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Abstract. Our aim was to optimize a SOA control system by evolving 
the architecture of the service component that transforms system 
models into task trees, which are then executed by the runtime library 
called the Task Tree Executor, TTE. In the paper we present the two 
novel TTE architectures that evolved from the previous TTE 
architecture and introduced finer grained parallelism. The novel 
architectures execute TTE tasks as more lightweight TBB tasks and 
Cilk strands rather than the OS threads, which was the case for the 
previous TTE architecture. The experimental evaluation based on time 
needed for TTE reliability estimation, by statistical usage tests, shows 
that these novel TTE architectures are providing the average relative 
speedup, RS, from 8x to 11x, over the original TTE, on a dual-core 
machine. Additional experiments made on eight-core machine showed 
that RS provided by TTE based on TBB scales perfectly, and goes up 
to 77x. 

Keywords: service oriented architecture, architecture evolution, task 
trees, parallel programming, parallel building blocks. 

1. Introduction 

Providing proper parallel data processing is one of the greatest challenges to 
be dealt with when designing software solutions for management of critical 
infrastructures, such as oil, gas and electricity distribution systems. The main 
task of these systems is to provide continuous system supervision and 
control, based on data acquisition and processing, while fulfilling high 
availability, reliability, and security standards. Additionally, numerous 
economic, serviceability, and maintainability aspects regarding different 
operational activities must be addressed as well. Nowadays all these 
requirements are typically satisfied by a Service Oriented Architecture (SOA) 
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based system comprising a complex suite of service components, thus 
guiding the system designer to the set of necessary data and functionalities 
that need to be simultaneously served [1-2]. 

One of the most complicated components for design is a service 
component that provides various calculations using various models of the 
system, which commonly take a form of a graph or a tree. The examples of 
such calculations for the electricity distribution system are network topology 
analysis, load flow calculation, network state estimation, performance indices, 
etc. The main factors that are complicating the design of this kind of service 
components are that these nontrivial calculations have to be performed on 
large-scale graph models and near to real-time. Designers are also frequently 
facing the additional economic limitation that they have to somehow reuse 
legacy software, because of its enormous size – typically millions of lines of 
FORTRAN code that were developed over a couple of decades. 

In our previous work we have used two approaches to design and develop 
such service components for the electricity distribution systems. The first 
approach [3-4] is based on: (i) transforming network models into task trees 
that are managed by Task Tree Executor (TTE) and (ii) refactoring legacy 
code by introducing callback functions that are executed as TTE tasks. The 
second approach [5] is based on: (i) repackaging legacy code as DLLs 
(Dynamic Linkable Libraries) and (ii) executing them as parallel applications 
by Calculation Engine (CE). The advantage of the second approach is that it 
requires less development effort and that it is more robust, but the advantage 
of the first approach is that it provides more parallelism, because it is finer 
grained than the second approach. TTE runs TTE tasks as separate threads, 
whereas CE launches the application DLLs within separate processes. 

The goal of the work presented in this paper was to evolve the TTE 
architecture based on threads into the two new TTE architectures based on 
Intel Parallel Building Blocks (PBB) in order to provide even finer grained 
parallelism. The first novel TTE architecture is based on Intel Treading 
Building Blocks (TBB), whereas the second novel TTE architecture is based 
on Intel Cilk Plus (Cilk). Essentially, the TTE tasks that were executed as 
threads by the previous TTE [3-4] are now executed as more lightweight TBB 
tasks by the TTE based on TBB, or as Cilk strands by the TTE based on Cilk.  

The advantages of this TTE architecture evolution are threefold. Firstly, 
both TBB and Cilk are known of being able to provide better multicore CPU 
utilization than the local OS, such as MS Windows or Linux (i.e. TBB and Cilk 
can better parallelize their tasks/strands than OS can parallelize its threads). 
Secondly, both TBB and Cilk provide almost infinite number of tasks, 
whereas the local OS provides rather limited number of threads within a 
process (the order of couple of thousands of threads at maximum). Thirdly, 
the explicit and rather suboptimal CPU load control within the previous TTE 
architecture is now delegated to the excellent load balancing functionality of 
the TBB and Cilk runtime libraries within the two novel TTE architectures. 

The content of this paper is organized as follows. The related work and the 
description of target class of software systems that are addressed by the 
proposed solutions are presented in Subsections 1.1. and 1.2, respectively. 
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The three TTE architectures are described in Section 2, which is divided into 
the three subsections. The previous TTE architecture based on OS threads is 
described in Subsection 2.1, the novel TTE architecture based on TBB is 
described is Subsection 2.2, and the novel TTE architecture based on Cilk is 
described is Subsection 2.3. The statistical usage testing method and the 
results of the experimental evaluation of novel TTE architectures are 
presented in Sections 3 and 4, respectively. The latter Section 4 is partitioned 
into the five subsections, which are covering the baseline performance, the 
performance of the TTE architecture based on TBB, the performance of the 
TTE architecture based on Cilk, the scalability check for the TTE architecture 
based on TBB, and the threats to validity of experimental results, 
respectively. Final conclusions are given in Section 5. 

1.1. Related Work 

The next two subsections discuss work related to the TTE architectures 
based on Intel TBB and Intel Cilk Plus, respectively. 

