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Abstract. In this paper, we present a framework which relies on the Map/Reduce
paradigm in order to distribute computations among underutilized commodity hard-
ware resources uniformly, without imposing an extra overhead on the existing in-
frastructure. The volume of the distance computations, required for records com-
parison, is largely reduced by utilizing the so-called Locality-Sensitive Hashing
technique, which is optimally tuned in order to avoid highly redundant computa-
tions. Experimental results illustrate the effectiveness of our distributed framework
in finding the matched record pairs in voluminous data sets.
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1. Introduction

Recently, a series of bank and insurance company failures triggered a financial crisis of
unprecedented severity. Institutions had to engage in negotiations in order to get back
on their feet [1]. An important parameter of these negotiations are the customer bases
that need to be cleaned up and possibly merged. The process of merging the customer
bases and finding out records that refer to the same real entity is known as the Record
Linkage, Entity Resolution or Data Matching problem [11]. In our case, we also assume
that records belong to different owners, who are bound to protect the privacy of the data
they hold by the legislation framework. If privacy should be preserved during the link-
age of the records, special techniques should be developed that leverage similarity and
simultaneously respect the privacy of sensitive data. This type of linkage is known as
Privacy-Preserving Record Linkage and is picking up a lot of steam lately.

More specifically, the process of linking records from various data sets consists ba-
sically of two steps. The first step is the searching of potentially matching pairs and the
second is the actual matching of these pairs. The searching step refers to the smooth scal-
ing of computational cost in terms of time and consumed resources with respect to the data
volume explosion. So long as the data is increasing, we should be able to link records effi-
ciently, in an anticipated manner and offer linkage solutions of low resource consumption.
The first step relies on techniques such as the traditional blocking [6], the Mapping-based
Indexing [24], the Sorted Neighborhood approach [21], the Q-Gram-based indexing [6]
and the Canopy Clustering [15]. The second step, known as the matching step, is imple-
mented either in an exact or in an approximate manner. Exact matching of two records can
be regarded as a binary decision problem of exact agreement or disagreement. Approx-
imate matching entails the calculation of value similarity, falling in the range of [0..1].
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Several methods have been developed for approximate matching of values such as Edit
distance [33], Jaro-Winkler distance [46] and SoftTF-IDF [14]. Variations in the data val-
ues, mainly due to typographical errors, and privacy concerns, which need to be taken
into consideration, lead us to the choice of secure approximate matching [37] solutions
for our problem, where value variations are preserved in the transformations that occur to
protect their privacy.

By going back to our scenario, let us suppose that two banks started negotiations for
a merger and that their corresponding customer bases are voluminous. Since no bank is
willing to disclose any confidential data to the other bank, in order to protect their pri-
vacy, we should employ high-dimensional data structures to embed that data in, which in
combination with the huge collection of records at hand, introduce high computational
overhead in the linkage process. Hence, we need an efficient method to identify similar
data, given the complex representational structure and the huge size of data sets.

The secure searching solutions, which have been developed to solve the PPRL prob-
lem, rely mostly on traditional blocking, where all records that have the same value in a
specific field(s) are blocked together for comparison. However, the proposed solutions ex-
hibit a considerable overhead in terms of performance, when applied to voluminous data
and especially to high-dimensional data. In [22], as an example, blocking relies on the
categorization of records into generalized hierarchies based on the semantics of values of
selected fields, which may lead to load imbalance problems, if most values semantically
belong to certain categories. Karakasidis and Verykios in [25] present a blocking tech-
nique which relies on a sliding window that creates blocks of records. Its performance is
considerably degraded, when the size of that window is increased in order to produce more
accurate results, as shown experimentally in Sect. 6. Authors in [26], [28] and [17] use
redundant probabilistic methods, where each record is blocked into several independent
blocking groups, in order to amplify the probability of bringing together similar records
for comparison. These techniques though utilize an arbitrary number of blocking groups
as well as an arbitrary number of hash functions to shape up the blocking keys for each
group. This process has as a result either unnecessary and expensive comparisons or a
large number of missed similar record pairs.

