
DOI:10.2298/CSIS120519008P

On Task Tree Executor Architectures Based on

Intel Parallel Building Blocks

Miroslav Popovic1, Miodrag Djukic
1
, Vladimir Marinkovic

1
, and

Nikola Vranic2

1 Faculty of Technical Sciences, Trg D. Obradovića 6,
21000 Novi Sad, Serbia

{miroslav.popovic, miodrag.djukic, vladimir.marinkovic}@rt-rk.com
2 RT-RK Computer Based Systems LLC, 27 Narodnog fronta 23a,

21000 Novi Sad, Serbia
nikola.vranic@rt-rk.com

Abstract. Our aim was to optimize a SOA control system by evolving
the architecture of the service component that transforms system
models into task trees, which are then executed by the runtime library
called the Task Tree Executor, TTE. In the paper we present the two
novel TTE architectures that evolved from the previous TTE
architecture and introduced finer grained parallelism. The novel
architectures execute TTE tasks as more lightweight TBB tasks and
Cilk strands rather than the OS threads, which was the case for the
previous TTE architecture. The experimental evaluation based on time
needed for TTE reliability estimation, by statistical usage tests, shows
that these novel TTE architectures are providing the average relative
speedup, RS, from 8x to 11x, over the original TTE, on a dual-core
machine. Additional experiments made on eight-core machine showed
that RS provided by TTE based on TBB scales perfectly, and goes up
to 77x.

Keywords: service oriented architecture, architecture evolution, task
trees, parallel programming, parallel building blocks.

1. Introduction

Providing proper parallel data processing is one of the greatest challenges to
be dealt with when designing software solutions for management of critical
infrastructures, such as oil, gas and electricity distribution systems. The main
task of these systems is to provide continuous system supervision and
control, based on data acquisition and processing, while fulfilling high
availability, reliability, and security standards. Additionally, numerous
economic, serviceability, and maintainability aspects regarding different
operational activities must be addressed as well. Nowadays all these
requirements are typically satisfied by a Service Oriented Architecture (SOA)

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 370

based system comprising a complex suite of service components, thus
guiding the system designer to the set of necessary data and functionalities
that need to be simultaneously served [1-2].

One of the most complicated components for design is a service
component that provides various calculations using various models of the
system, which commonly take a form of a graph or a tree. The examples of
such calculations for the electricity distribution system are network topology
analysis, load flow calculation, network state estimation, performance indices,
etc. The main factors that are complicating the design of this kind of service
components are that these nontrivial calculations have to be performed on
large-scale graph models and near to real-time. Designers are also frequently
facing the additional economic limitation that they have to somehow reuse
legacy software, because of its enormous size – typically millions of lines of
FORTRAN code that were developed over a couple of decades.

In our previous work we have used two approaches to design and develop
such service components for the electricity distribution systems. The first
approach [3-4] is based on: (i) transforming network models into task trees
that are managed by Task Tree Executor (TTE) and (ii) refactoring legacy
code by introducing callback functions that are executed as TTE tasks. The
second approach [5] is based on: (i) repackaging legacy code as DLLs
(Dynamic Linkable Libraries) and (ii) executing them as parallel applications
by Calculation Engine (CE). The advantage of the second approach is that it
requires less development effort and that it is more robust, but the advantage
of the first approach is that it provides more parallelism, because it is finer
grained than the second approach. TTE runs TTE tasks as separate threads,
whereas CE launches the application DLLs within separate processes.

The goal of the work presented in this paper was to evolve the TTE
architecture based on threads into the two new TTE architectures based on
Intel Parallel Building Blocks (PBB) in order to provide even finer grained
parallelism. The first novel TTE architecture is based on Intel Treading
Building Blocks (TBB), whereas the second novel TTE architecture is based
on Intel Cilk Plus (Cilk). Essentially, the TTE tasks that were executed as
threads by the previous TTE [3-4] are now executed as more lightweight TBB
tasks by the TTE based on TBB, or as Cilk strands by the TTE based on Cilk.

The advantages of this TTE architecture evolution are threefold. Firstly,
both TBB and Cilk are known of being able to provide better multicore CPU
utilization than the local OS, such as MS Windows or Linux (i.e. TBB and Cilk
can better parallelize their tasks/strands than OS can parallelize its threads).
Secondly, both TBB and Cilk provide almost infinite number of tasks,
whereas the local OS provides rather limited number of threads within a
process (the order of couple of thousands of threads at maximum). Thirdly,
the explicit and rather suboptimal CPU load control within the previous TTE
architecture is now delegated to the excellent load balancing functionality of
the TBB and Cilk runtime libraries within the two novel TTE architectures.

The content of this paper is organized as follows. The related work and the
description of target class of software systems that are addressed by the
proposed solutions are presented in Subsections 1.1. and 1.2, respectively.

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 371

The three TTE architectures are described in Section 2, which is divided into
the three subsections. The previous TTE architecture based on OS threads is
described in Subsection 2.1, the novel TTE architecture based on TBB is
described is Subsection 2.2, and the novel TTE architecture based on Cilk is
described is Subsection 2.3. The statistical usage testing method and the
results of the experimental evaluation of novel TTE architectures are
presented in Sections 3 and 4, respectively. The latter Section 4 is partitioned
into the five subsections, which are covering the baseline performance, the
performance of the TTE architecture based on TBB, the performance of the
TTE architecture based on Cilk, the scalability check for the TTE architecture
based on TBB, and the threats to validity of experimental results,
respectively. Final conclusions are given in Section 5.

1.1. Related Work

The next two subsections discuss work related to the TTE architectures
based on Intel TBB and Intel Cilk Plus, respectively.

Work Related to the TTE Architecture Based on Intel TBB

TBB uses templates for common parallel iteration patterns, enabling
programmers to attain increased speed from multiple processor cores without
having to be experts in synchronization, load balancing, and cache
optimization (see [6]). Generally, TBB provides more comfort to
programmers and better results in terms of program speedup when compared
to the practice of using raw threads, which was also the case in our particular
work presented in this paper.

Two features of TBB that provide the foundation for its robust performance
are the TBB work-stealing scheduler and the TBB scalable memory allocator.
To prove that, Kukanov and Voss [7] used experiments on several
benchmarks to demonstrate the potential scalability of TBB based
applications and to show that the TBB allocator is competitive with other
allocators.

One of the key advantages of a logical task is that it is much lighter than a
thread, e.g. starting and terminating a task on Linux is around 18 times faster
than starting and terminating a thread, whereas on Windows, this ratio is
more than a 100 (see [8]). Additionally, TBB manages these light units of
work very efficiently. Bhattacharjee et al. [9] used real hardware and
simulations to detail various scheduler and synchronization overheads in
order to assess these overheads on TBB and OpenMP. They found that these
can amount to 47% of TBB benchmark runtime and 80% of OpenMP
benchmark runtime, i.e. TBB is almost as twice as better when compared to
OpenMP in respect to scheduling and synchronization overheads.