Work Related to the TTE Architecture Based on Intel TBB 

TBB uses templates for common parallel iteration patterns, enabling 
programmers to attain increased speed from multiple processor cores without 
having to be experts in synchronization, load balancing, and cache 
optimization (see [6]). Generally, TBB provides more comfort to 
programmers and better results in terms of program speedup when compared 
to the practice of using raw threads, which was also the case in our particular 
work presented in this paper. 

Two features of TBB that provide the foundation for its robust performance 
are the TBB work-stealing scheduler and the TBB scalable memory allocator. 
To prove that, Kukanov and Voss [7] used experiments on several 
benchmarks to demonstrate the potential scalability of TBB based 
applications and to show that the TBB allocator is competitive with other 
allocators. 

One of the key advantages of a logical task is that it is much lighter than a 
thread, e.g. starting and terminating a task on Linux is around 18 times faster 
than starting and terminating a thread, whereas on Windows, this ratio is 
more than a 100 (see [8]). Additionally, TBB manages these light units of 
work very efficiently. Bhattacharjee et al. [9] used real hardware and 
simulations to detail various scheduler and synchronization overheads in 
order to assess these overheads on TBB and OpenMP. They found that these 
can amount to 47% of TBB benchmark runtime and 80% of OpenMP 
benchmark runtime, i.e. TBB is almost as twice as better when compared to 
OpenMP in respect to scheduling and synchronization overheads. 

Because of all of its features mentioned above, TBB is finding successful 
applications in various soft real-time systems, sometimes also called near to 
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real-time systems. One type of such systems is the system managing critical 
infrastructure, which we are primarily interested in. Another type of such 
systems is modern video games. Although it might come surprisingly, these 
two types of systems have much in common. They both use physical models 
and AI components, they both have real-time requirements, and they both 
may be classified as complex system. 

A significant effort has been made to demonstrate TBB’s applicability in 
modern video games industry. For example, Werth [10] provided useful 
instructions and hands-on examples on optimizing games architectures with 
TBB, in his talk on the recent game developer’s conference in San Francisco. 
Several other groups joined this R&D track by trying to create adequate 
parallel programming frameworks (PPFs) for video games engines. 

One notable example in that direction is Cascade, a PPF for video games 
engine, developed by Tagliasacchi et al. [11]. In Cascade, Cascade tasks are 
linked by dependencies in a task dependency graph, which is traversed at 
runtime by the Cascade Job Manager (CJM) that assigns tasks to threads for 
execution. CJM does this rather efficiently, for example the Cascade 
implementation of Sequence Alignment algorithm completes 1.5 times 
quicker than the OpenMP implementation. 

As pointed out by the creators of Cascade, TBB is closest in spirit to their 
system, when compared with other PPFs. However, their claim that TBB 
does not support explicit construction of task graphs and that graphs are 
constructed only recursively via spawn call is actually not true. On the other 
hand Cascade is also very similar to our TTE architecture. The main 
difference is that Cascade supports acyclic task graphs, whereas TTE 
supports task trees. 

Work Related to the TTE Architecture Based on Intel Cilk Plus 

Original Cilk programming language appeared as an extension of C providing 
language constructs for parallel control and synchronization. This extension 
was made to be very efficient in terms of runtime overheads, for example the 
typical cost of spawning an OS thread is 2-6 times the cost of the C function 
call on a variety of modern processors (see [12]). Once spawned, these 
parallel threads are scheduled very efficiently on a shared memory 
multiprocessor (SMP), by the Cilk scheduler that is based on the work 
stealing scheduling method. Blumofe and Leiserson [13] showed that the 
expected time to execute a well-structured computation on P processors 
using their work-stealing scheduler is T1/P + O(T∞), where T1 is the minimum 
serial execution time of the multithreaded computation and T∞ is the 
minimum execution time with an infinite number of processors. 

Original Cilk language has been developed, as an ANSI C extension, since 
1994 at the MIT. A commercial version of Cilk, called Cilk++, that supports 
both C and C++, was developed by Cilk Arts, Inc. In 2009, Intel Corporation 
acquired Cilk Arts, the Cilk++ technology and the trademark. In 2010, Intel 
released a commercial implementation in its compilers under the name Intel 
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Cilk Plus. In this paper we use Intel Cilk Plus and refer to it later in the text 
briefly as Cilk. 

Other authors have been successfully using Intel Cilk Plus before us. For 
example, Kirkegaard and Aleen [14] studed the potential of individual 
optimizing techniques in terms of speedup. They applied 5 techniques on the 
Google’s AOBench benchmark, to achieve the overall 16.47x speedup. 

Similarly, Luk et al. [15] used Intel Cilk Plus to demonstrate their 
synergetic approach to throughput computing. The experimental results they 
collected on a dual-socket quad-core Nehalem show that their approach 
achieves an average speedup of almost 20x over the best serial cases for an 
important set of computational kernels. 

Finally, Agrawal et al. [16] developed the Nabbit, a work-stealing library for 
execution of task graphs with arbitrary dependencies. They evaluated the 
performance of Nabbit using a dynamic program representing the Smith-
Waterman algorithm. Their results indicate that when task-graph nodes are 
mapped to reasonably sized blocks, Nabbit exhibits low overhead and scales 
as well as or better than other scheduling strategies. Interestingly, Nabbit is 
rather similar both to Cascade and to the TTE architectures presented in this 
paper. The main difference among them is that Nabbit and Cascade support 
acyclic task graphs, whereas TTE supports task trees. 