In this paper we propose the optimal configuration, denoted by oBfJ, of a naive
methodology for PPRL, as introduced in [17]. As shown experimentally, oBfJ can reduce
the number of record pairs that are brought together for comparison up to 95% of the total
comparison space while it maintains high levels of recall, constantly above 93%. More-
over, by exploiting a number of computational resources of commodity hardware using a
distributed framework based on oBfJ, as illustrated in Sect. 5, we will manage these com-
putations with respect to large-scale data volumes. Experimental results in Sect. 6 indi-
cate that our proposed framework outperforms the Multi-Dimensional Privacy-Preserving
Blocking (MPPB) method [25], in terms of running time and accuracy in the results.

The structure of the paper is organized as follows. Related work is described in Sect.
2. In Sect. 3 we present an outline of the various building blocks we utilize in our frame-
work. In Sect. 5 we illustrate our proposed framework, which is evaluated in Sect. 6.
Conclusions and ideas for future extensions are presented in Sect. 7.
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2. Related Work

Several solutions have been presented in the literature in the field of efficient searching
for similar records [15, 17, 22–26, 28, 38]. However, these solutions exhibit poor perfor-
mance when applied to massive data sets. In [15] for example, a cheap distance metric is
used for creating clusters of records and then a more expensive, accurate distance metric
is used to evaluate the record pairs that are tagged for further evaluation. Nevertheless,
the number of record pairs, that should be compared eventually, can still be excessively
large. The tree-based indexing methods used in [23,24,38] in order to reduce the number
of candidate record pairs, as reported and proved in [20, 45] and [4], exhibit quadratic
complexity, because they need to scan the whole index structure repeatedly, when these
structures are used for representing records even with moderate dimensionality (≥ 10).
A detailed survey of blocking techniques for Record Linkage can be found in [12]. An
overview of privacy-preserving blocking techniques is provided in [44].

The Bloom filter-based encoding method, as was presented in [40] and is used by
our oBfJ methodology, is easily implemented and preserves the similarity of the original
records. However under certain circumstances, this method is susceptible to constraint
satisfaction cryptanalysis [30]. Scannapieco et al. in [38] present an encoding method
that embeds string values in the Euclidean space by using reference sets of random string
values. This embedding method imposes certain strict requirements, like the use of ran-
dom strings of length approximately equal to the length of the values to be embedded,
which cannot be applicable to data sets exhibiting quite large variation in the length of
their values. Pang et al. in [35] use public reference tables in order to compute the dis-
tance of field values from those in the reference tables and to assign them into clusters.
However, accurate results are attained only when the reference tables are a superset of
the values in the data sets. The encoding method in [13] relies on the extracted q-grams
from string values which are sent in an encrypted format to a third-party for comparison.
Q-grams are susceptible to frequency attacks and add high communication cost due to the
large number of encrypted data that should be sent to the third-party.

Our methodology utilizes a trusted third-party in order to conduct the linkage of the
encoded data sets. Two-party techniques, like the ones in [42] and [43], may reduce the
risk of privacy breach, like colluding parties, but they are complex and they add high com-
munication cost. Authors in [22,31], instead of encoding data and submitting it to a third-
party, suggest Secure Multi-Party Computation (SMC) protocols [34] to the matching
step. These protocols are effective and reliable but they add high computational overhead
leading to prohibitive running times.

3. Background and Problem Formulation

For illustration purposes and without loss of generality, let us consider that we have to link
two data sets A, which belongs to Alice, and B, which belongs to Bob, as shown in Table
1 and 2 correspondingly. Alice and Bob are allowed to make use of the services offered
by an independent party, whom we call Charlie. We assume that Charlie can help in the
process by exhibiting what is known as a semi-honest or honest-but-curious behavior [44],
which means that even if Charlie is not trying to collude with Alice or Bob, and follows
the protocol prespecified by the two custodians, he is still curious to find out as much
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information, from what he is presented with, as possible. The cardinality of A and B is
NA and NB respectively.

Table 1. Data set A belonging to Alice
Id FirstName LastName
1 George Peters
2 John Smith

Table 2. Data set B belonging to Bob
Id FirstName LastName
1 William Grace
2 John Smyth

Alice and Bob will transform their data sets into secure structures so that linkage will
be conducted in a private manner. Also, Alice and Bob need the result of the linkage within
a reasonable amount of time, although the cardinality of the corresponding data sets might
be millions of records. In the next subsections we present the basic components of a naive
methodology for PPRL, as introduced in [17], denoted by BfJ, which relies on the Bloom
filter-based encoding method [40] and on the Min-Hash Locality-Sensitive Hashing ap-
proach [9]. By applying BfJ and setting certain configuration parameters appropriately, as
shown in 4, the truly matched record pairs can be found efficiently and accurately.