Because of all of its features mentioned above, TBB is finding successful
applications in various soft real-time systems, sometimes also called near to

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 372

real-time systems. One type of such systems is the system managing critical
infrastructure, which we are primarily interested in. Another type of such
systems is modern video games. Although it might come surprisingly, these
two types of systems have much in common. They both use physical models
and AI components, they both have real-time requirements, and they both
may be classified as complex system.

A significant effort has been made to demonstrate TBB’s applicability in
modern video games industry. For example, Werth [10] provided useful
instructions and hands-on examples on optimizing games architectures with
TBB, in his talk on the recent game developer’s conference in San Francisco.
Several other groups joined this R&D track by trying to create adequate
parallel programming frameworks (PPFs) for video games engines.

One notable example in that direction is Cascade, a PPF for video games
engine, developed by Tagliasacchi et al. [11]. In Cascade, Cascade tasks are
linked by dependencies in a task dependency graph, which is traversed at
runtime by the Cascade Job Manager (CJM) that assigns tasks to threads for
execution. CJM does this rather efficiently, for example the Cascade
implementation of Sequence Alignment algorithm completes 1.5 times
quicker than the OpenMP implementation.

As pointed out by the creators of Cascade, TBB is closest in spirit to their
system, when compared with other PPFs. However, their claim that TBB
does not support explicit construction of task graphs and that graphs are
constructed only recursively via spawn call is actually not true. On the other
hand Cascade is also very similar to our TTE architecture. The main
difference is that Cascade supports acyclic task graphs, whereas TTE
supports task trees.

Work Related to the TTE Architecture Based on Intel Cilk Plus

Original Cilk programming language appeared as an extension of C providing
language constructs for parallel control and synchronization. This extension
was made to be very efficient in terms of runtime overheads, for example the
typical cost of spawning an OS thread is 2-6 times the cost of the C function
call on a variety of modern processors (see [12]). Once spawned, these
parallel threads are scheduled very efficiently on a shared memory
multiprocessor (SMP), by the Cilk scheduler that is based on the work
stealing scheduling method. Blumofe and Leiserson [13] showed that the
expected time to execute a well-structured computation on P processors
using their work-stealing scheduler is T1/P + O(T∞), where T1 is the minimum
serial execution time of the multithreaded computation and T∞ is the
minimum execution time with an infinite number of processors.

Original Cilk language has been developed, as an ANSI C extension, since
1994 at the MIT. A commercial version of Cilk, called Cilk++, that supports
both C and C++, was developed by Cilk Arts, Inc. In 2009, Intel Corporation
acquired Cilk Arts, the Cilk++ technology and the trademark. In 2010, Intel
released a commercial implementation in its compilers under the name Intel

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 373

Cilk Plus. In this paper we use Intel Cilk Plus and refer to it later in the text
briefly as Cilk.

Other authors have been successfully using Intel Cilk Plus before us. For
example, Kirkegaard and Aleen [14] studed the potential of individual
optimizing techniques in terms of speedup. They applied 5 techniques on the
Google’s AOBench benchmark, to achieve the overall 16.47x speedup.

Similarly, Luk et al. [15] used Intel Cilk Plus to demonstrate their
synergetic approach to throughput computing. The experimental results they
collected on a dual-socket quad-core Nehalem show that their approach
achieves an average speedup of almost 20x over the best serial cases for an
important set of computational kernels.

Finally, Agrawal et al. [16] developed the Nabbit, a work-stealing library for
execution of task graphs with arbitrary dependencies. They evaluated the
performance of Nabbit using a dynamic program representing the Smith-
Waterman algorithm. Their results indicate that when task-graph nodes are
mapped to reasonably sized blocks, Nabbit exhibits low overhead and scales
as well as or better than other scheduling strategies. Interestingly, Nabbit is
rather similar both to Cascade and to the TTE architectures presented in this
paper. The main difference among them is that Nabbit and Cascade support
acyclic task graphs, whereas TTE supports task trees.

1.2. Target Environment

Infrastructure of an industrial control system (ICS) consists of domain specific
equipment and smart devices that are connected to Remote Terminal Units
(RTUs), which are used for monitoring and control of an industrial process. A
modern large scale industrial system typically uses Supervisory Control and
Data Acquisition (SCADA) system as a front-end for communication with a
network of RTUs.

A separate and independent environment may be laid on top of any
SCADA system. This layer, called Intelligent Control System (ICS),
encompasses necessary control logic and process related intelligence, which
can be very complex. The structure of ICS is shown in Fig. 1. Seen from the
SOA standpoint, system exposes the Master Data Service (MDS) that stores
logically consistent dataset describing existing elements of the system
infrastructure. Besides MDS, other services used for enterprise integrations
may be exposed, depending on ICS’s role and purpose.

Each of the service components (SCs) in ICS is managing exactly one
aspect of the overall system functionality, such as dynamic data
management, performing necessary calculations, providing graphical
representation of infrastructure elements, etc. The SC providing TTE driven
parallel calculations on a given Operational Model (OM) is in the focus of this
paper (it is labeled as C-TTE in Fig. 1). OM is a dataset that stores the model
of the system. This dataset must be correct, e.g. if ICS manages an
electricity distribution system, at least it has to satisfy the first and the second
Kirchhoff law.

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 374

Interaction between the system user and the services is provided through a
thin client application. Usually, there is no demanding data processing inside
the client application itself, its only responsibility is to obtain data from
particular service in the system periodically, or on user demand.

When the system evolvement aspects are taken into the consideration,
one of the most important design goals is to provide the plug-and-play like
integration capabilities. Therefore, the main internal communication
backbone is designed in accordance with the publisher/subscriber paradigm,
which provides loose coupling between service components and services.

For synchronous, point-to-point calls (represented with dashed arrows in
Fig. 1), interfaces are provided to allow data access by other services and by
external UI clients. However, the communication within the system is
predominantly asynchronous, based on publishing and subscribing to
different message topics (represented with full arrows in Fig. 1). An important
aspect regarding the communication in the system is the fact that all the
datasets describe the current infrastructural state of the system, which
changes over time.

ICS

Enterprise Systems

Control Devices

SCADA

UI

MDS

SC1

SC3

PubSub

SC2

C-TTE

OM

Fig. 1. Target Environment

2. The Three TTE Architectures

The next three subsections present the original TTE architecture based on
OS threads, the TTE architecture based on Intel TBB [17], and the TTE
architecture based on Intel Cilk Plus [18].