1.2. Target Environment 

Infrastructure of an industrial control system (ICS) consists of domain specific 
equipment and smart devices that are connected to Remote Terminal Units 
(RTUs), which are used for monitoring and control of an industrial process. A 
modern large scale industrial system typically uses Supervisory Control and 
Data Acquisition (SCADA) system as a front-end for communication with a 
network of RTUs. 

A separate and independent environment may be laid on top of any 
SCADA system. This layer, called Intelligent Control System (ICS), 
encompasses necessary control logic and process related intelligence, which 
can be very complex. The structure of ICS is shown in Fig. 1. Seen from the 
SOA standpoint, system exposes the Master Data Service (MDS) that stores 
logically consistent dataset describing existing elements of the system 
infrastructure. Besides MDS, other services used for enterprise integrations 
may be exposed, depending on ICS’s role and purpose. 

Each of the service components (SCs) in ICS is managing exactly one 
aspect of the overall system functionality, such as dynamic data 
management, performing necessary calculations, providing graphical 
representation of infrastructure elements, etc. The SC providing TTE driven 
parallel calculations on a given Operational Model (OM) is in the focus of this 
paper (it is labeled as C-TTE in Fig. 1). OM is a dataset that stores the model 
of the system. This dataset must be correct, e.g. if ICS manages an 
electricity distribution system, at least it has to satisfy the first and the second 
Kirchhoff law. 
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Interaction between the system user and the services is provided through a 
thin client application. Usually, there is no demanding data processing inside 
the client application itself, its only responsibility is to obtain data from 
particular service in the system periodically, or on user demand. 

When the system evolvement aspects are taken into the consideration, 
one of the most important design goals is to provide the plug-and-play like 
integration capabilities. Therefore, the main internal communication 
backbone is designed in accordance with the publisher/subscriber paradigm, 
which provides loose coupling between service components and services. 

For synchronous, point-to-point calls (represented with dashed arrows in 
Fig. 1), interfaces are provided to allow data access by other services and by 
external UI clients. However, the communication within the system is 
predominantly asynchronous, based on publishing and subscribing to 
different message topics (represented with full arrows in Fig. 1). An important 
aspect regarding the communication in the system is the fact that all the 
datasets describe the current infrastructural state of the system, which 
changes over time. 

 

ICS

Enterprise Systems

Control Devices

SCADA

UI

MDS

SC1

SC3

PubSub

SC2

C-TTE

OM

 

Fig. 1. Target Environment 

2. The Three TTE Architectures 

The next three subsections present the original TTE architecture based on 
OS threads, the TTE architecture based on Intel TBB [17], and the TTE 
architecture based on Intel Cilk Plus [18]. 
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2.1. TTE Architecture Based on Threads 

As shown in Fig. 2.a, an application that was refactored from legacy software 
to operate on slices of system model, which correspond to individual TTE 
tasks, does that by making use of the TTE application programming interface 
(API). The TTE API provides the following functions [3]: 

 
1. TS_CreateTaskGraph 
2. TS_AddTask 
3. TS_DeleteTask 
4. TS_SetBottomUpProcFun 
5. TS_SetTopDownProcFun 
6. TS_ExecuteBottomUp 
7. TS_ExecuteTopDown 
8. TS_DestroyTaskGraph 
9. TS_ExecuteBottomUpSequentially 
10. TS_ExecuteTopDownSequentially 
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Fig. 2. The three TTE Architectures: (a) Thread-based, (b) TBB-based, (c) Cilk-based 

The API function TS_CreateTaskGraph creates the task graph; its 
parameters are the identification (ID) of the root task, the pointer to the 
bottom-up processing function, the pointer to the top-down processing 
function, and the maximal number of local OS threads (pthreads) that will be 
used to execute the task graph in parallel. The bottom-up processing function 
and top-down processing function are the callback functions, which have the 
task ID as their parameter. The API function TS_AddTask adds a new task to 
the task graph, given the ID of the predecessor task and the ID of the new 
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task. The API function TS_DeleteTask deletes the given task and all of its 
successors from the task graph. 

The API function TS_SetBottomUpProcFun redefines the pointer to the 
bottom-up processing function, whereas the API function 
TS_SetTopDownProcFun redefines the pointer to the top-down processing 
function. The API function TS_ExecuteBottomUp executes the task graph 
bottom-up in parallel, whereas the API function TS_ExecuteTopDown 
executes the task graph top-down in parallel. Finally, the API function 
TS_DestroyTaskGraph deletes the task graph. 

The last two API functions are used only for the debugging and 
benchmarking purposes. The first one of them executes the task graph 
bottom-up sequentially, whereas the second one executes the task graph top-
down sequentially. The most frequently used functions are the functions no. 
1, 2, 6, 7, and 8. The function no. 3 is used to change the existing task graph, 
while the functions no. 4 and 5 are used only to redefine the callback 
functions. 

The TTE architecture based on threads comprises two main components, 
namely the C module TaskScheduler (shown as a class in Fig. 2 and Fig.3 for 
the sake of standard UML representation) and the class Task. The module 
TaskScheduler provides the TTE API by exporting its public functions, as 
listed and discussed above. Internally, this module hides the pointer to the 
task tree root and the pointers to the callback functions as its private (static) 
data. As a reaction to external application calls to the functions 
TS_CreateTaskGraph, TS_AddTask, TS_DeleteTask, and 
TS_DestroyTaskGraph, the module TaskScheduler builds and maintains the 
task tree by adding and deleting instances of the class Task. 