3.1. Bloom filters for Private Representation of Data

A string value is anonymized by encoding it as a Bloom filter. A Bloom filter is a data
structure used to represent the elements of a set, in order to support membership queries
for these elements efficiently, in terms of time and space required [7]. It has been shown
in [40] that Bloom filters are able to preserve the distance between the pair of unencoded
string values, and for this reason they can be used to compare string values in a private
manner. More specifically, a bitmap array of size L, initialized with zeros, is created by
hashing all consecutive bigrams of a string (sequences of pairs of adjacent characters),
by using F independent composite cryptographic hash functions Gis (see Fig. 1). For
example, MD5 and SHA1 [39] may play the role of Gis along with other more advanced
keyed hash message authentication code (HMAC) functions like HMAC-MD5 and HMAC-
SHA1 [29], which utilize a secret key, that should be shared by the data custodians, for
increased security.

Let us suppose that Alice and Bob encode the FirstName and the LastName attributes
of their sets, into field-level Bloom filters with length equal to 6 bits by using one cryp-
tographic hash function for each bigram, as shown in Tables 3 and 4 respectively. By
concatenating those field-level Bloom filters for each record, we construct the encoded
representations of the original records. The Id attribute indicates both the initial Id and



A Distributed LSH-based Framework for PPRL 749

110101

Jo oh hn

composite cryptographic hash function for each bigr am x
 Gi(x) = [sha1(x) + ( i * md5(x))] mod L, where i=0,…,F-1 

110111

Sm mi it th

Jo oh hn

110101

Sm my yt th

101111

Bf 1  Bloom filter -based record -level representation of  the record with 
FirstName=“John” and LastName =”Smith”

Bf2 Bloom filter-based record -level representation of t he record with
FirstName=“John” and LastName =”Smyth”

Fig. 1. Concatenation of field-level Bloom filters into an encoded record-level structure

the source data set. Durham in [17, 18] develops a Bloom filter-based record-level en-
coding format by sampling random bits from field-level Bloom filters either of dynamic
or static size she experimentally shows that accuracy is maintained in similarity calcu-
lations. The encoded data sets are denoted as A′ and B′ respectively. The distance of
two Bloom filters Bf1 and Bf2 can be measured by the Jaccard metric as dJ(Bf1,Bf2) =
|BP(Bf1)∩BP(Bf2)|/|BP(Bf1)∪BP(Bf2)|, where BP(·) returns all bit positions of a Bloom
filter set to one.

Table 3. Transforming data set A into A′

IdA Bf(FirstName) Bf(LastName)
A1 <1,0,1,1,0,0 > <1,0,1,1,0,0>
A2 <0,1,1,1,1,0 > <1,0,1,1,0,0>

Table 4. Transforming data set B into B′

IdB Bf(FirstName) Bf(LastName)
B1 <1,1,0,0,1,1 > <0,0,0,1,0,0 >
B2 <0,1,1,1,1,0 > <1,0,1,1,0,1>

3.2. Min-Hash Locality-Sensitive Hashing for Efficient Grouping of Similar
Bloom filters

An efficient well-known method that is used in finding similar items among huge data
sets, is the Locality-Sensitive Hashing (LSH) [19] technique. The LSH technique per-
forms probabilistic dimensionality reduction of high-dimensional data. Locality-sensitive
hash functions that are sensitive to the Jaccard metric, comprise the Min-Hash family,
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which is denoted byH [8,10,36]. The locality-sensitive property assumes that the proba-
bility of generating the same result if we hash two Bloom filters by the same function of
H, is dependent upon their Jaccard distance. In essence, the application of the Min-Hash
LSH method to the Bloom filters, can be considered as a Λ-independent and redundant
blocking technique. In order to generate these Λ independent blocking groups, we should
make use of Λ composite hash functions Hj , where j = 1, . . . , Λ. Each Hj consists of
a fixed number, say K of base hash functions hjk, where k = 1, . . . ,K chosen randomly
and uniformly from H. The result of each base hash function hjk(Bf) = min{πjk(Bf)}
applied to a Bloom filter Bf, is the bit position of the minimum non-zero element after
permuting its elements according to the πjk, which is the k-th permutation of the j-th
blocking group.

