average rating on every item, Sij

is the set of all items co-rated by both users i and j, i.e., Sij = {s ∈ S|ris ̸= ∅ & rjs ̸=
∅}.

At the stage of Rating Prediction in user-based CF methods, the predicted rating r̂ax of
user ua on item tx is calculated as an aggregation of other users’ rating on item tx [2,28].
The prediction of r̂ax is computed as follow:

r̂ax =

∑
ui∈Nk(ua)

sim(a, i)rix∑
ui∈Nk(ua)

|sim(a, i)|
, (6)

where, Nk(ua) is a sorted set which contains user ua’s k nearest neighbours, Nk(ua) is
sorted by similarity in a descending order, sim(a, i) is the ith neighbour of ua in Nk(ua).
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3.2. Differential Privacy

Informally, differential privacy [7, 8] is a scheme that minimises the sensitivity of out-
put for a given statistical operation on two different (differentiated in one record to pro-
tect) datasets. Specifically, differential privacy guarantees no matter whether one specific
record appears in a database, the privacy mechanism will shield the specific record to the
adversary. The strategy of differential privacy is adding a random noise to the result of a
query function on the database.

To understand the spirit of differential privacy clearly, several items will be introduced
in advance. Firstly, X(x1, x2, · · · , xn) and X ′(x′

1, x
′
2, · · · , x′

n) are two databases with n
entries which differ in only one entry, where xi and x′

1 are the ith entry of X and X ′.
We call X and X ′ are neighbouring dataset. Secondly, f(X) is the query function on
database X , the respond is the combination of the real answer a = f(X) and a chosen
random noise. Thirdly, the privacy mechanism T , namely, the respond, is computed by
T (X) = f(X) +Noise. A formal definition of Differential Privacy is shown as follow:

Definition 1 (ϵ-Differential Privacy [7]). A randomised mechanism T is ϵ-differential
privacy if for all neighbouring datasets X and X ′, and for all outcome sets S ⊆ Range(T ),
T satisfies: Pr[T (X) ∈ S] ≤ exp(ϵ) · Pr[T (X ′) ∈ S], where ϵ is a privacy budget.

The privacy budget ϵ is set by the database owner. Usually, a smaller ϵ denotes a
higher privacy guarantee because the privacy budget ϵ reflects the magnitude of difference
between two neighbouring datasets.

There are two main applications of the randomised mechanism T : the Laplace mech-
anism [7] and the Exponential mechanism [19]. As we mainly use the exponential mech-
anism in this paper, the definition of exponential mechanism is shown as below:

Definition 2 (Exponential Mechanism [19]). Given a score function of a database X ,
q(X,x), which reflects the score of query respond x. The exponential mechanism T pro-
vides ϵ-differential privacy, if T (X) = {the probability of a query respond x∝ exp( ϵ·q(X,x)

2∆q )},
where ∆q = max |q(X,x)− q(X ′, x)|, denotes the sensitivity of q.

3.3. Wallenius’ Non-central Hyper-geometric Distribution

Wallenius’ non-central hyper-geometric distribution is a distribution of weighted sam-
pling without replacement. Formally, it is defined as follow [12]: We assume there are c
distinct categories in the population, each category contains mi individuals, i ∈ [1, c].
All the individuals from category i have the same weight ωi, i ∈ [1, c]. The proba-
bility of an individual is sampled at a given draw is proportional to its weight ωi. Let
xv = (x1v, x2v, . . . , xcv) denote the total number of the individuals in each colour sam-
pled after the first v draws. The probability that the next draw gives a individual of colour
i is:

pi(v+1)(xv) =
(mi − xiv)ωi∑c
j=1(mj − xjv)ωj

. (7)

The weighted sampling process without replacement is repeatedly until k individuals have
been retained, namely, k =