The class Task provides two field members that enable building task trees. 
These are the pointer to the predecessor task and the list of the successor 
tasks in the task tree. The function TS_AddTask adds a new task by (i) 
locating its predecessor task, (ii) setting the new task’s predecessor field to 
the address of the predecessor task, and (iii) adding the address of the newly 
created task to the list of the successor tasks in the corresponding field 
member of the predecessor task. Deleting a task from the task tree is more 
complex because deleting a given task means deleting itself and all its 
successors, and the successors of the successors, i.e. it means deleting the 
complete sub-tree from the given task and below it. 

When it comes to parallel task tree execution, the API function 
TS_ExecuteTopDown starts task tree top-down execution by calling the class 
Task member function executeTDinParallel on the root task, which in turn 
recursively traverses the task tree from its top, i.e. root task, downwards 
across all the successors, until it reaches all the task tree leafs. In each 
recursion, this function first calls the top-down callback function and then it 
starts new local OS threads for each of the current task’s successors by 
calling the PthreadsLibrary function CreateThread (using the pthreads API). 
The simplified pseudo code of the class Task member function 
executeTDinParallel is the following: 
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executeTDinParallel(task) = 

    callback tdCallback(task.id) 

    for each successor in task.successors 
        CreateThread(executeTDinParallel, successor) 
    WaitForAllChildTherads() 
 
Similarly, the API function TS_ExecuteBottomUp starts task tree bottom-

up execution by calling the class Task member function executeBUinParallel 
on the root task, which in turn recursively traverses the task tree from its top, 
i.e. root task, downwards across all the successors until it reaches all the task 
tree leafs. In each recursion, this function first starts new local OS threads for 
each of the current task’s successors by calling the PthreadsLibrary function 
CreateThread (over the pthreads API) and then it calls the bottom-up 
callback function. The simplified pseudo code of the class Task member 
function executeBUinParallel is the following: 

 
executeBUinParallel(task) = 

    for each successor in task.successors 
        CreateThread(executeBUinParallel, successor) 
    WaitForAllChildTherads() 
    callback buCallback(task.id) 

2.2. TTE Architecture Based on Intel TBB 

The simplified architecture of the complete system that is based on Intel TBB 
is shown in Fig. 2.b. As shown in Fig. 2.b, the novel TTE architecture based 
on Intel TBB is almost the same as the previous TTE architecture based on 
threads. The main difference between these two architectures at the high-
level architectural view used in Fig. 2 is that the novel TTE architecture 
makes use of the Intel TBB runtime library rather than using the local OS (MS 
Windows or Linux) pthreads library, as was the case in the previous 
architecture. This evolutionary step was essentially made by modifying the 
class Task such that the member functions executeTDinParallel and 
executeBUinParallel, which were responsible for the parallel task tree 
execution, in the novel architecture delegate parallel top-down and bottom-up 
task tree execution to new member functions executeTDbyTBB and 
executeBUbyTBB, respectively. 

This modification was completely transparent to the module 
TaskScheduler, thus the way it builds and maintains the task tree remained 
unchanged, as well as the way it starts parallel top-down and bottom-up task 
tree execution. Moreover, and even more importantly, this modification within 
the TTE architecture was completely transparent to the legacy applications. 
This was of utmost importance, because legacy applications are so huge in 
size, they may literally comprise millions of lines of code. 
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Although, at the high-level of abstraction, simplified pseudo code for the 
member functions executeTDinParallel and executeBUinParallel from the 
previous architecture remains valid for new member functions 
executeTDbyTBB and executeBUbyTBB, respectively, implementing them in 
C++ naturally required using TBB design patterns. More precisely, since TBB 
tasks are created as instances of C++ classes extending the TBB library class 
task, two auxiliary classes were introduced, namely the class TbbTaskTD and 
the class TbbTaskBU. The former is used by the member function 
executeTDbyTBB, whereas the latter is used by the member function 
executeBUbyTBB. 

Both of these auxiliary classes are rather simple. Since each TTE task 
within a TTE task tree is assigned a TBB task, both of these auxiliary classes 
have a field member that stores the corresponding TTE task. These field 
members are normally set by the class constructors. The execute methods of 
both auxiliary classes simply call the corresponding new Task member 
function, in particular the TbbTaskTD member function calls the Task 
member function executeTDbyTBB, whereas the TbbTaskBU member 
function calls the Task member function executeBUbyTBB. 

Once these auxiliary classes were introduced, synthesizing new Task 
member functions was rather straightforward. Concretely, the simplified 
pseudo code of the function executeTDbyTBB is the following: 

 
executeTDbyTBB(task) = 

    callback tdCallback(task.id) 

    if task.successors == Ø  return 
    et = TbbTaskTD(null) 
    et.set_ref_count(1) 

    for each successor in task.successors 
        et.increment_ref_count() 
        et.spawn( new TbbTaskTD (successor) ) 
    et.wait_for_all() 
    task::destroy(et) 
 
In the pseudo code above the name et stands for the empty task. Similarly, 

the simplified pseudo code of the function executeBUbyTBB is completely 
symmetrical: 

executeBUbyTBB(task) = 

    if task.successors != Ø 
        et = TbbTaskBU(null) 
        et.set_ref_count(1) 

        for each successor in task.successors 
            et.increment_ref_count() 
            et.spawn( new TbbTaskBU (successor) ) 
        et.wait_for_all() 
        task::destroy(et) 

    callback buCallback(task.id) 
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2.3. TTE Architecture Based on Intel Cilk Plus 

The simplified architecture of the system based on Intel Cilk Plus is shown in 
Fig. 2.c. As shown in Fig. 2.c, the TTE architecture based on Intel Cilk Plus is 
very similar to the previous two TTE architectures, which were presented in 
the previous two subsections. The main difference between the TTE 
architecture based on Intel Cilk Plus and the original TTE architecture based 
on OS threads is that the former uses the Intel Cilk Plus runtime library, 
whereas the latter uses the local OS pthreads library. 