For example, say we have to permute Bf = <1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0> accord-
ing to the permutation π1

1 = <3, 5, 0, 2, 11, 8, 9, 10, 4, 6, 7, 1> which transforms Bf into
<1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0>, hence min{π1

1(A
′
1)} = 3. Each Hj is used to hashing a

Bloom filter to one of the separate blocks of each independent group. By applying to the
Bloom filter Bf each of the K base hash functions of Hj and by concatenating the results,
a Keyj is built, which hashes Bf to the j-th blocking group, namely Keyj = Hj(Bf), where
Hj = Concat(min{πjk(Bf)}). Each of the blocking groups can be implemented as a sim-
ple hash table consisting of key-bucket pairs, where a bucket hosts a linked list where we
place the Ids of the Bloom filters that have been hashed to this bucket. Another way of
implementing blocking groups, especially suited for massive data, is shown in Sects. 5.1
and 5.2.

3.3. Secure Matching of Bloom filter Pairs

Charlie, by using common permutations, hashes the Bloom filters ofA andB once to each
blocking group. In the blocks of those groups, where Bloom filters of both data sets are
located, Charlie compares them in a pairwise manner. To be more precise, the stored Ids
are used to retrieving the corresponding Bloom filters. A simple decision model classifies
those Bloom filter pairs either to matched or to non-matched pairs according to their
distance dJ compared to a threshold ϑ, which is defined by the data custodians. Given
two Bloom filters Bf1 and Bf2, we compute the intermediate variables a, b and c, which
will be used in the distance calculation of Bf1 and Bf2, as follows:

a =
∑

l∈[0,L)

[(Bf1[l] == 1) ∧ (Bf2[l] == 1)] (1)

b =
∑

l∈[0,L)

[(Bf1[l] == 1) ∧ (Bf2[l] == 0)] (2)

c =
∑

l∈[0,L)

[(Bf1[l] == 0) ∧ (Bf2[l] == 1)] (3)

The Jaccard distance can be calculated as: dJ(Bf1,Bf2) = 1 − [a/(a + b + c)]. We refer
the reader to [44] where various classification techniques are discussed. Also, as shown in
Fig. 1, all underlying fields of records in A and B, participate equally in the composition
of the encoded representation of the record. This means that each field is weighted equally
in both blocking mechanism and distance calculation.
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3.4. Map/Reduce Framework for Scaling Up Computations

Map/Reduce [16] is a computational paradigm, where an application is divided into frag-
ments of computation, each of which may be executed on any node of a cluster, so that
parallelism can speed-up the whole process. The Map/Reduce system runs on top of a
distributed file system where data is fragmented into equally-sized subsets and stored on
the nodes of a cluster, providing reliability and integrity by managing redundancy of data
and scalability by easily adding compute nodes on demand. When a job is submitted to
the Map/Reduce framework, map and reduce tasks are allocated to the compute nodes
where data, that the job has specified, exists. Each map task, denoted by Mx, processes
a subset of data and outputs intermediate <key, value> pairs. Each unique key, as gener-
ated by the map tasks, is distributed by the partitioner tasks to a single reduce task Rx,
along with its associated value. This mechanism results to the allocation of each unique
key with its associated vector of values to a reduce task which processes this vector of
values according to the application logic.

4. The oBfJ Methodology

From the LSH theory [19], given two Bloom filters Bf1 and Bf2, if it holds that dJ(Bf1,Bf2) ≤
ϑ then Pr[hjk(Bf1) = hjk(Bf2)] ≥ pϑ, where pϑ = 1− ϑ [36] and ϑ is the maximum dis-
tance that two Bloom filters should exhibit in order to be considered as similar. Since each
Hj consists ofK base hash functions, the probability of Bf1 and Bf2 colliding in the same
block of the j-th group is:

Pr[Hj(Bf1) = Hj(Bf2)] ≥ pKϑ . (4)