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 375

2.1. TTE Architecture Based on Threads

As shown in Fig. 2.a, an application that was refactored from legacy software
to operate on slices of system model, which correspond to individual TTE
tasks, does that by making use of the TTE application programming interface
(API). The TTE API provides the following functions [3]:

1. TS_CreateTaskGraph
2. TS_AddTask
3. TS_DeleteTask
4. TS_SetBottomUpProcFun
5. TS_SetTopDownProcFun
6. TS_ExecuteBottomUp
7. TS_ExecuteTopDown
8. TS_DestroyTaskGraph
9. TS_ExecuteBottomUpSequentially
10. TS_ExecuteTopDownSequentially

+buCallback()

+tdCallback()

Application

«subsystem»

NetworkModel

+TS_CreateTaskGraph()

+TS_AddTask()

+TS_DeleteTask()

+TS_ExecuteBottomUp()

+TS_ExecuteTopDown()

+TS_DestroyTaskGraph()

-tgraph

-pBUcallback

-pTDcallback

TaskScheduler

TTE

+executeBUinParalell()

+executeTDinParallel()

Task

«subsystem»

TaskTree

1

*

«subsystem»

PthreadsLibrary

pthreads

+buCallback()

+tdCallback()

Application

«subsystem»

NetworkModel

+TS_CreateTaskGraph()

+TS_AddTask()

+TS_DeleteTask()

+TS_ExecuteBottomUp()

+TS_ExecuteTopDown()

+TS_DestroyTaskGraph()

-tgraph

-pBUcallback

-pTDcallback

TaskScheduler

TTE

+executeBUbyTBB()

+executeTDbyTBB()

Task

«subsystem»

TaskTree

1

*

TBB

a) TTE based

 on threads

b) TTE based

 on Intel TBB

TBBLibrary

+buCallback()

+tdCallback()

Application

«subsystem»

NetworkModel

+TS_CreateTaskGraph()

+TS_AddTask()

+TS_DeleteTask()

+TS_ExecuteBottomUp()

+TS_ExecuteTopDown()

+TS_DestroyTaskGraph()

-tgraph

-pBUcallback

-pTDcallback

TaskScheduler

TTE

+executeBUbyCilk()

+executeTDbyCilk()

Task

«subsystem»

TaskTree

1

*

Cilk

b) TTE based

 on Intel Cilk

CilkLibrary

Fig. 2. The three TTE Architectures: (a) Thread-based, (b) TBB-based, (c) Cilk-based

The API function TS_CreateTaskGraph creates the task graph; its
parameters are the identification (ID) of the root task, the pointer to the
bottom-up processing function, the pointer to the top-down processing
function, and the maximal number of local OS threads (pthreads) that will be
used to execute the task graph in parallel. The bottom-up processing function
and top-down processing function are the callback functions, which have the
task ID as their parameter. The API function TS_AddTask adds a new task to
the task graph, given the ID of the predecessor task and the ID of the new

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 376

task. The API function TS_DeleteTask deletes the given task and all of its
successors from the task graph.

The API function TS_SetBottomUpProcFun redefines the pointer to the
bottom-up processing function, whereas the API function
TS_SetTopDownProcFun redefines the pointer to the top-down processing
function. The API function TS_ExecuteBottomUp executes the task graph
bottom-up in parallel, whereas the API function TS_ExecuteTopDown
executes the task graph top-down in parallel. Finally, the API function
TS_DestroyTaskGraph deletes the task graph.

The last two API functions are used only for the debugging and
benchmarking purposes. The first one of them executes the task graph
bottom-up sequentially, whereas the second one executes the task graph top-
down sequentially. The most frequently used functions are the functions no.
1, 2, 6, 7, and 8. The function no. 3 is used to change the existing task graph,
while the functions no. 4 and 5 are used only to redefine the callback
functions.

The TTE architecture based on threads comprises two main components,
namely the C module TaskScheduler (shown as a class in Fig. 2 and Fig.3 for
the sake of standard UML representation) and the class Task. The module
TaskScheduler provides the TTE API by exporting its public functions, as
listed and discussed above. Internally, this module hides the pointer to the
task tree root and the pointers to the callback functions as its private (static)
data. As a reaction to external application calls to the functions
TS_CreateTaskGraph, TS_AddTask, TS_DeleteTask, and
TS_DestroyTaskGraph, the module TaskScheduler builds and maintains the
task tree by adding and deleting instances of the class Task.

The class Task provides two field members that enable building task trees.
These are the pointer to the predecessor task and the list of the successor
tasks in the task tree. The function TS_AddTask adds a new task by (i)
locating its predecessor task, (ii) setting the new task’s predecessor field to
the address of the predecessor task, and (iii) adding the address of the newly
created task to the list of the successor tasks in the corresponding field
member of the predecessor task. Deleting a task from the task tree is more
complex because deleting a given task means deleting itself and all its
successors, and the successors of the successors, i.e. it means deleting the
complete sub-tree from the given task and below it.

When it comes to parallel task tree execution, the API function
TS_ExecuteTopDown starts task tree top-down execution by calling the class
Task member function executeTDinParallel on the root task, which in turn
recursively traverses the task tree from its top, i.e. root task, downwards
across all the successors, until it reaches all the task tree leafs. In each
recursion, this function first calls the top-down callback function and then it
starts new local OS threads for each of the current task’s successors by
calling the PthreadsLibrary function CreateThread (using the pthreads API).
The simplified pseudo code of the class Task member function
executeTDinParallel is the following:

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 377

executeTDinParallel(task) =

 callback tdCallback(task.id)

 for each successor in task.successors
 CreateThread(executeTDinParallel, successor)
 WaitForAllChildTherads()

Similarly, the API function TS_ExecuteBottomUp starts task tree bottom-

up execution by calling the class Task member function executeBUinParallel
on the root task, which in turn recursively traverses the task tree from its top,
i.e. root task, downwards across all the successors until it reaches all the task
tree leafs. In each recursion, this function first starts new local OS threads for
each of the current task’s successors by calling the PthreadsLibrary function
CreateThread (over the pthreads API) and then it calls the bottom-up
callback function. The simplified pseudo code of the class Task member
function executeBUinParallel is the following:

executeBUinParallel(task) =

 for each successor in task.successors
 CreateThread(executeBUinParallel, successor)
 WaitForAllChildTherads()
 callback buCallback(task.id)

2.2. TTE Architecture Based on Intel TBB

The simplified architecture of the complete system that is based on Intel TBB
is shown in Fig. 2.b. As shown in Fig. 2.b, the novel TTE architecture based
on Intel TBB is almost the same as the previous TTE architecture based on
threads. The main difference between these two architectures at the high-
level architectural view used in Fig. 2 is that the novel TTE architecture
makes use of the Intel TBB runtime library rather than using the local OS (MS
Windows or Linux) pthreads library, as was the case in the previous
architecture. This evolutionary step was essentially made by modifying the
class Task such that the member functions executeTDinParallel and
executeBUinParallel, which were responsible for the parallel task tree
execution, in the novel architecture delegate parallel top-down and bottom-up
task tree execution to new member functions executeTDbyTBB and
executeBUbyTBB, respectively.