This evolutionary step is like in Subsection 2.2 made by modifying the 
class Task such that the member functions executeTDinParallel and 
executeBUinParallel, which were originally responsible for the parallel task 
tree execution, now simply delegate parallel top-down and bottom-up task 
tree execution to new member functions executeTDbyCilk and 
executeBUbyCilk, respectively. As such, this modification is again transparent 
to the module TaskScheduler, as well as to all the legacy applications.  

Thanks to Cilk’s expressiveness, the simplified pseudo code for the 
member functions executeTDinParallel and executeBUinParallel from the 
previous architecture, almost directly map to the pseudo code for new 
member functions executeTDbyCilk and executeBUbyCilk, respectively. 
Essentially, the call to the function CreateThread is replaced with the keyword 

cilk_for and the call to the function WaitForAllChildTherads is replaced with 

the keyword cilk_sync. 
Once these mappings were introduced, synthesizing new Task member 

functions was rather straightforward. Consequently, the pseudo code of the 
function executeTDbyCilk is the following: 

 
executeTDbyCilk(task) = 

    callback tdCallback(task.id) 

    for each scsr in task.successors 

        cilk_spawn scsr.executeTDbyCilk(scsr) 
    cilk_sync 
 
In the pseudo code above the name scsr stands for the successor task. 

Similarly, the pseudo code of the function executeBUbyCilk is completely 
symmetrical: 

 
executeBUbyCilk(task) = 

    for each scsr in task.successors 

        cilk_spawn scsr.executeBUbyCilk(scsr) 
    cilk_sync 
    callback buCallback(task.id) 
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3. Statistical Usage Testing 

We used the method published in [19] for statistical usage testing and 
operational reliability estimation of all three TTE architectures. The method is 
mostly based on the approach created by D.M. Woit [20-23] and on the 
following work of several authors [24-27] that modernized that approach and 
adapted it to a form of the model-based testing. 

For the sake of completeness of this paper, we provide a brief overview of 
the method [19] in this section. We start with some definitions, then provide 
formulas for the number of test cases N and for the confidence level M, and 
finally outline the method in a form of a series of steps. 

A task τ is a callback function that executes as a local OS thread. A task 
tree is an undirected radial (i.e. acyclic) graph of tasks TG whose nodes are 
tasks interconnected with links indicating predecessor-successor relations. A 
task tree comprises a set of k tasks TK = {τ1, τ2, …, τk }, and a set of (k-1) 
links L = {l1, l2, …, l(k-1)}. 

A task tree execution path, a.k.a. a path in a task tree or a trace, is a 
sequence of terminations of individual tasks τ1τ2…τk during the task tree 
execution. The length of this sequence is always equal to k. A task forest is a 
series of task trees of the same complexity (the same number of nodes) that 
is generated as a test suite. A test case is a single task tree execution 
described by the corresponding path. 

Let rt be a software product tree-reliability and rp be a path-reliability. Then 
it may be easily shown that the product reliability r is obtained by multiplying 
the two: 

r =  rt rp . (1) 

If we further assume that rt = rp, then: 

rt = rp =  r
1/2

 . (2) 

Similarly, let Mt be a tree-confidence-level and Mp be a path-confidence 
level. Then it may be easily shown that the total confidence level M is the 
sum of the two: 

M = Mt + Mp . (3) 

If we further assume Mt = Mp, then: 

Mt = Mp = M/2 . (4) 

Therefore, when given r and M we calculate the requested number of trees 
Nt and number of paths Np for each tree as: 

Nt = Np = logr
1/2

 (M/2) . (5) 

Finally, the total number of test cases N is obtained as a simple product of 
Nt and Np: 

N = Nt Np = ( logr
1/2

 (M/2) )
2
 . (6) 
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This means that we simply have to generate Nt task trees and execute 
them Np times each. Thus the method of statistical testing and reliability 
estimation for applications based on task trees consists of the following steps: 

 
1. Given the desired level of product reliability, calculate Nt and Np. 
2. Generate Nt task trees. 
3. Execute each task tree Np times. 
4. Check the coverage metrics report. 
5. If the report shows poor coverage, return to step 2. 
6. Report any unexpected behavior to the design and implementation 

team. 

4. Experimental Evaluation 

Firstly, Statistical Usage Testing (SUT) and reliability estimation method 
described in the previous section was used to test all the TTE architectures. 
Secondly, SUT was used to evaluate the performance of the two new TTE 
architectures based on TBB and Cilk (see subsections 4.2 and 4.3) with 
respect to the original TTE architecture based on OS threads, which served 
as a baseline (see section 4.1). 

The measure of the performance that was used in the experiments was the 
time in seconds that was needed to execute all the N test cases from the 
given test suite. For the sake of completeness of the paper we provide the 
execution time measurements data for individual test suits for both TTE 
architectures, and for the sake of easier performance comparison between 
the two architectures we provide the relative speedup (RS) calculation 
results. The relative speedup RS is defined as the ratio: 

RS = Tp/Tn . (7) 

where Tp is the test suite execution time for the TTE architecture based on 
threads and Tn is the test suite execution time for the TTE architecture based 
on TBB (in subsection 4.2) or on Cilk (subsections 4.3). 