In the naive BfJ (Bloom filters-Jaccard) methodology, the probability of collision is am-
plified by blocking the Bloom filters independently to Λ blocking groups. While, though,
the probability of collision is amplified, the redundant blocking groups increase the run-
ning time and the utilized space. Therefore, the naive BfJ should be optimized in order to
produce the smallest set of Bloom filter pairs that include as many as possible from the
matched pairs and simultaneously to consume the least possible computational resources.
For a given value of K, by setting Λopt = dln(δ)/ ln(1 − pKϑ )e [5, 19], each Bloom fil-
ter pair is returned by this scheme with probability at least (1 − δ), where δ is an input
parameter indicating the probability of failing to return a matched pair. For example, for
a distance threshold ϑ = 0.40, by setting K = 5 and δ = 0.1, we generate Λopt = 29
blocking groups. By utilizing this structure, theoretical guarantees are provided that each
matched Bloom filter pair is returned with probability at least 0.9. An arbitrary value for
Λ (Λ > 28), would return the matched Bloom filter pairs but would result to useless addi-
tional running time and space. Since the Bloom filter-based method is highly accurate and
distance-preserving, by finding the matched Bloom filter pairs, we also find the original
matched record pairs, which are a subset of those Bloom filter pairs.

The choice of the optimal value for K, that is Kopt, is more complex since we should
choose a value that minimizes the running time, which actually depends on the number
of distance computations. We estimate the expected running time E[RT] by using several
different values of K, and their corresponding Λopt values, and we choose the one that
minimizes the E[RT] value. In the same way as authors do in [41], we decompose E[RT]
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into two basic components: E[RT] = RTT + E[UC]. The first component RTT , which is
equal to

RTT = Λopt K(NA′ +NB′), (5)

is the time required to compute the Keyjs for each record of A′ and B′. The second com-
ponent E[UC] is the expected number of unique collisions (unique pairs) in the blocks.
LetQ(τ) denote the probability of a collision for a Bloom filter pair, exhibiting distance τ .
Then,Q(τ) is equal to 1−(1−(1−τ)K)

Λopt [5]. A tight estimation ofE[UC] is given by
E[UC] =

∑NA′
ι=1

∑NB′
κ=1Q(dJ(Bfι,Bfκ)). However, it is not practical to compute E[UC]

in this way since it includes the calculation of distances of the whole comparison space
A′ × B′. By exploiting statistical information about the distribution of the Bloom filter
pairs in distance intervals and by using the Monte Carlo method [32], we can make infer-
ences about the number of Bloom filter pairs falling to those intervals. More specifically,
we sample the minimum required number of pairs for each interval from the comparison
space and by computing their distances, we make global inferences about the Bloom filter
pairs distribution to those distance intervals. For example, for our data sets, the proba-
bility that a Bloom filter pair falls within the distance interval [0.80, 0.85) is 0.23. This
probability distribution follows the Poisson distribution with λ = 16 (the 16th interval
[0.80, 0.85) starting from [0.0, 0.05)). Given such empirical data, let p̂α be the estimated
proportion of pairs that fall to the α-th interval. Let also N̂α be the estimated number of
those pairs which equals to p̂α |A′×B′|. Then, the estimated number of unique collisions,
denoted by ÛC, for a given K and Λopt is

ÛC =

Nint∑
α=1

N̂α Q(X̃α), (6)

where Nint is the number of the intervals and X̃α is the midpoint of each interval. Thus,
by setting several values for K, we compute for each of them, Λopt and E[RT]. The
value of K that exhibits the smallest E[RT], is chosen as Kopt. For example, by setting
K = 2, . . . , 12, we observe from the curve in Fig. 2 that as K approaches 5 from the left,
E[RT] decreases, it is minimized when K = 5 and for K > 5, E[RT] grows substantially.
Therefore, the value of 5 is chosen as Kopt.

We can also set K empirically since the correctness of the scheme is guaranteed by
setting appropriately Λopt , but by doing so we may not be optimal in terms of running
time.

5. A Distributed LSH-based Framework

In this section we present a distributed framework that relies on the Min-Hash LSH
technique for searching similar records efficiently and on the Map/Reduce programming
paradigm in order to enable scalability, by providing compute nodes on the fly. Alice and
Bob submit their data formatted as shown in Tables 3 and 4 to the trusted third party,
Charlie, who utilizes a Map/Reduce system on top of a distributed file system to run the
computations. Input data sets are horizontally partitioned into independent subsets Ds of
equal predefined size, and then each subset is replicated ρ times on different compute
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Fig. 2. Expected running time E[RT] for specific (K, Λopt) values

nodes, for fault tolerance purposes. Map tasks receive the subset Ds stored on the node
they run. To illustrate the framework, Charlie’s cluster consists of two nodes C1 and C2