This modification was completely transparent to the module
TaskScheduler, thus the way it builds and maintains the task tree remained
unchanged, as well as the way it starts parallel top-down and bottom-up task
tree execution. Moreover, and even more importantly, this modification within
the TTE architecture was completely transparent to the legacy applications.
This was of utmost importance, because legacy applications are so huge in
size, they may literally comprise millions of lines of code.

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 378

Although, at the high-level of abstraction, simplified pseudo code for the
member functions executeTDinParallel and executeBUinParallel from the
previous architecture remains valid for new member functions
executeTDbyTBB and executeBUbyTBB, respectively, implementing them in
C++ naturally required using TBB design patterns. More precisely, since TBB
tasks are created as instances of C++ classes extending the TBB library class
task, two auxiliary classes were introduced, namely the class TbbTaskTD and
the class TbbTaskBU. The former is used by the member function
executeTDbyTBB, whereas the latter is used by the member function
executeBUbyTBB.

Both of these auxiliary classes are rather simple. Since each TTE task
within a TTE task tree is assigned a TBB task, both of these auxiliary classes
have a field member that stores the corresponding TTE task. These field
members are normally set by the class constructors. The execute methods of
both auxiliary classes simply call the corresponding new Task member
function, in particular the TbbTaskTD member function calls the Task
member function executeTDbyTBB, whereas the TbbTaskBU member
function calls the Task member function executeBUbyTBB.

Once these auxiliary classes were introduced, synthesizing new Task
member functions was rather straightforward. Concretely, the simplified
pseudo code of the function executeTDbyTBB is the following:

executeTDbyTBB(task) =

 callback tdCallback(task.id)

 if task.successors == Ø return
 et = TbbTaskTD(null)
 et.set_ref_count(1)

 for each successor in task.successors
 et.increment_ref_count()
 et.spawn(new TbbTaskTD (successor))
 et.wait_for_all()
 task::destroy(et)

In the pseudo code above the name et stands for the empty task. Similarly,

the simplified pseudo code of the function executeBUbyTBB is completely
symmetrical:

executeBUbyTBB(task) =

 if task.successors != Ø
 et = TbbTaskBU(null)
 et.set_ref_count(1)

 for each successor in task.successors
 et.increment_ref_count()
 et.spawn(new TbbTaskBU (successor))
 et.wait_for_all()
 task::destroy(et)

 callback buCallback(task.id)

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 379

2.3. TTE Architecture Based on Intel Cilk Plus

The simplified architecture of the system based on Intel Cilk Plus is shown in
Fig. 2.c. As shown in Fig. 2.c, the TTE architecture based on Intel Cilk Plus is
very similar to the previous two TTE architectures, which were presented in
the previous two subsections. The main difference between the TTE
architecture based on Intel Cilk Plus and the original TTE architecture based
on OS threads is that the former uses the Intel Cilk Plus runtime library,
whereas the latter uses the local OS pthreads library.

This evolutionary step is like in Subsection 2.2 made by modifying the
class Task such that the member functions executeTDinParallel and
executeBUinParallel, which were originally responsible for the parallel task
tree execution, now simply delegate parallel top-down and bottom-up task
tree execution to new member functions executeTDbyCilk and
executeBUbyCilk, respectively. As such, this modification is again transparent
to the module TaskScheduler, as well as to all the legacy applications.

Thanks to Cilk’s expressiveness, the simplified pseudo code for the
member functions executeTDinParallel and executeBUinParallel from the
previous architecture, almost directly map to the pseudo code for new
member functions executeTDbyCilk and executeBUbyCilk, respectively.
Essentially, the call to the function CreateThread is replaced with the keyword

cilk_for and the call to the function WaitForAllChildTherads is replaced with

the keyword cilk_sync.
Once these mappings were introduced, synthesizing new Task member

functions was rather straightforward. Consequently, the pseudo code of the
function executeTDbyCilk is the following:

executeTDbyCilk(task) =

 callback tdCallback(task.id)

 for each scsr in task.successors

 cilk_spawn scsr.executeTDbyCilk(scsr)
 cilk_sync

In the pseudo code above the name scsr stands for the successor task.

Similarly, the pseudo code of the function executeBUbyCilk is completely
symmetrical:

executeBUbyCilk(task) =

 for each scsr in task.successors

 cilk_spawn scsr.executeBUbyCilk(scsr)
 cilk_sync
 callback buCallback(task.id)

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 380

3. Statistical Usage Testing

We used the method published in [19] for statistical usage testing and
operational reliability estimation of all three TTE architectures. The method is
mostly based on the approach created by D.M. Woit [20-23] and on the
following work of several authors [24-27] that modernized that approach and
adapted it to a form of the model-based testing.

For the sake of completeness of this paper, we provide a brief overview of
the method [19] in this section. We start with some definitions, then provide
formulas for the number of test cases N and for the confidence level M, and
finally outline the method in a form of a series of steps.

A task τ is a callback function that executes as a local OS thread. A task
tree is an undirected radial (i.e. acyclic) graph of tasks TG whose nodes are
tasks interconnected with links indicating predecessor-successor relations. A
task tree comprises a set of k tasks TK = {τ1, τ2, …, τk }, and a set of (k-1)
links L = {l1, l2, …, l(k-1)}.

A task tree execution path, a.k.a. a path in a task tree or a trace, is a
sequence of terminations of individual tasks τ1τ2…τk during the task tree
execution. The length of this sequence is always equal to k. A task forest is a
series of task trees of the same complexity (the same number of nodes) that
is generated as a test suite. A test case is a single task tree execution
described by the corresponding path.