All the SUT based measurements were conducted on the dual-core 
symmetric multiprocessor, Intel® Core(TM) i5 CPU M 520 @ 2.4 GHz, 4 GB 
RAM, with Windows7 Professional® 64-bit OS.  

After conducting SUT based measurements, we made an additional 
scalability check for the TTE architecture based on TBB on the Intel Server 
Board SE8501HW4 with 4 Xeon MP Dual Core CPU, facilitating the total of 8 
cores operating on 2.4 GHz, with 12 GB of main memory. Software used in 
the experiments is OS CentOS 5.4 and open Intel TBB (see subsection 4.4). 
Unfortunately, open Intel Cilk Plus was still not mature enough and its port on 
CentOS 5.4 was not available at the time of this writings, so we were not able 
to make the same check for TTE architecture based on Cilk. 

At the end of this section we discuss various threats to validity of our 
experimental results (see subsection 4.5). 
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4.1. Baseline: Performance of the TTE Based on OS Threads 

Table 1 provides Tp values and test verdicts. The columns of Table 1 are 
organized as follows. The column “No Tasks” contains the number of TTE 
tasks used to construct task trees, the column “No Trees” shows the number 
of tasks that may be constructed by the given number of TTE tasks, the next 
three columns within the common column “Duration [s]” show test suites 
execution time in seconds for the three distinctive values of desired reliability 
r (r=0.9, r=0.95, and r=0.99), and the last column “Verdict” contains the test 
verdict. 

As could be seen from Table 1, test suite execution time increases with the 
number of TTE tasks and with the value of desired reliability r. As the last 
column indicates, TTE based on threads successfully passed all the tests. 

Table 1. Measurements for TTE Based on Threads 

No 
Tasks 

No 
Tree

s 

Duration [s] Verdict 
r=0.9 r=0.95 r=0.99 

1 1 0 1 11 Pass 
2 1 2 7 196 Pass 

3 2 2 10 273 Pass 
4 6 4 14 298 Pass 
5 24 4 15 365 Pass 
6 120 5 17 426 Pass 
7 720 5 20 485 Pass 
8 5040 18 35 558 Pass 

 

4.2. Performance of the TTE Based on Intel TBB 

The measured data and the calculated results are given in the following two 
tables below. Table 2 provides Tn values and test verdicts, whereas Table 3 
provides calculated RS values. 

The columns of Table 2 are organized in the same way as the columns of 
Table 1. Similarly, as in Table 1, test suite execution time increases with both 
number of tasks and the value of given reliability. The latter, again, causes 
faster growth of the test suite execution time than the former. The last 
column of Table 2 shows that TTE based on TBB also passed all the tests 
successfully. All of this seems very similar, but the measured values of test 
suites execution times are drastically different. Obviously, it took much less 
time for TTE based on TBB to complete all the tests than it did for the TTE 
based on threads. This is even more evident from Table 3. 

At this point, it seems appropriate to mention that we were not able to 
calculate some of the values of relative speedup RS from the raw data in 
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Tables 1 and 2, because some of the values of test suite execution times 
were 0. Therefore, the corresponding values of RS were undefined (dividing 
0 with 0 is undefined, and dividing the nonzero number with 0 converges 
towards infinity, which does not reflect reality in terms of realistic speedup 
that could be achieved). On the other hand, the test suites execution times 
are realistically always greater than zero – zero value is only a consequence 
of imprecise measurements. Finally, since test suites execution times were 
going up to several hundreds of seconds for the TTE architecture based on 
threads, we rounded all the 0 second measurements, in Tables 1 and 2, to 
the 1 second values. By doing so, we introduced a small error, which may be 
neglected, but we were able to provide RS values presented in Table 3. 

Table 2. Measurements for TTE Based on TBB 

No 
Tasks 

No 
Tree

s 

Duration [s] Verdict 
r=0.9 r=0.95 r=0.99 

1 1 0 0 7 Pass 
2 1 1 1 20 Pass 

3 2 0 1 23 Pass 
4 6 0 1 27 Pass 
5 24 0 1 30 Pass 
6 120 1 2 34 Pass 
7 720 0 1 37 Pass 
8 5040 8 8 49 Pass 

Table 3. Calculated Values of Relative Speedup RS for TTE Based on TBB 

No 
Tasks 

No 
Tree

s 

Relative Speedup RS Average 
over forests r=0.9 r=0.95 r=0.99 

1 1 1.00 1.00 1.57 1.19 
2 1 2.00 7.00 9.80 6.27 

3 2 2.00 10.00 11.87 7.96 
4 6 4.00 14.00 11.04 9.68 
5 24 4.00 15.00 12.17 10.39 
6 120 5.00 8.50 12.53 8.68 
7 720 5.00 20.00 13.11 12.70 
8 5040 2.25 4.38 11.39 6.00 

Average over r 3.16 9.98 10.43 7.86 

 
Table 3 shows the values of relative speedup RS of test suite execution on 

new and previous TTE architectures, for various numbers of tasks and 
desired operational reliability r figures. The columns of Table 3 are organized 
similarly as the columns of Tables 1 and 2. The additional row shows the 
average RS calculated over different values of desired operational reliability 
r, whereas the last column shows the average RS evaluated over a different 
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number of tasks (rather than the test suit verdict like in Tables 1 and 2). The 
bottom-right cell of Table 3 shows an overall RS average when evaluated 
over all RS values. 