that hold data and a master node C0 which coordinates the functionality of the cluster.
The master node splits each data set as submitted by Alice and Bob in two subsets of
equal size. Each subset in our example has one row. By setting the replication factor ρ to
1, each subset of A′ and B′ is distributed to different nodes. For example, BfA2, BfB1 are
stored onC1 and BfA1 and BfB2 are stored onC2. If we set ρ = 2, then each subset should
be replicated twice, which would result to the total omnipresence of subsets to nodes. We
present two large-scale linkage strategies that use the described cluster of nodes. The first
strategy, denoted by St1, consists of one Map/Reduce job, while the second strategy, that
is St2, utilizes two chain Map/Reduce jobs. Both strategies have two distinct logical steps,
(a) the generation of the Keyjs and (b) the matching of the formulated Bloom filter pairs.

5.1. Generation of the Keyjs

When Charlie submits the Map/Reduce job of linkage, Algorithm 1 runs on each node
by the map tasks M1 and M2. For each Bloom filter contained in a subset Ds, the Keyjs
are constructed by applying the corresponding permutations, as agreed by Alice and Bob
and shown in Algorithm 1 in line 7. For illustration purposes, by letting K = 2, Λopt
is set to 2 (to be precise Λopt should be set to 6, given δ = 0.1 and ϑ = 0.40). On the
compute node C1, which holds BfA2 and BfB1, M1 builds the following Keyjs for BfA2:
<1B,3,1> and <2B,0,5> . The map task M2, running on C2, builds also for BfB2 the
same Keyjs. The labels 1B and 2B denote that the corresponding Keyjs refer to the first
and the second blocking group respectively. The Keyjs, along with the corresponding Ids,
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are emitted to the partitioner tasks (Algorithm 1, line 10). This phase is common for both
linkage strategies.

Algorithm 1 Transformation of Bloom filters into <Keyj , Id> pairs in the map phases of
both St1 and St2
Input: Ds, πj

ks permutations, K
Output: list (<Keyj , Id >)
1: Λopt = computeOptimal(K)
2: for i=1 to |Ds| do
3: Id←Ds

i .Id
4: Bf ←Ds

i .Bf
5: for j=1 to Λopt do
6: for k=1 to K do
7: Keyj = Concat(min{πj

k(Bf)})
8: end for
9: end for

10: emit(Keyj , Id)
11: end for

5.2. Matching of the Formulated Bloom Filter Pairs

The Ids of the Bloom filters corresponding to a unique Keyj are routed to the same reduce
task Rx, by the partitioner tasks. Then in strategy St1, each Rx calculates the Jaccard
distance of each Bloom filter pair, as illustrated in Sect. 3.3 and shown in Algorithm 2,
lines 2 and 4. If the distance of a pair is below or equal to a predefined threshold (ϑ) then
it is classified as a matched pair, otherwise as a non-matched pair (Algorithm 2 lines 7, 9).
In our running example, the Key1=<1B,3,1>, which refers to the first blocking group and
it is generated by both BfA2 and BfB2, has as a result their grouping to the same block and
their classification as a matched pair. It is also noted in Fig. 3, where the strategy St1 is
outlined, that these Bloom filters also exhibit the same keys in the second blocking group,
which results to a redundant distance computation.

The notation [Id] in Algorithm 2, in the input statement, denotes that we get a list of
Ids for each Keyj . In lines 3 and 5 function get(·) retrieves a Bloom filter from a data
store. The same function uses a naive cache mechanism in order to cache locally a lim-
ited amount of the retrieved Bloom filters, for efficient use in subsequent computations
that these Bloom filters participate. In our implementation the data store is a relational
database. Linking two data sets of 200, 000 Bloom filters each, the Min-Hash scheme
produces around 130, 000, 000 pairs (K = 5, Λopt = 29), including duplicates which
may be up to 12% of the total number of pairs.

In order to avoid the calculation of distance of duplicate pairs across the Rxs, in strat-
egy St2, we employ two chain Map/Reduce jobs. The map phase of the first job includes
the generation of the Keyjs, as illustrated in Algorithm 1, while during the reduce phase,
the Bloom filter pairs are formulated without computing their distance (Algorithm 3).
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Algorithm 2 Matching of the grouped Bloom filters in the reduce phase in St1
Input: list(<Keyj , [Id] >)
Output: list ({“M”,“U”}, IdA, IdB)
1: for each Keyj do
2: for each IdA ∈ A′ do
3: BfA← get(IdA)
4: for each IdB ∈ B′ do
5: BfB ← get(IdB)
6: if dJ(BfA,BfB) ≤ ϑ then
7: output(“M”, IdA, IdB);
8: else
9: output(“U”, IdA, IdB);