∑c
i=1 xi, where xi denotes the number of individuals sampled

from category i by Wallenius’ non-central hypergeometric distribution.
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Wallenius [25] proposed the probability mass function for this distribution in the
univariate case (c = 2). Chesson [6] expanded Wallenius’s solution to the multivariate
case (c > 2). In this paper, we focus on the multivariate Wallenius’ non-central hyper-
geometric distribution’s probability mass function because we regard one user/item in a
recommender system as one individual in Wallenius’ non-central hyper-geometric distri-
bution. The multivariate probability mass function (PMF) is shown as blow:

mwnchypg = Λ(x)I(x), (8)

where Λ(x) =
∏c

i=1

(
mi

xi

)
, I(x) =

∫ 1

0

∏c
i=1(1 − tωi/d)xidt, d = ω · (m − x) =∑c

i=1 ωi(mi−xi),x = (x1, x2, . . . , xc), m = (m1,m2, . . . ,mc), ω = (ω1, ω2, . . . , ωc).
While in this paper, we mainly use the following properties to evaluate different proba-

bilistic relevant approaches. Manly [17] gave the approximated solution µ∗ = (µ∗
1, µ

∗
2, . . . ,

µ∗
c) to the mean µ = (µ1, µ2, . . . , µc) of x after the final draw:(

1− µ∗
1

m1

)1/ω1

=

(
1− µ∗

2

m2

)1/ω2

= . . . =

(
1− µ∗

c

mc

)1/ωc

, (9)

where
∑c

i=1 µ
∗
i = k, ∀i ∈ C : 0 ≤ µ∗

i ≤ mi.
Fog [12] stated the following properties of Equation (9): firstly, the solution µ∗ is

valid under the conditions that ∀i ∈ C : mi > 0 and ωi > 0. Secondly, the mean given by
Equation (9) is a good approximation in most cases. Thirdly, Equation (9) is exact when
all ωi are equal.

4. A Generalised Privacy Attack for Recommender Systems

In this section, we firstly introduce a popular attack, k nearest neighbour attack, then we
expand the concept to a general attack, β-k nearest neighbour attack.

4.1. k Nearest Neighbour Attack

Calandrino et al. [5] stated a user-based attack called k Nearest Neighbour (kNN) attack.
Simply, the kNN attack exploits the property that the users are more similar when sharing
same rating on corresponding items to reveal user’s private data.

We assume that the recommendation algorithm (kNN CF recommendation) and its
parameter k are known to the attacker. Furthermore, the attacker’s auxiliary information
consists of a target user ua’s partial history rating values, i.e., he already knows the ratings
of m items that ua has rated. Usually, m ≈ 8. He aims to catch ua’s transactions that he
does not yet know about.

To achieve this goal, the attacker firstly creates k fake users who have the same ratings
with ua only on the m items. With a high probability, each fake user’s k nearest neigh-
bours set Nk(fake user) will include the other k − 1 fake users and the target user ua.
Because the target user ua is the only neighbour who has ratings on the items which are
not rated by the fake users, to provide recommendations on these items to the fake users,
the recommender system has to give ua’s rating to the fake users directly. Obviously, the
fake users learn the target user ua’s whole rating list successfully with the kNN attack.
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4.2. β-k Nearest Neighbours Attack

According to the existing privacy preserving neighbourhood-based CF recommendation
methods, we expand the kNN attack to a more general case, named β-k Nearest Neigh-
bour (β-kNN) attack.

As we know, to preserve the target user ua’s private information against the kNN
attack, we should avoid selecting the true k nearest neighbours, so the existing methods
applied the randomness techniques. However, suppose the final k neighbours are selected
from the top βk users of ua’s candidate list, also the parameters β and k are known to
the attacker, the attacker would catch ua’s private data with a high probability by creating
βk fake users. When β is not great enough, it is still not difficult to break the privacy
preserving neighbourhood-based CF recommender systems. Therefore, the β-kNN attack
can flexibly adjust the size of fake user’s set to improve the attack effectiveness. Actually,
the kNN attack can be regarded as the 1-kNN attack in the expanded case of the β-kNN
attack.

In the β-kNN attack, β can be treated because a security measure as a greater value
of β represents a higher fraud cost. We will show the relationship between the prediction
utility and β in Section 6.

5. Privacy Preservation by Partitioned Probabilistic Neighbour
Selection

In this section, we firstly provide two performance metrics on the privacy preserving
neighbourhood-based CF recommender systems against the β-kNN attack. Then we pro-
pose our Partitioned Probabilistic Neighbour Selection algorithm based on the previous
analysis.

5.1. Performance Metrics

Accuracy Metric For any privacy preserving neighbourhood-based CF recommender
systems, if the sum of similarity of the selected k neighbours is greater, the predicted
rating value will be better. The reason is simple: the neighbour is closer to the target user
ua means the predicted result is more reliable, namely, we prefer the method which selects
the greater similarity sum. Therefore, we define the accuracy metric α as the sum of the
k selected neighbours’ similarity.