Let rt be a software product tree-reliability and rp be a path-reliability. Then
it may be easily shown that the product reliability r is obtained by multiplying
the two:

r = rt rp . (1)

If we further assume that rt = rp, then:

rt = rp = r
1/2

 . (2)

Similarly, let Mt be a tree-confidence-level and Mp be a path-confidence
level. Then it may be easily shown that the total confidence level M is the
sum of the two:

M = Mt + Mp . (3)

If we further assume Mt = Mp, then:

Mt = Mp = M/2 . (4)

Therefore, when given r and M we calculate the requested number of trees
Nt and number of paths Np for each tree as:

Nt = Np = logr
1/2

 (M/2) . (5)

Finally, the total number of test cases N is obtained as a simple product of
Nt and Np:

N = Nt Np = (logr
1/2

 (M/2))
2
 . (6)

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 381

This means that we simply have to generate Nt task trees and execute
them Np times each. Thus the method of statistical testing and reliability
estimation for applications based on task trees consists of the following steps:

1. Given the desired level of product reliability, calculate Nt and Np.
2. Generate Nt task trees.
3. Execute each task tree Np times.
4. Check the coverage metrics report.
5. If the report shows poor coverage, return to step 2.
6. Report any unexpected behavior to the design and implementation

team.

4. Experimental Evaluation

Firstly, Statistical Usage Testing (SUT) and reliability estimation method
described in the previous section was used to test all the TTE architectures.
Secondly, SUT was used to evaluate the performance of the two new TTE
architectures based on TBB and Cilk (see subsections 4.2 and 4.3) with
respect to the original TTE architecture based on OS threads, which served
as a baseline (see section 4.1).

The measure of the performance that was used in the experiments was the
time in seconds that was needed to execute all the N test cases from the
given test suite. For the sake of completeness of the paper we provide the
execution time measurements data for individual test suits for both TTE
architectures, and for the sake of easier performance comparison between
the two architectures we provide the relative speedup (RS) calculation
results. The relative speedup RS is defined as the ratio:

RS = Tp/Tn . (7)

where Tp is the test suite execution time for the TTE architecture based on
threads and Tn is the test suite execution time for the TTE architecture based
on TBB (in subsection 4.2) or on Cilk (subsections 4.3).

All the SUT based measurements were conducted on the dual-core
symmetric multiprocessor, Intel® Core(TM) i5 CPU M 520 @ 2.4 GHz, 4 GB
RAM, with Windows7 Professional® 64-bit OS.

After conducting SUT based measurements, we made an additional
scalability check for the TTE architecture based on TBB on the Intel Server
Board SE8501HW4 with 4 Xeon MP Dual Core CPU, facilitating the total of 8
cores operating on 2.4 GHz, with 12 GB of main memory. Software used in
the experiments is OS CentOS 5.4 and open Intel TBB (see subsection 4.4).
Unfortunately, open Intel Cilk Plus was still not mature enough and its port on
CentOS 5.4 was not available at the time of this writings, so we were not able
to make the same check for TTE architecture based on Cilk.

At the end of this section we discuss various threats to validity of our
experimental results (see subsection 4.5).

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 382

4.1. Baseline: Performance of the TTE Based on OS Threads

Table 1 provides Tp values and test verdicts. The columns of Table 1 are
organized as follows. The column “No Tasks” contains the number of TTE
tasks used to construct task trees, the column “No Trees” shows the number
of tasks that may be constructed by the given number of TTE tasks, the next
three columns within the common column “Duration [s]” show test suites
execution time in seconds for the three distinctive values of desired reliability
r (r=0.9, r=0.95, and r=0.99), and the last column “Verdict” contains the test
verdict.

As could be seen from Table 1, test suite execution time increases with the
number of TTE tasks and with the value of desired reliability r. As the last
column indicates, TTE based on threads successfully passed all the tests.

Table 1. Measurements for TTE Based on Threads

No
Tasks

No
Tree

s

Duration [s] Verdict
r=0.9 r=0.95 r=0.99

1 1 0 1 11 Pass
2 1 2 7 196 Pass

3 2 2 10 273 Pass
4 6 4 14 298 Pass
5 24 4 15 365 Pass
6 120 5 17 426 Pass
7 720 5 20 485 Pass
8 5040 18 35 558 Pass

4.2. Performance of the TTE Based on Intel TBB

The measured data and the calculated results are given in the following two
tables below. Table 2 provides Tn values and test verdicts, whereas Table 3
provides calculated RS values.

The columns of Table 2 are organized in the same way as the columns of
Table 1. Similarly, as in Table 1, test suite execution time increases with both
number of tasks and the value of given reliability. The latter, again, causes
faster growth of the test suite execution time than the former. The last
column of Table 2 shows that TTE based on TBB also passed all the tests
successfully. All of this seems very similar, but the measured values of test
suites execution times are drastically different. Obviously, it took much less
time for TTE based on TBB to complete all the tests than it did for the TTE
based on threads. This is even more evident from Table 3.

At this point, it seems appropriate to mention that we were not able to
calculate some of the values of relative speedup RS from the raw data in

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 383

Tables 1 and 2, because some of the values of test suite execution times
were 0. Therefore, the corresponding values of RS were undefined (dividing
0 with 0 is undefined, and dividing the nonzero number with 0 converges
towards infinity, which does not reflect reality in terms of realistic speedup
that could be achieved). On the other hand, the test suites execution times
are realistically always greater than zero – zero value is only a consequence
of imprecise measurements. Finally, since test suites execution times were
going up to several hundreds of seconds for the TTE architecture based on
threads, we rounded all the 0 second measurements, in Tables 1 and 2, to
the 1 second values. By doing so, we introduced a small error, which may be
neglected, but we were able to provide RS values presented in Table 3.

Table 2. Measurements for TTE Based on TBB

No
Tasks

No
Tree

s

Duration [s] Verdict
r=0.9 r=0.95 r=0.99

1 1 0 0 7 Pass
2 1 1 1 20 Pass

3 2 0 1 23 Pass
4 6 0 1 27 Pass
5 24 0 1 30 Pass
6 120 1 2 34 Pass
7 720 0 1 37 Pass
8 5040 8 8 49 Pass

Table 3. Calculated Values of Relative Speedup RS for TTE Based on TBB

No
Tasks

No
Tree

s

Relative Speedup RS Average
over forests r=0.9 r=0.95 r=0.99

1 1 1.00 1.00 1.57 1.19
2 1 2.00 7.00 9.80 6.27

3 2 2.00 10.00 11.87 7.96
4 6 4.00 14.00 11.04 9.68
5 24 4.00 15.00 12.17 10.39
6 120 5.00 8.50 12.53 8.68
7 720 5.00 20.00 13.11 12.70
8 5040 2.25 4.38 11.39 6.00

Average over r 3.16 9.98 10.43 7.86

Table 3 shows the values of relative speedup RS of test suite execution on

new and previous TTE architectures, for various numbers of tasks and
desired operational reliability r figures. The columns of Table 3 are organized
similarly as the columns of Tables 1 and 2. The additional row shows the
average RS calculated over different values of desired operational reliability
r, whereas the last column shows the average RS evaluated over a different

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 384

number of tasks (rather than the test suit verdict like in Tables 1 and 2). The
bottom-right cell of Table 3 shows an overall RS average when evaluated
over all RS values.