10: end if
11: end for
12: end for
13: end for

Algorithm 3 Formulation of Bloom filter pairs in the first reduce phase in St2
Input: list(<Keyj , [Id] >)
Output: list (IdA, IdB , ·)
1: for each Keyj do
2: for each IdA ∈ A′ do
3: for each IdB ∈ B′ do
4: output(IdA, IdB , ·);
5: end for
6: end for
7: end for

The second map phase is an identity function that simply passes its input data to
the second reduce phase, where unique record pairs, as represented by their Ids, are dis-
tributed to the reduce tasks which perform the distance computations. This generating-
unique-pairs strategy limits the comparisons only to the unique Bloom filter pairs, as
specified by oBfJ. However, the use of a relational database to provide the Bloom filters
results to long running time, because each pair requires the retrieval of two Bloom filters
since the probability of having at least one of them cached is very low. On the contrary to
St1, as illustrated in line 3 of Algorithm 2, the Bloom filter of A′ is retrieved once from
the database, it is then cached and compared to all the Bloom filters of B′ for the specific
Keyj (line 5). The two strategies are outlined in Figs. 3 and 4 respectively.

6. Evaluation

In the experiments we evaluate oBfJ in terms of (a) the accuracy in finding the encoded
matched record pairs, (b) the accuracy in finding the truly matched record pairs, (c) the ef-
ficiency in reducing the number of candidate record pairs and (d) the scalability in volumi-
nous data sets. For (a),(b) and (c) we use semi-synthetic data sets of 50,000 records each,
extracted from the NCVR [2] list. Each record includes 4 fields, namely Id, LastName,
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Fig. 3. Outline of strategy St1

Algorithm 4 Matching of the grouped Bloom filters in the second reduce phase in St2
Input: list(IdA, IdB , [·])
Output: list ({“M”,“U”}, IdA, IdB)
1: BfA← get(IdA)
2: BfB ← get(IdB)
3: if dJ(BfA,BfB) ≤ ϑ then
4: output(“M”, IdA, IdB);
5: else
6: output(“U”, IdA, IdB);
7: end if

FirstName and Address. We develop a software prototype that extracts data sets, A and B
of user-defined size and perturbation frequency, from the NCVR list [2]. Records are cho-
sen randomly for perturbation, according to the specified frequency. For each perturbed
record, two fields are chosen randomly and undergo (a) a single perturbation scheme (Pt1)
or (b) a double perturbation scheme (Pt2). Insert, edit, delete and transpose operations are
used to perturb the values of those chosen fields. The perturbation frequency of the records
is set to 0.3. Field-level Bloom filters are created with size L equal to 500 bits, by using
15 cryptographic hash functions for each bigram, as proposed in [40]. All experiments,
except for the large-scale ones (see Sect. 6.3), are executed in a dual-core Pentium PC of
8 GB RAM.
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6.1. Selected Measures

The Pairs Completeness (PC), the Pairs Quality (PQ) and the Reduction Ratio (RR) met-
rics [12] are employed to evaluate the efficiency of our methodology in finding the truly
matched record pairs with respect to accuracy. The set of the identified encoded matched
record pairs is denoted byM and the set of the original matched record pairs by M . Ac-
curacy is measured by the PCM metric, which is equal to |M∩M |/|M |. The efficiency
in generating mostly matched pairs with respect to the number of the candidate pairs is
indicated by the PQ metric which is equal to |M ∩M |/|CR|, where CR is the set of the
candidate record pairs. The Reduction Ratio illustrates the percentage in the reduction of
the comparison space and it is equal to 1.0− |CR|/|A′ ×B′|.

6.2. Comparative Results

The efficiency of the Min-Hash LSH scheme and the accuracy of the Bloom filter-based
encoding jointly determine the overall performance of our methodology. In Fig. 5 we
demonstrate the results by performing experiments for various values for K (ϑ = 0.40
and δ = 0.1) along with their corresponding Λopt values, namely (5, 29),(6, 49),(7, 82)
and (8, 136). Furthermore, for a specific value of K, we perform experiments by setting
Λ to several arbitrary values. For example, for K = 5, we set Λ = <49, 82, 136> or for
K = 8, we set Λ = <29, 49, 82>. We observe from Fig. 5, for a given value of K, as
Λ approaches from the left to Λopt, the PCM rate increases but after Λopt, the PCM
rate remains almost stable. This implies that the largest part of the matched Bloom filter
pairs is identified (each pair is returned with probability at least 0.9) and consequently
the same happens for the largest part of the original matched record pairs. An amount of
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Fig. 5. Trying several values of K along with the corresponding Λopt values

the original matched record pairs is missed, approximately 8%, due to improper Bloom
filter-based encoding, where the initial distances are not preserved.