Because we propose a random neighbour selection method, the accuracy metric α
should be regarded as the expected sum of the k selected neighbours’ similarity. However,
it is not obvious to directly compute the expectation of the k neighbours similarity sum:
E(

∑
i∈Nk(ua)

sim(a, i)), as we need to find all the user combinations and corresponding
probabilities. So we give another way to compute this expectation,

E(
∑

i∈Nk(ua)

sim(a, i)) =
n∑

i=1

(sim(a, i)E(xi)) =
n∑

i=1

sim(a, i)µi, (10)

see Section 3.3 for the definition of xi and µi. So we compute the accuracy by the follow-
ing equation in this paper:

α =
n∑

i=1

sim(a, i)µi. (11)
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Security Metric According to the β-kNN attack, suppose the final k neighbours are
selected from the top βk users of ua’s candidate list. We assume that the parameters β
and k are known to the attacker, so the attacker would catch ua’s privacy with a high
probability through the same process of the kNN attack by creating βk fake users. When
β’s value is not great, it is still not difficult to break the privacy preserving recommender
systems. Therefore, we define β as the security metric, the greater value of β denotes the
higher fraud cost for the attacker, namely, we want to achieve a trade-off between the
security metric β and a fixed prediction accuracy metric α.

5.2. Partitioned Probabilistic Neighbour Selection Algorithm

According to the motivation and previous analysis, we provide an original version of our
Partitioned Probabilistic Neighbour Selection algorithm. We firstly partition the a target
user’s candidate list (descending order of similarity value) by the given k, then apply a
geometric distribution on the candidate list to select ⌈p(1 − p)i−1k⌉ neighbours (apply
exponential differential privacy in every partition) from partition i until we have a total
of k neighbours, where integer i ∈ [1,+∞), p is a geometric distribution parameter.
It is clear that our original partitioned probabilistic neighbour scheme satisfies property
(1) (easy implementation) in Section 1, for it does not introduce any extra computational
cost. In fact, it is natural to regard the low neighbour quality as the noise in the process of
neighbour selection, since the low neighbour quality has the same impact on the prediction
accuracy as the noise. So our method satisfies property (3) (decreasing the magnitude of
noise) in Section 1 in two ways: 1. it only adds noise in the process of neighbour selection.
2. it controls the neighbour quality by tuning the geometric distribution parameter p in the
process of neighbour selection. However, the original version does not satisfy the property
(2) (keeping differential privacy) and (4) (quantifying the accuracy and security), we now
show the reasons and modify it to satisfy the property (2) and (4).

In the original version, we select ⌈p(1− p)i−1k⌉ neighbours with exponential differ-
ential privacy from partition i until we have k neighbours. Actually, it breaks differential
privacy with the same reason (see details in Section 2.2) of the PNCF method [28]. Sim-
ply speaking, there may exist some users whose probability of selection will be changed
from zero to a positive number because of a tiny change in rating set. To guarantee the
prediction accuracy, we only modify the original scheme by changing the way we select
the last neighbour (see details in next paragraph). The modified scheme keeps absolute
differential privacy because no matter how we change the dataset, every candidate’s prob-
ability of selection cannot be zero. To quantify the level of recommendation accuracy and
system security, we use the performance metrics α and β. We compute the parameter p
and the security metric β by a given α by Equation (20).

Algorithm 1 shows the Partitioned Probabilistic Neighbour Selection (PPNS) algo-
rithm. In lines 1 to 5, we compute the necessary parameters by Equation (5), (3), (2), (1)
and (20). In lines 6 to 18, we select the k neighbours by Partitioned Probabilistic Neigh-
bour Selection, then return the target user’s k neighbours and the security metric value β.
We firstly mark all of the partitions as unvisited. Next, we select ⌈p(1 − p)i−1k⌉ neigh-
bours with exponential differential privacy from partition i (mark this partition as visited)
until we have a total of k − 1 neighbours. Finally, we select the last neighbour from all
the unvisited partitions.
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Algorithm 1 Partitioned Probabilistic Neighbour Selection.
Input:

Original user-item rating set, R;
Target user, ua and prediction item, tx;
Number of neighbours, k;
Differential privacy parameter, ϵ;
Accuracy metric, α.