As expected, the relative speedup RS increased both with the number of 
tasks for a given operational reliability r, and with the desired operational 
reliability r for a given number of tasks. Obviously, RS grows much faster 
with the desired r than with the number of tasks, which appears quite natural, 
because the needed testing effort increases much more with operational 
reliability r than with the number of tasks. As a consequence of these trends, 
both the average RS, calculated per task, increases with the number of tasks, 
and the average RS, calculated per given operational reliability r, increases 
with the value of r. 

The overall average relative speedup is 7.86 (bottom-right cell in Table 3), 
which is quite a good result for the dual-core target machine we used in the 
experiments. Of course, it would be interesting to see how this average 
speedup of around 8 changes with the number of available cores in the target 
platform. In Subsection 4.4 we conduct more experiments in that direction in 
order to check the scalability of the proposed solution. 

 

 

Fig. 3. The average relative speedup RS as a function of reliability r. The dashed 
curve shows the average RS values for the TTE based on TBB, whereas the full 
curve shows the average RS values for the TTE based on Cilk  

Another important fact that may be seen by looking at the values of 
average RS in the last row of Table 3, is that average RS is around 3 only for 
the value r=0.9. For the values of r that are greater than 0.9, average RS is 
around 10, so the test suite execution on the novel TTE architecture is an 
order of magnitude faster than on the previous architectures, for the greater 
values of r (0.95 and 0.99 in Table 3). This fact becomes even more obvious 
by observing Fig. 3, which shows the average relative speedup RS  as a 
function of a given operational reliability r (see the curve RStbb in Fig. 3). 



On Task Tree Executor Architectures Based on Intel Parallel Building Blocks 

ComSIS Vol. 10, No. 1, January 2013 385 

4.3. Performance of the TTE Based on Intel Cilk Plus 

The measured data and the calculated results are given in the following two 
tables below. Table 4 provides Tn values and test verdicts, whereas Table 5 
provides calculated RS values. 

Table 4. Measurements for TTE Based on Cilk 

No 
Tasks 

No 
Tree

s 

Duration [s] Verdict 
r=0.9 r=0.95 r=0.99 

1 1 1 1 9 Pass 
2 1 1 1 10 Pass 

3 2 1 1 12 Pass 
4 6 1 1 13 Pass 
5 24 1 1 16 Pass 
6 120 1 1 17 Pass 
7 720 1 2 20 Pass 
8 5040 7 8 30 Pass 

Table 5. Calculated Values of Relative Speedup RS for TTE Based on Cilk 

No 
Tasks 

No 
Tree

s 

Relative Speedup RS Average 
over forests r=0.9 r=0.95 r=0.99 

1 1 1.00 1.00 1.22 1.07 
2 1 2.00 7.00 19.60 9.53 

3 2 2.00 10.00 22.75 11.58 
4 6 4.00 14.00 22.92 13.64 
5 24 4.00 15.00 22.81 13.94 
6 120 5.00 17.00 25.06 15.69 
7 720 5.00 10.00 24.25 13.08 
8 5040 2.57 4.38 18.60 8.51 

Average over r 3.20 9.80 19.65 10.88 

 
The columns of Table 4 are organized in the same way as the columns of 

Table 2. Similarly, as in Table 2, test suite execution time increases with both 
number of tasks and the value of given reliability r. Again, the latter causes 
faster growth of the test suite execution time than the former. The last 
column of Table 4 shows that TTE based on Cilk successfully passed all the 
tests. The measured values of test suites execution times for TTE based on 
Cilk are even smaller than the corresponding times for the TTE based on OS 
threads. This fact becomes more evident by observing Table 5. 

Table 5 shows the values of relative speedup RS of test suite execution on 
the TTE based on Intel Cilk and on the TTE based on OS threads, for various 
numbers of tasks and desired operational reliability r figures. Table 5 is 
organized in the same way as Table 3. 
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The results of the qualitative analysis of data given in Table 5 are 
practically the same as the previous qualitative analysis of data given in 
Table 3. Again, both the average RS, calculated per task, increases with the 
number of tasks, and the average RS, calculated per given operational 
reliability r, increases with the value of r. And again RS grows much faster 
with the desired r than with the number of tasks. 

The overall average relative speedup is 10.88 (bottom-right cell in Table 
5), which is a good result for the dual-core target machine we used in the 
experiments. Of course, it would be interesting to see how this average 
speedup of around 11x changes with the number of available cores in the 
target platform, and we have a plan to conduct more experiments in that 
direction in the future. 

But, even more important fact that may be seen by observing the values of 
average RS in the last row of Table 5, is that overall average RS of 11x is 
actually much limited by the RS value of around 3x for r=0.9. For the values 
of r greater than 0.9, average RS goes up to 20x (for r=0.99). So after 
analyzing this data, one becomes aware that the novel TTE architecture 
provides scalable performance relative to given operational reliability r. This 
fact becomes even more obvious by observing Fig. 3, which illustrates the 
average relative speedup RS as a function of a given operational reliability r 
(see the curve RScilk in Fig. 3). 

Finally, Fig. 3 makes it possible to compare the two TTE solutions that are 
based on Intel Parallel Building Blocks. We see from Fig. 3 that the RS has 
greater values for the TTE base on Cilk than for the TTE based on TBB. The 
values for the former go up to 10x, whereas the values for the latter go up to 
20x. 