We compare our methodology to the Multidimensional Privacy-Preserving Blocking
(MPPB) method as proposed in [25]. MPPB is based on the K-Medoids algorithm [27]
for creating clusters from elements of public reference sets. Next, records are classified
to those clusters and they are encoded into Bloom filters, where the Sorted Neighborhood
algorithm [21] is used for the selection of the Bloom filter pairs for comparison within
each cluster. The Dice coefficient [11] is employed to measure the similarity between
those pairs. Thresholds in the comparisons are set to 0.85 and 0.80 for the two perturbation
schemes respectively.
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We set Kopt = 5 and δ = 0.1 as the basic parameters of oBfJ which yield Λopt = 29
blocking groups for the Pt1 scheme with ϑ = 0.40 and Λopt = 45 groups for the Pt2
scheme with ϑ = 0.45. Duplicate distance computations are prevented by utilizing an
efficient O(1) structure (like a HashMap in Java programming language) which stores
the Ids of each compared pair only once, therefore discarding any computation that has
already been conducted. Highly accurate results are generated by oBfJ, as shown in Fig.
6, with PCM rate above 92%. In order to increase the PCM rate for the MPPB method,
we had to increase the window size to a large value (> 70), which had dramatic impact
on the performance and a slight increase in the PCM rate, clearly outperformed by oBfJ,
as shown in Figs. 6 and 7.
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Fig. 9. The Reduction Ratio RR

Although, oBfJ displays high RR, constantly above 94% (Fig. 9), the PQ rates remain
rather low (Fig. 8). Therefore, although oBfJ is efficient in reducing the initial |A′ × B′|
number of pairs, there are still candidate non-matched Bloom filter pairs with distance dJ
close to ϑ but slightly above it. The MPPB method displays better PQ rate but lower RR.

6.3. Scalability

Scalability is measured in terms of execution time, utilizing a Map/Reduce system. More
specifically, Apache Hadoop 1.0.4 is used, as the Map/Reduce implementation, running
on a cluster of four compute nodes, which are virtual machines of Okeanos [3], the cloud
service of the Greek Research and Academic Community. Two data sets are linked, which
consist of 300, 000 records. By adding more physical compute nodes in the reduce phase,
execution time is decreased as shown in Fig. 10. Permutations are shared across the map
tasks by utilizing the distributed file system, since each task runs on its own execution en-
vironment. It is clearly shown that by utilizing a relational database, strategy St2 becomes
inefficient and its main feature, which is the unique distance computation of duplicate
pairs, does not contribute a lot to the overall system’s performance.
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Fig. 10. Execution time exhibited, utilizing a Map/Reduce system using two concrete strategies

7. Conclusions

Linking huge collections of anonymized records is an intriguing problem in the core of
the domain of Privacy-Preserving Record Linkage. In this paper, we introduce an LSH-
based distributed method on top of a Map/Reduce computational paradigm. Records are
encoded into Bloom filters, in order to protect privacy of the underlying data, and then
they are submitted to a trusted third party, which splits and distributes them to a file system
with replication capabilities. The huge collection of records demands the utilization of a
large number of compute nodes that leverage scalability. The Min-Hash LSH technique
is applied by producing from each Bloom filter some Keyjs which correspond to some
blocking groups. The number of those blocking groups (Λopt) and the number of the hash
functions for each Keyj (Kopt) are optimized with respect to accuracy and performance.
Bloom filters are retrieved from a relational database and they are cached locally to each
node for subsequent computations. Those Bloom filters that exhibit identical Keyjs are
grouped together and their Jaccard distance is calculated on a pairwise manner. We believe
that the utilization of a more sophisticated and robust cache mechanism in combination
with the use of a distributed storage system, that facilitates efficient queries to massive
data sets, is an interesting research direction that may boost the performance of strategy
St2.
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