Output:
Target user ua’s k-neighbour set, Nk(ua);
Security metric, β.

1: Compute the similarity list for target user ua, Sa;
2: Sort Sa in descending order, Sa;
3: Compute exponential differential privacy sensitivity, RS;
4: Compute user ui’s selection weight, ωi;
5: Compute the geometric distribution parameter, p;
6: Partition the sorted Sa by k;
7: for i = 1 to n do
8: if Neighbour Number ̸= k − 1 then
9: Select ⌈p(1− p)i−1k⌉ neighbours from partition i to Nk(ua);

10: Mark partition i as visited;
11: Neighbour Number += ⌈p(1− p)i−1k⌉;
12: else
13: break;
14: end if
15: end for
16: Select one neighbour from unvisited partitions;
17: β = last neighbour’s partition index number;
18: return Nk(ua), β;

6. Theoretical Analysis

In this section, we use multivariate Wallenius’ non-central hyper-geometric distribution
to analyse any randomised neighbour selection methods on both performance of accu-
racy and security against the kNN attack theoretically. The reason is both multivariate
Wallenius’ non-central hyper-geometric distribution and randomised neighbour selection
methods are weighted sampling without replacement, the samples are selected one by one
from universe, and the sampling weight is only depends on each sample’s attribute, i.e.,
the ball’s colour or user’s similarity.

6.1. Accuracy Analysis

In this part, to analyse the accuracy performance, we will firstly modify the Equation (9) to
match with a general randomised neighbour selection method. As the selection weight in
a general probabilistic neighbour selection method only relies on the user’s similarity, we
regard user ui’s similarity sim(a, i) as the sample’s colour in multivariate Wallenius’ non-
central hyper-geometric distribution. Thus in randomised neighbour selection methods,
mi = 1, c = n, N =

∑c
i=1 mi =

∑n
i=1 mi = n. Therefore, we rewrite the Equation (9)
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as:
A = (1− µ1)

1/ω1 = (1− µ2)
1/ω2 = . . . = (1− µn)

1/ωn , (12)

where A is a constant.
Now we start evaluating the Partitioned Probabilistic Neighbour Selection by Equa-

tion (12). To make it easy, we also partition the candidate list in PNCF method [28] and
Probabilistic Neighbour Selection [1] by the given k.

Lemma 1. C is an n sized set. We independently sample several samples with multi-
variate Wallenius’ non-central hyper-geometric distribution from C twice, suppose µi

and µ̂i are the expected number of sample i from the two samplings. Then ∀i ∈ [1, n],
µi > µ̂i ⇔

∑n
i=1 µi >

∑n
i=1 µ̂i.

Proof. Let
∑n

i=1 µi = X ,
∑n

i=1 µ̂i = X̂ , A = (1− µi)
1/ωi , Â = (1− µ̂i)

1/ωi .
(1) Proof of sufficient condition, µi > µ̂i ⇒

∑n
i=1 µi >

∑n
i=1 µ̂i:

∵ the size of the set C keep the same.
∴ ∀i ∈ [1, n], µi > µ̂i ⇒

∑n
i=1 µi >

∑n
i=1 µ̂i.

(2) Proof of Necessary condition,
∑n

i=1 µi >
∑n

i=1 µ̂i ⇒ µi > µ̂i:
According to Equation (12), we have,

A = (1− µi)
1/ω1 ⇒ µi = 1−A1/ω1

⇒
∑n

i=1 µi = k −
∑n

i=1 A
1/ω1 = X.

Similarly, k −
∑n

i=1 Â
1/ω1 = X̂ .

∵ X =
∑n

i=1 µi >
∑n

i=1 µ̂i = X̂ , and µi and µ̂i share the same ωi,
∴

∑n
i=1 A

1/ω1 <
∑n

i=1 Â
1/ω1

⇒ A < Â
⇒ (1− µi)

1/ω1 < (1− µ̂i)
1/ω1

⇒ µi > µ̂i.

Therefore, we have ∀i ∈ [1, n], µi > µ̂i ⇔
∑n

i=1 µi >
∑n

i=1 µ̂i.