As expected, the relative speedup RS increased both with the number of
tasks for a given operational reliability r, and with the desired operational
reliability r for a given number of tasks. Obviously, RS grows much faster
with the desired r than with the number of tasks, which appears quite natural,
because the needed testing effort increases much more with operational
reliability r than with the number of tasks. As a consequence of these trends,
both the average RS, calculated per task, increases with the number of tasks,
and the average RS, calculated per given operational reliability r, increases
with the value of r.

The overall average relative speedup is 7.86 (bottom-right cell in Table 3),
which is quite a good result for the dual-core target machine we used in the
experiments. Of course, it would be interesting to see how this average
speedup of around 8 changes with the number of available cores in the target
platform. In Subsection 4.4 we conduct more experiments in that direction in
order to check the scalability of the proposed solution.

Fig. 3. The average relative speedup RS as a function of reliability r. The dashed
curve shows the average RS values for the TTE based on TBB, whereas the full
curve shows the average RS values for the TTE based on Cilk

Another important fact that may be seen by looking at the values of
average RS in the last row of Table 3, is that average RS is around 3 only for
the value r=0.9. For the values of r that are greater than 0.9, average RS is
around 10, so the test suite execution on the novel TTE architecture is an
order of magnitude faster than on the previous architectures, for the greater
values of r (0.95 and 0.99 in Table 3). This fact becomes even more obvious
by observing Fig. 3, which shows the average relative speedup RS as a
function of a given operational reliability r (see the curve RStbb in Fig. 3).

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 385

4.3. Performance of the TTE Based on Intel Cilk Plus

The measured data and the calculated results are given in the following two
tables below. Table 4 provides Tn values and test verdicts, whereas Table 5
provides calculated RS values.

Table 4. Measurements for TTE Based on Cilk

No
Tasks

No
Tree

s

Duration [s] Verdict
r=0.9 r=0.95 r=0.99

1 1 1 1 9 Pass
2 1 1 1 10 Pass

3 2 1 1 12 Pass
4 6 1 1 13 Pass
5 24 1 1 16 Pass
6 120 1 1 17 Pass
7 720 1 2 20 Pass
8 5040 7 8 30 Pass

Table 5. Calculated Values of Relative Speedup RS for TTE Based on Cilk

No
Tasks

No
Tree

s

Relative Speedup RS Average
over forests r=0.9 r=0.95 r=0.99

1 1 1.00 1.00 1.22 1.07
2 1 2.00 7.00 19.60 9.53

3 2 2.00 10.00 22.75 11.58
4 6 4.00 14.00 22.92 13.64
5 24 4.00 15.00 22.81 13.94
6 120 5.00 17.00 25.06 15.69
7 720 5.00 10.00 24.25 13.08
8 5040 2.57 4.38 18.60 8.51

Average over r 3.20 9.80 19.65 10.88

The columns of Table 4 are organized in the same way as the columns of

Table 2. Similarly, as in Table 2, test suite execution time increases with both
number of tasks and the value of given reliability r. Again, the latter causes
faster growth of the test suite execution time than the former. The last
column of Table 4 shows that TTE based on Cilk successfully passed all the
tests. The measured values of test suites execution times for TTE based on
Cilk are even smaller than the corresponding times for the TTE based on OS
threads. This fact becomes more evident by observing Table 5.

Table 5 shows the values of relative speedup RS of test suite execution on
the TTE based on Intel Cilk and on the TTE based on OS threads, for various
numbers of tasks and desired operational reliability r figures. Table 5 is
organized in the same way as Table 3.

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 386

The results of the qualitative analysis of data given in Table 5 are
practically the same as the previous qualitative analysis of data given in
Table 3. Again, both the average RS, calculated per task, increases with the
number of tasks, and the average RS, calculated per given operational
reliability r, increases with the value of r. And again RS grows much faster
with the desired r than with the number of tasks.

The overall average relative speedup is 10.88 (bottom-right cell in Table
5), which is a good result for the dual-core target machine we used in the
experiments. Of course, it would be interesting to see how this average
speedup of around 11x changes with the number of available cores in the
target platform, and we have a plan to conduct more experiments in that
direction in the future.

But, even more important fact that may be seen by observing the values of
average RS in the last row of Table 5, is that overall average RS of 11x is
actually much limited by the RS value of around 3x for r=0.9. For the values
of r greater than 0.9, average RS goes up to 20x (for r=0.99). So after
analyzing this data, one becomes aware that the novel TTE architecture
provides scalable performance relative to given operational reliability r. This
fact becomes even more obvious by observing Fig. 3, which illustrates the
average relative speedup RS as a function of a given operational reliability r
(see the curve RScilk in Fig. 3).

Finally, Fig. 3 makes it possible to compare the two TTE solutions that are
based on Intel Parallel Building Blocks. We see from Fig. 3 that the RS has
greater values for the TTE base on Cilk than for the TTE based on TBB. The
values for the former go up to 10x, whereas the values for the latter go up to
20x.

4.4. Scalability Check for the TTE Based on Intel TBB

The results presented in the previous subsections show that performance of
newly developed TTE architectures scale rather well with respect to the
operational reliability r. But, all the previously described experiments were
conducted on the dual-core machine and on small task trees consisting of up
to 8 tasks. In this subsection we check performance scalability of the TTE
based on TBB with respect to the number of processor cores and with respect
to the number of tasks in randomly generated large task trees.

For this purpose we conducted the three series of experiments for the
three particular numbers of tasks (k) that were used to randomly construct
tasks trees, namely k=600, k=800, and k=1000 tasks, respectively. The task
trees were randomly generated by the previously developed component
TreeGrower, which is described in [19]. In each series of experiments we
indirectly measured the RS of TTE based on TBB in respect to the original
TTE based on OS threads for various numbers of processor cores Nc, from
Nc=2 to Nc=8 with the step 2 (i.e. Nc=2,4,6,8).

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 387

The RS was indirect measured as follows. We directly measured the
execution times of SUT tests targeting r=0.9 for both TTE based on OS
threads and TTE based on TBB, three times each, then we calculated the
mean values of execution times, and finally we calculated the corresponding
RS values. The final results are given in Table 6 and they are illustrated in
Fig. 4.