4.4. Scalability Check for the TTE Based on Intel TBB 

The results presented in the previous subsections show that performance of 
newly developed TTE architectures scale rather well with respect to the 
operational reliability r. But, all the previously described experiments were 
conducted on the dual-core machine and on small task trees consisting of up 
to 8 tasks. In this subsection we check performance scalability of the TTE 
based on TBB with respect to the number of processor cores and with respect 
to the number of tasks in randomly generated large task trees. 

For this purpose we conducted the three series of experiments for the 
three particular numbers of tasks (k) that were used to randomly construct 
tasks trees, namely k=600, k=800, and k=1000 tasks, respectively. The task 
trees were randomly generated by the previously developed component 
TreeGrower, which is described in [19]. In each series of experiments we 
indirectly measured the RS of TTE based on TBB in respect to the original 
TTE based on OS threads for various numbers of processor cores Nc, from 
Nc=2 to Nc=8 with the step 2 (i.e. Nc=2,4,6,8). 
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The RS was indirect measured as follows. We directly measured the 
execution times of SUT tests targeting r=0.9 for both TTE based on OS 
threads and TTE based on TBB, three times each, then we calculated the 
mean values of execution times, and finally we calculated the corresponding 
RS values. The final results are given in Table 6 and they are illustrated in 
Fig. 4. 

Table 6. Relative Speedup RS for various numbers of cores and tasks. RS600 is the 

RS for k=600, RS800 is the RS for k=800, and RS1000 is the RS for k=1000 tasks 

No Cores RS600 RS800 RS1000 

2 29.45 46.17 52.75 
4 36.14 57.34 64.49 
6 41.45 65.46 72.99 
8 43.98 69.39 77.17 

 
Table 6 is organized as follows. The column “No Cores” indicates the 

number of processor cores that were utilized by TTE based on TBB. The 
columns “RS600”, “RS800”, and “RS1000” show the RS for k=600, k=800, 
and k=1000 tasks, respectively. 

 

 

Fig. 4. The average relative speedup RS as a function of the number of cores Nc and 

the number of tasks Nt. The dashed curve shows the RS for k=600, the dotted-

dashed curve shows the RS for k=800, and the full curve shows the RS for k=1000 

As indicated by Fig. 4, the performance, in terms of relative speedup RS of 
the TTE based on TBB in respect to TTE based on OS threads, scales 
perfectly with both the number of processor cores and the number of tasks 
within a task tree. The RS increase linearly with the number of cores and 
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logarithmically with the number of tasks, and it goes up to 77x for Nc=8 cores 
and k=1000 tasks. 

4.5. Threats to validity of experimental results 

At the end of this section we briefly address the threats to validity of the 
presented results. From all the kinds of threats, the threats to the external 
validity are the most serious threats for the presented results, because 
repeating the experiments on a different platform (machine and operating 
system) would very likely yield different results than those shown in Tables 1-
6. The only way to address this issue is to repeat the experiments on several 
different platforms, and that remains to be done in our future work. 

The other two kinds of threats, namely the threats to internal validity and 
the threats to construct validity do exist, but can be neglected. We minimized 
the former threats by disconnecting the target machine from the Internet and 
by closing all the other applications. The latter threats reduce here to 
imprecision of measuring time, which obviously can be neglected. 

5. Conclusions 

Application of parallel programming techniques to design of software 
solutions is a promising trend. In this paper we have shown an approach to 
apply parallel programming techniques based on Intel Parallel Building 
Blocks to a class of service components within SOA based industrial 
systems. Moreover, we have shown an approach to introduce either the Intel 
TBB library, or Intel Cilk Plus library, instead of the conventional OS threads 
library through a corresponding evolutionary step with minimal adaptations of 
the legacy TTE architecture. Such evolutionary approaches to architecting 
new system versions are necessary because legacy software may be of 
extreme size, typically measured in millions of lines of code. 

The results of the approach are two novel TTE architectures. The first one 
is based on Intel TBB that executes TTE tasks as TBB tasks, whereas the 
second one is based on Intel Cilk Plus that executes TTE tasks as Cilk 
strands. Essentially, novel TTE architectures use finer grained parallelism, 
which yields better multicore CPU utilization. The first novel TTE architecture 
based on TBB exhibited the average relative speedup RS of around 8x, and 
the maximal RS of 10x, over the original TTE architecture based on 
pthreads. Similarly, and even better, the second novel TTE architecture 
based on Cilk achieved the average RS of around 11x, and the maximal RS 
of 20x, over the original TTE architecture based on pthreads. 

Additional scalability check that was made for the first novel TTE 
architecture based on TBB showed that its performance in terms of relative 
speedup RS scales perfectly with both the number of processor cores and the 
number of tasks within a task tree. The RS increase linearly with the number 
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of cores and logarithmically with the number of tasks, and it goes up to 77x 
for Nc=8 cores and k=1000 tasks. 

 In our future work we plan (i) to make the scalability check for TTE 
architecture based on Cilk if and when open Intel Cilk Plus port for CentOS 
5.4 becomes available, (ii) to explore other algorithms for parallel task tree 
execution and their implementations, (iii) to evolve TTE architecture in order 
to support also other non Intel multicores, as well as heterogeneous 
multicores, and (iv) to develop a distributed TTE architecture for a system 
with many heterogeneous multicores. 
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