Lemma 1 shows the fact that when selecting neighbours with multivariate Walle-
nius’ non-central hyper-geometric distribution by several randomised neighbour selection
methods from a same sized partition, if one method selects more neighbours, then the
expected number of each neighbour in that method is greater too, and vice versa.

Lemma 2. The method, which selects more users from the first partition (contains user
u1 to uk) of a descending order similarity list, yields a better rating prediction, i.e.,∑k

i=1 µi >
∑k

i=1 µ̂i ⇒ α ≥ α̂, where α denotes the accuracy metric value.

Proof. Let Xj =
∑

i∈groupj
µi, X̂j =

∑
i∈groupj

µ̂i, e.g., X1 =
∑

i∈group1
µi =∑k

i=1 µi. Assume an extreme case:
X1 > X̂1

X2 < X̂2

X3 < X̂3

... <
...

∵ k =
∑

j Xj =
∑

j X̂j ,

∴ X1 − X̂1 = (X̂2 −X2) + (X̂3 −X3) + · · · .
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It is obvious that, in both sides of the above equation, every item > 0. According to
Lemma 1, X > X̂ ⇔ µi > µ̂i, we have,∑

group1
(µi− µ̂i) =

∑
group2

(µ̂i−µi)+
∑

group3
(µ̂i−µi)+ · · · , and every (·) > 0.

∵ 1 ≥ sim(a, i) ≥ sim(a, j) ≥ 0, (i < j),
∴
∑

group1
sim(a, i)(µi − µ̂i) ≥

∑
group2

sim(a, i)(µ̂i − µi)

+
∑

group3
sim(a, i)(µ̂i − µi)

+ · · ·
.

∴
∑n

i=1 sim(a, i)µi ≥
∑n

i=1 sim(a, i)µ̂i. According to Equation (11), we have α ≥
α̂.

Therefore, the method, which selects more users from the first group, is more reliable
on the predicted rating value.

Theorem 1. If p > 1 −
(
n−k
n

)ω1 , the recommendation accuracy performance of Parti-
tioned Probabilistic Neighbour Selection is better than PNCF method [28] and Proba-
bilistic Neighbour Selection [1].

Proof. We firstly demonstrate the best case for the PNCF method [28] and Probabilistic
Neighbour Selection [1]: sim(a, 1) = · · · = sim(a, k) = 1 > 0 = sim(a, k + 1) =
· · · = sim(a, n).

∴ k = kµ1 + (n− k)µn.

According to Equation (12), A = (1− µ1)
1/ω1 = (1− µn)

1/ωn , µn = 1 − (1 −
µ1)

1/ω1 . Let ∆ = µ1−µn = (1−µ1)
1/ω1 −(1−µ1), then µ1 = k

n + (n−k)∆
n < k

n +∆,
namely, µ1 < k

n + (1− µ1)
1/ω1 − (1− µ1), then µ1 < 1−

(
n−k
n

)ω1
.

In PNCF method [28] and Probabilistic Neighbour Selection [1],
∑

i∈group1
µi ≤

kµ1, while in Partitioned Probabilistic Neighbour Selection,
∑

i∈group1
µi = pk. There-

fore, according to Lemma 2, when p > 1 −
(
n−k
n

)ω1 , α ≥ α̂, namely, the recom-
mendation accuracy of Partitioned Probabilistic Neighbour Selection is better than PNCF
method [28] and Probabilistic Neighbour Selection [1].

Since we have qualitatively analysed the recommendation accuracy performance be-
tween Partitioned Probabilistic Neighbour Selection and PNCF method [28] and Proba-
bilistic Neighbour Selection [1], now we provide the quantitative analysis of our Parti-
tioned Probabilistic Neighbour Selection. Let α0 be the initial accuracy metric.

∵
∑k

i=1 sim(a,i)µi∑k
i=1 sim(a,i)

−
∑k

i=1 µi∑k
i=1 1

=
∑k−1

i=1

∑k
j=i+1(sim(a,i)−sim(a,j))(µiµj)

k
∑k

i=1 sim(a,i)
≥ 0,

then we have
∑k

i=1 µi∑k
i=1 1

≤
∑k

i=1 sim(a,i)µi∑k
i=1 sim(a,i)

.