Table 6. Relative Speedup RS for various numbers of cores and tasks. RS600 is the

RS for k=600, RS800 is the RS for k=800, and RS1000 is the RS for k=1000 tasks

No Cores RS600 RS800 RS1000

2 29.45 46.17 52.75
4 36.14 57.34 64.49
6 41.45 65.46 72.99
8 43.98 69.39 77.17

Table 6 is organized as follows. The column “No Cores” indicates the

number of processor cores that were utilized by TTE based on TBB. The
columns “RS600”, “RS800”, and “RS1000” show the RS for k=600, k=800,
and k=1000 tasks, respectively.

Fig. 4. The average relative speedup RS as a function of the number of cores Nc and

the number of tasks Nt. The dashed curve shows the RS for k=600, the dotted-

dashed curve shows the RS for k=800, and the full curve shows the RS for k=1000

As indicated by Fig. 4, the performance, in terms of relative speedup RS of
the TTE based on TBB in respect to TTE based on OS threads, scales
perfectly with both the number of processor cores and the number of tasks
within a task tree. The RS increase linearly with the number of cores and

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 388

logarithmically with the number of tasks, and it goes up to 77x for Nc=8 cores
and k=1000 tasks.

4.5. Threats to validity of experimental results

At the end of this section we briefly address the threats to validity of the
presented results. From all the kinds of threats, the threats to the external
validity are the most serious threats for the presented results, because
repeating the experiments on a different platform (machine and operating
system) would very likely yield different results than those shown in Tables 1-
6. The only way to address this issue is to repeat the experiments on several
different platforms, and that remains to be done in our future work.

The other two kinds of threats, namely the threats to internal validity and
the threats to construct validity do exist, but can be neglected. We minimized
the former threats by disconnecting the target machine from the Internet and
by closing all the other applications. The latter threats reduce here to
imprecision of measuring time, which obviously can be neglected.

5. Conclusions

Application of parallel programming techniques to design of software
solutions is a promising trend. In this paper we have shown an approach to
apply parallel programming techniques based on Intel Parallel Building
Blocks to a class of service components within SOA based industrial
systems. Moreover, we have shown an approach to introduce either the Intel
TBB library, or Intel Cilk Plus library, instead of the conventional OS threads
library through a corresponding evolutionary step with minimal adaptations of
the legacy TTE architecture. Such evolutionary approaches to architecting
new system versions are necessary because legacy software may be of
extreme size, typically measured in millions of lines of code.

The results of the approach are two novel TTE architectures. The first one
is based on Intel TBB that executes TTE tasks as TBB tasks, whereas the
second one is based on Intel Cilk Plus that executes TTE tasks as Cilk
strands. Essentially, novel TTE architectures use finer grained parallelism,
which yields better multicore CPU utilization. The first novel TTE architecture
based on TBB exhibited the average relative speedup RS of around 8x, and
the maximal RS of 10x, over the original TTE architecture based on
pthreads. Similarly, and even better, the second novel TTE architecture
based on Cilk achieved the average RS of around 11x, and the maximal RS
of 20x, over the original TTE architecture based on pthreads.

Additional scalability check that was made for the first novel TTE
architecture based on TBB showed that its performance in terms of relative
speedup RS scales perfectly with both the number of processor cores and the
number of tasks within a task tree. The RS increase linearly with the number

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 389

of cores and logarithmically with the number of tasks, and it goes up to 77x
for Nc=8 cores and k=1000 tasks.

 In our future work we plan (i) to make the scalability check for TTE
architecture based on Cilk if and when open Intel Cilk Plus port for CentOS
5.4 becomes available, (ii) to explore other algorithms for parallel task tree
execution and their implementations, (iii) to evolve TTE architecture in order
to support also other non Intel multicores, as well as heterogeneous
multicores, and (iv) to develop a distributed TTE architecture for a system
with many heterogeneous multicores.

Acknowledgments. This work has been partly supported by the Serbian Ministry of
Education & Science, through grants No. III 44009 and TR 32031.

References

1. Komoda, N., Service Oriented Architecture (SOA) in Industrial Systems. In the
Proceedings of IEEE International Conference on Industrial Informatics. IEEE
CPS, Los Alamitos, CA, USA, pp. 1-5. (2006)

2. Popovic, I., Vrtunski, V., Popovic, M.: Formal Verification of Distributed
Transaction Management in a SOA Based Control System. In Proceedings of the
18

th
 IEEE International Conference and Workshops on Engineering of Computer

Based System. IEEE CPS, Los Alamitos, CA, USA, 206-215. (2011)
3. Popovic, M., Basicevic, I., Vrtunski, V.: A Task Tree Executor: New Runtime for

Parallelized Legacy Software. In Proceedings of the 16
th
 IEEE International

Conference and Workshops on Engineering of Computer Based System. IEEE
CPS, Los Alamitos, CA, USA, 41-47. (2009)

4. Basicevic, I., Jovanovic, S., Drapsin, B., Popovic, M., Vrtunski, V.: An Approach
to Parallelization of Legacy Software. In Proceedings of the 1

st
 Eastern European

Regional Conference on the Engineering of Computer Based Systems. IEEE
CPS, Los Alamitos, CA, USA, 42-48. (2009)

5. Trivunovic, B., Popovic, M., Vrtunski, V.: An Application Level Parallelization of
Complex Real-Time Software. In Proceedings of the 17th IEEE International
Conference and Workshops on Engineering of Computer Based Systems. IEEE
CPS, Los Alamitos, CA, USA, 253-257. (2010)

6. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelisim. O’Reilly Media, Inc., 1005 Gravestein Highway North,
Sebastopol, CA, USA. (2007)

7. Kukanov, A., Voss, M. J.: The Foundations for Scalable Multi-core Software in
Intel Threading Building Blocks. Intel Technology Journal, Vol. 11, No. 4, 309-
322. (2007)

8. Popovici, N., Willhalm, T.: Putting Intel® Threading Building Blocks to Work. In
Proceedings of the 1

st
 International Workshop on Multicore Software Engineering,

ACM Press, New York, NY, USA, 3-4. (2008)
9. Bhattacharjee, A., Contreras, G., and Martonosi, M.: Parallelization Libraries:

Characterizing and Reducing Overheads. ACM Transactions on Architecture and
Code Optimization, Vol. 8, No. 1, Article 5, 1-29. (2011)

10. Werth, B.: Optimizing Game Architectures with Intel® Threading Building Blocks.
Intel Software Network (2009). [Online]. Available: http://software.intel.com/en-

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 390

us/articles/optimizing-game-architectures-with-intel-threading-building-blocks/
(current May 2012)

11. Tagliasacchi, A., Dickie, R., Couture-Beil, A., Best, M.J., Fedorova, A.,
Brownsword, A.: Cascade: A Parallel Programming Framework for Video Game
Engines. In Proceedings of the Workshop on Parallel Execution of Sequential
Programs on Multi-core Architectures. Institute of Computing Technology,
Chinese Academy of Sciences, 47-54. (2008)