Namely, p = pk
k =

∑k
i=1 µi∑k
i=1 1

≤
∑k

i=1 sim(a,i)µi∑k
i=1 sim(a,i)

≤
∑k

i=1 sim(a,i)µi+
∑2k

i=k+1 sim(a,i)µi+···∑k
i=1 sim(a,i)

= α0∑k
i=1 sim(a,i)

.

Thus, p ≤ α0∑k
i=1 sim(a,i)

. Namely, when p ≥ α0∑k
i=1 sim(a,i)

the actual accuracy α must
be greater than α0. Therefore, we give the range of p’s value to guarantee the accuracy
metric α ≥ α0, p ∈ [ α0∑k

i=1 sim(a,i)
, 1].
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6.2. Security Analysis

In this section, we firstly provide the range of p, so that our approach guarantees the
system security against the kNN attack. Next, we present the quantitative analysis by
providing a relationship between the the probabilistic parameter p and the security metric
β.

In PNCF method [28], according to Equation (8), the probability mass function is:

PMF = I(x) =

∫ 1

0

n∏
i=1

(1− tωi/d)xidt, (13)

d = ω · (m− x) =

n∑
i=1

ωi(1− xi), (14)

where, x = (x1, x2, . . . , xn), ω = (ω1, ω2, . . . , ωn).
For the case of selecting the top-k users, we have:

xi =

{
1 i∈[1,k]
0 i ∈ [k + 1, n]

. (15)

Thus, the probability of selecting the top-k users in PNCF method [28] and Probabilistic
Neighbour Selection [1] is:

Pr = I(x) =

∫ 1

0

k∏
i=1

(1− tωi/d)dt > 0, (16)

d = ω · (m− x) =
n∑

i=k+1

ωi. (17)

In Partitioned Probabilistic Neighbour Selection, because we actually select ⌈pk⌉ users
from the top-k users, when p ≤ k−1

k , the probability of selecting top-k users as the final
k neighbours is 0, namely, we provide the absolute security against the kNN attack when
setting p ≤ k−1

k .
To compute the value of β according to our selection process, we select p(1− p)i−1k

users from group i, so the first time we select one user from a group, the number j of this
group obeys the following inequation:

p(1− p)j−1k < 3
2

⇒ j > 1 + (ln 3−ln 2)−ln pk
ln(1−p) .

(18)

Before the group j+1, we have selected pk+p(1−p)k+ · · ·+p(1−p)j−1k users, there
are (1− p)j−1k users can be selected. Since the each of the (1− p)j−1k comes from one
group, the total number of the groups where the k neighbours come from is:

β = (j − 1) + (1−p)j−1k
1

= (j − 1) + (1− p)j−1k.
(19)
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6.3. Analysis Results

According to the previous analysis, when setting the probabilistic parameter p as 1 −(
n−k
n

)ω1
< p ≤ k−1

k , our Partitioned Probabilistic Neighbour Selection achieve bet-
ter performance of recommendation accuracy than Private Neighbour Selection [28] and
Probabilistic Neighbour Selection [1]. Then we give the the relationship between the ac-
curacy metric α and security metric β of our Partitioned Probabilistic Neighbour Selection
by the following equation: 

p ∈ [ α0∑k
i=1 sim(a,i)

, 1]

j =
⌈
1 + (ln 3−ln 2)−ln pk

ln(1−p)

⌉
β = (j − 1) + (1− p)j−1k

(20)

We guarantee to achieve α0 accuracy against the β-kNN attack.

6.4. A representative Example

In this section, we show a simple but representative example of the range of the prob-
abilistic parameter p. Suppose k = θn, θ ∈ (0, 1], we know the lower bound of p,
1 −

(
n−k
n

)ω1
= 1 − (1 − θ)ω1 , is a monotone-increasing function of θ. Because the

value of θ is always small(k ∈ [30, 50] and n is always greater than 1000), the value of
the lower bound of p will be very small. In the mean time, consider the upper bound of p,
it would be a number close to 1. Therefore, the range of value p is very large in the set of
(0, 1).

Now we will show an example in a real scenario. Let k = 50, n = 500, ϵ = 1,
RS = 1, so the lower bound of p would be

1−
(
n− k

n

)exp( ϵ
4k×RS )

= 1−
(
500− 50

500

)exp( 1
4×50×1 )

≈ 0.1, (21)

and the upper bound of p would be k−1
k = 50−1

50 = 0.98. Thus, in the above real scenario,
when we set p in the range of (0.1, 0.98] ⊂ [0, 1), the Partitioned Probabilistic Neighbour
Selection would yield better performance of recommendation accuracy against the kNN
attack.

7. Performance Evaluation

In Section 6, we theoretically analyse the performance on both recommendation accuracy
and system security, and prove that to successfully preserve customer’s privacy against
the kNN attack, our method ensures a better performance of recommendation accuracy
than the PNCF method [28] and Probabilistic Neighbour Selection [1]. In this section,
we compare the recommendation accuracy between Partitioned Probabilistic Neighbour
Selection and global Neighbour Selection [28] and Probabilistic Neighbour Selection [1]
by the experiments on real world dataset.

The dataset in the experiments is the MovieLens dataset3. The MovieLens dataset con-
sists of 100,000 ratings (1-5 integral stars) from 943 users on 1682 films, where each user

3 http://grouplens.org/datasets/movielens/
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has voted more than 20 films, and each film received 20−250 users’ rating. Specifically,
we randomly select one rating of a random user, and then predict this user’s potential
value by the k Nearest Neighbour (kNN), Partitioned Probabilistic Neighbour Selection
(PPNS), Probabilistic Neighbour Selection (nPNS) [1], Private Neibgbhour Selection Col-
laborative Filtering (PNCF) [28].

In this paper, we use a famous measurement metric, Mean Absolute Error (MAE)
[27, 28], to measure the recommendation accuracy:

MAE =
1

T

∑
i∈T

|rai − r̂ai|, (22)

where rai is the real rating of user ua on item ti, and r̂ai is the predicting rating, T is
the test times. To guarantee a reasonable experimental result, in our experiments, rai ̸=
0. Clearly, a lower MAE value denotes a better prediction accuracy. Note that in each
experiment, we consider the kNN CF recommendation method as a baseline (the best
method on accuracy performance).

In our experiments, we compute the parameter RS by the previous theory [28]. We
set T = 10, 000, namely, we do the experiments 10,000 times to compute the MAE.
Specifically, we randomly select one target user and item at each time. Our experiments
are run on user-based CF (because both the kNN attack and the β-kNN attack are user-
based attack), and we use the cosine-based metric to compute the similarity between users.
Table 1 and Figure 1 show the relationship between accuracy performance of Partitioned
Probabilistic Neighbour Selection and parameter p, where we set ϵ = 1, k = 50, ρ = 0.5.
Table 2 and Figure 2 show the relationship between security performance of Partitioned
Probabilistic Neighbour Selection (value of β) and parameter k, where the total partition
number is 19. Table 3 and Figure 3 show the relationship between accuracy performance
of all the four methods and parameter k, where we set ϵ = 1, p = 0.5, ρ = 0.5. Table
4 and Figure 4 show the relationship between accuracy performance of PNCF [28] and
parameter ρ, where we set ϵ = 1, p = 0.5, k = 50.

p
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
A

E

0.65

0.7

0.75

0.8

0.85

0.9

kNN
nPNS
PNCF
PPNS

Fig. 1: Impacts of p on accuracy (ϵ = 1, k = 50,
ρ = 0.5)

p 0.1 0.2 0.3 0.4 0.5
kNN 0.6956 0.7027 0.6908 0.6835 0.7074
PPNS 0.8333 0.7813 0.7289 0.7134 0.7085
nPNS 0.8762 0.8918 0.8884 0.8797 0.8878
PNCF 0.8798 0.8928 0.8885 0.8738 0.8753
p 0.6 0.7 0.8 0.9 1.0

kNN 0.6849 0.6899 0.6847 0.6746 0.6897
PPNS 0.6872 0.6914 0.6854 0.6792 0.6897
nPNS 0.8863 0.8889 0.8873 0.8781 0.8893
PNCF 0.8790 0.8845 0.8869 0.8783 0.8940