12. Randall, K.H.: Cilk: Efficient multithreaded computing. Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA. (1998)

13. Blumofe, R.D., Leiserson, C.E.: Scheduling Multithreaded Computations by Work
Stealing. Journal of the ACM, Vol. 46, No. 5, 720 –748. (1999)

14. Kirkegaard, K., Aleen, F.: Using Intel® Cilk™ Plus to Achieve Data and Thread
Parallelism: A Case Study for Visual Computing, 2011. [Online]. Available:
http://software.intel.com/en-us/articles/data-and-thread-parallelism/ (current May
2012)

15. Luk, C. K., Newton, R., Hasenplaugh, W., Hampton, M., Lowney, G.: A
Synergetic Approach to Throughput Computing on x86-Based Multicore Desktops.
IEEE Software, Vol. 28, No. 1, 39-50. (2011)

16. Agrawal, K., Leiserson, C.E., Sukha, J.: Executing Task Graphs Using Work-
Stealing. In the Proceedings of the 24th IEEE International Parallel & Distributed
Processing Symposium. IEEE CPS, Los Alamitos, CA, USA, 1-12. (2010)

17. Popovic, M., Djukic, M., Marinkovic, V., Vranic, N.: A Task Tree Executor
Architecture Based on Intel Threading Building Blocks. In Proceedings of the 19th
Annual IEEE International Conference and Workshop on Engineering of
Computer Based Systems. IEEE CPS, Los Alamitos, CA, USA, 201-209. (2012)

18. Popovic, M., Basicevic, I.: An Intel Cilk Plus Based Task Tree Executor
Architecture. In Proceedings of the11th WSEAS International Conference on
Software Engineering, Parallel and Distributed Systems. WSEAS Press, 30-35
(2012)

19. Popovic, M., Basicevic, I.: Test case generation for the task tree type of
architecture. Information and Software Technology, Vol. 52, No. 6, 697–706.
(2010)

20. Woit, D.M.: Specifying Operational Profiles for Modules. In Proceedings of the
1993 ACM SIGSOFT international symposium on Software testing and analysis.
ACM Press, New York, NY, USA, 2-10. (1993)

21. Woit, D.M.: Estimating Software Reliability with Hypothesis Testing. Technical
Report CRL-263, McMaster University. (1993)

22. Woit, D.M.: Operational Profile Specification, Test Case Generation, and
Reliability Estimation for Modules. Ph.D. Thesis, Queen’s University Kingstone,
Ontario, Canada. (1994)

23. Woit, D.M.: A Framework for Reliability Estimation. In Proceedings of the 5
th
 IEEE

International Symposium on Software Reliability Engineering. IEEE CPS, Los
Alamitos, CA, USA, 18-24 (1994)

24. Popovic, M., Velikic, I.: A Generic Model-Based Test Case Generator. In
Proceedings of the 12

th
 IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems. IEEE CPS, Los Alamitos, CA, USA,
221-228. (2005)

25. Popovic, M., Basicevic, I., Velikic, I., Tatic, J.: A Model-Based Statistical Usage
Testing of Communication Protocols. In Proceedings of the 13

th
 Annual IEEE

International Conference and Workshop on Engineering of Computer Based
Systems. IEEE CPS, Los Alamitos, CA, USA, 377-386. (2006)

On Task Tree Executor Architectures Based on Intel Parallel Building Blocks

ComSIS Vol. 10, No. 1, January 2013 391

26. Popovic, M. Kovacevic, J.: A Statistical Approach to Model-Based Robustness
Testing. In Proceedings of the 14

th
 Annual IEEE International Conference and

Workshop on Engineering of Computer Based Systems. IEEE CPS, Los Alamitos,
CA, USA, 485-494. (2007)

27. Popovic, M.: Communication Protocol Engineering. CRC Press, Boca Raton, FL,
USA. (2006)

Prof. Miroslav Popovic received his M.Sc. and Ph.D. degrees in electrical
and computer engineering from the Faculty of Technical Sciences at the
University of Novi Sad, Novi Sad, Serbia, in 1984 and 1990, respectively. He
started his career as an assistant professor at the Faculty of technical
sciences, where he remained working to the present day. He was promoted to
a tenured professor in 2002. He is currently the head of the Chair of computer
engineering. He wrote the book Communication Protocol Engineering (Boca
Raton, Florida, USA: CRC Press, 2006) and about 150 papers published in
international and domestic journals and conference proceedings. His current
research interests are in the areas of parallel programming, model-based
development, testing, and verification. Prof. Popovic is the member of the
program committee of the IEEE Annual Conference on Engineering of
Computer Based Systems (ECBS), and also the member of IEEE, IEEE
Computer Society, IEEE TC on ECBS, and ACM.

Miodrag Djukic graduated from the Faculty of Technical Sciences,
University of Novi Sad, in 2007, received M.Sc. one year later from the same
university. His research interest is mostly focused on compilers and software
tools in general, applications of artificial intelligence, and computer graphics.
He is a teaching assistant at the Faculty of Technical Sciences and works on
several projects for RT-RK, Research and Development Institute for
Computer Based Systems. He is the member of IEEE, IEEE Computer
Society, and IEEE TC on ECBS.

Vladimir Marinkovic graduated and received M.Sc. degree in electrical and
computer engineering from the Faculty of Technical Sciences, University of
Novi Sad, Serbia, in 2009 and 2010 respectively. He is currently pursuing
Ph.D. degree from the same university. His research interests are focused on
both parallelization of programs for execution on multiprocessors and multi-
core processors, and compilers. In the year of 2011, he was elected to the
position of teaching assistant at RT-RK, Research and Development Institute
for Computer Based Systems. He is scholar of the Ministry of Science and
Technology from the school year 2010/2011.

Miroslav Popovic, Miodrag Djukic, Vladimir Marinkovic, and Nikola Vranic

ComSIS Vol. 10, No. 1, January 2013 392

Nikola Vranic received his B.Sc. and M.Sc. degrees in computer engineering
and computer communications at the Faculty of technical sciences,
University of Novi Sad. He is currently on Ph.D. studies at the same
University. He has been working on security of optical communication lines,
developing compiler modules for parallelization, digital television etc. His
research interests include multicore systems, code parallelization,
cryptography, android, Google TV, etc. He is author and coauthor of a dozen
of scientific papers in country and aboard. He is currently employed like
Google TV software engineering in the company RT-RK LLC and working as
assistant at the Faculty of Technical Sciences.

Received: May 19, 2012; Accepted: August 30, 2012.