Table 1: Impacts of p on accuracy (ϵ = 1,
k = 50, ρ = 0.5)
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β
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Fig. 2: Impacts of p on security (total partition
number = 19)

p 0.1 0.2 0.3 0.4 0.5
kNN 1 1 1 1 1
PPNS 15 13 10 8 7
nPNS 17 17 17 17 17
PNCF 17 17 17 17 17
p 0.6 0.7 0.8 0.9 1.0

kNN 1 1 1 1 1
PPNS 6 5 3 2 1
nPNS 17 17 17 17 17
PNCF 17 17 17 17 17

Table 2: Impacts of p on security (total partition
number = 19)

k
10 20 30 40 50 60 70 80 90 100
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1

kNN
nPNS
PNCF
PPNS

Fig. 3: Impacts of k on accuracy (ϵ = 1, p = 0.5,
ρ = 0.5)

k 10 20 30 40 50
kNN 0.8065 0.7149 0.7288 0.6942 0.6957
PPNS 0.8962 0.8017 0.7716 0.7395 0.7430
nPNS 0.9687 0.9131 0.9034 0.8867 0.8904
PNCF 0.9856 0.9245 0.9094 0.8862 0.8941
k 60 70 80 90 100

kNN 0.6644 0.6679 0.6574 0.6699 0.6746
PPNS 0.7140 0.7225 0.7140 0.7258 0.7362
nPNS 0.8698 0.8695 0.8592 0.8599 0.8604
PNCF 0.8669 0.8687 0.8528 0.8624 0.8650

Table 3: Impacts of k on accuracy (ϵ = 1,
p = 0.5, ρ = 0.5)

According to the experiments results, we have:

(1) From Fig. 1, when setting p > 1−
(
n−k
n

)ω1 , the accuracy performance of Partitioned
Probabilistic Neighbour Selection is always better than the PNCF method [28] and
Probabilistic Neighbour Selection [1]. When the value of p is close to 1, the perfor-
mance of Partitioned Probabilistic Neighbour Selection is close to the kNN method.
Particularly, when p = 1, the Partitioned Probabilistic Neighbour Selection method
is the same as the kNN method.

(2) From Fig. 1 and Fig. 2, the accuracy performance of the neighbourhood-based CF
methods largely depends on the quality of neighbours. Our Partitioned Probabilistic
Neighbour Selection method yields a better trade-off between the recommendation
accuracy and security, as when we offer a better accuracy performance, we do not
lose the security much.
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ρ
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Fig. 4: Impacts of ρ on accuracy (ϵ = 1, p = 0.5,
k = 50)

ρ 0.1 0.2 0.3 0.4 0.5
kNN 0.6815 0.6962 0.6914 0.6740 0.6821
PPNS 0.7310 0.7326 0.7175 0.7160 0.7374
nPNS 0.8915 0.8817 0.8873 0.8770 0.8801
PNCF 0.8911 0.8841 0.8932 0.8778 0.8862
ρ 0.6 0.7 0.8 0.9

kNN 0.6725 0.6887 0.6808 0.6910
PPNS 0.7107 0.7289 0.7185 0.7196
nPNS 0.8657 0.8812 0.8701 0.8813
PNCF 0.8667 0.8837 0.8738 0.8733

Table 4: Impacts of ρ on accuracy (ϵ = 1,
p = 0.5, k = 50)

(3) From Fig. 3, the size of neighbour set impacts the accuracy performance of all of the
neighbourhood-based CF recommendation approaches. A large value of neighbour
set size k yields a better accuracy performance.

(4) From Fig. 4, the value of λ in [28] is not achievable because the value of ρ does not
impact the accuracy performance of PNCF [28].

8. Conclusion

Recommender systems play an important role in e-commerce. To protect users’ private in-
formation during the process of filtering, the existing privacy preserving neighbourhood-
bases CF methods fail to protect users’ privacy in rating prediction. The global probabilis-
tic neighbour selection methods, such as the PNCF method [28] and Probabilistic Neigh-
bour Selection [1] though can protect users’ privacy against the kNN attack successfully,
but provide no data utility guarantee. To overcome the weaknesses of the current meth-
ods, we propose a novel privacy preserving neighbourhood-based CF method, Partitioned
Probabilistic Neighbour Selection, to ensure a required recommendation accuracy while
maintaining high system security against the β-kNN attack (generalisation of the kNN
attack). Theoretical and experimental analysis show that to provide an accuracy-assured
recommendation against the most popular attack, the kNN attack, our Partitioned Proba-
bilistic Neighbour Selection method yields a better trade-off between the recommendation
accuracy and system security than the PNCF methods [28] and Probabilistic Neighbour
Selection [1].
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